1 //===- HexagonConstPropagation.cpp ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #define DEBUG_TYPE "hcp" 10 11 #include "HexagonInstrInfo.h" 12 #include "HexagonRegisterInfo.h" 13 #include "HexagonSubtarget.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Compiler.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <cstring> 41 #include <iterator> 42 #include <map> 43 #include <queue> 44 #include <set> 45 #include <utility> 46 #include <vector> 47 48 using namespace llvm; 49 50 namespace { 51 52 // Properties of a value that are tracked by the propagation. 53 // A property that is marked as present (i.e. bit is set) dentes that the 54 // value is known (proven) to have this property. Not all combinations 55 // of bits make sense, for example Zero and NonZero are mutually exclusive, 56 // but on the other hand, Zero implies Finite. In this case, whenever 57 // the Zero property is present, Finite should also be present. 58 class ConstantProperties { 59 public: 60 enum { 61 Unknown = 0x0000, 62 Zero = 0x0001, 63 NonZero = 0x0002, 64 Finite = 0x0004, 65 Infinity = 0x0008, 66 NaN = 0x0010, 67 SignedZero = 0x0020, 68 NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero), 69 PosOrZero = 0x0100, 70 NegOrZero = 0x0200, 71 SignProperties = (PosOrZero|NegOrZero), 72 Everything = (NumericProperties|SignProperties) 73 }; 74 75 // For a given constant, deduce the set of trackable properties that this 76 // constant has. 77 static uint32_t deduce(const Constant *C); 78 }; 79 80 // A representation of a register as it can appear in a MachineOperand, 81 // i.e. a pair register:subregister. 82 83 // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in 84 // HexagonGenPredicate 85 struct RegisterSubReg { 86 unsigned Reg, SubReg; 87 88 explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {} 89 explicit RegisterSubReg(const MachineOperand &MO) 90 : Reg(MO.getReg()), SubReg(MO.getSubReg()) {} 91 92 void print(const TargetRegisterInfo *TRI = nullptr) const { 93 dbgs() << printReg(Reg, TRI, SubReg); 94 } 95 96 bool operator== (const RegisterSubReg &R) const { 97 return (Reg == R.Reg) && (SubReg == R.SubReg); 98 } 99 }; 100 101 // Lattice cell, based on that was described in the W-Z paper on constant 102 // propagation. 103 // Latice cell will be allowed to hold multiple constant values. While 104 // multiple values would normally indicate "bottom", we can still derive 105 // some useful information from them. For example, comparison X > 0 106 // could be folded if all the values in the cell associated with X are 107 // positive. 108 class LatticeCell { 109 private: 110 enum { Normal, Top, Bottom }; 111 112 static const unsigned MaxCellSize = 4; 113 114 unsigned Kind:2; 115 unsigned Size:3; 116 unsigned IsSpecial:1; 117 unsigned :0; 118 119 public: 120 union { 121 uint32_t Properties; 122 const Constant *Value; 123 const Constant *Values[MaxCellSize]; 124 }; 125 126 LatticeCell() : Kind(Top), Size(0), IsSpecial(false) { 127 for (unsigned i = 0; i < MaxCellSize; ++i) 128 Values[i] = nullptr; 129 } 130 131 bool meet(const LatticeCell &L); 132 bool add(const Constant *C); 133 bool add(uint32_t Property); 134 uint32_t properties() const; 135 unsigned size() const { return Size; } 136 137 LatticeCell(const LatticeCell &L) { 138 // This memcpy also copies Properties (when L.Size == 0). 139 uint32_t N = 140 L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *); 141 memcpy(Values, L.Values, N); 142 Kind = L.Kind; 143 Size = L.Size; 144 IsSpecial = L.IsSpecial; 145 } 146 147 LatticeCell &operator=(const LatticeCell &L) { 148 if (this != &L) { 149 // This memcpy also copies Properties (when L.Size == 0). 150 uint32_t N = L.IsSpecial ? sizeof L.Properties 151 : L.Size * sizeof(const Constant *); 152 memcpy(Values, L.Values, N); 153 Kind = L.Kind; 154 Size = L.Size; 155 IsSpecial = L.IsSpecial; 156 } 157 return *this; 158 } 159 160 bool isSingle() const { return size() == 1; } 161 bool isProperty() const { return IsSpecial; } 162 bool isTop() const { return Kind == Top; } 163 bool isBottom() const { return Kind == Bottom; } 164 165 bool setBottom() { 166 bool Changed = (Kind != Bottom); 167 Kind = Bottom; 168 Size = 0; 169 IsSpecial = false; 170 return Changed; 171 } 172 173 void print(raw_ostream &os) const; 174 175 private: 176 void setProperty() { 177 IsSpecial = true; 178 Size = 0; 179 Kind = Normal; 180 } 181 182 bool convertToProperty(); 183 }; 184 185 #ifndef NDEBUG 186 raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) { 187 L.print(os); 188 return os; 189 } 190 #endif 191 192 class MachineConstEvaluator; 193 194 class MachineConstPropagator { 195 public: 196 MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) { 197 Bottom.setBottom(); 198 } 199 200 // Mapping: vreg -> cell 201 // The keys are registers _without_ subregisters. This won't allow 202 // definitions in the form of "vreg:subreg = ...". Such definitions 203 // would be questionable from the point of view of SSA, since the "vreg" 204 // could not be initialized in its entirety (specifically, an instruction 205 // defining the "other part" of "vreg" would also count as a definition 206 // of "vreg", which would violate the SSA). 207 // If a value of a pair vreg:subreg needs to be obtained, the cell for 208 // "vreg" needs to be looked up, and then the value of subregister "subreg" 209 // needs to be evaluated. 210 class CellMap { 211 public: 212 CellMap() { 213 assert(Top.isTop()); 214 Bottom.setBottom(); 215 } 216 217 void clear() { Map.clear(); } 218 219 bool has(unsigned R) const { 220 // All non-virtual registers are considered "bottom". 221 if (!Register::isVirtualRegister(R)) 222 return true; 223 MapType::const_iterator F = Map.find(R); 224 return F != Map.end(); 225 } 226 227 const LatticeCell &get(unsigned R) const { 228 if (!Register::isVirtualRegister(R)) 229 return Bottom; 230 MapType::const_iterator F = Map.find(R); 231 if (F != Map.end()) 232 return F->second; 233 return Top; 234 } 235 236 // Invalidates any const references. 237 void update(unsigned R, const LatticeCell &L) { 238 Map[R] = L; 239 } 240 241 void print(raw_ostream &os, const TargetRegisterInfo &TRI) const; 242 243 private: 244 using MapType = std::map<unsigned, LatticeCell>; 245 246 MapType Map; 247 // To avoid creating "top" entries, return a const reference to 248 // this cell in "get". Also, have a "Bottom" cell to return from 249 // get when a value of a physical register is requested. 250 LatticeCell Top, Bottom; 251 252 public: 253 using const_iterator = MapType::const_iterator; 254 255 const_iterator begin() const { return Map.begin(); } 256 const_iterator end() const { return Map.end(); } 257 }; 258 259 bool run(MachineFunction &MF); 260 261 private: 262 void visitPHI(const MachineInstr &PN); 263 void visitNonBranch(const MachineInstr &MI); 264 void visitBranchesFrom(const MachineInstr &BrI); 265 void visitUsesOf(unsigned R); 266 bool computeBlockSuccessors(const MachineBasicBlock *MB, 267 SetVector<const MachineBasicBlock*> &Targets); 268 void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To); 269 270 void propagate(MachineFunction &MF); 271 bool rewrite(MachineFunction &MF); 272 273 MachineRegisterInfo *MRI = nullptr; 274 MachineConstEvaluator &MCE; 275 276 using CFGEdge = std::pair<unsigned, unsigned>; 277 using SetOfCFGEdge = std::set<CFGEdge>; 278 using SetOfInstr = std::set<const MachineInstr *>; 279 using QueueOfCFGEdge = std::queue<CFGEdge>; 280 281 LatticeCell Bottom; 282 CellMap Cells; 283 SetOfCFGEdge EdgeExec; 284 SetOfInstr InstrExec; 285 QueueOfCFGEdge FlowQ; 286 }; 287 288 // The "evaluator/rewriter" of machine instructions. This is an abstract 289 // base class that provides the interface that the propagator will use, 290 // as well as some helper functions that are target-independent. 291 class MachineConstEvaluator { 292 public: 293 MachineConstEvaluator(MachineFunction &Fn) 294 : TRI(*Fn.getSubtarget().getRegisterInfo()), 295 MF(Fn), CX(Fn.getFunction().getContext()) {} 296 virtual ~MachineConstEvaluator() = default; 297 298 // The required interface: 299 // - A set of three "evaluate" functions. Each returns "true" if the 300 // computation succeeded, "false" otherwise. 301 // (1) Given an instruction MI, and the map with input values "Inputs", 302 // compute the set of output values "Outputs". An example of when 303 // the computation can "fail" is if MI is not an instruction that 304 // is recognized by the evaluator. 305 // (2) Given a register R (as reg:subreg), compute the cell that 306 // corresponds to the "subreg" part of the given register. 307 // (3) Given a branch instruction BrI, compute the set of target blocks. 308 // If the branch can fall-through, add null (0) to the list of 309 // possible targets. 310 // - A function "rewrite", that given the cell map after propagation, 311 // could rewrite instruction MI in a more beneficial form. Return 312 // "true" if a change has been made, "false" otherwise. 313 using CellMap = MachineConstPropagator::CellMap; 314 virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs, 315 CellMap &Outputs) = 0; 316 virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, 317 LatticeCell &Result) = 0; 318 virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, 319 SetVector<const MachineBasicBlock*> &Targets, 320 bool &CanFallThru) = 0; 321 virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0; 322 323 const TargetRegisterInfo &TRI; 324 325 protected: 326 MachineFunction &MF; 327 LLVMContext &CX; 328 329 struct Comparison { 330 enum { 331 Unk = 0x00, 332 EQ = 0x01, 333 NE = 0x02, 334 L = 0x04, // Less-than property. 335 G = 0x08, // Greater-than property. 336 U = 0x40, // Unsigned property. 337 LTs = L, 338 LEs = L | EQ, 339 GTs = G, 340 GEs = G | EQ, 341 LTu = L | U, 342 LEu = L | EQ | U, 343 GTu = G | U, 344 GEu = G | EQ | U 345 }; 346 347 static uint32_t negate(uint32_t Cmp) { 348 if (Cmp == EQ) 349 return NE; 350 if (Cmp == NE) 351 return EQ; 352 assert((Cmp & (L|G)) != (L|G)); 353 return Cmp ^ (L|G); 354 } 355 }; 356 357 // Helper functions. 358 359 bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC); 360 bool constToInt(const Constant *C, APInt &Val) const; 361 bool constToFloat(const Constant *C, APFloat &Val) const; 362 const ConstantInt *intToConst(const APInt &Val) const; 363 364 // Compares. 365 bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2, 366 const CellMap &Inputs, bool &Result); 367 bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2, 368 const CellMap &Inputs, bool &Result); 369 bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2, 370 const CellMap &Inputs, bool &Result); 371 bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2, 372 bool &Result); 373 bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2, 374 bool &Result); 375 bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2, 376 bool &Result); 377 378 bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs, 379 LatticeCell &Result); 380 381 // Logical operations. 382 bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2, 383 const CellMap &Inputs, LatticeCell &Result); 384 bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2, 385 const CellMap &Inputs, LatticeCell &Result); 386 bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result); 387 bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, 388 const CellMap &Inputs, LatticeCell &Result); 389 bool evaluateORri(const RegisterSubReg &R1, const APInt &A2, 390 const CellMap &Inputs, LatticeCell &Result); 391 bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result); 392 bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, 393 const CellMap &Inputs, LatticeCell &Result); 394 bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2, 395 const CellMap &Inputs, LatticeCell &Result); 396 bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result); 397 398 // Extensions. 399 bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, 400 const CellMap &Inputs, LatticeCell &Result); 401 bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits, 402 APInt &Result); 403 bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, 404 const CellMap &Inputs, LatticeCell &Result); 405 bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits, 406 APInt &Result); 407 408 // Leading/trailing bits. 409 bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones, 410 const CellMap &Inputs, LatticeCell &Result); 411 bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); 412 bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones, 413 const CellMap &Inputs, LatticeCell &Result); 414 bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); 415 416 // Bitfield extract. 417 bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, 418 unsigned Offset, bool Signed, const CellMap &Inputs, 419 LatticeCell &Result); 420 bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset, 421 bool Signed, APInt &Result); 422 // Vector operations. 423 bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count, 424 const CellMap &Inputs, LatticeCell &Result); 425 bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count, 426 APInt &Result); 427 }; 428 429 } // end anonymous namespace 430 431 uint32_t ConstantProperties::deduce(const Constant *C) { 432 if (isa<ConstantInt>(C)) { 433 const ConstantInt *CI = cast<ConstantInt>(C); 434 if (CI->isZero()) 435 return Zero | PosOrZero | NegOrZero | Finite; 436 uint32_t Props = (NonZero | Finite); 437 if (CI->isNegative()) 438 return Props | NegOrZero; 439 return Props | PosOrZero; 440 } 441 442 if (isa<ConstantFP>(C)) { 443 const ConstantFP *CF = cast<ConstantFP>(C); 444 uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero) 445 : PosOrZero; 446 if (CF->isZero()) 447 return (Props & ~NumericProperties) | (Zero|Finite); 448 Props = (Props & ~NumericProperties) | NonZero; 449 if (CF->isNaN()) 450 return (Props & ~NumericProperties) | NaN; 451 const APFloat &Val = CF->getValueAPF(); 452 if (Val.isInfinity()) 453 return (Props & ~NumericProperties) | Infinity; 454 Props |= Finite; 455 return Props; 456 } 457 458 return Unknown; 459 } 460 461 // Convert a cell from a set of specific values to a cell that tracks 462 // properties. 463 bool LatticeCell::convertToProperty() { 464 if (isProperty()) 465 return false; 466 // Corner case: converting a fresh (top) cell to "special". 467 // This can happen, when adding a property to a top cell. 468 uint32_t Everything = ConstantProperties::Everything; 469 uint32_t Ps = !isTop() ? properties() 470 : Everything; 471 if (Ps != ConstantProperties::Unknown) { 472 Properties = Ps; 473 setProperty(); 474 } else { 475 setBottom(); 476 } 477 return true; 478 } 479 480 #ifndef NDEBUG 481 void LatticeCell::print(raw_ostream &os) const { 482 if (isProperty()) { 483 os << "{ "; 484 uint32_t Ps = properties(); 485 if (Ps & ConstantProperties::Zero) 486 os << "zero "; 487 if (Ps & ConstantProperties::NonZero) 488 os << "nonzero "; 489 if (Ps & ConstantProperties::Finite) 490 os << "finite "; 491 if (Ps & ConstantProperties::Infinity) 492 os << "infinity "; 493 if (Ps & ConstantProperties::NaN) 494 os << "nan "; 495 if (Ps & ConstantProperties::PosOrZero) 496 os << "poz "; 497 if (Ps & ConstantProperties::NegOrZero) 498 os << "nez "; 499 os << '}'; 500 return; 501 } 502 503 os << "{ "; 504 if (isBottom()) { 505 os << "bottom"; 506 } else if (isTop()) { 507 os << "top"; 508 } else { 509 for (unsigned i = 0; i < size(); ++i) { 510 const Constant *C = Values[i]; 511 if (i != 0) 512 os << ", "; 513 C->print(os); 514 } 515 } 516 os << " }"; 517 } 518 #endif 519 520 // "Meet" operation on two cells. This is the key of the propagation 521 // algorithm. 522 bool LatticeCell::meet(const LatticeCell &L) { 523 bool Changed = false; 524 if (L.isBottom()) 525 Changed = setBottom(); 526 if (isBottom() || L.isTop()) 527 return Changed; 528 if (isTop()) { 529 *this = L; 530 // L can be neither Top nor Bottom, so *this must have changed. 531 return true; 532 } 533 534 // Top/bottom cases covered. Need to integrate L's set into ours. 535 if (L.isProperty()) 536 return add(L.properties()); 537 for (unsigned i = 0; i < L.size(); ++i) { 538 const Constant *LC = L.Values[i]; 539 Changed |= add(LC); 540 } 541 return Changed; 542 } 543 544 // Add a new constant to the cell. This is actually where the cell update 545 // happens. If a cell has room for more constants, the new constant is added. 546 // Otherwise, the cell is converted to a "property" cell (i.e. a cell that 547 // will track properties of the associated values, and not the values 548 // themselves. Care is taken to handle special cases, like "bottom", etc. 549 bool LatticeCell::add(const Constant *LC) { 550 assert(LC); 551 if (isBottom()) 552 return false; 553 554 if (!isProperty()) { 555 // Cell is not special. Try to add the constant here first, 556 // if there is room. 557 unsigned Index = 0; 558 while (Index < Size) { 559 const Constant *C = Values[Index]; 560 // If the constant is already here, no change is needed. 561 if (C == LC) 562 return false; 563 Index++; 564 } 565 if (Index < MaxCellSize) { 566 Values[Index] = LC; 567 Kind = Normal; 568 Size++; 569 return true; 570 } 571 } 572 573 bool Changed = false; 574 575 // This cell is special, or is not special, but is full. After this 576 // it will be special. 577 Changed = convertToProperty(); 578 uint32_t Ps = properties(); 579 uint32_t NewPs = Ps & ConstantProperties::deduce(LC); 580 if (NewPs == ConstantProperties::Unknown) { 581 setBottom(); 582 return true; 583 } 584 if (Ps != NewPs) { 585 Properties = NewPs; 586 Changed = true; 587 } 588 return Changed; 589 } 590 591 // Add a property to the cell. This will force the cell to become a property- 592 // tracking cell. 593 bool LatticeCell::add(uint32_t Property) { 594 bool Changed = convertToProperty(); 595 uint32_t Ps = properties(); 596 if (Ps == (Ps & Property)) 597 return Changed; 598 Properties = Property & Ps; 599 return true; 600 } 601 602 // Return the properties of the values in the cell. This is valid for any 603 // cell, and does not alter the cell itself. 604 uint32_t LatticeCell::properties() const { 605 if (isProperty()) 606 return Properties; 607 assert(!isTop() && "Should not call this for a top cell"); 608 if (isBottom()) 609 return ConstantProperties::Unknown; 610 611 assert(size() > 0 && "Empty cell"); 612 uint32_t Ps = ConstantProperties::deduce(Values[0]); 613 for (unsigned i = 1; i < size(); ++i) { 614 if (Ps == ConstantProperties::Unknown) 615 break; 616 Ps &= ConstantProperties::deduce(Values[i]); 617 } 618 return Ps; 619 } 620 621 #ifndef NDEBUG 622 void MachineConstPropagator::CellMap::print(raw_ostream &os, 623 const TargetRegisterInfo &TRI) const { 624 for (auto &I : Map) 625 dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n'; 626 } 627 #endif 628 629 void MachineConstPropagator::visitPHI(const MachineInstr &PN) { 630 const MachineBasicBlock *MB = PN.getParent(); 631 unsigned MBN = MB->getNumber(); 632 LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN); 633 634 const MachineOperand &MD = PN.getOperand(0); 635 RegisterSubReg DefR(MD); 636 assert(Register::isVirtualRegister(DefR.Reg)); 637 638 bool Changed = false; 639 640 // If the def has a sub-register, set the corresponding cell to "bottom". 641 if (DefR.SubReg) { 642 Bottomize: 643 const LatticeCell &T = Cells.get(DefR.Reg); 644 Changed = !T.isBottom(); 645 Cells.update(DefR.Reg, Bottom); 646 if (Changed) 647 visitUsesOf(DefR.Reg); 648 return; 649 } 650 651 LatticeCell DefC = Cells.get(DefR.Reg); 652 653 for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) { 654 const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB(); 655 unsigned PBN = PB->getNumber(); 656 if (!EdgeExec.count(CFGEdge(PBN, MBN))) { 657 LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->" 658 << printMBBReference(*MB) << " not executable\n"); 659 continue; 660 } 661 const MachineOperand &SO = PN.getOperand(i); 662 RegisterSubReg UseR(SO); 663 // If the input is not a virtual register, we don't really know what 664 // value it holds. 665 if (!Register::isVirtualRegister(UseR.Reg)) 666 goto Bottomize; 667 // If there is no cell for an input register, it means top. 668 if (!Cells.has(UseR.Reg)) 669 continue; 670 671 LatticeCell SrcC; 672 bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC); 673 LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": " 674 << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC 675 << '\n'); 676 Changed |= Eval ? DefC.meet(SrcC) 677 : DefC.setBottom(); 678 Cells.update(DefR.Reg, DefC); 679 if (DefC.isBottom()) 680 break; 681 } 682 if (Changed) 683 visitUsesOf(DefR.Reg); 684 } 685 686 void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) { 687 LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent()) 688 << "): " << MI); 689 CellMap Outputs; 690 bool Eval = MCE.evaluate(MI, Cells, Outputs); 691 LLVM_DEBUG({ 692 if (Eval) { 693 dbgs() << " outputs:"; 694 for (auto &I : Outputs) 695 dbgs() << ' ' << I.second; 696 dbgs() << '\n'; 697 } 698 }); 699 700 // Update outputs. If the value was not computed, set all the 701 // def cells to bottom. 702 for (const MachineOperand &MO : MI.operands()) { 703 if (!MO.isReg() || !MO.isDef()) 704 continue; 705 RegisterSubReg DefR(MO); 706 // Only track virtual registers. 707 if (!Register::isVirtualRegister(DefR.Reg)) 708 continue; 709 bool Changed = false; 710 // If the evaluation failed, set cells for all output registers to bottom. 711 if (!Eval) { 712 const LatticeCell &T = Cells.get(DefR.Reg); 713 Changed = !T.isBottom(); 714 Cells.update(DefR.Reg, Bottom); 715 } else { 716 // Find the corresponding cell in the computed outputs. 717 // If it's not there, go on to the next def. 718 if (!Outputs.has(DefR.Reg)) 719 continue; 720 LatticeCell RC = Cells.get(DefR.Reg); 721 Changed = RC.meet(Outputs.get(DefR.Reg)); 722 Cells.update(DefR.Reg, RC); 723 } 724 if (Changed) 725 visitUsesOf(DefR.Reg); 726 } 727 } 728 729 // Starting at a given branch, visit remaining branches in the block. 730 // Traverse over the subsequent branches for as long as the preceding one 731 // can fall through. Add all the possible targets to the flow work queue, 732 // including the potential fall-through to the layout-successor block. 733 void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) { 734 const MachineBasicBlock &B = *BrI.getParent(); 735 unsigned MBN = B.getNumber(); 736 MachineBasicBlock::const_iterator It = BrI.getIterator(); 737 MachineBasicBlock::const_iterator End = B.end(); 738 739 SetVector<const MachineBasicBlock*> Targets; 740 bool EvalOk = true, FallsThru = true; 741 while (It != End) { 742 const MachineInstr &MI = *It; 743 InstrExec.insert(&MI); 744 LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "(" 745 << printMBBReference(B) << "): " << MI); 746 // Do not evaluate subsequent branches if the evaluation of any of the 747 // previous branches failed. Keep iterating over the branches only 748 // to mark them as executable. 749 EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru); 750 if (!EvalOk) 751 FallsThru = true; 752 if (!FallsThru) 753 break; 754 ++It; 755 } 756 757 if (EvalOk) { 758 // Need to add all CFG successors that lead to EH landing pads. 759 // There won't be explicit branches to these blocks, but they must 760 // be processed. 761 for (const MachineBasicBlock *SB : B.successors()) { 762 if (SB->isEHPad()) 763 Targets.insert(SB); 764 } 765 if (FallsThru) { 766 const MachineFunction &MF = *B.getParent(); 767 MachineFunction::const_iterator BI = B.getIterator(); 768 MachineFunction::const_iterator Next = std::next(BI); 769 if (Next != MF.end()) 770 Targets.insert(&*Next); 771 } 772 } else { 773 // If the evaluation of the branches failed, make "Targets" to be the 774 // set of all successors of the block from the CFG. 775 // If the evaluation succeeded for all visited branches, then if the 776 // last one set "FallsThru", then add an edge to the layout successor 777 // to the targets. 778 Targets.clear(); 779 LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG " 780 "successors\n"); 781 for (const MachineBasicBlock *SB : B.successors()) 782 Targets.insert(SB); 783 } 784 785 for (const MachineBasicBlock *TB : Targets) { 786 unsigned TBN = TB->getNumber(); 787 LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> " 788 << printMBBReference(*TB) << "\n"); 789 FlowQ.push(CFGEdge(MBN, TBN)); 790 } 791 } 792 793 void MachineConstPropagator::visitUsesOf(unsigned Reg) { 794 LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI) 795 << Cells.get(Reg) << '\n'); 796 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 797 // Do not process non-executable instructions. They can become exceutable 798 // later (via a flow-edge in the work queue). In such case, the instruc- 799 // tion will be visited at that time. 800 if (!InstrExec.count(&MI)) 801 continue; 802 if (MI.isPHI()) 803 visitPHI(MI); 804 else if (!MI.isBranch()) 805 visitNonBranch(MI); 806 else 807 visitBranchesFrom(MI); 808 } 809 } 810 811 bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB, 812 SetVector<const MachineBasicBlock*> &Targets) { 813 MachineBasicBlock::const_iterator FirstBr = MB->end(); 814 for (const MachineInstr &MI : *MB) { 815 if (MI.isDebugInstr()) 816 continue; 817 if (MI.isBranch()) { 818 FirstBr = MI.getIterator(); 819 break; 820 } 821 } 822 823 Targets.clear(); 824 MachineBasicBlock::const_iterator End = MB->end(); 825 826 bool DoNext = true; 827 for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) { 828 const MachineInstr &MI = *I; 829 // Can there be debug instructions between branches? 830 if (MI.isDebugInstr()) 831 continue; 832 if (!InstrExec.count(&MI)) 833 continue; 834 bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext); 835 if (!Eval) 836 return false; 837 if (!DoNext) 838 break; 839 } 840 // If the last branch could fall-through, add block's layout successor. 841 if (DoNext) { 842 MachineFunction::const_iterator BI = MB->getIterator(); 843 MachineFunction::const_iterator NextI = std::next(BI); 844 if (NextI != MB->getParent()->end()) 845 Targets.insert(&*NextI); 846 } 847 848 // Add all the EH landing pads. 849 for (const MachineBasicBlock *SB : MB->successors()) 850 if (SB->isEHPad()) 851 Targets.insert(SB); 852 853 return true; 854 } 855 856 void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From, 857 MachineBasicBlock *To) { 858 // First, remove the CFG successor/predecessor information. 859 From->removeSuccessor(To); 860 // Remove all corresponding PHI operands in the To block. 861 for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) { 862 MachineInstr *PN = &*I; 863 // reg0 = PHI reg1, bb2, reg3, bb4, ... 864 int N = PN->getNumOperands()-2; 865 while (N > 0) { 866 if (PN->getOperand(N+1).getMBB() == From) { 867 PN->RemoveOperand(N+1); 868 PN->RemoveOperand(N); 869 } 870 N -= 2; 871 } 872 } 873 } 874 875 void MachineConstPropagator::propagate(MachineFunction &MF) { 876 MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF); 877 unsigned EntryNum = Entry->getNumber(); 878 879 // Start with a fake edge, just to process the entry node. 880 FlowQ.push(CFGEdge(EntryNum, EntryNum)); 881 882 while (!FlowQ.empty()) { 883 CFGEdge Edge = FlowQ.front(); 884 FlowQ.pop(); 885 886 LLVM_DEBUG( 887 dbgs() << "Picked edge " 888 << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->" 889 << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n'); 890 if (Edge.first != EntryNum) 891 if (EdgeExec.count(Edge)) 892 continue; 893 EdgeExec.insert(Edge); 894 MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second); 895 896 // Process the block in three stages: 897 // - visit all PHI nodes, 898 // - visit all non-branch instructions, 899 // - visit block branches. 900 MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end(); 901 902 // Visit PHI nodes in the successor block. 903 while (It != End && It->isPHI()) { 904 InstrExec.insert(&*It); 905 visitPHI(*It); 906 ++It; 907 } 908 909 // If the successor block just became executable, visit all instructions. 910 // To see if this is the first time we're visiting it, check the first 911 // non-debug instruction to see if it is executable. 912 while (It != End && It->isDebugInstr()) 913 ++It; 914 assert(It == End || !It->isPHI()); 915 // If this block has been visited, go on to the next one. 916 if (It != End && InstrExec.count(&*It)) 917 continue; 918 // For now, scan all non-branch instructions. Branches require different 919 // processing. 920 while (It != End && !It->isBranch()) { 921 if (!It->isDebugInstr()) { 922 InstrExec.insert(&*It); 923 visitNonBranch(*It); 924 } 925 ++It; 926 } 927 928 // Time to process the end of the block. This is different from 929 // processing regular (non-branch) instructions, because there can 930 // be multiple branches in a block, and they can cause the block to 931 // terminate early. 932 if (It != End) { 933 visitBranchesFrom(*It); 934 } else { 935 // If the block didn't have a branch, add all successor edges to the 936 // work queue. (There should really be only one successor in such case.) 937 unsigned SBN = SB->getNumber(); 938 for (const MachineBasicBlock *SSB : SB->successors()) 939 FlowQ.push(CFGEdge(SBN, SSB->getNumber())); 940 } 941 } // while (FlowQ) 942 943 LLVM_DEBUG({ 944 dbgs() << "Cells after propagation:\n"; 945 Cells.print(dbgs(), MCE.TRI); 946 dbgs() << "Dead CFG edges:\n"; 947 for (const MachineBasicBlock &B : MF) { 948 unsigned BN = B.getNumber(); 949 for (const MachineBasicBlock *SB : B.successors()) { 950 unsigned SN = SB->getNumber(); 951 if (!EdgeExec.count(CFGEdge(BN, SN))) 952 dbgs() << " " << printMBBReference(B) << " -> " 953 << printMBBReference(*SB) << '\n'; 954 } 955 } 956 }); 957 } 958 959 bool MachineConstPropagator::rewrite(MachineFunction &MF) { 960 bool Changed = false; 961 // Rewrite all instructions based on the collected cell information. 962 // 963 // Traverse the instructions in a post-order, so that rewriting an 964 // instruction can make changes "downstream" in terms of control-flow 965 // without affecting the rewriting process. (We should not change 966 // instructions that have not yet been visited by the rewriter.) 967 // The reason for this is that the rewriter can introduce new vregs, 968 // and replace uses of old vregs (which had corresponding cells 969 // computed during propagation) with these new vregs (which at this 970 // point would not have any cells, and would appear to be "top"). 971 // If an attempt was made to evaluate an instruction with a fresh 972 // "top" vreg, it would cause an error (abend) in the evaluator. 973 974 // Collect the post-order-traversal block ordering. The subsequent 975 // traversal/rewrite will update block successors, so it's safer 976 // if the visiting order it computed ahead of time. 977 std::vector<MachineBasicBlock*> POT; 978 for (MachineBasicBlock *B : post_order(&MF)) 979 if (!B->empty()) 980 POT.push_back(B); 981 982 for (MachineBasicBlock *B : POT) { 983 // Walk the block backwards (which usually begin with the branches). 984 // If any branch is rewritten, we may need to update the successor 985 // information for this block. Unless the block's successors can be 986 // precisely determined (which may not be the case for indirect 987 // branches), we cannot modify any branch. 988 989 // Compute the successor information. 990 SetVector<const MachineBasicBlock*> Targets; 991 bool HaveTargets = computeBlockSuccessors(B, Targets); 992 // Rewrite the executable instructions. Skip branches if we don't 993 // have block successor information. 994 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { 995 MachineInstr &MI = *I; 996 if (InstrExec.count(&MI)) { 997 if (MI.isBranch() && !HaveTargets) 998 continue; 999 Changed |= MCE.rewrite(MI, Cells); 1000 } 1001 } 1002 // The rewriting could rewrite PHI nodes to non-PHI nodes, causing 1003 // regular instructions to appear in between PHI nodes. Bring all 1004 // the PHI nodes to the beginning of the block. 1005 for (auto I = B->begin(), E = B->end(); I != E; ++I) { 1006 if (I->isPHI()) 1007 continue; 1008 // I is not PHI. Find the next PHI node P. 1009 auto P = I; 1010 while (++P != E) 1011 if (P->isPHI()) 1012 break; 1013 // Not found. 1014 if (P == E) 1015 break; 1016 // Splice P right before I. 1017 B->splice(I, B, P); 1018 // Reset I to point at the just spliced PHI node. 1019 --I; 1020 } 1021 // Update the block successor information: remove unnecessary successors. 1022 if (HaveTargets) { 1023 SmallVector<MachineBasicBlock*,2> ToRemove; 1024 for (MachineBasicBlock *SB : B->successors()) { 1025 if (!Targets.count(SB)) 1026 ToRemove.push_back(const_cast<MachineBasicBlock*>(SB)); 1027 Targets.remove(SB); 1028 } 1029 for (unsigned i = 0, n = ToRemove.size(); i < n; ++i) 1030 removeCFGEdge(B, ToRemove[i]); 1031 // If there are any blocks left in the computed targets, it means that 1032 // we think that the block could go somewhere, but the CFG does not. 1033 // This could legitimately happen in blocks that have non-returning 1034 // calls---we would think that the execution can continue, but the 1035 // CFG will not have a successor edge. 1036 } 1037 } 1038 // Need to do some final post-processing. 1039 // If a branch was not executable, it will not get rewritten, but should 1040 // be removed (or replaced with something equivalent to a A2_nop). We can't 1041 // erase instructions during rewriting, so this needs to be delayed until 1042 // now. 1043 for (MachineBasicBlock &B : MF) { 1044 MachineBasicBlock::iterator I = B.begin(), E = B.end(); 1045 while (I != E) { 1046 auto Next = std::next(I); 1047 if (I->isBranch() && !InstrExec.count(&*I)) 1048 B.erase(I); 1049 I = Next; 1050 } 1051 } 1052 return Changed; 1053 } 1054 1055 // This is the constant propagation algorithm as described by Wegman-Zadeck. 1056 // Most of the terminology comes from there. 1057 bool MachineConstPropagator::run(MachineFunction &MF) { 1058 LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr)); 1059 1060 MRI = &MF.getRegInfo(); 1061 1062 Cells.clear(); 1063 EdgeExec.clear(); 1064 InstrExec.clear(); 1065 assert(FlowQ.empty()); 1066 1067 propagate(MF); 1068 bool Changed = rewrite(MF); 1069 1070 LLVM_DEBUG({ 1071 dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n"; 1072 if (Changed) 1073 MF.print(dbgs(), nullptr); 1074 }); 1075 return Changed; 1076 } 1077 1078 // -------------------------------------------------------------------- 1079 // Machine const evaluator. 1080 1081 bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs, 1082 LatticeCell &RC) { 1083 if (!Register::isVirtualRegister(R.Reg)) 1084 return false; 1085 const LatticeCell &L = Inputs.get(R.Reg); 1086 if (!R.SubReg) { 1087 RC = L; 1088 return !RC.isBottom(); 1089 } 1090 bool Eval = evaluate(R, L, RC); 1091 return Eval && !RC.isBottom(); 1092 } 1093 1094 bool MachineConstEvaluator::constToInt(const Constant *C, 1095 APInt &Val) const { 1096 const ConstantInt *CI = dyn_cast<ConstantInt>(C); 1097 if (!CI) 1098 return false; 1099 Val = CI->getValue(); 1100 return true; 1101 } 1102 1103 const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const { 1104 return ConstantInt::get(CX, Val); 1105 } 1106 1107 bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, 1108 const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) { 1109 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1110 LatticeCell LS1, LS2; 1111 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) 1112 return false; 1113 1114 bool IsProp1 = LS1.isProperty(); 1115 bool IsProp2 = LS2.isProperty(); 1116 if (IsProp1) { 1117 uint32_t Prop1 = LS1.properties(); 1118 if (IsProp2) 1119 return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result); 1120 uint32_t NegCmp = Comparison::negate(Cmp); 1121 return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result); 1122 } 1123 if (IsProp2) { 1124 uint32_t Prop2 = LS2.properties(); 1125 return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result); 1126 } 1127 1128 APInt A; 1129 bool IsTrue = true, IsFalse = true; 1130 for (unsigned i = 0; i < LS2.size(); ++i) { 1131 bool Res; 1132 bool Computed = constToInt(LS2.Values[i], A) && 1133 evaluateCMPri(Cmp, R1, A, Inputs, Res); 1134 if (!Computed) 1135 return false; 1136 IsTrue &= Res; 1137 IsFalse &= !Res; 1138 } 1139 assert(!IsTrue || !IsFalse); 1140 // The actual logical value of the comparison is same as IsTrue. 1141 Result = IsTrue; 1142 // Return true if the result was proven to be true or proven to be false. 1143 return IsTrue || IsFalse; 1144 } 1145 1146 bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, 1147 const APInt &A2, const CellMap &Inputs, bool &Result) { 1148 assert(Inputs.has(R1.Reg)); 1149 LatticeCell LS; 1150 if (!getCell(R1, Inputs, LS)) 1151 return false; 1152 if (LS.isProperty()) 1153 return evaluateCMPpi(Cmp, LS.properties(), A2, Result); 1154 1155 APInt A; 1156 bool IsTrue = true, IsFalse = true; 1157 for (unsigned i = 0; i < LS.size(); ++i) { 1158 bool Res; 1159 bool Computed = constToInt(LS.Values[i], A) && 1160 evaluateCMPii(Cmp, A, A2, Res); 1161 if (!Computed) 1162 return false; 1163 IsTrue &= Res; 1164 IsFalse &= !Res; 1165 } 1166 assert(!IsTrue || !IsFalse); 1167 // The actual logical value of the comparison is same as IsTrue. 1168 Result = IsTrue; 1169 // Return true if the result was proven to be true or proven to be false. 1170 return IsTrue || IsFalse; 1171 } 1172 1173 bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, 1174 uint64_t Props2, const CellMap &Inputs, bool &Result) { 1175 assert(Inputs.has(R1.Reg)); 1176 LatticeCell LS; 1177 if (!getCell(R1, Inputs, LS)) 1178 return false; 1179 if (LS.isProperty()) 1180 return evaluateCMPpp(Cmp, LS.properties(), Props2, Result); 1181 1182 APInt A; 1183 uint32_t NegCmp = Comparison::negate(Cmp); 1184 bool IsTrue = true, IsFalse = true; 1185 for (unsigned i = 0; i < LS.size(); ++i) { 1186 bool Res; 1187 bool Computed = constToInt(LS.Values[i], A) && 1188 evaluateCMPpi(NegCmp, Props2, A, Res); 1189 if (!Computed) 1190 return false; 1191 IsTrue &= Res; 1192 IsFalse &= !Res; 1193 } 1194 assert(!IsTrue || !IsFalse); 1195 Result = IsTrue; 1196 return IsTrue || IsFalse; 1197 } 1198 1199 bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1, 1200 const APInt &A2, bool &Result) { 1201 // NE is a special kind of comparison (not composed of smaller properties). 1202 if (Cmp == Comparison::NE) { 1203 Result = !APInt::isSameValue(A1, A2); 1204 return true; 1205 } 1206 if (Cmp == Comparison::EQ) { 1207 Result = APInt::isSameValue(A1, A2); 1208 return true; 1209 } 1210 if (Cmp & Comparison::EQ) { 1211 if (APInt::isSameValue(A1, A2)) 1212 return (Result = true); 1213 } 1214 assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison"); 1215 Result = false; 1216 1217 unsigned W1 = A1.getBitWidth(); 1218 unsigned W2 = A2.getBitWidth(); 1219 unsigned MaxW = (W1 >= W2) ? W1 : W2; 1220 if (Cmp & Comparison::U) { 1221 const APInt Zx1 = A1.zextOrSelf(MaxW); 1222 const APInt Zx2 = A2.zextOrSelf(MaxW); 1223 if (Cmp & Comparison::L) 1224 Result = Zx1.ult(Zx2); 1225 else if (Cmp & Comparison::G) 1226 Result = Zx2.ult(Zx1); 1227 return true; 1228 } 1229 1230 // Signed comparison. 1231 const APInt Sx1 = A1.sextOrSelf(MaxW); 1232 const APInt Sx2 = A2.sextOrSelf(MaxW); 1233 if (Cmp & Comparison::L) 1234 Result = Sx1.slt(Sx2); 1235 else if (Cmp & Comparison::G) 1236 Result = Sx2.slt(Sx1); 1237 return true; 1238 } 1239 1240 bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props, 1241 const APInt &A2, bool &Result) { 1242 if (Props == ConstantProperties::Unknown) 1243 return false; 1244 1245 // Should never see NaN here, but check for it for completeness. 1246 if (Props & ConstantProperties::NaN) 1247 return false; 1248 // Infinity could theoretically be compared to a number, but the 1249 // presence of infinity here would be very suspicious. If we don't 1250 // know for sure that the number is finite, bail out. 1251 if (!(Props & ConstantProperties::Finite)) 1252 return false; 1253 1254 // Let X be a number that has properties Props. 1255 1256 if (Cmp & Comparison::U) { 1257 // In case of unsigned comparisons, we can only compare against 0. 1258 if (A2 == 0) { 1259 // Any x!=0 will be considered >0 in an unsigned comparison. 1260 if (Props & ConstantProperties::Zero) 1261 Result = (Cmp & Comparison::EQ); 1262 else if (Props & ConstantProperties::NonZero) 1263 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); 1264 else 1265 return false; 1266 return true; 1267 } 1268 // A2 is not zero. The only handled case is if X = 0. 1269 if (Props & ConstantProperties::Zero) { 1270 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); 1271 return true; 1272 } 1273 return false; 1274 } 1275 1276 // Signed comparisons are different. 1277 if (Props & ConstantProperties::Zero) { 1278 if (A2 == 0) 1279 Result = (Cmp & Comparison::EQ); 1280 else 1281 Result = (Cmp == Comparison::NE) || 1282 ((Cmp & Comparison::L) && !A2.isNegative()) || 1283 ((Cmp & Comparison::G) && A2.isNegative()); 1284 return true; 1285 } 1286 if (Props & ConstantProperties::PosOrZero) { 1287 // X >= 0 and !(A2 < 0) => cannot compare 1288 if (!A2.isNegative()) 1289 return false; 1290 // X >= 0 and A2 < 0 1291 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); 1292 return true; 1293 } 1294 if (Props & ConstantProperties::NegOrZero) { 1295 // X <= 0 and Src1 < 0 => cannot compare 1296 if (A2 == 0 || A2.isNegative()) 1297 return false; 1298 // X <= 0 and A2 > 0 1299 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); 1300 return true; 1301 } 1302 1303 return false; 1304 } 1305 1306 bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1, 1307 uint32_t Props2, bool &Result) { 1308 using P = ConstantProperties; 1309 1310 if ((Props1 & P::NaN) && (Props2 & P::NaN)) 1311 return false; 1312 if (!(Props1 & P::Finite) || !(Props2 & P::Finite)) 1313 return false; 1314 1315 bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero); 1316 bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero); 1317 if (Zero1 && Zero2) { 1318 Result = (Cmp & Comparison::EQ); 1319 return true; 1320 } 1321 if (Cmp == Comparison::NE) { 1322 if ((Zero1 && NonZero2) || (NonZero1 && Zero2)) 1323 return (Result = true); 1324 return false; 1325 } 1326 1327 if (Cmp & Comparison::U) { 1328 // In unsigned comparisons, we can only compare against a known zero, 1329 // or a known non-zero. 1330 if (Zero1 && NonZero2) { 1331 Result = (Cmp & Comparison::L); 1332 return true; 1333 } 1334 if (NonZero1 && Zero2) { 1335 Result = (Cmp & Comparison::G); 1336 return true; 1337 } 1338 return false; 1339 } 1340 1341 // Signed comparison. The comparison is not NE. 1342 bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero); 1343 bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero); 1344 if (Nez1 && Poz2) { 1345 if (NonZero1 || NonZero2) { 1346 Result = (Cmp & Comparison::L); 1347 return true; 1348 } 1349 // Either (or both) could be zero. Can only say that X <= Y. 1350 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L)) 1351 return (Result = true); 1352 } 1353 if (Poz1 && Nez2) { 1354 if (NonZero1 || NonZero2) { 1355 Result = (Cmp & Comparison::G); 1356 return true; 1357 } 1358 // Either (or both) could be zero. Can only say that X >= Y. 1359 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G)) 1360 return (Result = true); 1361 } 1362 1363 return false; 1364 } 1365 1366 bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1, 1367 const CellMap &Inputs, LatticeCell &Result) { 1368 return getCell(R1, Inputs, Result); 1369 } 1370 1371 bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1, 1372 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { 1373 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1374 const LatticeCell &L1 = Inputs.get(R2.Reg); 1375 const LatticeCell &L2 = Inputs.get(R2.Reg); 1376 // If both sources are bottom, exit. Otherwise try to evaluate ANDri 1377 // with the non-bottom argument passed as the immediate. This is to 1378 // catch cases of ANDing with 0. 1379 if (L2.isBottom()) { 1380 if (L1.isBottom()) 1381 return false; 1382 return evaluateANDrr(R2, R1, Inputs, Result); 1383 } 1384 LatticeCell LS2; 1385 if (!evaluate(R2, L2, LS2)) 1386 return false; 1387 if (LS2.isBottom() || LS2.isProperty()) 1388 return false; 1389 1390 APInt A; 1391 for (unsigned i = 0; i < LS2.size(); ++i) { 1392 LatticeCell RC; 1393 bool Eval = constToInt(LS2.Values[i], A) && 1394 evaluateANDri(R1, A, Inputs, RC); 1395 if (!Eval) 1396 return false; 1397 Result.meet(RC); 1398 } 1399 return !Result.isBottom(); 1400 } 1401 1402 bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1, 1403 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { 1404 assert(Inputs.has(R1.Reg)); 1405 if (A2 == -1) 1406 return getCell(R1, Inputs, Result); 1407 if (A2 == 0) { 1408 LatticeCell RC; 1409 RC.add(intToConst(A2)); 1410 // Overwrite Result. 1411 Result = RC; 1412 return true; 1413 } 1414 LatticeCell LS1; 1415 if (!getCell(R1, Inputs, LS1)) 1416 return false; 1417 if (LS1.isBottom() || LS1.isProperty()) 1418 return false; 1419 1420 APInt A, ResA; 1421 for (unsigned i = 0; i < LS1.size(); ++i) { 1422 bool Eval = constToInt(LS1.Values[i], A) && 1423 evaluateANDii(A, A2, ResA); 1424 if (!Eval) 1425 return false; 1426 const Constant *C = intToConst(ResA); 1427 Result.add(C); 1428 } 1429 return !Result.isBottom(); 1430 } 1431 1432 bool MachineConstEvaluator::evaluateANDii(const APInt &A1, 1433 const APInt &A2, APInt &Result) { 1434 Result = A1 & A2; 1435 return true; 1436 } 1437 1438 bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1, 1439 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { 1440 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1441 const LatticeCell &L1 = Inputs.get(R2.Reg); 1442 const LatticeCell &L2 = Inputs.get(R2.Reg); 1443 // If both sources are bottom, exit. Otherwise try to evaluate ORri 1444 // with the non-bottom argument passed as the immediate. This is to 1445 // catch cases of ORing with -1. 1446 if (L2.isBottom()) { 1447 if (L1.isBottom()) 1448 return false; 1449 return evaluateORrr(R2, R1, Inputs, Result); 1450 } 1451 LatticeCell LS2; 1452 if (!evaluate(R2, L2, LS2)) 1453 return false; 1454 if (LS2.isBottom() || LS2.isProperty()) 1455 return false; 1456 1457 APInt A; 1458 for (unsigned i = 0; i < LS2.size(); ++i) { 1459 LatticeCell RC; 1460 bool Eval = constToInt(LS2.Values[i], A) && 1461 evaluateORri(R1, A, Inputs, RC); 1462 if (!Eval) 1463 return false; 1464 Result.meet(RC); 1465 } 1466 return !Result.isBottom(); 1467 } 1468 1469 bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1, 1470 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { 1471 assert(Inputs.has(R1.Reg)); 1472 if (A2 == 0) 1473 return getCell(R1, Inputs, Result); 1474 if (A2 == -1) { 1475 LatticeCell RC; 1476 RC.add(intToConst(A2)); 1477 // Overwrite Result. 1478 Result = RC; 1479 return true; 1480 } 1481 LatticeCell LS1; 1482 if (!getCell(R1, Inputs, LS1)) 1483 return false; 1484 if (LS1.isBottom() || LS1.isProperty()) 1485 return false; 1486 1487 APInt A, ResA; 1488 for (unsigned i = 0; i < LS1.size(); ++i) { 1489 bool Eval = constToInt(LS1.Values[i], A) && 1490 evaluateORii(A, A2, ResA); 1491 if (!Eval) 1492 return false; 1493 const Constant *C = intToConst(ResA); 1494 Result.add(C); 1495 } 1496 return !Result.isBottom(); 1497 } 1498 1499 bool MachineConstEvaluator::evaluateORii(const APInt &A1, 1500 const APInt &A2, APInt &Result) { 1501 Result = A1 | A2; 1502 return true; 1503 } 1504 1505 bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1, 1506 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { 1507 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1508 LatticeCell LS1, LS2; 1509 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) 1510 return false; 1511 if (LS1.isProperty()) { 1512 if (LS1.properties() & ConstantProperties::Zero) 1513 return !(Result = LS2).isBottom(); 1514 return false; 1515 } 1516 if (LS2.isProperty()) { 1517 if (LS2.properties() & ConstantProperties::Zero) 1518 return !(Result = LS1).isBottom(); 1519 return false; 1520 } 1521 1522 APInt A; 1523 for (unsigned i = 0; i < LS2.size(); ++i) { 1524 LatticeCell RC; 1525 bool Eval = constToInt(LS2.Values[i], A) && 1526 evaluateXORri(R1, A, Inputs, RC); 1527 if (!Eval) 1528 return false; 1529 Result.meet(RC); 1530 } 1531 return !Result.isBottom(); 1532 } 1533 1534 bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1, 1535 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { 1536 assert(Inputs.has(R1.Reg)); 1537 LatticeCell LS1; 1538 if (!getCell(R1, Inputs, LS1)) 1539 return false; 1540 if (LS1.isProperty()) { 1541 if (LS1.properties() & ConstantProperties::Zero) { 1542 const Constant *C = intToConst(A2); 1543 Result.add(C); 1544 return !Result.isBottom(); 1545 } 1546 return false; 1547 } 1548 1549 APInt A, XA; 1550 for (unsigned i = 0; i < LS1.size(); ++i) { 1551 bool Eval = constToInt(LS1.Values[i], A) && 1552 evaluateXORii(A, A2, XA); 1553 if (!Eval) 1554 return false; 1555 const Constant *C = intToConst(XA); 1556 Result.add(C); 1557 } 1558 return !Result.isBottom(); 1559 } 1560 1561 bool MachineConstEvaluator::evaluateXORii(const APInt &A1, 1562 const APInt &A2, APInt &Result) { 1563 Result = A1 ^ A2; 1564 return true; 1565 } 1566 1567 bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, 1568 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { 1569 assert(Inputs.has(R1.Reg)); 1570 LatticeCell LS1; 1571 if (!getCell(R1, Inputs, LS1)) 1572 return false; 1573 if (LS1.isProperty()) 1574 return false; 1575 1576 APInt A, XA; 1577 for (unsigned i = 0; i < LS1.size(); ++i) { 1578 bool Eval = constToInt(LS1.Values[i], A) && 1579 evaluateZEXTi(A, Width, Bits, XA); 1580 if (!Eval) 1581 return false; 1582 const Constant *C = intToConst(XA); 1583 Result.add(C); 1584 } 1585 return true; 1586 } 1587 1588 bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width, 1589 unsigned Bits, APInt &Result) { 1590 unsigned BW = A1.getBitWidth(); 1591 (void)BW; 1592 assert(Width >= Bits && BW >= Bits); 1593 APInt Mask = APInt::getLowBitsSet(Width, Bits); 1594 Result = A1.zextOrTrunc(Width) & Mask; 1595 return true; 1596 } 1597 1598 bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, 1599 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { 1600 assert(Inputs.has(R1.Reg)); 1601 LatticeCell LS1; 1602 if (!getCell(R1, Inputs, LS1)) 1603 return false; 1604 if (LS1.isBottom() || LS1.isProperty()) 1605 return false; 1606 1607 APInt A, XA; 1608 for (unsigned i = 0; i < LS1.size(); ++i) { 1609 bool Eval = constToInt(LS1.Values[i], A) && 1610 evaluateSEXTi(A, Width, Bits, XA); 1611 if (!Eval) 1612 return false; 1613 const Constant *C = intToConst(XA); 1614 Result.add(C); 1615 } 1616 return true; 1617 } 1618 1619 bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width, 1620 unsigned Bits, APInt &Result) { 1621 unsigned BW = A1.getBitWidth(); 1622 assert(Width >= Bits && BW >= Bits); 1623 // Special case to make things faster for smaller source widths. 1624 // Sign extension of 0 bits generates 0 as a result. This is consistent 1625 // with what the HW does. 1626 if (Bits == 0) { 1627 Result = APInt(Width, 0); 1628 return true; 1629 } 1630 // In C, shifts by 64 invoke undefined behavior: handle that case in APInt. 1631 if (BW <= 64 && Bits != 0) { 1632 int64_t V = A1.getSExtValue(); 1633 switch (Bits) { 1634 case 8: 1635 V = static_cast<int8_t>(V); 1636 break; 1637 case 16: 1638 V = static_cast<int16_t>(V); 1639 break; 1640 case 32: 1641 V = static_cast<int32_t>(V); 1642 break; 1643 default: 1644 // Shift left to lose all bits except lower "Bits" bits, then shift 1645 // the value back, replicating what was a sign bit after the first 1646 // shift. 1647 V = (V << (64-Bits)) >> (64-Bits); 1648 break; 1649 } 1650 // V is a 64-bit sign-extended value. Convert it to APInt of desired 1651 // width. 1652 Result = APInt(Width, V, true); 1653 return true; 1654 } 1655 // Slow case: the value doesn't fit in int64_t. 1656 if (Bits < BW) 1657 Result = A1.trunc(Bits).sext(Width); 1658 else // Bits == BW 1659 Result = A1.sext(Width); 1660 return true; 1661 } 1662 1663 bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros, 1664 bool Ones, const CellMap &Inputs, LatticeCell &Result) { 1665 assert(Inputs.has(R1.Reg)); 1666 LatticeCell LS1; 1667 if (!getCell(R1, Inputs, LS1)) 1668 return false; 1669 if (LS1.isBottom() || LS1.isProperty()) 1670 return false; 1671 1672 APInt A, CA; 1673 for (unsigned i = 0; i < LS1.size(); ++i) { 1674 bool Eval = constToInt(LS1.Values[i], A) && 1675 evaluateCLBi(A, Zeros, Ones, CA); 1676 if (!Eval) 1677 return false; 1678 const Constant *C = intToConst(CA); 1679 Result.add(C); 1680 } 1681 return true; 1682 } 1683 1684 bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros, 1685 bool Ones, APInt &Result) { 1686 unsigned BW = A1.getBitWidth(); 1687 if (!Zeros && !Ones) 1688 return false; 1689 unsigned Count = 0; 1690 if (Zeros && (Count == 0)) 1691 Count = A1.countLeadingZeros(); 1692 if (Ones && (Count == 0)) 1693 Count = A1.countLeadingOnes(); 1694 Result = APInt(BW, static_cast<uint64_t>(Count), false); 1695 return true; 1696 } 1697 1698 bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros, 1699 bool Ones, const CellMap &Inputs, LatticeCell &Result) { 1700 assert(Inputs.has(R1.Reg)); 1701 LatticeCell LS1; 1702 if (!getCell(R1, Inputs, LS1)) 1703 return false; 1704 if (LS1.isBottom() || LS1.isProperty()) 1705 return false; 1706 1707 APInt A, CA; 1708 for (unsigned i = 0; i < LS1.size(); ++i) { 1709 bool Eval = constToInt(LS1.Values[i], A) && 1710 evaluateCTBi(A, Zeros, Ones, CA); 1711 if (!Eval) 1712 return false; 1713 const Constant *C = intToConst(CA); 1714 Result.add(C); 1715 } 1716 return true; 1717 } 1718 1719 bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros, 1720 bool Ones, APInt &Result) { 1721 unsigned BW = A1.getBitWidth(); 1722 if (!Zeros && !Ones) 1723 return false; 1724 unsigned Count = 0; 1725 if (Zeros && (Count == 0)) 1726 Count = A1.countTrailingZeros(); 1727 if (Ones && (Count == 0)) 1728 Count = A1.countTrailingOnes(); 1729 Result = APInt(BW, static_cast<uint64_t>(Count), false); 1730 return true; 1731 } 1732 1733 bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1, 1734 unsigned Width, unsigned Bits, unsigned Offset, bool Signed, 1735 const CellMap &Inputs, LatticeCell &Result) { 1736 assert(Inputs.has(R1.Reg)); 1737 assert(Bits+Offset <= Width); 1738 LatticeCell LS1; 1739 if (!getCell(R1, Inputs, LS1)) 1740 return false; 1741 if (LS1.isBottom()) 1742 return false; 1743 if (LS1.isProperty()) { 1744 uint32_t Ps = LS1.properties(); 1745 if (Ps & ConstantProperties::Zero) { 1746 const Constant *C = intToConst(APInt(Width, 0, false)); 1747 Result.add(C); 1748 return true; 1749 } 1750 return false; 1751 } 1752 1753 APInt A, CA; 1754 for (unsigned i = 0; i < LS1.size(); ++i) { 1755 bool Eval = constToInt(LS1.Values[i], A) && 1756 evaluateEXTRACTi(A, Bits, Offset, Signed, CA); 1757 if (!Eval) 1758 return false; 1759 const Constant *C = intToConst(CA); 1760 Result.add(C); 1761 } 1762 return true; 1763 } 1764 1765 bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits, 1766 unsigned Offset, bool Signed, APInt &Result) { 1767 unsigned BW = A1.getBitWidth(); 1768 assert(Bits+Offset <= BW); 1769 // Extracting 0 bits generates 0 as a result (as indicated by the HW people). 1770 if (Bits == 0) { 1771 Result = APInt(BW, 0); 1772 return true; 1773 } 1774 if (BW <= 64) { 1775 int64_t V = A1.getZExtValue(); 1776 V <<= (64-Bits-Offset); 1777 if (Signed) 1778 V >>= (64-Bits); 1779 else 1780 V = static_cast<uint64_t>(V) >> (64-Bits); 1781 Result = APInt(BW, V, Signed); 1782 return true; 1783 } 1784 if (Signed) 1785 Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits); 1786 else 1787 Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits); 1788 return true; 1789 } 1790 1791 bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1, 1792 unsigned Bits, unsigned Count, const CellMap &Inputs, 1793 LatticeCell &Result) { 1794 assert(Inputs.has(R1.Reg)); 1795 LatticeCell LS1; 1796 if (!getCell(R1, Inputs, LS1)) 1797 return false; 1798 if (LS1.isBottom() || LS1.isProperty()) 1799 return false; 1800 1801 APInt A, SA; 1802 for (unsigned i = 0; i < LS1.size(); ++i) { 1803 bool Eval = constToInt(LS1.Values[i], A) && 1804 evaluateSplati(A, Bits, Count, SA); 1805 if (!Eval) 1806 return false; 1807 const Constant *C = intToConst(SA); 1808 Result.add(C); 1809 } 1810 return true; 1811 } 1812 1813 bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits, 1814 unsigned Count, APInt &Result) { 1815 assert(Count > 0); 1816 unsigned BW = A1.getBitWidth(), SW = Count*Bits; 1817 APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits); 1818 if (Count > 1) 1819 LoBits = LoBits.zext(SW); 1820 1821 APInt Res(SW, 0, false); 1822 for (unsigned i = 0; i < Count; ++i) { 1823 Res <<= Bits; 1824 Res |= LoBits; 1825 } 1826 Result = Res; 1827 return true; 1828 } 1829 1830 // ---------------------------------------------------------------------- 1831 // Hexagon-specific code. 1832 1833 namespace llvm { 1834 1835 FunctionPass *createHexagonConstPropagationPass(); 1836 void initializeHexagonConstPropagationPass(PassRegistry &Registry); 1837 1838 } // end namespace llvm 1839 1840 namespace { 1841 1842 class HexagonConstEvaluator : public MachineConstEvaluator { 1843 public: 1844 HexagonConstEvaluator(MachineFunction &Fn); 1845 1846 bool evaluate(const MachineInstr &MI, const CellMap &Inputs, 1847 CellMap &Outputs) override; 1848 bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, 1849 LatticeCell &Result) override; 1850 bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, 1851 SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru) 1852 override; 1853 bool rewrite(MachineInstr &MI, const CellMap &Inputs) override; 1854 1855 private: 1856 unsigned getRegBitWidth(unsigned Reg) const; 1857 1858 static uint32_t getCmp(unsigned Opc); 1859 static APInt getCmpImm(unsigned Opc, unsigned OpX, 1860 const MachineOperand &MO); 1861 void replaceWithNop(MachineInstr &MI); 1862 1863 bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs, 1864 LatticeCell &Result); 1865 bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs, 1866 CellMap &Outputs); 1867 // This is suitable to be called for compare-and-jump instructions. 1868 bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1, 1869 const MachineOperand &Src2, const CellMap &Inputs, bool &Result); 1870 bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs, 1871 CellMap &Outputs); 1872 bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs, 1873 CellMap &Outputs); 1874 bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs, 1875 CellMap &Outputs); 1876 bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs, 1877 CellMap &Outputs); 1878 bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs, 1879 CellMap &Outputs); 1880 1881 void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg); 1882 bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs); 1883 bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs, 1884 bool &AllDefs); 1885 bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs); 1886 1887 MachineRegisterInfo *MRI; 1888 const HexagonInstrInfo &HII; 1889 const HexagonRegisterInfo &HRI; 1890 }; 1891 1892 class HexagonConstPropagation : public MachineFunctionPass { 1893 public: 1894 static char ID; 1895 1896 HexagonConstPropagation() : MachineFunctionPass(ID) {} 1897 1898 StringRef getPassName() const override { 1899 return "Hexagon Constant Propagation"; 1900 } 1901 1902 bool runOnMachineFunction(MachineFunction &MF) override { 1903 const Function &F = MF.getFunction(); 1904 if (skipFunction(F)) 1905 return false; 1906 1907 HexagonConstEvaluator HCE(MF); 1908 return MachineConstPropagator(HCE).run(MF); 1909 } 1910 }; 1911 1912 } // end anonymous namespace 1913 1914 char HexagonConstPropagation::ID = 0; 1915 1916 INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp", 1917 "Hexagon Constant Propagation", false, false) 1918 1919 HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn) 1920 : MachineConstEvaluator(Fn), 1921 HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()), 1922 HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) { 1923 MRI = &Fn.getRegInfo(); 1924 } 1925 1926 bool HexagonConstEvaluator::evaluate(const MachineInstr &MI, 1927 const CellMap &Inputs, CellMap &Outputs) { 1928 if (MI.isCall()) 1929 return false; 1930 if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg()) 1931 return false; 1932 const MachineOperand &MD = MI.getOperand(0); 1933 if (!MD.isDef()) 1934 return false; 1935 1936 unsigned Opc = MI.getOpcode(); 1937 RegisterSubReg DefR(MD); 1938 assert(!DefR.SubReg); 1939 if (!Register::isVirtualRegister(DefR.Reg)) 1940 return false; 1941 1942 if (MI.isCopy()) { 1943 LatticeCell RC; 1944 RegisterSubReg SrcR(MI.getOperand(1)); 1945 bool Eval = evaluateCOPY(SrcR, Inputs, RC); 1946 if (!Eval) 1947 return false; 1948 Outputs.update(DefR.Reg, RC); 1949 return true; 1950 } 1951 if (MI.isRegSequence()) { 1952 unsigned Sub1 = MI.getOperand(2).getImm(); 1953 unsigned Sub2 = MI.getOperand(4).getImm(); 1954 const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg); 1955 unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo); 1956 unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi); 1957 if (Sub1 != SubLo && Sub1 != SubHi) 1958 return false; 1959 if (Sub2 != SubLo && Sub2 != SubHi) 1960 return false; 1961 assert(Sub1 != Sub2); 1962 bool LoIs1 = (Sub1 == SubLo); 1963 const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3); 1964 const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1); 1965 LatticeCell RC; 1966 RegisterSubReg SrcRL(OpLo), SrcRH(OpHi); 1967 bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC); 1968 if (!Eval) 1969 return false; 1970 Outputs.update(DefR.Reg, RC); 1971 return true; 1972 } 1973 if (MI.isCompare()) { 1974 bool Eval = evaluateHexCompare(MI, Inputs, Outputs); 1975 return Eval; 1976 } 1977 1978 switch (Opc) { 1979 default: 1980 return false; 1981 case Hexagon::A2_tfrsi: 1982 case Hexagon::A2_tfrpi: 1983 case Hexagon::CONST32: 1984 case Hexagon::CONST64: 1985 { 1986 const MachineOperand &VO = MI.getOperand(1); 1987 // The operand of CONST32 can be a blockaddress, e.g. 1988 // %0 = CONST32 <blockaddress(@eat, %l)> 1989 // Do this check for all instructions for safety. 1990 if (!VO.isImm()) 1991 return false; 1992 int64_t V = MI.getOperand(1).getImm(); 1993 unsigned W = getRegBitWidth(DefR.Reg); 1994 if (W != 32 && W != 64) 1995 return false; 1996 IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX) 1997 : Type::getInt64Ty(CX); 1998 const ConstantInt *CI = ConstantInt::get(Ty, V, true); 1999 LatticeCell RC = Outputs.get(DefR.Reg); 2000 RC.add(CI); 2001 Outputs.update(DefR.Reg, RC); 2002 break; 2003 } 2004 2005 case Hexagon::PS_true: 2006 case Hexagon::PS_false: 2007 { 2008 LatticeCell RC = Outputs.get(DefR.Reg); 2009 bool NonZero = (Opc == Hexagon::PS_true); 2010 uint32_t P = NonZero ? ConstantProperties::NonZero 2011 : ConstantProperties::Zero; 2012 RC.add(P); 2013 Outputs.update(DefR.Reg, RC); 2014 break; 2015 } 2016 2017 case Hexagon::A2_and: 2018 case Hexagon::A2_andir: 2019 case Hexagon::A2_andp: 2020 case Hexagon::A2_or: 2021 case Hexagon::A2_orir: 2022 case Hexagon::A2_orp: 2023 case Hexagon::A2_xor: 2024 case Hexagon::A2_xorp: 2025 { 2026 bool Eval = evaluateHexLogical(MI, Inputs, Outputs); 2027 if (!Eval) 2028 return false; 2029 break; 2030 } 2031 2032 case Hexagon::A2_combineii: // combine(#s8Ext, #s8) 2033 case Hexagon::A4_combineii: // combine(#s8, #u6Ext) 2034 { 2035 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm()) 2036 return false; 2037 uint64_t Hi = MI.getOperand(1).getImm(); 2038 uint64_t Lo = MI.getOperand(2).getImm(); 2039 uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF); 2040 IntegerType *Ty = Type::getInt64Ty(CX); 2041 const ConstantInt *CI = ConstantInt::get(Ty, Res, false); 2042 LatticeCell RC = Outputs.get(DefR.Reg); 2043 RC.add(CI); 2044 Outputs.update(DefR.Reg, RC); 2045 break; 2046 } 2047 2048 case Hexagon::S2_setbit_i: 2049 { 2050 int64_t B = MI.getOperand(2).getImm(); 2051 assert(B >=0 && B < 32); 2052 APInt A(32, (1ull << B), false); 2053 RegisterSubReg R(MI.getOperand(1)); 2054 LatticeCell RC = Outputs.get(DefR.Reg); 2055 bool Eval = evaluateORri(R, A, Inputs, RC); 2056 if (!Eval) 2057 return false; 2058 Outputs.update(DefR.Reg, RC); 2059 break; 2060 } 2061 2062 case Hexagon::C2_mux: 2063 case Hexagon::C2_muxir: 2064 case Hexagon::C2_muxri: 2065 case Hexagon::C2_muxii: 2066 { 2067 bool Eval = evaluateHexCondMove(MI, Inputs, Outputs); 2068 if (!Eval) 2069 return false; 2070 break; 2071 } 2072 2073 case Hexagon::A2_sxtb: 2074 case Hexagon::A2_sxth: 2075 case Hexagon::A2_sxtw: 2076 case Hexagon::A2_zxtb: 2077 case Hexagon::A2_zxth: 2078 { 2079 bool Eval = evaluateHexExt(MI, Inputs, Outputs); 2080 if (!Eval) 2081 return false; 2082 break; 2083 } 2084 2085 case Hexagon::S2_ct0: 2086 case Hexagon::S2_ct0p: 2087 case Hexagon::S2_ct1: 2088 case Hexagon::S2_ct1p: 2089 { 2090 using namespace Hexagon; 2091 2092 bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p); 2093 RegisterSubReg R1(MI.getOperand(1)); 2094 assert(Inputs.has(R1.Reg)); 2095 LatticeCell T; 2096 bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T); 2097 if (!Eval) 2098 return false; 2099 // All of these instructions return a 32-bit value. The evaluate 2100 // will generate the same type as the operand, so truncate the 2101 // result if necessary. 2102 APInt C; 2103 LatticeCell RC = Outputs.get(DefR.Reg); 2104 for (unsigned i = 0; i < T.size(); ++i) { 2105 const Constant *CI = T.Values[i]; 2106 if (constToInt(CI, C) && C.getBitWidth() > 32) 2107 CI = intToConst(C.trunc(32)); 2108 RC.add(CI); 2109 } 2110 Outputs.update(DefR.Reg, RC); 2111 break; 2112 } 2113 2114 case Hexagon::S2_cl0: 2115 case Hexagon::S2_cl0p: 2116 case Hexagon::S2_cl1: 2117 case Hexagon::S2_cl1p: 2118 case Hexagon::S2_clb: 2119 case Hexagon::S2_clbp: 2120 { 2121 using namespace Hexagon; 2122 2123 bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p); 2124 bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p); 2125 RegisterSubReg R1(MI.getOperand(1)); 2126 assert(Inputs.has(R1.Reg)); 2127 LatticeCell T; 2128 bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T); 2129 if (!Eval) 2130 return false; 2131 // All of these instructions return a 32-bit value. The evaluate 2132 // will generate the same type as the operand, so truncate the 2133 // result if necessary. 2134 APInt C; 2135 LatticeCell RC = Outputs.get(DefR.Reg); 2136 for (unsigned i = 0; i < T.size(); ++i) { 2137 const Constant *CI = T.Values[i]; 2138 if (constToInt(CI, C) && C.getBitWidth() > 32) 2139 CI = intToConst(C.trunc(32)); 2140 RC.add(CI); 2141 } 2142 Outputs.update(DefR.Reg, RC); 2143 break; 2144 } 2145 2146 case Hexagon::S4_extract: 2147 case Hexagon::S4_extractp: 2148 case Hexagon::S2_extractu: 2149 case Hexagon::S2_extractup: 2150 { 2151 bool Signed = (Opc == Hexagon::S4_extract) || 2152 (Opc == Hexagon::S4_extractp); 2153 RegisterSubReg R1(MI.getOperand(1)); 2154 unsigned BW = getRegBitWidth(R1.Reg); 2155 unsigned Bits = MI.getOperand(2).getImm(); 2156 unsigned Offset = MI.getOperand(3).getImm(); 2157 LatticeCell RC = Outputs.get(DefR.Reg); 2158 if (Offset >= BW) { 2159 APInt Zero(BW, 0, false); 2160 RC.add(intToConst(Zero)); 2161 break; 2162 } 2163 if (Offset+Bits > BW) { 2164 // If the requested bitfield extends beyond the most significant bit, 2165 // the extra bits are treated as 0s. To emulate this behavior, reduce 2166 // the number of requested bits, and make the extract unsigned. 2167 Bits = BW-Offset; 2168 Signed = false; 2169 } 2170 bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC); 2171 if (!Eval) 2172 return false; 2173 Outputs.update(DefR.Reg, RC); 2174 break; 2175 } 2176 2177 case Hexagon::S2_vsplatrb: 2178 case Hexagon::S2_vsplatrh: 2179 // vabsh, vabsh:sat 2180 // vabsw, vabsw:sat 2181 // vconj:sat 2182 // vrndwh, vrndwh:sat 2183 // vsathb, vsathub, vsatwuh 2184 // vsxtbh, vsxthw 2185 // vtrunehb, vtrunohb 2186 // vzxtbh, vzxthw 2187 { 2188 bool Eval = evaluateHexVector1(MI, Inputs, Outputs); 2189 if (!Eval) 2190 return false; 2191 break; 2192 } 2193 2194 // TODO: 2195 // A2_vaddh 2196 // A2_vaddhs 2197 // A2_vaddw 2198 // A2_vaddws 2199 } 2200 2201 return true; 2202 } 2203 2204 bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R, 2205 const LatticeCell &Input, LatticeCell &Result) { 2206 if (!R.SubReg) { 2207 Result = Input; 2208 return true; 2209 } 2210 const TargetRegisterClass *RC = MRI->getRegClass(R.Reg); 2211 if (RC != &Hexagon::DoubleRegsRegClass) 2212 return false; 2213 if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi) 2214 return false; 2215 2216 assert(!Input.isTop()); 2217 if (Input.isBottom()) 2218 return false; 2219 2220 using P = ConstantProperties; 2221 2222 if (Input.isProperty()) { 2223 uint32_t Ps = Input.properties(); 2224 if (Ps & (P::Zero|P::NaN)) { 2225 uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties)); 2226 Result.add(Ns); 2227 return true; 2228 } 2229 if (R.SubReg == Hexagon::isub_hi) { 2230 uint32_t Ns = (Ps & P::SignProperties); 2231 Result.add(Ns); 2232 return true; 2233 } 2234 return false; 2235 } 2236 2237 // The Input cell contains some known values. Pick the word corresponding 2238 // to the subregister. 2239 APInt A; 2240 for (unsigned i = 0; i < Input.size(); ++i) { 2241 const Constant *C = Input.Values[i]; 2242 if (!constToInt(C, A)) 2243 return false; 2244 if (!A.isIntN(64)) 2245 return false; 2246 uint64_t U = A.getZExtValue(); 2247 if (R.SubReg == Hexagon::isub_hi) 2248 U >>= 32; 2249 U &= 0xFFFFFFFFULL; 2250 uint32_t U32 = Lo_32(U); 2251 int32_t V32; 2252 memcpy(&V32, &U32, sizeof V32); 2253 IntegerType *Ty = Type::getInt32Ty(CX); 2254 const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32)); 2255 Result.add(C32); 2256 } 2257 return true; 2258 } 2259 2260 bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI, 2261 const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets, 2262 bool &FallsThru) { 2263 // We need to evaluate one branch at a time. TII::analyzeBranch checks 2264 // all the branches in a basic block at once, so we cannot use it. 2265 unsigned Opc = BrI.getOpcode(); 2266 bool SimpleBranch = false; 2267 bool Negated = false; 2268 switch (Opc) { 2269 case Hexagon::J2_jumpf: 2270 case Hexagon::J2_jumpfnew: 2271 case Hexagon::J2_jumpfnewpt: 2272 Negated = true; 2273 LLVM_FALLTHROUGH; 2274 case Hexagon::J2_jumpt: 2275 case Hexagon::J2_jumptnew: 2276 case Hexagon::J2_jumptnewpt: 2277 // Simple branch: if([!]Pn) jump ... 2278 // i.e. Op0 = predicate, Op1 = branch target. 2279 SimpleBranch = true; 2280 break; 2281 case Hexagon::J2_jump: 2282 Targets.insert(BrI.getOperand(0).getMBB()); 2283 FallsThru = false; 2284 return true; 2285 default: 2286 Undetermined: 2287 // If the branch is of unknown type, assume that all successors are 2288 // executable. 2289 FallsThru = !BrI.isUnconditionalBranch(); 2290 return false; 2291 } 2292 2293 if (SimpleBranch) { 2294 const MachineOperand &MD = BrI.getOperand(0); 2295 RegisterSubReg PR(MD); 2296 // If the condition operand has a subregister, this is not something 2297 // we currently recognize. 2298 if (PR.SubReg) 2299 goto Undetermined; 2300 assert(Inputs.has(PR.Reg)); 2301 const LatticeCell &PredC = Inputs.get(PR.Reg); 2302 if (PredC.isBottom()) 2303 goto Undetermined; 2304 2305 uint32_t Props = PredC.properties(); 2306 bool CTrue = false, CFalse = false; 2307 if (Props & ConstantProperties::Zero) 2308 CFalse = true; 2309 else if (Props & ConstantProperties::NonZero) 2310 CTrue = true; 2311 // If the condition is not known to be either, bail out. 2312 if (!CTrue && !CFalse) 2313 goto Undetermined; 2314 2315 const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB(); 2316 2317 FallsThru = false; 2318 if ((!Negated && CTrue) || (Negated && CFalse)) 2319 Targets.insert(BranchTarget); 2320 else if ((!Negated && CFalse) || (Negated && CTrue)) 2321 FallsThru = true; 2322 else 2323 goto Undetermined; 2324 } 2325 2326 return true; 2327 } 2328 2329 bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) { 2330 if (MI.isBranch()) 2331 return rewriteHexBranch(MI, Inputs); 2332 2333 unsigned Opc = MI.getOpcode(); 2334 switch (Opc) { 2335 default: 2336 break; 2337 case Hexagon::A2_tfrsi: 2338 case Hexagon::A2_tfrpi: 2339 case Hexagon::CONST32: 2340 case Hexagon::CONST64: 2341 case Hexagon::PS_true: 2342 case Hexagon::PS_false: 2343 return false; 2344 } 2345 2346 unsigned NumOp = MI.getNumOperands(); 2347 if (NumOp == 0) 2348 return false; 2349 2350 bool AllDefs, Changed; 2351 Changed = rewriteHexConstDefs(MI, Inputs, AllDefs); 2352 // If not all defs have been rewritten (i.e. the instruction defines 2353 // a register that is not compile-time constant), then try to rewrite 2354 // register operands that are known to be constant with immediates. 2355 if (!AllDefs) 2356 Changed |= rewriteHexConstUses(MI, Inputs); 2357 2358 return Changed; 2359 } 2360 2361 unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const { 2362 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2363 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) 2364 return 32; 2365 if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) 2366 return 64; 2367 if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) 2368 return 8; 2369 llvm_unreachable("Invalid register"); 2370 return 0; 2371 } 2372 2373 uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) { 2374 switch (Opc) { 2375 case Hexagon::C2_cmpeq: 2376 case Hexagon::C2_cmpeqp: 2377 case Hexagon::A4_cmpbeq: 2378 case Hexagon::A4_cmpheq: 2379 case Hexagon::A4_cmpbeqi: 2380 case Hexagon::A4_cmpheqi: 2381 case Hexagon::C2_cmpeqi: 2382 case Hexagon::J4_cmpeqn1_t_jumpnv_nt: 2383 case Hexagon::J4_cmpeqn1_t_jumpnv_t: 2384 case Hexagon::J4_cmpeqi_t_jumpnv_nt: 2385 case Hexagon::J4_cmpeqi_t_jumpnv_t: 2386 case Hexagon::J4_cmpeq_t_jumpnv_nt: 2387 case Hexagon::J4_cmpeq_t_jumpnv_t: 2388 return Comparison::EQ; 2389 2390 case Hexagon::C4_cmpneq: 2391 case Hexagon::C4_cmpneqi: 2392 case Hexagon::J4_cmpeqn1_f_jumpnv_nt: 2393 case Hexagon::J4_cmpeqn1_f_jumpnv_t: 2394 case Hexagon::J4_cmpeqi_f_jumpnv_nt: 2395 case Hexagon::J4_cmpeqi_f_jumpnv_t: 2396 case Hexagon::J4_cmpeq_f_jumpnv_nt: 2397 case Hexagon::J4_cmpeq_f_jumpnv_t: 2398 return Comparison::NE; 2399 2400 case Hexagon::C2_cmpgt: 2401 case Hexagon::C2_cmpgtp: 2402 case Hexagon::A4_cmpbgt: 2403 case Hexagon::A4_cmphgt: 2404 case Hexagon::A4_cmpbgti: 2405 case Hexagon::A4_cmphgti: 2406 case Hexagon::C2_cmpgti: 2407 case Hexagon::J4_cmpgtn1_t_jumpnv_nt: 2408 case Hexagon::J4_cmpgtn1_t_jumpnv_t: 2409 case Hexagon::J4_cmpgti_t_jumpnv_nt: 2410 case Hexagon::J4_cmpgti_t_jumpnv_t: 2411 case Hexagon::J4_cmpgt_t_jumpnv_nt: 2412 case Hexagon::J4_cmpgt_t_jumpnv_t: 2413 return Comparison::GTs; 2414 2415 case Hexagon::C4_cmplte: 2416 case Hexagon::C4_cmpltei: 2417 case Hexagon::J4_cmpgtn1_f_jumpnv_nt: 2418 case Hexagon::J4_cmpgtn1_f_jumpnv_t: 2419 case Hexagon::J4_cmpgti_f_jumpnv_nt: 2420 case Hexagon::J4_cmpgti_f_jumpnv_t: 2421 case Hexagon::J4_cmpgt_f_jumpnv_nt: 2422 case Hexagon::J4_cmpgt_f_jumpnv_t: 2423 return Comparison::LEs; 2424 2425 case Hexagon::C2_cmpgtu: 2426 case Hexagon::C2_cmpgtup: 2427 case Hexagon::A4_cmpbgtu: 2428 case Hexagon::A4_cmpbgtui: 2429 case Hexagon::A4_cmphgtu: 2430 case Hexagon::A4_cmphgtui: 2431 case Hexagon::C2_cmpgtui: 2432 case Hexagon::J4_cmpgtui_t_jumpnv_nt: 2433 case Hexagon::J4_cmpgtui_t_jumpnv_t: 2434 case Hexagon::J4_cmpgtu_t_jumpnv_nt: 2435 case Hexagon::J4_cmpgtu_t_jumpnv_t: 2436 return Comparison::GTu; 2437 2438 case Hexagon::J4_cmpltu_f_jumpnv_nt: 2439 case Hexagon::J4_cmpltu_f_jumpnv_t: 2440 return Comparison::GEu; 2441 2442 case Hexagon::J4_cmpltu_t_jumpnv_nt: 2443 case Hexagon::J4_cmpltu_t_jumpnv_t: 2444 return Comparison::LTu; 2445 2446 case Hexagon::J4_cmplt_f_jumpnv_nt: 2447 case Hexagon::J4_cmplt_f_jumpnv_t: 2448 return Comparison::GEs; 2449 2450 case Hexagon::C4_cmplteu: 2451 case Hexagon::C4_cmplteui: 2452 case Hexagon::J4_cmpgtui_f_jumpnv_nt: 2453 case Hexagon::J4_cmpgtui_f_jumpnv_t: 2454 case Hexagon::J4_cmpgtu_f_jumpnv_nt: 2455 case Hexagon::J4_cmpgtu_f_jumpnv_t: 2456 return Comparison::LEu; 2457 2458 case Hexagon::J4_cmplt_t_jumpnv_nt: 2459 case Hexagon::J4_cmplt_t_jumpnv_t: 2460 return Comparison::LTs; 2461 2462 default: 2463 break; 2464 } 2465 return Comparison::Unk; 2466 } 2467 2468 APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX, 2469 const MachineOperand &MO) { 2470 bool Signed = false; 2471 switch (Opc) { 2472 case Hexagon::A4_cmpbgtui: // u7 2473 case Hexagon::A4_cmphgtui: // u7 2474 break; 2475 case Hexagon::A4_cmpheqi: // s8 2476 case Hexagon::C4_cmpneqi: // s8 2477 Signed = true; 2478 break; 2479 case Hexagon::A4_cmpbeqi: // u8 2480 break; 2481 case Hexagon::C2_cmpgtui: // u9 2482 case Hexagon::C4_cmplteui: // u9 2483 break; 2484 case Hexagon::C2_cmpeqi: // s10 2485 case Hexagon::C2_cmpgti: // s10 2486 case Hexagon::C4_cmpltei: // s10 2487 Signed = true; 2488 break; 2489 case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5 2490 case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5 2491 case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5 2492 case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5 2493 case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5 2494 case Hexagon::J4_cmpgti_f_jumpnv_t: // u5 2495 case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5 2496 case Hexagon::J4_cmpgti_t_jumpnv_t: // u5 2497 case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5 2498 case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5 2499 case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5 2500 case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5 2501 break; 2502 default: 2503 llvm_unreachable("Unhandled instruction"); 2504 break; 2505 } 2506 2507 uint64_t Val = MO.getImm(); 2508 return APInt(32, Val, Signed); 2509 } 2510 2511 void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) { 2512 MI.setDesc(HII.get(Hexagon::A2_nop)); 2513 while (MI.getNumOperands() > 0) 2514 MI.RemoveOperand(0); 2515 } 2516 2517 bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, 2518 const CellMap &Inputs, LatticeCell &Result) { 2519 assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg)); 2520 LatticeCell LSL, LSH; 2521 if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH)) 2522 return false; 2523 if (LSL.isProperty() || LSH.isProperty()) 2524 return false; 2525 2526 unsigned LN = LSL.size(), HN = LSH.size(); 2527 SmallVector<APInt,4> LoVs(LN), HiVs(HN); 2528 for (unsigned i = 0; i < LN; ++i) { 2529 bool Eval = constToInt(LSL.Values[i], LoVs[i]); 2530 if (!Eval) 2531 return false; 2532 assert(LoVs[i].getBitWidth() == 32); 2533 } 2534 for (unsigned i = 0; i < HN; ++i) { 2535 bool Eval = constToInt(LSH.Values[i], HiVs[i]); 2536 if (!Eval) 2537 return false; 2538 assert(HiVs[i].getBitWidth() == 32); 2539 } 2540 2541 for (unsigned i = 0; i < HiVs.size(); ++i) { 2542 APInt HV = HiVs[i].zextOrSelf(64) << 32; 2543 for (unsigned j = 0; j < LoVs.size(); ++j) { 2544 APInt LV = LoVs[j].zextOrSelf(64); 2545 const Constant *C = intToConst(HV | LV); 2546 Result.add(C); 2547 if (Result.isBottom()) 2548 return false; 2549 } 2550 } 2551 return !Result.isBottom(); 2552 } 2553 2554 bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI, 2555 const CellMap &Inputs, CellMap &Outputs) { 2556 unsigned Opc = MI.getOpcode(); 2557 bool Classic = false; 2558 switch (Opc) { 2559 case Hexagon::C2_cmpeq: 2560 case Hexagon::C2_cmpeqp: 2561 case Hexagon::C2_cmpgt: 2562 case Hexagon::C2_cmpgtp: 2563 case Hexagon::C2_cmpgtu: 2564 case Hexagon::C2_cmpgtup: 2565 case Hexagon::C2_cmpeqi: 2566 case Hexagon::C2_cmpgti: 2567 case Hexagon::C2_cmpgtui: 2568 // Classic compare: Dst0 = CMP Src1, Src2 2569 Classic = true; 2570 break; 2571 default: 2572 // Not handling other compare instructions now. 2573 return false; 2574 } 2575 2576 if (Classic) { 2577 const MachineOperand &Src1 = MI.getOperand(1); 2578 const MachineOperand &Src2 = MI.getOperand(2); 2579 2580 bool Result; 2581 unsigned Opc = MI.getOpcode(); 2582 bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result); 2583 if (Computed) { 2584 // Only create a zero/non-zero cell. At this time there isn't really 2585 // much need for specific values. 2586 RegisterSubReg DefR(MI.getOperand(0)); 2587 LatticeCell L = Outputs.get(DefR.Reg); 2588 uint32_t P = Result ? ConstantProperties::NonZero 2589 : ConstantProperties::Zero; 2590 L.add(P); 2591 Outputs.update(DefR.Reg, L); 2592 return true; 2593 } 2594 } 2595 2596 return false; 2597 } 2598 2599 bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc, 2600 const MachineOperand &Src1, const MachineOperand &Src2, 2601 const CellMap &Inputs, bool &Result) { 2602 uint32_t Cmp = getCmp(Opc); 2603 bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg(); 2604 bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm(); 2605 if (Reg1) { 2606 RegisterSubReg R1(Src1); 2607 if (Reg2) { 2608 RegisterSubReg R2(Src2); 2609 return evaluateCMPrr(Cmp, R1, R2, Inputs, Result); 2610 } else if (Imm2) { 2611 APInt A2 = getCmpImm(Opc, 2, Src2); 2612 return evaluateCMPri(Cmp, R1, A2, Inputs, Result); 2613 } 2614 } else if (Imm1) { 2615 APInt A1 = getCmpImm(Opc, 1, Src1); 2616 if (Reg2) { 2617 RegisterSubReg R2(Src2); 2618 uint32_t NegCmp = Comparison::negate(Cmp); 2619 return evaluateCMPri(NegCmp, R2, A1, Inputs, Result); 2620 } else if (Imm2) { 2621 APInt A2 = getCmpImm(Opc, 2, Src2); 2622 return evaluateCMPii(Cmp, A1, A2, Result); 2623 } 2624 } 2625 // Unknown kind of comparison. 2626 return false; 2627 } 2628 2629 bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI, 2630 const CellMap &Inputs, CellMap &Outputs) { 2631 unsigned Opc = MI.getOpcode(); 2632 if (MI.getNumOperands() != 3) 2633 return false; 2634 const MachineOperand &Src1 = MI.getOperand(1); 2635 const MachineOperand &Src2 = MI.getOperand(2); 2636 RegisterSubReg R1(Src1); 2637 bool Eval = false; 2638 LatticeCell RC; 2639 switch (Opc) { 2640 default: 2641 return false; 2642 case Hexagon::A2_and: 2643 case Hexagon::A2_andp: 2644 Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC); 2645 break; 2646 case Hexagon::A2_andir: { 2647 if (!Src2.isImm()) 2648 return false; 2649 APInt A(32, Src2.getImm(), true); 2650 Eval = evaluateANDri(R1, A, Inputs, RC); 2651 break; 2652 } 2653 case Hexagon::A2_or: 2654 case Hexagon::A2_orp: 2655 Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC); 2656 break; 2657 case Hexagon::A2_orir: { 2658 if (!Src2.isImm()) 2659 return false; 2660 APInt A(32, Src2.getImm(), true); 2661 Eval = evaluateORri(R1, A, Inputs, RC); 2662 break; 2663 } 2664 case Hexagon::A2_xor: 2665 case Hexagon::A2_xorp: 2666 Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC); 2667 break; 2668 } 2669 if (Eval) { 2670 RegisterSubReg DefR(MI.getOperand(0)); 2671 Outputs.update(DefR.Reg, RC); 2672 } 2673 return Eval; 2674 } 2675 2676 bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI, 2677 const CellMap &Inputs, CellMap &Outputs) { 2678 // Dst0 = Cond1 ? Src2 : Src3 2679 RegisterSubReg CR(MI.getOperand(1)); 2680 assert(Inputs.has(CR.Reg)); 2681 LatticeCell LS; 2682 if (!getCell(CR, Inputs, LS)) 2683 return false; 2684 uint32_t Ps = LS.properties(); 2685 unsigned TakeOp; 2686 if (Ps & ConstantProperties::Zero) 2687 TakeOp = 3; 2688 else if (Ps & ConstantProperties::NonZero) 2689 TakeOp = 2; 2690 else 2691 return false; 2692 2693 const MachineOperand &ValOp = MI.getOperand(TakeOp); 2694 RegisterSubReg DefR(MI.getOperand(0)); 2695 LatticeCell RC = Outputs.get(DefR.Reg); 2696 2697 if (ValOp.isImm()) { 2698 int64_t V = ValOp.getImm(); 2699 unsigned W = getRegBitWidth(DefR.Reg); 2700 APInt A(W, V, true); 2701 const Constant *C = intToConst(A); 2702 RC.add(C); 2703 Outputs.update(DefR.Reg, RC); 2704 return true; 2705 } 2706 if (ValOp.isReg()) { 2707 RegisterSubReg R(ValOp); 2708 const LatticeCell &LR = Inputs.get(R.Reg); 2709 LatticeCell LSR; 2710 if (!evaluate(R, LR, LSR)) 2711 return false; 2712 RC.meet(LSR); 2713 Outputs.update(DefR.Reg, RC); 2714 return true; 2715 } 2716 return false; 2717 } 2718 2719 bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI, 2720 const CellMap &Inputs, CellMap &Outputs) { 2721 // Dst0 = ext R1 2722 RegisterSubReg R1(MI.getOperand(1)); 2723 assert(Inputs.has(R1.Reg)); 2724 2725 unsigned Opc = MI.getOpcode(); 2726 unsigned Bits; 2727 switch (Opc) { 2728 case Hexagon::A2_sxtb: 2729 case Hexagon::A2_zxtb: 2730 Bits = 8; 2731 break; 2732 case Hexagon::A2_sxth: 2733 case Hexagon::A2_zxth: 2734 Bits = 16; 2735 break; 2736 case Hexagon::A2_sxtw: 2737 Bits = 32; 2738 break; 2739 default: 2740 llvm_unreachable("Unhandled extension opcode"); 2741 } 2742 2743 bool Signed = false; 2744 switch (Opc) { 2745 case Hexagon::A2_sxtb: 2746 case Hexagon::A2_sxth: 2747 case Hexagon::A2_sxtw: 2748 Signed = true; 2749 break; 2750 } 2751 2752 RegisterSubReg DefR(MI.getOperand(0)); 2753 unsigned BW = getRegBitWidth(DefR.Reg); 2754 LatticeCell RC = Outputs.get(DefR.Reg); 2755 bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC) 2756 : evaluateZEXTr(R1, BW, Bits, Inputs, RC); 2757 if (!Eval) 2758 return false; 2759 Outputs.update(DefR.Reg, RC); 2760 return true; 2761 } 2762 2763 bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI, 2764 const CellMap &Inputs, CellMap &Outputs) { 2765 // DefR = op R1 2766 RegisterSubReg DefR(MI.getOperand(0)); 2767 RegisterSubReg R1(MI.getOperand(1)); 2768 assert(Inputs.has(R1.Reg)); 2769 LatticeCell RC = Outputs.get(DefR.Reg); 2770 bool Eval; 2771 2772 unsigned Opc = MI.getOpcode(); 2773 switch (Opc) { 2774 case Hexagon::S2_vsplatrb: 2775 // Rd = 4 times Rs:0..7 2776 Eval = evaluateSplatr(R1, 8, 4, Inputs, RC); 2777 break; 2778 case Hexagon::S2_vsplatrh: 2779 // Rdd = 4 times Rs:0..15 2780 Eval = evaluateSplatr(R1, 16, 4, Inputs, RC); 2781 break; 2782 default: 2783 return false; 2784 } 2785 2786 if (!Eval) 2787 return false; 2788 Outputs.update(DefR.Reg, RC); 2789 return true; 2790 } 2791 2792 bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI, 2793 const CellMap &Inputs, bool &AllDefs) { 2794 AllDefs = false; 2795 2796 // Some diagnostics. 2797 // LLVM_DEBUG({...}) gets confused with all this code as an argument. 2798 #ifndef NDEBUG 2799 bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE); 2800 if (Debugging) { 2801 bool Const = true, HasUse = false; 2802 for (const MachineOperand &MO : MI.operands()) { 2803 if (!MO.isReg() || !MO.isUse() || MO.isImplicit()) 2804 continue; 2805 RegisterSubReg R(MO); 2806 if (!Register::isVirtualRegister(R.Reg)) 2807 continue; 2808 HasUse = true; 2809 // PHIs can legitimately have "top" cells after propagation. 2810 if (!MI.isPHI() && !Inputs.has(R.Reg)) { 2811 dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg) 2812 << " in MI: " << MI; 2813 continue; 2814 } 2815 const LatticeCell &L = Inputs.get(R.Reg); 2816 Const &= L.isSingle(); 2817 if (!Const) 2818 break; 2819 } 2820 if (HasUse && Const) { 2821 if (!MI.isCopy()) { 2822 dbgs() << "CONST: " << MI; 2823 for (const MachineOperand &MO : MI.operands()) { 2824 if (!MO.isReg() || !MO.isUse() || MO.isImplicit()) 2825 continue; 2826 Register R = MO.getReg(); 2827 dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n"; 2828 } 2829 } 2830 } 2831 } 2832 #endif 2833 2834 // Avoid generating TFRIs for register transfers---this will keep the 2835 // coalescing opportunities. 2836 if (MI.isCopy()) 2837 return false; 2838 2839 // Collect all virtual register-def operands. 2840 SmallVector<unsigned,2> DefRegs; 2841 for (const MachineOperand &MO : MI.operands()) { 2842 if (!MO.isReg() || !MO.isDef()) 2843 continue; 2844 Register R = MO.getReg(); 2845 if (!Register::isVirtualRegister(R)) 2846 continue; 2847 assert(!MO.getSubReg()); 2848 assert(Inputs.has(R)); 2849 DefRegs.push_back(R); 2850 } 2851 2852 MachineBasicBlock &B = *MI.getParent(); 2853 const DebugLoc &DL = MI.getDebugLoc(); 2854 unsigned ChangedNum = 0; 2855 #ifndef NDEBUG 2856 SmallVector<const MachineInstr*,4> NewInstrs; 2857 #endif 2858 2859 // For each defined register, if it is a constant, create an instruction 2860 // NewR = const 2861 // and replace all uses of the defined register with NewR. 2862 for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) { 2863 unsigned R = DefRegs[i]; 2864 const LatticeCell &L = Inputs.get(R); 2865 if (L.isBottom()) 2866 continue; 2867 const TargetRegisterClass *RC = MRI->getRegClass(R); 2868 MachineBasicBlock::iterator At = MI.getIterator(); 2869 2870 if (!L.isSingle()) { 2871 // If this a zero/non-zero cell, we can fold a definition 2872 // of a predicate register. 2873 using P = ConstantProperties; 2874 2875 uint64_t Ps = L.properties(); 2876 if (!(Ps & (P::Zero|P::NonZero))) 2877 continue; 2878 const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass; 2879 if (RC != PredRC) 2880 continue; 2881 const MCInstrDesc *NewD = (Ps & P::Zero) ? 2882 &HII.get(Hexagon::PS_false) : 2883 &HII.get(Hexagon::PS_true); 2884 Register NewR = MRI->createVirtualRegister(PredRC); 2885 const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR); 2886 (void)MIB; 2887 #ifndef NDEBUG 2888 NewInstrs.push_back(&*MIB); 2889 #endif 2890 replaceAllRegUsesWith(R, NewR); 2891 } else { 2892 // This cell has a single value. 2893 APInt A; 2894 if (!constToInt(L.Value, A) || !A.isSignedIntN(64)) 2895 continue; 2896 const TargetRegisterClass *NewRC; 2897 const MCInstrDesc *NewD; 2898 2899 unsigned W = getRegBitWidth(R); 2900 int64_t V = A.getSExtValue(); 2901 assert(W == 32 || W == 64); 2902 if (W == 32) 2903 NewRC = &Hexagon::IntRegsRegClass; 2904 else 2905 NewRC = &Hexagon::DoubleRegsRegClass; 2906 Register NewR = MRI->createVirtualRegister(NewRC); 2907 const MachineInstr *NewMI; 2908 2909 if (W == 32) { 2910 NewD = &HII.get(Hexagon::A2_tfrsi); 2911 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2912 .addImm(V); 2913 } else { 2914 if (A.isSignedIntN(8)) { 2915 NewD = &HII.get(Hexagon::A2_tfrpi); 2916 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2917 .addImm(V); 2918 } else { 2919 int32_t Hi = V >> 32; 2920 int32_t Lo = V & 0xFFFFFFFFLL; 2921 if (isInt<8>(Hi) && isInt<8>(Lo)) { 2922 NewD = &HII.get(Hexagon::A2_combineii); 2923 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2924 .addImm(Hi) 2925 .addImm(Lo); 2926 } else { 2927 NewD = &HII.get(Hexagon::CONST64); 2928 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2929 .addImm(V); 2930 } 2931 } 2932 } 2933 (void)NewMI; 2934 #ifndef NDEBUG 2935 NewInstrs.push_back(NewMI); 2936 #endif 2937 replaceAllRegUsesWith(R, NewR); 2938 } 2939 ChangedNum++; 2940 } 2941 2942 LLVM_DEBUG({ 2943 if (!NewInstrs.empty()) { 2944 MachineFunction &MF = *MI.getParent()->getParent(); 2945 dbgs() << "In function: " << MF.getName() << "\n"; 2946 dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0]; 2947 for (unsigned i = 1; i < NewInstrs.size(); ++i) 2948 dbgs() << " " << *NewInstrs[i]; 2949 } 2950 }); 2951 2952 AllDefs = (ChangedNum == DefRegs.size()); 2953 return ChangedNum > 0; 2954 } 2955 2956 bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI, 2957 const CellMap &Inputs) { 2958 bool Changed = false; 2959 unsigned Opc = MI.getOpcode(); 2960 MachineBasicBlock &B = *MI.getParent(); 2961 const DebugLoc &DL = MI.getDebugLoc(); 2962 MachineBasicBlock::iterator At = MI.getIterator(); 2963 MachineInstr *NewMI = nullptr; 2964 2965 switch (Opc) { 2966 case Hexagon::M2_maci: 2967 // Convert DefR += mpyi(R2, R3) 2968 // to DefR += mpyi(R, #imm), 2969 // or DefR -= mpyi(R, #imm). 2970 { 2971 RegisterSubReg DefR(MI.getOperand(0)); 2972 assert(!DefR.SubReg); 2973 RegisterSubReg R2(MI.getOperand(2)); 2974 RegisterSubReg R3(MI.getOperand(3)); 2975 assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg)); 2976 LatticeCell LS2, LS3; 2977 // It is enough to get one of the input cells, since we will only try 2978 // to replace one argument---whichever happens to be a single constant. 2979 bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3); 2980 if (!HasC2 && !HasC3) 2981 return false; 2982 bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) || 2983 (HasC3 && (LS3.properties() & ConstantProperties::Zero))); 2984 // If one of the operands is zero, eliminate the multiplication. 2985 if (Zero) { 2986 // DefR == R1 (tied operands). 2987 MachineOperand &Acc = MI.getOperand(1); 2988 RegisterSubReg R1(Acc); 2989 unsigned NewR = R1.Reg; 2990 if (R1.SubReg) { 2991 // Generate COPY. FIXME: Replace with the register:subregister. 2992 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 2993 NewR = MRI->createVirtualRegister(RC); 2994 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 2995 .addReg(R1.Reg, getRegState(Acc), R1.SubReg); 2996 } 2997 replaceAllRegUsesWith(DefR.Reg, NewR); 2998 MRI->clearKillFlags(NewR); 2999 Changed = true; 3000 break; 3001 } 3002 3003 bool Swap = false; 3004 if (!LS3.isSingle()) { 3005 if (!LS2.isSingle()) 3006 return false; 3007 Swap = true; 3008 } 3009 const LatticeCell &LI = Swap ? LS2 : LS3; 3010 const MachineOperand &OpR2 = Swap ? MI.getOperand(3) 3011 : MI.getOperand(2); 3012 // LI is single here. 3013 APInt A; 3014 if (!constToInt(LI.Value, A) || !A.isSignedIntN(8)) 3015 return false; 3016 int64_t V = A.getSExtValue(); 3017 const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip) 3018 : HII.get(Hexagon::M2_macsin); 3019 if (V < 0) 3020 V = -V; 3021 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 3022 Register NewR = MRI->createVirtualRegister(RC); 3023 const MachineOperand &Src1 = MI.getOperand(1); 3024 NewMI = BuildMI(B, At, DL, D, NewR) 3025 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg()) 3026 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg()) 3027 .addImm(V); 3028 replaceAllRegUsesWith(DefR.Reg, NewR); 3029 Changed = true; 3030 break; 3031 } 3032 3033 case Hexagon::A2_and: 3034 { 3035 RegisterSubReg R1(MI.getOperand(1)); 3036 RegisterSubReg R2(MI.getOperand(2)); 3037 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 3038 LatticeCell LS1, LS2; 3039 unsigned CopyOf = 0; 3040 // Check if any of the operands is -1 (i.e. all bits set). 3041 if (getCell(R1, Inputs, LS1) && LS1.isSingle()) { 3042 APInt M1; 3043 if (constToInt(LS1.Value, M1) && !~M1) 3044 CopyOf = 2; 3045 } 3046 else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) { 3047 APInt M1; 3048 if (constToInt(LS2.Value, M1) && !~M1) 3049 CopyOf = 1; 3050 } 3051 if (!CopyOf) 3052 return false; 3053 MachineOperand &SO = MI.getOperand(CopyOf); 3054 RegisterSubReg SR(SO); 3055 RegisterSubReg DefR(MI.getOperand(0)); 3056 unsigned NewR = SR.Reg; 3057 if (SR.SubReg) { 3058 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 3059 NewR = MRI->createVirtualRegister(RC); 3060 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 3061 .addReg(SR.Reg, getRegState(SO), SR.SubReg); 3062 } 3063 replaceAllRegUsesWith(DefR.Reg, NewR); 3064 MRI->clearKillFlags(NewR); 3065 Changed = true; 3066 } 3067 break; 3068 3069 case Hexagon::A2_or: 3070 { 3071 RegisterSubReg R1(MI.getOperand(1)); 3072 RegisterSubReg R2(MI.getOperand(2)); 3073 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 3074 LatticeCell LS1, LS2; 3075 unsigned CopyOf = 0; 3076 3077 using P = ConstantProperties; 3078 3079 if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero)) 3080 CopyOf = 2; 3081 else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero)) 3082 CopyOf = 1; 3083 if (!CopyOf) 3084 return false; 3085 MachineOperand &SO = MI.getOperand(CopyOf); 3086 RegisterSubReg SR(SO); 3087 RegisterSubReg DefR(MI.getOperand(0)); 3088 unsigned NewR = SR.Reg; 3089 if (SR.SubReg) { 3090 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 3091 NewR = MRI->createVirtualRegister(RC); 3092 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 3093 .addReg(SR.Reg, getRegState(SO), SR.SubReg); 3094 } 3095 replaceAllRegUsesWith(DefR.Reg, NewR); 3096 MRI->clearKillFlags(NewR); 3097 Changed = true; 3098 } 3099 break; 3100 } 3101 3102 if (NewMI) { 3103 // clear all the kill flags of this new instruction. 3104 for (MachineOperand &MO : NewMI->operands()) 3105 if (MO.isReg() && MO.isUse()) 3106 MO.setIsKill(false); 3107 } 3108 3109 LLVM_DEBUG({ 3110 if (NewMI) { 3111 dbgs() << "Rewrite: for " << MI; 3112 if (NewMI != &MI) 3113 dbgs() << " created " << *NewMI; 3114 else 3115 dbgs() << " modified the instruction itself and created:" << *NewMI; 3116 } 3117 }); 3118 3119 return Changed; 3120 } 3121 3122 void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg, 3123 unsigned ToReg) { 3124 assert(Register::isVirtualRegister(FromReg)); 3125 assert(Register::isVirtualRegister(ToReg)); 3126 for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) { 3127 MachineOperand &O = *I; 3128 ++I; 3129 O.setReg(ToReg); 3130 } 3131 } 3132 3133 bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI, 3134 const CellMap &Inputs) { 3135 MachineBasicBlock &B = *BrI.getParent(); 3136 unsigned NumOp = BrI.getNumOperands(); 3137 if (!NumOp) 3138 return false; 3139 3140 bool FallsThru; 3141 SetVector<const MachineBasicBlock*> Targets; 3142 bool Eval = evaluate(BrI, Inputs, Targets, FallsThru); 3143 unsigned NumTargets = Targets.size(); 3144 if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru)) 3145 return false; 3146 if (BrI.getOpcode() == Hexagon::J2_jump) 3147 return false; 3148 3149 LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI); 3150 bool Rewritten = false; 3151 if (NumTargets > 0) { 3152 assert(!FallsThru && "This should have been checked before"); 3153 // MIB.addMBB needs non-const pointer. 3154 MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]); 3155 bool Moot = B.isLayoutSuccessor(TargetB); 3156 if (!Moot) { 3157 // If we build a branch here, we must make sure that it won't be 3158 // erased as "non-executable". We can't mark any new instructions 3159 // as executable here, so we need to overwrite the BrI, which we 3160 // know is executable. 3161 const MCInstrDesc &JD = HII.get(Hexagon::J2_jump); 3162 auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD) 3163 .addMBB(TargetB); 3164 BrI.setDesc(JD); 3165 while (BrI.getNumOperands() > 0) 3166 BrI.RemoveOperand(0); 3167 // This ensures that all implicit operands (e.g. implicit-def %r31, etc) 3168 // are present in the rewritten branch. 3169 for (auto &Op : NI->operands()) 3170 BrI.addOperand(Op); 3171 NI->eraseFromParent(); 3172 Rewritten = true; 3173 } 3174 } 3175 3176 // Do not erase instructions. A newly created instruction could get 3177 // the same address as an instruction marked as executable during the 3178 // propagation. 3179 if (!Rewritten) 3180 replaceWithNop(BrI); 3181 return true; 3182 } 3183 3184 FunctionPass *llvm::createHexagonConstPropagationPass() { 3185 return new HexagonConstPropagation(); 3186 } 3187