1 //===- HexagonConstPropagation.cpp ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonInstrInfo.h" 10 #include "HexagonRegisterInfo.h" 11 #include "HexagonSubtarget.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/Compiler.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <iterator> 40 #include <map> 41 #include <queue> 42 #include <set> 43 #include <utility> 44 #include <vector> 45 46 #define DEBUG_TYPE "hcp" 47 48 using namespace llvm; 49 50 namespace { 51 52 // Properties of a value that are tracked by the propagation. 53 // A property that is marked as present (i.e. bit is set) dentes that the 54 // value is known (proven) to have this property. Not all combinations 55 // of bits make sense, for example Zero and NonZero are mutually exclusive, 56 // but on the other hand, Zero implies Finite. In this case, whenever 57 // the Zero property is present, Finite should also be present. 58 class ConstantProperties { 59 public: 60 enum { 61 Unknown = 0x0000, 62 Zero = 0x0001, 63 NonZero = 0x0002, 64 Finite = 0x0004, 65 Infinity = 0x0008, 66 NaN = 0x0010, 67 SignedZero = 0x0020, 68 NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero), 69 PosOrZero = 0x0100, 70 NegOrZero = 0x0200, 71 SignProperties = (PosOrZero|NegOrZero), 72 Everything = (NumericProperties|SignProperties) 73 }; 74 75 // For a given constant, deduce the set of trackable properties that this 76 // constant has. 77 static uint32_t deduce(const Constant *C); 78 }; 79 80 // A representation of a register as it can appear in a MachineOperand, 81 // i.e. a pair register:subregister. 82 83 // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in 84 // HexagonGenPredicate 85 struct RegisterSubReg { 86 Register Reg; 87 unsigned SubReg; 88 89 explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {} 90 explicit RegisterSubReg(const MachineOperand &MO) 91 : Reg(MO.getReg()), SubReg(MO.getSubReg()) {} 92 93 void print(const TargetRegisterInfo *TRI = nullptr) const { 94 dbgs() << printReg(Reg, TRI, SubReg); 95 } 96 97 bool operator== (const RegisterSubReg &R) const { 98 return (Reg == R.Reg) && (SubReg == R.SubReg); 99 } 100 }; 101 102 // Lattice cell, based on that was described in the W-Z paper on constant 103 // propagation. 104 // Latice cell will be allowed to hold multiple constant values. While 105 // multiple values would normally indicate "bottom", we can still derive 106 // some useful information from them. For example, comparison X > 0 107 // could be folded if all the values in the cell associated with X are 108 // positive. 109 class LatticeCell { 110 private: 111 enum { Normal, Top, Bottom }; 112 113 static const unsigned MaxCellSize = 4; 114 115 unsigned Kind:2; 116 unsigned Size:3; 117 unsigned IsSpecial:1; 118 unsigned :0; 119 120 public: 121 union { 122 uint32_t Properties; 123 const Constant *Value; 124 const Constant *Values[MaxCellSize]; 125 }; 126 127 LatticeCell() : Kind(Top), Size(0), IsSpecial(false) { 128 for (const Constant *&Value : Values) 129 Value = nullptr; 130 } 131 132 bool meet(const LatticeCell &L); 133 bool add(const Constant *C); 134 bool add(uint32_t Property); 135 uint32_t properties() const; 136 unsigned size() const { return Size; } 137 138 LatticeCell(const LatticeCell &L) { 139 // This memcpy also copies Properties (when L.Size == 0). 140 uint32_t N = 141 L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *); 142 memcpy(Values, L.Values, N); 143 Kind = L.Kind; 144 Size = L.Size; 145 IsSpecial = L.IsSpecial; 146 } 147 148 LatticeCell &operator=(const LatticeCell &L) { 149 if (this != &L) { 150 // This memcpy also copies Properties (when L.Size == 0). 151 uint32_t N = L.IsSpecial ? sizeof L.Properties 152 : L.Size * sizeof(const Constant *); 153 memcpy(Values, L.Values, N); 154 Kind = L.Kind; 155 Size = L.Size; 156 IsSpecial = L.IsSpecial; 157 } 158 return *this; 159 } 160 161 bool isSingle() const { return size() == 1; } 162 bool isProperty() const { return IsSpecial; } 163 bool isTop() const { return Kind == Top; } 164 bool isBottom() const { return Kind == Bottom; } 165 166 bool setBottom() { 167 bool Changed = (Kind != Bottom); 168 Kind = Bottom; 169 Size = 0; 170 IsSpecial = false; 171 return Changed; 172 } 173 174 void print(raw_ostream &os) const; 175 176 private: 177 void setProperty() { 178 IsSpecial = true; 179 Size = 0; 180 Kind = Normal; 181 } 182 183 bool convertToProperty(); 184 }; 185 186 #ifndef NDEBUG 187 raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) { 188 L.print(os); 189 return os; 190 } 191 #endif 192 193 class MachineConstEvaluator; 194 195 class MachineConstPropagator { 196 public: 197 MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) { 198 Bottom.setBottom(); 199 } 200 201 // Mapping: vreg -> cell 202 // The keys are registers _without_ subregisters. This won't allow 203 // definitions in the form of "vreg:subreg = ...". Such definitions 204 // would be questionable from the point of view of SSA, since the "vreg" 205 // could not be initialized in its entirety (specifically, an instruction 206 // defining the "other part" of "vreg" would also count as a definition 207 // of "vreg", which would violate the SSA). 208 // If a value of a pair vreg:subreg needs to be obtained, the cell for 209 // "vreg" needs to be looked up, and then the value of subregister "subreg" 210 // needs to be evaluated. 211 class CellMap { 212 public: 213 CellMap() { 214 assert(Top.isTop()); 215 Bottom.setBottom(); 216 } 217 218 void clear() { Map.clear(); } 219 220 bool has(Register R) const { 221 // All non-virtual registers are considered "bottom". 222 if (!R.isVirtual()) 223 return true; 224 MapType::const_iterator F = Map.find(R); 225 return F != Map.end(); 226 } 227 228 const LatticeCell &get(Register R) const { 229 if (!R.isVirtual()) 230 return Bottom; 231 MapType::const_iterator F = Map.find(R); 232 if (F != Map.end()) 233 return F->second; 234 return Top; 235 } 236 237 // Invalidates any const references. 238 void update(Register R, const LatticeCell &L) { Map[R] = L; } 239 240 void print(raw_ostream &os, const TargetRegisterInfo &TRI) const; 241 242 private: 243 using MapType = std::map<Register, LatticeCell>; 244 245 MapType Map; 246 // To avoid creating "top" entries, return a const reference to 247 // this cell in "get". Also, have a "Bottom" cell to return from 248 // get when a value of a physical register is requested. 249 LatticeCell Top, Bottom; 250 251 public: 252 using const_iterator = MapType::const_iterator; 253 254 const_iterator begin() const { return Map.begin(); } 255 const_iterator end() const { return Map.end(); } 256 }; 257 258 bool run(MachineFunction &MF); 259 260 private: 261 void visitPHI(const MachineInstr &PN); 262 void visitNonBranch(const MachineInstr &MI); 263 void visitBranchesFrom(const MachineInstr &BrI); 264 void visitUsesOf(unsigned R); 265 bool computeBlockSuccessors(const MachineBasicBlock *MB, 266 SetVector<const MachineBasicBlock*> &Targets); 267 void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To); 268 269 void propagate(MachineFunction &MF); 270 bool rewrite(MachineFunction &MF); 271 272 MachineRegisterInfo *MRI = nullptr; 273 MachineConstEvaluator &MCE; 274 275 using CFGEdge = std::pair<unsigned, unsigned>; 276 using SetOfCFGEdge = std::set<CFGEdge>; 277 using SetOfInstr = std::set<const MachineInstr *>; 278 using QueueOfCFGEdge = std::queue<CFGEdge>; 279 280 LatticeCell Bottom; 281 CellMap Cells; 282 SetOfCFGEdge EdgeExec; 283 SetOfInstr InstrExec; 284 QueueOfCFGEdge FlowQ; 285 }; 286 287 // The "evaluator/rewriter" of machine instructions. This is an abstract 288 // base class that provides the interface that the propagator will use, 289 // as well as some helper functions that are target-independent. 290 class MachineConstEvaluator { 291 public: 292 MachineConstEvaluator(MachineFunction &Fn) 293 : TRI(*Fn.getSubtarget().getRegisterInfo()), 294 MF(Fn), CX(Fn.getFunction().getContext()) {} 295 virtual ~MachineConstEvaluator() = default; 296 297 // The required interface: 298 // - A set of three "evaluate" functions. Each returns "true" if the 299 // computation succeeded, "false" otherwise. 300 // (1) Given an instruction MI, and the map with input values "Inputs", 301 // compute the set of output values "Outputs". An example of when 302 // the computation can "fail" is if MI is not an instruction that 303 // is recognized by the evaluator. 304 // (2) Given a register R (as reg:subreg), compute the cell that 305 // corresponds to the "subreg" part of the given register. 306 // (3) Given a branch instruction BrI, compute the set of target blocks. 307 // If the branch can fall-through, add null (0) to the list of 308 // possible targets. 309 // - A function "rewrite", that given the cell map after propagation, 310 // could rewrite instruction MI in a more beneficial form. Return 311 // "true" if a change has been made, "false" otherwise. 312 using CellMap = MachineConstPropagator::CellMap; 313 virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs, 314 CellMap &Outputs) = 0; 315 virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, 316 LatticeCell &Result) = 0; 317 virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, 318 SetVector<const MachineBasicBlock*> &Targets, 319 bool &CanFallThru) = 0; 320 virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0; 321 322 const TargetRegisterInfo &TRI; 323 324 protected: 325 MachineFunction &MF; 326 LLVMContext &CX; 327 328 struct Comparison { 329 enum { 330 Unk = 0x00, 331 EQ = 0x01, 332 NE = 0x02, 333 L = 0x04, // Less-than property. 334 G = 0x08, // Greater-than property. 335 U = 0x40, // Unsigned property. 336 LTs = L, 337 LEs = L | EQ, 338 GTs = G, 339 GEs = G | EQ, 340 LTu = L | U, 341 LEu = L | EQ | U, 342 GTu = G | U, 343 GEu = G | EQ | U 344 }; 345 346 static uint32_t negate(uint32_t Cmp) { 347 if (Cmp == EQ) 348 return NE; 349 if (Cmp == NE) 350 return EQ; 351 assert((Cmp & (L|G)) != (L|G)); 352 return Cmp ^ (L|G); 353 } 354 }; 355 356 // Helper functions. 357 358 bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC); 359 bool constToInt(const Constant *C, APInt &Val) const; 360 bool constToFloat(const Constant *C, APFloat &Val) const; 361 const ConstantInt *intToConst(const APInt &Val) const; 362 363 // Compares. 364 bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2, 365 const CellMap &Inputs, bool &Result); 366 bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2, 367 const CellMap &Inputs, bool &Result); 368 bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2, 369 const CellMap &Inputs, bool &Result); 370 bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2, 371 bool &Result); 372 bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2, 373 bool &Result); 374 bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2, 375 bool &Result); 376 377 bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs, 378 LatticeCell &Result); 379 380 // Logical operations. 381 bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2, 382 const CellMap &Inputs, LatticeCell &Result); 383 bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2, 384 const CellMap &Inputs, LatticeCell &Result); 385 bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result); 386 bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, 387 const CellMap &Inputs, LatticeCell &Result); 388 bool evaluateORri(const RegisterSubReg &R1, const APInt &A2, 389 const CellMap &Inputs, LatticeCell &Result); 390 bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result); 391 bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, 392 const CellMap &Inputs, LatticeCell &Result); 393 bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2, 394 const CellMap &Inputs, LatticeCell &Result); 395 bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result); 396 397 // Extensions. 398 bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, 399 const CellMap &Inputs, LatticeCell &Result); 400 bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits, 401 APInt &Result); 402 bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, 403 const CellMap &Inputs, LatticeCell &Result); 404 bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits, 405 APInt &Result); 406 407 // Leading/trailing bits. 408 bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones, 409 const CellMap &Inputs, LatticeCell &Result); 410 bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); 411 bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones, 412 const CellMap &Inputs, LatticeCell &Result); 413 bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); 414 415 // Bitfield extract. 416 bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, 417 unsigned Offset, bool Signed, const CellMap &Inputs, 418 LatticeCell &Result); 419 bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset, 420 bool Signed, APInt &Result); 421 // Vector operations. 422 bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count, 423 const CellMap &Inputs, LatticeCell &Result); 424 bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count, 425 APInt &Result); 426 }; 427 428 } // end anonymous namespace 429 430 uint32_t ConstantProperties::deduce(const Constant *C) { 431 if (isa<ConstantInt>(C)) { 432 const ConstantInt *CI = cast<ConstantInt>(C); 433 if (CI->isZero()) 434 return Zero | PosOrZero | NegOrZero | Finite; 435 uint32_t Props = (NonZero | Finite); 436 if (CI->isNegative()) 437 return Props | NegOrZero; 438 return Props | PosOrZero; 439 } 440 441 if (isa<ConstantFP>(C)) { 442 const ConstantFP *CF = cast<ConstantFP>(C); 443 uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero) 444 : PosOrZero; 445 if (CF->isZero()) 446 return (Props & ~NumericProperties) | (Zero|Finite); 447 Props = (Props & ~NumericProperties) | NonZero; 448 if (CF->isNaN()) 449 return (Props & ~NumericProperties) | NaN; 450 const APFloat &Val = CF->getValueAPF(); 451 if (Val.isInfinity()) 452 return (Props & ~NumericProperties) | Infinity; 453 Props |= Finite; 454 return Props; 455 } 456 457 return Unknown; 458 } 459 460 // Convert a cell from a set of specific values to a cell that tracks 461 // properties. 462 bool LatticeCell::convertToProperty() { 463 if (isProperty()) 464 return false; 465 // Corner case: converting a fresh (top) cell to "special". 466 // This can happen, when adding a property to a top cell. 467 uint32_t Everything = ConstantProperties::Everything; 468 uint32_t Ps = !isTop() ? properties() 469 : Everything; 470 if (Ps != ConstantProperties::Unknown) { 471 Properties = Ps; 472 setProperty(); 473 } else { 474 setBottom(); 475 } 476 return true; 477 } 478 479 #ifndef NDEBUG 480 void LatticeCell::print(raw_ostream &os) const { 481 if (isProperty()) { 482 os << "{ "; 483 uint32_t Ps = properties(); 484 if (Ps & ConstantProperties::Zero) 485 os << "zero "; 486 if (Ps & ConstantProperties::NonZero) 487 os << "nonzero "; 488 if (Ps & ConstantProperties::Finite) 489 os << "finite "; 490 if (Ps & ConstantProperties::Infinity) 491 os << "infinity "; 492 if (Ps & ConstantProperties::NaN) 493 os << "nan "; 494 if (Ps & ConstantProperties::PosOrZero) 495 os << "poz "; 496 if (Ps & ConstantProperties::NegOrZero) 497 os << "nez "; 498 os << '}'; 499 return; 500 } 501 502 os << "{ "; 503 if (isBottom()) { 504 os << "bottom"; 505 } else if (isTop()) { 506 os << "top"; 507 } else { 508 for (unsigned i = 0; i < size(); ++i) { 509 const Constant *C = Values[i]; 510 if (i != 0) 511 os << ", "; 512 C->print(os); 513 } 514 } 515 os << " }"; 516 } 517 #endif 518 519 // "Meet" operation on two cells. This is the key of the propagation 520 // algorithm. 521 bool LatticeCell::meet(const LatticeCell &L) { 522 bool Changed = false; 523 if (L.isBottom()) 524 Changed = setBottom(); 525 if (isBottom() || L.isTop()) 526 return Changed; 527 if (isTop()) { 528 *this = L; 529 // L can be neither Top nor Bottom, so *this must have changed. 530 return true; 531 } 532 533 // Top/bottom cases covered. Need to integrate L's set into ours. 534 if (L.isProperty()) 535 return add(L.properties()); 536 for (unsigned i = 0; i < L.size(); ++i) { 537 const Constant *LC = L.Values[i]; 538 Changed |= add(LC); 539 } 540 return Changed; 541 } 542 543 // Add a new constant to the cell. This is actually where the cell update 544 // happens. If a cell has room for more constants, the new constant is added. 545 // Otherwise, the cell is converted to a "property" cell (i.e. a cell that 546 // will track properties of the associated values, and not the values 547 // themselves. Care is taken to handle special cases, like "bottom", etc. 548 bool LatticeCell::add(const Constant *LC) { 549 assert(LC); 550 if (isBottom()) 551 return false; 552 553 if (!isProperty()) { 554 // Cell is not special. Try to add the constant here first, 555 // if there is room. 556 unsigned Index = 0; 557 while (Index < Size) { 558 const Constant *C = Values[Index]; 559 // If the constant is already here, no change is needed. 560 if (C == LC) 561 return false; 562 Index++; 563 } 564 if (Index < MaxCellSize) { 565 Values[Index] = LC; 566 Kind = Normal; 567 Size++; 568 return true; 569 } 570 } 571 572 bool Changed = false; 573 574 // This cell is special, or is not special, but is full. After this 575 // it will be special. 576 Changed = convertToProperty(); 577 uint32_t Ps = properties(); 578 uint32_t NewPs = Ps & ConstantProperties::deduce(LC); 579 if (NewPs == ConstantProperties::Unknown) { 580 setBottom(); 581 return true; 582 } 583 if (Ps != NewPs) { 584 Properties = NewPs; 585 Changed = true; 586 } 587 return Changed; 588 } 589 590 // Add a property to the cell. This will force the cell to become a property- 591 // tracking cell. 592 bool LatticeCell::add(uint32_t Property) { 593 bool Changed = convertToProperty(); 594 uint32_t Ps = properties(); 595 if (Ps == (Ps & Property)) 596 return Changed; 597 Properties = Property & Ps; 598 return true; 599 } 600 601 // Return the properties of the values in the cell. This is valid for any 602 // cell, and does not alter the cell itself. 603 uint32_t LatticeCell::properties() const { 604 if (isProperty()) 605 return Properties; 606 assert(!isTop() && "Should not call this for a top cell"); 607 if (isBottom()) 608 return ConstantProperties::Unknown; 609 610 assert(size() > 0 && "Empty cell"); 611 uint32_t Ps = ConstantProperties::deduce(Values[0]); 612 for (unsigned i = 1; i < size(); ++i) { 613 if (Ps == ConstantProperties::Unknown) 614 break; 615 Ps &= ConstantProperties::deduce(Values[i]); 616 } 617 return Ps; 618 } 619 620 #ifndef NDEBUG 621 void MachineConstPropagator::CellMap::print(raw_ostream &os, 622 const TargetRegisterInfo &TRI) const { 623 for (auto &I : Map) 624 dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n'; 625 } 626 #endif 627 628 void MachineConstPropagator::visitPHI(const MachineInstr &PN) { 629 const MachineBasicBlock *MB = PN.getParent(); 630 unsigned MBN = MB->getNumber(); 631 LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN); 632 633 const MachineOperand &MD = PN.getOperand(0); 634 RegisterSubReg DefR(MD); 635 assert(DefR.Reg.isVirtual()); 636 637 bool Changed = false; 638 639 // If the def has a sub-register, set the corresponding cell to "bottom". 640 if (DefR.SubReg) { 641 Bottomize: 642 const LatticeCell &T = Cells.get(DefR.Reg); 643 Changed = !T.isBottom(); 644 Cells.update(DefR.Reg, Bottom); 645 if (Changed) 646 visitUsesOf(DefR.Reg); 647 return; 648 } 649 650 LatticeCell DefC = Cells.get(DefR.Reg); 651 652 for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) { 653 const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB(); 654 unsigned PBN = PB->getNumber(); 655 if (!EdgeExec.count(CFGEdge(PBN, MBN))) { 656 LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->" 657 << printMBBReference(*MB) << " not executable\n"); 658 continue; 659 } 660 const MachineOperand &SO = PN.getOperand(i); 661 RegisterSubReg UseR(SO); 662 // If the input is not a virtual register, we don't really know what 663 // value it holds. 664 if (!UseR.Reg.isVirtual()) 665 goto Bottomize; 666 // If there is no cell for an input register, it means top. 667 if (!Cells.has(UseR.Reg)) 668 continue; 669 670 LatticeCell SrcC; 671 bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC); 672 LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": " 673 << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC 674 << '\n'); 675 Changed |= Eval ? DefC.meet(SrcC) 676 : DefC.setBottom(); 677 Cells.update(DefR.Reg, DefC); 678 if (DefC.isBottom()) 679 break; 680 } 681 if (Changed) 682 visitUsesOf(DefR.Reg); 683 } 684 685 void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) { 686 LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent()) 687 << "): " << MI); 688 CellMap Outputs; 689 bool Eval = MCE.evaluate(MI, Cells, Outputs); 690 LLVM_DEBUG({ 691 if (Eval) { 692 dbgs() << " outputs:"; 693 for (auto &I : Outputs) 694 dbgs() << ' ' << I.second; 695 dbgs() << '\n'; 696 } 697 }); 698 699 // Update outputs. If the value was not computed, set all the 700 // def cells to bottom. 701 for (const MachineOperand &MO : MI.operands()) { 702 if (!MO.isReg() || !MO.isDef()) 703 continue; 704 RegisterSubReg DefR(MO); 705 // Only track virtual registers. 706 if (!DefR.Reg.isVirtual()) 707 continue; 708 bool Changed = false; 709 // If the evaluation failed, set cells for all output registers to bottom. 710 if (!Eval) { 711 const LatticeCell &T = Cells.get(DefR.Reg); 712 Changed = !T.isBottom(); 713 Cells.update(DefR.Reg, Bottom); 714 } else { 715 // Find the corresponding cell in the computed outputs. 716 // If it's not there, go on to the next def. 717 if (!Outputs.has(DefR.Reg)) 718 continue; 719 LatticeCell RC = Cells.get(DefR.Reg); 720 Changed = RC.meet(Outputs.get(DefR.Reg)); 721 Cells.update(DefR.Reg, RC); 722 } 723 if (Changed) 724 visitUsesOf(DefR.Reg); 725 } 726 } 727 728 // Starting at a given branch, visit remaining branches in the block. 729 // Traverse over the subsequent branches for as long as the preceding one 730 // can fall through. Add all the possible targets to the flow work queue, 731 // including the potential fall-through to the layout-successor block. 732 void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) { 733 const MachineBasicBlock &B = *BrI.getParent(); 734 unsigned MBN = B.getNumber(); 735 MachineBasicBlock::const_iterator It = BrI.getIterator(); 736 MachineBasicBlock::const_iterator End = B.end(); 737 738 SetVector<const MachineBasicBlock*> Targets; 739 bool EvalOk = true, FallsThru = true; 740 while (It != End) { 741 const MachineInstr &MI = *It; 742 InstrExec.insert(&MI); 743 LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "(" 744 << printMBBReference(B) << "): " << MI); 745 // Do not evaluate subsequent branches if the evaluation of any of the 746 // previous branches failed. Keep iterating over the branches only 747 // to mark them as executable. 748 EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru); 749 if (!EvalOk) 750 FallsThru = true; 751 if (!FallsThru) 752 break; 753 ++It; 754 } 755 756 if (B.mayHaveInlineAsmBr()) 757 EvalOk = false; 758 759 if (EvalOk) { 760 // Need to add all CFG successors that lead to EH landing pads. 761 // There won't be explicit branches to these blocks, but they must 762 // be processed. 763 for (const MachineBasicBlock *SB : B.successors()) { 764 if (SB->isEHPad()) 765 Targets.insert(SB); 766 } 767 if (FallsThru) { 768 const MachineFunction &MF = *B.getParent(); 769 MachineFunction::const_iterator BI = B.getIterator(); 770 MachineFunction::const_iterator Next = std::next(BI); 771 if (Next != MF.end()) 772 Targets.insert(&*Next); 773 } 774 } else { 775 // If the evaluation of the branches failed, make "Targets" to be the 776 // set of all successors of the block from the CFG. 777 // If the evaluation succeeded for all visited branches, then if the 778 // last one set "FallsThru", then add an edge to the layout successor 779 // to the targets. 780 Targets.clear(); 781 LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG " 782 "successors\n"); 783 for (const MachineBasicBlock *SB : B.successors()) 784 Targets.insert(SB); 785 } 786 787 for (const MachineBasicBlock *TB : Targets) { 788 unsigned TBN = TB->getNumber(); 789 LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> " 790 << printMBBReference(*TB) << "\n"); 791 FlowQ.push(CFGEdge(MBN, TBN)); 792 } 793 } 794 795 void MachineConstPropagator::visitUsesOf(unsigned Reg) { 796 LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI) 797 << Cells.get(Reg) << '\n'); 798 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 799 // Do not process non-executable instructions. They can become exceutable 800 // later (via a flow-edge in the work queue). In such case, the instruc- 801 // tion will be visited at that time. 802 if (!InstrExec.count(&MI)) 803 continue; 804 if (MI.isPHI()) 805 visitPHI(MI); 806 else if (!MI.isBranch()) 807 visitNonBranch(MI); 808 else 809 visitBranchesFrom(MI); 810 } 811 } 812 813 bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB, 814 SetVector<const MachineBasicBlock*> &Targets) { 815 Targets.clear(); 816 817 MachineBasicBlock::const_iterator FirstBr = MB->end(); 818 for (const MachineInstr &MI : *MB) { 819 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 820 return false; 821 if (MI.isDebugInstr()) 822 continue; 823 if (MI.isBranch()) { 824 FirstBr = MI.getIterator(); 825 break; 826 } 827 } 828 829 MachineBasicBlock::const_iterator End = MB->end(); 830 831 bool DoNext = true; 832 for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) { 833 const MachineInstr &MI = *I; 834 // Can there be debug instructions between branches? 835 if (MI.isDebugInstr()) 836 continue; 837 if (!InstrExec.count(&MI)) 838 continue; 839 bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext); 840 if (!Eval) 841 return false; 842 if (!DoNext) 843 break; 844 } 845 // If the last branch could fall-through, add block's layout successor. 846 if (DoNext) { 847 MachineFunction::const_iterator BI = MB->getIterator(); 848 MachineFunction::const_iterator NextI = std::next(BI); 849 if (NextI != MB->getParent()->end()) 850 Targets.insert(&*NextI); 851 } 852 853 // Add all the EH landing pads. 854 for (const MachineBasicBlock *SB : MB->successors()) 855 if (SB->isEHPad()) 856 Targets.insert(SB); 857 858 return true; 859 } 860 861 void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From, 862 MachineBasicBlock *To) { 863 // First, remove the CFG successor/predecessor information. 864 From->removeSuccessor(To); 865 // Remove all corresponding PHI operands in the To block. 866 for (MachineInstr &PN : To->phis()) { 867 // reg0 = PHI reg1, bb2, reg3, bb4, ... 868 int N = PN.getNumOperands() - 2; 869 while (N > 0) { 870 if (PN.getOperand(N + 1).getMBB() == From) { 871 PN.removeOperand(N + 1); 872 PN.removeOperand(N); 873 } 874 N -= 2; 875 } 876 } 877 } 878 879 void MachineConstPropagator::propagate(MachineFunction &MF) { 880 MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF); 881 unsigned EntryNum = Entry->getNumber(); 882 883 // Start with a fake edge, just to process the entry node. 884 FlowQ.push(CFGEdge(EntryNum, EntryNum)); 885 886 while (!FlowQ.empty()) { 887 CFGEdge Edge = FlowQ.front(); 888 FlowQ.pop(); 889 890 LLVM_DEBUG( 891 dbgs() << "Picked edge " 892 << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->" 893 << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n'); 894 if (Edge.first != EntryNum) 895 if (EdgeExec.count(Edge)) 896 continue; 897 EdgeExec.insert(Edge); 898 MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second); 899 900 // Process the block in three stages: 901 // - visit all PHI nodes, 902 // - visit all non-branch instructions, 903 // - visit block branches. 904 MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end(); 905 906 // Visit PHI nodes in the successor block. 907 while (It != End && It->isPHI()) { 908 InstrExec.insert(&*It); 909 visitPHI(*It); 910 ++It; 911 } 912 913 // If the successor block just became executable, visit all instructions. 914 // To see if this is the first time we're visiting it, check the first 915 // non-debug instruction to see if it is executable. 916 while (It != End && It->isDebugInstr()) 917 ++It; 918 assert(It == End || !It->isPHI()); 919 // If this block has been visited, go on to the next one. 920 if (It != End && InstrExec.count(&*It)) 921 continue; 922 // For now, scan all non-branch instructions. Branches require different 923 // processing. 924 while (It != End && !It->isBranch()) { 925 if (!It->isDebugInstr()) { 926 InstrExec.insert(&*It); 927 visitNonBranch(*It); 928 } 929 ++It; 930 } 931 932 // Time to process the end of the block. This is different from 933 // processing regular (non-branch) instructions, because there can 934 // be multiple branches in a block, and they can cause the block to 935 // terminate early. 936 if (It != End) { 937 visitBranchesFrom(*It); 938 } else { 939 // If the block didn't have a branch, add all successor edges to the 940 // work queue. (There should really be only one successor in such case.) 941 unsigned SBN = SB->getNumber(); 942 for (const MachineBasicBlock *SSB : SB->successors()) 943 FlowQ.push(CFGEdge(SBN, SSB->getNumber())); 944 } 945 } // while (FlowQ) 946 947 LLVM_DEBUG({ 948 dbgs() << "Cells after propagation:\n"; 949 Cells.print(dbgs(), MCE.TRI); 950 dbgs() << "Dead CFG edges:\n"; 951 for (const MachineBasicBlock &B : MF) { 952 unsigned BN = B.getNumber(); 953 for (const MachineBasicBlock *SB : B.successors()) { 954 unsigned SN = SB->getNumber(); 955 if (!EdgeExec.count(CFGEdge(BN, SN))) 956 dbgs() << " " << printMBBReference(B) << " -> " 957 << printMBBReference(*SB) << '\n'; 958 } 959 } 960 }); 961 } 962 963 bool MachineConstPropagator::rewrite(MachineFunction &MF) { 964 bool Changed = false; 965 // Rewrite all instructions based on the collected cell information. 966 // 967 // Traverse the instructions in a post-order, so that rewriting an 968 // instruction can make changes "downstream" in terms of control-flow 969 // without affecting the rewriting process. (We should not change 970 // instructions that have not yet been visited by the rewriter.) 971 // The reason for this is that the rewriter can introduce new vregs, 972 // and replace uses of old vregs (which had corresponding cells 973 // computed during propagation) with these new vregs (which at this 974 // point would not have any cells, and would appear to be "top"). 975 // If an attempt was made to evaluate an instruction with a fresh 976 // "top" vreg, it would cause an error (abend) in the evaluator. 977 978 // Collect the post-order-traversal block ordering. The subsequent 979 // traversal/rewrite will update block successors, so it's safer 980 // if the visiting order it computed ahead of time. 981 std::vector<MachineBasicBlock*> POT; 982 for (MachineBasicBlock *B : post_order(&MF)) 983 if (!B->empty()) 984 POT.push_back(B); 985 986 for (MachineBasicBlock *B : POT) { 987 // Walk the block backwards (which usually begin with the branches). 988 // If any branch is rewritten, we may need to update the successor 989 // information for this block. Unless the block's successors can be 990 // precisely determined (which may not be the case for indirect 991 // branches), we cannot modify any branch. 992 993 // Compute the successor information. 994 SetVector<const MachineBasicBlock*> Targets; 995 bool HaveTargets = computeBlockSuccessors(B, Targets); 996 // Rewrite the executable instructions. Skip branches if we don't 997 // have block successor information. 998 for (MachineInstr &MI : llvm::reverse(*B)) { 999 if (InstrExec.count(&MI)) { 1000 if (MI.isBranch() && !HaveTargets) 1001 continue; 1002 Changed |= MCE.rewrite(MI, Cells); 1003 } 1004 } 1005 // The rewriting could rewrite PHI nodes to non-PHI nodes, causing 1006 // regular instructions to appear in between PHI nodes. Bring all 1007 // the PHI nodes to the beginning of the block. 1008 for (auto I = B->begin(), E = B->end(); I != E; ++I) { 1009 if (I->isPHI()) 1010 continue; 1011 // I is not PHI. Find the next PHI node P. 1012 auto P = I; 1013 while (++P != E) 1014 if (P->isPHI()) 1015 break; 1016 // Not found. 1017 if (P == E) 1018 break; 1019 // Splice P right before I. 1020 B->splice(I, B, P); 1021 // Reset I to point at the just spliced PHI node. 1022 --I; 1023 } 1024 // Update the block successor information: remove unnecessary successors. 1025 if (HaveTargets) { 1026 SmallVector<MachineBasicBlock*,2> ToRemove; 1027 for (MachineBasicBlock *SB : B->successors()) { 1028 if (!Targets.count(SB)) 1029 ToRemove.push_back(const_cast<MachineBasicBlock*>(SB)); 1030 Targets.remove(SB); 1031 } 1032 for (MachineBasicBlock *MBB : ToRemove) 1033 removeCFGEdge(B, MBB); 1034 // If there are any blocks left in the computed targets, it means that 1035 // we think that the block could go somewhere, but the CFG does not. 1036 // This could legitimately happen in blocks that have non-returning 1037 // calls---we would think that the execution can continue, but the 1038 // CFG will not have a successor edge. 1039 } 1040 } 1041 // Need to do some final post-processing. 1042 // If a branch was not executable, it will not get rewritten, but should 1043 // be removed (or replaced with something equivalent to a A2_nop). We can't 1044 // erase instructions during rewriting, so this needs to be delayed until 1045 // now. 1046 for (MachineBasicBlock &B : MF) { 1047 for (MachineInstr &MI : llvm::make_early_inc_range(B)) 1048 if (MI.isBranch() && !InstrExec.count(&MI)) 1049 B.erase(&MI); 1050 } 1051 return Changed; 1052 } 1053 1054 // This is the constant propagation algorithm as described by Wegman-Zadeck. 1055 // Most of the terminology comes from there. 1056 bool MachineConstPropagator::run(MachineFunction &MF) { 1057 LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr)); 1058 1059 MRI = &MF.getRegInfo(); 1060 1061 Cells.clear(); 1062 EdgeExec.clear(); 1063 InstrExec.clear(); 1064 assert(FlowQ.empty()); 1065 1066 propagate(MF); 1067 bool Changed = rewrite(MF); 1068 1069 LLVM_DEBUG({ 1070 dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n"; 1071 if (Changed) 1072 MF.print(dbgs(), nullptr); 1073 }); 1074 return Changed; 1075 } 1076 1077 // -------------------------------------------------------------------- 1078 // Machine const evaluator. 1079 1080 bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs, 1081 LatticeCell &RC) { 1082 if (!R.Reg.isVirtual()) 1083 return false; 1084 const LatticeCell &L = Inputs.get(R.Reg); 1085 if (!R.SubReg) { 1086 RC = L; 1087 return !RC.isBottom(); 1088 } 1089 bool Eval = evaluate(R, L, RC); 1090 return Eval && !RC.isBottom(); 1091 } 1092 1093 bool MachineConstEvaluator::constToInt(const Constant *C, 1094 APInt &Val) const { 1095 const ConstantInt *CI = dyn_cast<ConstantInt>(C); 1096 if (!CI) 1097 return false; 1098 Val = CI->getValue(); 1099 return true; 1100 } 1101 1102 const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const { 1103 return ConstantInt::get(CX, Val); 1104 } 1105 1106 bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, 1107 const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) { 1108 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1109 LatticeCell LS1, LS2; 1110 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) 1111 return false; 1112 1113 bool IsProp1 = LS1.isProperty(); 1114 bool IsProp2 = LS2.isProperty(); 1115 if (IsProp1) { 1116 uint32_t Prop1 = LS1.properties(); 1117 if (IsProp2) 1118 return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result); 1119 uint32_t NegCmp = Comparison::negate(Cmp); 1120 return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result); 1121 } 1122 if (IsProp2) { 1123 uint32_t Prop2 = LS2.properties(); 1124 return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result); 1125 } 1126 1127 APInt A; 1128 bool IsTrue = true, IsFalse = true; 1129 for (unsigned i = 0; i < LS2.size(); ++i) { 1130 bool Res; 1131 bool Computed = constToInt(LS2.Values[i], A) && 1132 evaluateCMPri(Cmp, R1, A, Inputs, Res); 1133 if (!Computed) 1134 return false; 1135 IsTrue &= Res; 1136 IsFalse &= !Res; 1137 } 1138 assert(!IsTrue || !IsFalse); 1139 // The actual logical value of the comparison is same as IsTrue. 1140 Result = IsTrue; 1141 // Return true if the result was proven to be true or proven to be false. 1142 return IsTrue || IsFalse; 1143 } 1144 1145 bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, 1146 const APInt &A2, const CellMap &Inputs, bool &Result) { 1147 assert(Inputs.has(R1.Reg)); 1148 LatticeCell LS; 1149 if (!getCell(R1, Inputs, LS)) 1150 return false; 1151 if (LS.isProperty()) 1152 return evaluateCMPpi(Cmp, LS.properties(), A2, Result); 1153 1154 APInt A; 1155 bool IsTrue = true, IsFalse = true; 1156 for (unsigned i = 0; i < LS.size(); ++i) { 1157 bool Res; 1158 bool Computed = constToInt(LS.Values[i], A) && 1159 evaluateCMPii(Cmp, A, A2, Res); 1160 if (!Computed) 1161 return false; 1162 IsTrue &= Res; 1163 IsFalse &= !Res; 1164 } 1165 assert(!IsTrue || !IsFalse); 1166 // The actual logical value of the comparison is same as IsTrue. 1167 Result = IsTrue; 1168 // Return true if the result was proven to be true or proven to be false. 1169 return IsTrue || IsFalse; 1170 } 1171 1172 bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, 1173 uint64_t Props2, const CellMap &Inputs, bool &Result) { 1174 assert(Inputs.has(R1.Reg)); 1175 LatticeCell LS; 1176 if (!getCell(R1, Inputs, LS)) 1177 return false; 1178 if (LS.isProperty()) 1179 return evaluateCMPpp(Cmp, LS.properties(), Props2, Result); 1180 1181 APInt A; 1182 uint32_t NegCmp = Comparison::negate(Cmp); 1183 bool IsTrue = true, IsFalse = true; 1184 for (unsigned i = 0; i < LS.size(); ++i) { 1185 bool Res; 1186 bool Computed = constToInt(LS.Values[i], A) && 1187 evaluateCMPpi(NegCmp, Props2, A, Res); 1188 if (!Computed) 1189 return false; 1190 IsTrue &= Res; 1191 IsFalse &= !Res; 1192 } 1193 assert(!IsTrue || !IsFalse); 1194 Result = IsTrue; 1195 return IsTrue || IsFalse; 1196 } 1197 1198 bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1, 1199 const APInt &A2, bool &Result) { 1200 // NE is a special kind of comparison (not composed of smaller properties). 1201 if (Cmp == Comparison::NE) { 1202 Result = !APInt::isSameValue(A1, A2); 1203 return true; 1204 } 1205 if (Cmp == Comparison::EQ) { 1206 Result = APInt::isSameValue(A1, A2); 1207 return true; 1208 } 1209 if (Cmp & Comparison::EQ) { 1210 if (APInt::isSameValue(A1, A2)) 1211 return (Result = true); 1212 } 1213 assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison"); 1214 Result = false; 1215 1216 unsigned W1 = A1.getBitWidth(); 1217 unsigned W2 = A2.getBitWidth(); 1218 unsigned MaxW = (W1 >= W2) ? W1 : W2; 1219 if (Cmp & Comparison::U) { 1220 APInt Zx1 = A1.zext(MaxW); 1221 APInt Zx2 = A2.zext(MaxW); 1222 if (Cmp & Comparison::L) 1223 Result = Zx1.ult(Zx2); 1224 else if (Cmp & Comparison::G) 1225 Result = Zx2.ult(Zx1); 1226 return true; 1227 } 1228 1229 // Signed comparison. 1230 APInt Sx1 = A1.sext(MaxW); 1231 APInt Sx2 = A2.sext(MaxW); 1232 if (Cmp & Comparison::L) 1233 Result = Sx1.slt(Sx2); 1234 else if (Cmp & Comparison::G) 1235 Result = Sx2.slt(Sx1); 1236 return true; 1237 } 1238 1239 bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props, 1240 const APInt &A2, bool &Result) { 1241 if (Props == ConstantProperties::Unknown) 1242 return false; 1243 1244 // Should never see NaN here, but check for it for completeness. 1245 if (Props & ConstantProperties::NaN) 1246 return false; 1247 // Infinity could theoretically be compared to a number, but the 1248 // presence of infinity here would be very suspicious. If we don't 1249 // know for sure that the number is finite, bail out. 1250 if (!(Props & ConstantProperties::Finite)) 1251 return false; 1252 1253 // Let X be a number that has properties Props. 1254 1255 if (Cmp & Comparison::U) { 1256 // In case of unsigned comparisons, we can only compare against 0. 1257 if (A2 == 0) { 1258 // Any x!=0 will be considered >0 in an unsigned comparison. 1259 if (Props & ConstantProperties::Zero) 1260 Result = (Cmp & Comparison::EQ); 1261 else if (Props & ConstantProperties::NonZero) 1262 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); 1263 else 1264 return false; 1265 return true; 1266 } 1267 // A2 is not zero. The only handled case is if X = 0. 1268 if (Props & ConstantProperties::Zero) { 1269 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); 1270 return true; 1271 } 1272 return false; 1273 } 1274 1275 // Signed comparisons are different. 1276 if (Props & ConstantProperties::Zero) { 1277 if (A2 == 0) 1278 Result = (Cmp & Comparison::EQ); 1279 else 1280 Result = (Cmp == Comparison::NE) || 1281 ((Cmp & Comparison::L) && !A2.isNegative()) || 1282 ((Cmp & Comparison::G) && A2.isNegative()); 1283 return true; 1284 } 1285 if (Props & ConstantProperties::PosOrZero) { 1286 // X >= 0 and !(A2 < 0) => cannot compare 1287 if (!A2.isNegative()) 1288 return false; 1289 // X >= 0 and A2 < 0 1290 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); 1291 return true; 1292 } 1293 if (Props & ConstantProperties::NegOrZero) { 1294 // X <= 0 and Src1 < 0 => cannot compare 1295 if (A2 == 0 || A2.isNegative()) 1296 return false; 1297 // X <= 0 and A2 > 0 1298 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); 1299 return true; 1300 } 1301 1302 return false; 1303 } 1304 1305 bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1, 1306 uint32_t Props2, bool &Result) { 1307 using P = ConstantProperties; 1308 1309 if ((Props1 & P::NaN) && (Props2 & P::NaN)) 1310 return false; 1311 if (!(Props1 & P::Finite) || !(Props2 & P::Finite)) 1312 return false; 1313 1314 bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero); 1315 bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero); 1316 if (Zero1 && Zero2) { 1317 Result = (Cmp & Comparison::EQ); 1318 return true; 1319 } 1320 if (Cmp == Comparison::NE) { 1321 if ((Zero1 && NonZero2) || (NonZero1 && Zero2)) 1322 return (Result = true); 1323 return false; 1324 } 1325 1326 if (Cmp & Comparison::U) { 1327 // In unsigned comparisons, we can only compare against a known zero, 1328 // or a known non-zero. 1329 if (Zero1 && NonZero2) { 1330 Result = (Cmp & Comparison::L); 1331 return true; 1332 } 1333 if (NonZero1 && Zero2) { 1334 Result = (Cmp & Comparison::G); 1335 return true; 1336 } 1337 return false; 1338 } 1339 1340 // Signed comparison. The comparison is not NE. 1341 bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero); 1342 bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero); 1343 if (Nez1 && Poz2) { 1344 if (NonZero1 || NonZero2) { 1345 Result = (Cmp & Comparison::L); 1346 return true; 1347 } 1348 // Either (or both) could be zero. Can only say that X <= Y. 1349 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L)) 1350 return (Result = true); 1351 } 1352 if (Poz1 && Nez2) { 1353 if (NonZero1 || NonZero2) { 1354 Result = (Cmp & Comparison::G); 1355 return true; 1356 } 1357 // Either (or both) could be zero. Can only say that X >= Y. 1358 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G)) 1359 return (Result = true); 1360 } 1361 1362 return false; 1363 } 1364 1365 bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1, 1366 const CellMap &Inputs, LatticeCell &Result) { 1367 return getCell(R1, Inputs, Result); 1368 } 1369 1370 bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1, 1371 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { 1372 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1373 const LatticeCell &L1 = Inputs.get(R2.Reg); 1374 const LatticeCell &L2 = Inputs.get(R2.Reg); 1375 // If both sources are bottom, exit. Otherwise try to evaluate ANDri 1376 // with the non-bottom argument passed as the immediate. This is to 1377 // catch cases of ANDing with 0. 1378 if (L2.isBottom()) { 1379 if (L1.isBottom()) 1380 return false; 1381 return evaluateANDrr(R2, R1, Inputs, Result); 1382 } 1383 LatticeCell LS2; 1384 if (!evaluate(R2, L2, LS2)) 1385 return false; 1386 if (LS2.isBottom() || LS2.isProperty()) 1387 return false; 1388 1389 APInt A; 1390 for (unsigned i = 0; i < LS2.size(); ++i) { 1391 LatticeCell RC; 1392 bool Eval = constToInt(LS2.Values[i], A) && 1393 evaluateANDri(R1, A, Inputs, RC); 1394 if (!Eval) 1395 return false; 1396 Result.meet(RC); 1397 } 1398 return !Result.isBottom(); 1399 } 1400 1401 bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1, 1402 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { 1403 assert(Inputs.has(R1.Reg)); 1404 if (A2 == -1) 1405 return getCell(R1, Inputs, Result); 1406 if (A2 == 0) { 1407 LatticeCell RC; 1408 RC.add(intToConst(A2)); 1409 // Overwrite Result. 1410 Result = RC; 1411 return true; 1412 } 1413 LatticeCell LS1; 1414 if (!getCell(R1, Inputs, LS1)) 1415 return false; 1416 if (LS1.isBottom() || LS1.isProperty()) 1417 return false; 1418 1419 APInt A, ResA; 1420 for (unsigned i = 0; i < LS1.size(); ++i) { 1421 bool Eval = constToInt(LS1.Values[i], A) && 1422 evaluateANDii(A, A2, ResA); 1423 if (!Eval) 1424 return false; 1425 const Constant *C = intToConst(ResA); 1426 Result.add(C); 1427 } 1428 return !Result.isBottom(); 1429 } 1430 1431 bool MachineConstEvaluator::evaluateANDii(const APInt &A1, 1432 const APInt &A2, APInt &Result) { 1433 Result = A1 & A2; 1434 return true; 1435 } 1436 1437 bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1, 1438 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { 1439 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1440 const LatticeCell &L1 = Inputs.get(R2.Reg); 1441 const LatticeCell &L2 = Inputs.get(R2.Reg); 1442 // If both sources are bottom, exit. Otherwise try to evaluate ORri 1443 // with the non-bottom argument passed as the immediate. This is to 1444 // catch cases of ORing with -1. 1445 if (L2.isBottom()) { 1446 if (L1.isBottom()) 1447 return false; 1448 return evaluateORrr(R2, R1, Inputs, Result); 1449 } 1450 LatticeCell LS2; 1451 if (!evaluate(R2, L2, LS2)) 1452 return false; 1453 if (LS2.isBottom() || LS2.isProperty()) 1454 return false; 1455 1456 APInt A; 1457 for (unsigned i = 0; i < LS2.size(); ++i) { 1458 LatticeCell RC; 1459 bool Eval = constToInt(LS2.Values[i], A) && 1460 evaluateORri(R1, A, Inputs, RC); 1461 if (!Eval) 1462 return false; 1463 Result.meet(RC); 1464 } 1465 return !Result.isBottom(); 1466 } 1467 1468 bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1, 1469 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { 1470 assert(Inputs.has(R1.Reg)); 1471 if (A2 == 0) 1472 return getCell(R1, Inputs, Result); 1473 if (A2 == -1) { 1474 LatticeCell RC; 1475 RC.add(intToConst(A2)); 1476 // Overwrite Result. 1477 Result = RC; 1478 return true; 1479 } 1480 LatticeCell LS1; 1481 if (!getCell(R1, Inputs, LS1)) 1482 return false; 1483 if (LS1.isBottom() || LS1.isProperty()) 1484 return false; 1485 1486 APInt A, ResA; 1487 for (unsigned i = 0; i < LS1.size(); ++i) { 1488 bool Eval = constToInt(LS1.Values[i], A) && 1489 evaluateORii(A, A2, ResA); 1490 if (!Eval) 1491 return false; 1492 const Constant *C = intToConst(ResA); 1493 Result.add(C); 1494 } 1495 return !Result.isBottom(); 1496 } 1497 1498 bool MachineConstEvaluator::evaluateORii(const APInt &A1, 1499 const APInt &A2, APInt &Result) { 1500 Result = A1 | A2; 1501 return true; 1502 } 1503 1504 bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1, 1505 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { 1506 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 1507 LatticeCell LS1, LS2; 1508 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) 1509 return false; 1510 if (LS1.isProperty()) { 1511 if (LS1.properties() & ConstantProperties::Zero) 1512 return !(Result = LS2).isBottom(); 1513 return false; 1514 } 1515 if (LS2.isProperty()) { 1516 if (LS2.properties() & ConstantProperties::Zero) 1517 return !(Result = LS1).isBottom(); 1518 return false; 1519 } 1520 1521 APInt A; 1522 for (unsigned i = 0; i < LS2.size(); ++i) { 1523 LatticeCell RC; 1524 bool Eval = constToInt(LS2.Values[i], A) && 1525 evaluateXORri(R1, A, Inputs, RC); 1526 if (!Eval) 1527 return false; 1528 Result.meet(RC); 1529 } 1530 return !Result.isBottom(); 1531 } 1532 1533 bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1, 1534 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { 1535 assert(Inputs.has(R1.Reg)); 1536 LatticeCell LS1; 1537 if (!getCell(R1, Inputs, LS1)) 1538 return false; 1539 if (LS1.isProperty()) { 1540 if (LS1.properties() & ConstantProperties::Zero) { 1541 const Constant *C = intToConst(A2); 1542 Result.add(C); 1543 return !Result.isBottom(); 1544 } 1545 return false; 1546 } 1547 1548 APInt A, XA; 1549 for (unsigned i = 0; i < LS1.size(); ++i) { 1550 bool Eval = constToInt(LS1.Values[i], A) && 1551 evaluateXORii(A, A2, XA); 1552 if (!Eval) 1553 return false; 1554 const Constant *C = intToConst(XA); 1555 Result.add(C); 1556 } 1557 return !Result.isBottom(); 1558 } 1559 1560 bool MachineConstEvaluator::evaluateXORii(const APInt &A1, 1561 const APInt &A2, APInt &Result) { 1562 Result = A1 ^ A2; 1563 return true; 1564 } 1565 1566 bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, 1567 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { 1568 assert(Inputs.has(R1.Reg)); 1569 LatticeCell LS1; 1570 if (!getCell(R1, Inputs, LS1)) 1571 return false; 1572 if (LS1.isProperty()) 1573 return false; 1574 1575 APInt A, XA; 1576 for (unsigned i = 0; i < LS1.size(); ++i) { 1577 bool Eval = constToInt(LS1.Values[i], A) && 1578 evaluateZEXTi(A, Width, Bits, XA); 1579 if (!Eval) 1580 return false; 1581 const Constant *C = intToConst(XA); 1582 Result.add(C); 1583 } 1584 return true; 1585 } 1586 1587 bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width, 1588 unsigned Bits, APInt &Result) { 1589 unsigned BW = A1.getBitWidth(); 1590 (void)BW; 1591 assert(Width >= Bits && BW >= Bits); 1592 APInt Mask = APInt::getLowBitsSet(Width, Bits); 1593 Result = A1.zextOrTrunc(Width) & Mask; 1594 return true; 1595 } 1596 1597 bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, 1598 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { 1599 assert(Inputs.has(R1.Reg)); 1600 LatticeCell LS1; 1601 if (!getCell(R1, Inputs, LS1)) 1602 return false; 1603 if (LS1.isBottom() || LS1.isProperty()) 1604 return false; 1605 1606 APInt A, XA; 1607 for (unsigned i = 0; i < LS1.size(); ++i) { 1608 bool Eval = constToInt(LS1.Values[i], A) && 1609 evaluateSEXTi(A, Width, Bits, XA); 1610 if (!Eval) 1611 return false; 1612 const Constant *C = intToConst(XA); 1613 Result.add(C); 1614 } 1615 return true; 1616 } 1617 1618 bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width, 1619 unsigned Bits, APInt &Result) { 1620 unsigned BW = A1.getBitWidth(); 1621 assert(Width >= Bits && BW >= Bits); 1622 // Special case to make things faster for smaller source widths. 1623 // Sign extension of 0 bits generates 0 as a result. This is consistent 1624 // with what the HW does. 1625 if (Bits == 0) { 1626 Result = APInt(Width, 0); 1627 return true; 1628 } 1629 // In C, shifts by 64 invoke undefined behavior: handle that case in APInt. 1630 if (BW <= 64 && Bits != 0) { 1631 int64_t V = A1.getSExtValue(); 1632 switch (Bits) { 1633 case 8: 1634 V = static_cast<int8_t>(V); 1635 break; 1636 case 16: 1637 V = static_cast<int16_t>(V); 1638 break; 1639 case 32: 1640 V = static_cast<int32_t>(V); 1641 break; 1642 default: 1643 // Shift left to lose all bits except lower "Bits" bits, then shift 1644 // the value back, replicating what was a sign bit after the first 1645 // shift. 1646 V = (V << (64-Bits)) >> (64-Bits); 1647 break; 1648 } 1649 // V is a 64-bit sign-extended value. Convert it to APInt of desired 1650 // width. 1651 Result = APInt(Width, V, true); 1652 return true; 1653 } 1654 // Slow case: the value doesn't fit in int64_t. 1655 if (Bits < BW) 1656 Result = A1.trunc(Bits).sext(Width); 1657 else // Bits == BW 1658 Result = A1.sext(Width); 1659 return true; 1660 } 1661 1662 bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros, 1663 bool Ones, const CellMap &Inputs, LatticeCell &Result) { 1664 assert(Inputs.has(R1.Reg)); 1665 LatticeCell LS1; 1666 if (!getCell(R1, Inputs, LS1)) 1667 return false; 1668 if (LS1.isBottom() || LS1.isProperty()) 1669 return false; 1670 1671 APInt A, CA; 1672 for (unsigned i = 0; i < LS1.size(); ++i) { 1673 bool Eval = constToInt(LS1.Values[i], A) && 1674 evaluateCLBi(A, Zeros, Ones, CA); 1675 if (!Eval) 1676 return false; 1677 const Constant *C = intToConst(CA); 1678 Result.add(C); 1679 } 1680 return true; 1681 } 1682 1683 bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros, 1684 bool Ones, APInt &Result) { 1685 unsigned BW = A1.getBitWidth(); 1686 if (!Zeros && !Ones) 1687 return false; 1688 unsigned Count = 0; 1689 if (Zeros && (Count == 0)) 1690 Count = A1.countLeadingZeros(); 1691 if (Ones && (Count == 0)) 1692 Count = A1.countLeadingOnes(); 1693 Result = APInt(BW, static_cast<uint64_t>(Count), false); 1694 return true; 1695 } 1696 1697 bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros, 1698 bool Ones, const CellMap &Inputs, LatticeCell &Result) { 1699 assert(Inputs.has(R1.Reg)); 1700 LatticeCell LS1; 1701 if (!getCell(R1, Inputs, LS1)) 1702 return false; 1703 if (LS1.isBottom() || LS1.isProperty()) 1704 return false; 1705 1706 APInt A, CA; 1707 for (unsigned i = 0; i < LS1.size(); ++i) { 1708 bool Eval = constToInt(LS1.Values[i], A) && 1709 evaluateCTBi(A, Zeros, Ones, CA); 1710 if (!Eval) 1711 return false; 1712 const Constant *C = intToConst(CA); 1713 Result.add(C); 1714 } 1715 return true; 1716 } 1717 1718 bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros, 1719 bool Ones, APInt &Result) { 1720 unsigned BW = A1.getBitWidth(); 1721 if (!Zeros && !Ones) 1722 return false; 1723 unsigned Count = 0; 1724 if (Zeros && (Count == 0)) 1725 Count = A1.countTrailingZeros(); 1726 if (Ones && (Count == 0)) 1727 Count = A1.countTrailingOnes(); 1728 Result = APInt(BW, static_cast<uint64_t>(Count), false); 1729 return true; 1730 } 1731 1732 bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1, 1733 unsigned Width, unsigned Bits, unsigned Offset, bool Signed, 1734 const CellMap &Inputs, LatticeCell &Result) { 1735 assert(Inputs.has(R1.Reg)); 1736 assert(Bits+Offset <= Width); 1737 LatticeCell LS1; 1738 if (!getCell(R1, Inputs, LS1)) 1739 return false; 1740 if (LS1.isBottom()) 1741 return false; 1742 if (LS1.isProperty()) { 1743 uint32_t Ps = LS1.properties(); 1744 if (Ps & ConstantProperties::Zero) { 1745 const Constant *C = intToConst(APInt(Width, 0, false)); 1746 Result.add(C); 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 APInt A, CA; 1753 for (unsigned i = 0; i < LS1.size(); ++i) { 1754 bool Eval = constToInt(LS1.Values[i], A) && 1755 evaluateEXTRACTi(A, Bits, Offset, Signed, CA); 1756 if (!Eval) 1757 return false; 1758 const Constant *C = intToConst(CA); 1759 Result.add(C); 1760 } 1761 return true; 1762 } 1763 1764 bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits, 1765 unsigned Offset, bool Signed, APInt &Result) { 1766 unsigned BW = A1.getBitWidth(); 1767 assert(Bits+Offset <= BW); 1768 // Extracting 0 bits generates 0 as a result (as indicated by the HW people). 1769 if (Bits == 0) { 1770 Result = APInt(BW, 0); 1771 return true; 1772 } 1773 if (BW <= 64) { 1774 int64_t V = A1.getZExtValue(); 1775 V <<= (64-Bits-Offset); 1776 if (Signed) 1777 V >>= (64-Bits); 1778 else 1779 V = static_cast<uint64_t>(V) >> (64-Bits); 1780 Result = APInt(BW, V, Signed); 1781 return true; 1782 } 1783 if (Signed) 1784 Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits); 1785 else 1786 Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits); 1787 return true; 1788 } 1789 1790 bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1, 1791 unsigned Bits, unsigned Count, const CellMap &Inputs, 1792 LatticeCell &Result) { 1793 assert(Inputs.has(R1.Reg)); 1794 LatticeCell LS1; 1795 if (!getCell(R1, Inputs, LS1)) 1796 return false; 1797 if (LS1.isBottom() || LS1.isProperty()) 1798 return false; 1799 1800 APInt A, SA; 1801 for (unsigned i = 0; i < LS1.size(); ++i) { 1802 bool Eval = constToInt(LS1.Values[i], A) && 1803 evaluateSplati(A, Bits, Count, SA); 1804 if (!Eval) 1805 return false; 1806 const Constant *C = intToConst(SA); 1807 Result.add(C); 1808 } 1809 return true; 1810 } 1811 1812 bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits, 1813 unsigned Count, APInt &Result) { 1814 assert(Count > 0); 1815 unsigned BW = A1.getBitWidth(), SW = Count*Bits; 1816 APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zext(Bits); 1817 if (Count > 1) 1818 LoBits = LoBits.zext(SW); 1819 1820 APInt Res(SW, 0, false); 1821 for (unsigned i = 0; i < Count; ++i) { 1822 Res <<= Bits; 1823 Res |= LoBits; 1824 } 1825 Result = Res; 1826 return true; 1827 } 1828 1829 // ---------------------------------------------------------------------- 1830 // Hexagon-specific code. 1831 1832 namespace llvm { 1833 1834 FunctionPass *createHexagonConstPropagationPass(); 1835 void initializeHexagonConstPropagationPass(PassRegistry &Registry); 1836 1837 } // end namespace llvm 1838 1839 namespace { 1840 1841 class HexagonConstEvaluator : public MachineConstEvaluator { 1842 public: 1843 HexagonConstEvaluator(MachineFunction &Fn); 1844 1845 bool evaluate(const MachineInstr &MI, const CellMap &Inputs, 1846 CellMap &Outputs) override; 1847 bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, 1848 LatticeCell &Result) override; 1849 bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, 1850 SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru) 1851 override; 1852 bool rewrite(MachineInstr &MI, const CellMap &Inputs) override; 1853 1854 private: 1855 unsigned getRegBitWidth(unsigned Reg) const; 1856 1857 static uint32_t getCmp(unsigned Opc); 1858 static APInt getCmpImm(unsigned Opc, unsigned OpX, 1859 const MachineOperand &MO); 1860 void replaceWithNop(MachineInstr &MI); 1861 1862 bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs, 1863 LatticeCell &Result); 1864 bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs, 1865 CellMap &Outputs); 1866 // This is suitable to be called for compare-and-jump instructions. 1867 bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1, 1868 const MachineOperand &Src2, const CellMap &Inputs, bool &Result); 1869 bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs, 1870 CellMap &Outputs); 1871 bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs, 1872 CellMap &Outputs); 1873 bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs, 1874 CellMap &Outputs); 1875 bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs, 1876 CellMap &Outputs); 1877 bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs, 1878 CellMap &Outputs); 1879 1880 void replaceAllRegUsesWith(Register FromReg, Register ToReg); 1881 bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs); 1882 bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs, 1883 bool &AllDefs); 1884 bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs); 1885 1886 MachineRegisterInfo *MRI; 1887 const HexagonInstrInfo &HII; 1888 const HexagonRegisterInfo &HRI; 1889 }; 1890 1891 class HexagonConstPropagation : public MachineFunctionPass { 1892 public: 1893 static char ID; 1894 1895 HexagonConstPropagation() : MachineFunctionPass(ID) {} 1896 1897 StringRef getPassName() const override { 1898 return "Hexagon Constant Propagation"; 1899 } 1900 1901 bool runOnMachineFunction(MachineFunction &MF) override { 1902 const Function &F = MF.getFunction(); 1903 if (skipFunction(F)) 1904 return false; 1905 1906 HexagonConstEvaluator HCE(MF); 1907 return MachineConstPropagator(HCE).run(MF); 1908 } 1909 }; 1910 1911 } // end anonymous namespace 1912 1913 char HexagonConstPropagation::ID = 0; 1914 1915 INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp", 1916 "Hexagon Constant Propagation", false, false) 1917 1918 HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn) 1919 : MachineConstEvaluator(Fn), 1920 HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()), 1921 HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) { 1922 MRI = &Fn.getRegInfo(); 1923 } 1924 1925 bool HexagonConstEvaluator::evaluate(const MachineInstr &MI, 1926 const CellMap &Inputs, CellMap &Outputs) { 1927 if (MI.isCall()) 1928 return false; 1929 if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg()) 1930 return false; 1931 const MachineOperand &MD = MI.getOperand(0); 1932 if (!MD.isDef()) 1933 return false; 1934 1935 unsigned Opc = MI.getOpcode(); 1936 RegisterSubReg DefR(MD); 1937 assert(!DefR.SubReg); 1938 if (!DefR.Reg.isVirtual()) 1939 return false; 1940 1941 if (MI.isCopy()) { 1942 LatticeCell RC; 1943 RegisterSubReg SrcR(MI.getOperand(1)); 1944 bool Eval = evaluateCOPY(SrcR, Inputs, RC); 1945 if (!Eval) 1946 return false; 1947 Outputs.update(DefR.Reg, RC); 1948 return true; 1949 } 1950 if (MI.isRegSequence()) { 1951 unsigned Sub1 = MI.getOperand(2).getImm(); 1952 unsigned Sub2 = MI.getOperand(4).getImm(); 1953 const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg); 1954 unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo); 1955 unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi); 1956 if (Sub1 != SubLo && Sub1 != SubHi) 1957 return false; 1958 if (Sub2 != SubLo && Sub2 != SubHi) 1959 return false; 1960 assert(Sub1 != Sub2); 1961 bool LoIs1 = (Sub1 == SubLo); 1962 const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3); 1963 const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1); 1964 LatticeCell RC; 1965 RegisterSubReg SrcRL(OpLo), SrcRH(OpHi); 1966 bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC); 1967 if (!Eval) 1968 return false; 1969 Outputs.update(DefR.Reg, RC); 1970 return true; 1971 } 1972 if (MI.isCompare()) { 1973 bool Eval = evaluateHexCompare(MI, Inputs, Outputs); 1974 return Eval; 1975 } 1976 1977 switch (Opc) { 1978 default: 1979 return false; 1980 case Hexagon::A2_tfrsi: 1981 case Hexagon::A2_tfrpi: 1982 case Hexagon::CONST32: 1983 case Hexagon::CONST64: 1984 { 1985 const MachineOperand &VO = MI.getOperand(1); 1986 // The operand of CONST32 can be a blockaddress, e.g. 1987 // %0 = CONST32 <blockaddress(@eat, %l)> 1988 // Do this check for all instructions for safety. 1989 if (!VO.isImm()) 1990 return false; 1991 int64_t V = MI.getOperand(1).getImm(); 1992 unsigned W = getRegBitWidth(DefR.Reg); 1993 if (W != 32 && W != 64) 1994 return false; 1995 IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX) 1996 : Type::getInt64Ty(CX); 1997 const ConstantInt *CI = ConstantInt::get(Ty, V, true); 1998 LatticeCell RC = Outputs.get(DefR.Reg); 1999 RC.add(CI); 2000 Outputs.update(DefR.Reg, RC); 2001 break; 2002 } 2003 2004 case Hexagon::PS_true: 2005 case Hexagon::PS_false: 2006 { 2007 LatticeCell RC = Outputs.get(DefR.Reg); 2008 bool NonZero = (Opc == Hexagon::PS_true); 2009 uint32_t P = NonZero ? ConstantProperties::NonZero 2010 : ConstantProperties::Zero; 2011 RC.add(P); 2012 Outputs.update(DefR.Reg, RC); 2013 break; 2014 } 2015 2016 case Hexagon::A2_and: 2017 case Hexagon::A2_andir: 2018 case Hexagon::A2_andp: 2019 case Hexagon::A2_or: 2020 case Hexagon::A2_orir: 2021 case Hexagon::A2_orp: 2022 case Hexagon::A2_xor: 2023 case Hexagon::A2_xorp: 2024 { 2025 bool Eval = evaluateHexLogical(MI, Inputs, Outputs); 2026 if (!Eval) 2027 return false; 2028 break; 2029 } 2030 2031 case Hexagon::A2_combineii: // combine(#s8Ext, #s8) 2032 case Hexagon::A4_combineii: // combine(#s8, #u6Ext) 2033 { 2034 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm()) 2035 return false; 2036 uint64_t Hi = MI.getOperand(1).getImm(); 2037 uint64_t Lo = MI.getOperand(2).getImm(); 2038 uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF); 2039 IntegerType *Ty = Type::getInt64Ty(CX); 2040 const ConstantInt *CI = ConstantInt::get(Ty, Res, false); 2041 LatticeCell RC = Outputs.get(DefR.Reg); 2042 RC.add(CI); 2043 Outputs.update(DefR.Reg, RC); 2044 break; 2045 } 2046 2047 case Hexagon::S2_setbit_i: 2048 { 2049 int64_t B = MI.getOperand(2).getImm(); 2050 assert(B >=0 && B < 32); 2051 APInt A(32, (1ull << B), false); 2052 RegisterSubReg R(MI.getOperand(1)); 2053 LatticeCell RC = Outputs.get(DefR.Reg); 2054 bool Eval = evaluateORri(R, A, Inputs, RC); 2055 if (!Eval) 2056 return false; 2057 Outputs.update(DefR.Reg, RC); 2058 break; 2059 } 2060 2061 case Hexagon::C2_mux: 2062 case Hexagon::C2_muxir: 2063 case Hexagon::C2_muxri: 2064 case Hexagon::C2_muxii: 2065 { 2066 bool Eval = evaluateHexCondMove(MI, Inputs, Outputs); 2067 if (!Eval) 2068 return false; 2069 break; 2070 } 2071 2072 case Hexagon::A2_sxtb: 2073 case Hexagon::A2_sxth: 2074 case Hexagon::A2_sxtw: 2075 case Hexagon::A2_zxtb: 2076 case Hexagon::A2_zxth: 2077 { 2078 bool Eval = evaluateHexExt(MI, Inputs, Outputs); 2079 if (!Eval) 2080 return false; 2081 break; 2082 } 2083 2084 case Hexagon::S2_ct0: 2085 case Hexagon::S2_ct0p: 2086 case Hexagon::S2_ct1: 2087 case Hexagon::S2_ct1p: 2088 { 2089 using namespace Hexagon; 2090 2091 bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p); 2092 RegisterSubReg R1(MI.getOperand(1)); 2093 assert(Inputs.has(R1.Reg)); 2094 LatticeCell T; 2095 bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T); 2096 if (!Eval) 2097 return false; 2098 // All of these instructions return a 32-bit value. The evaluate 2099 // will generate the same type as the operand, so truncate the 2100 // result if necessary. 2101 APInt C; 2102 LatticeCell RC = Outputs.get(DefR.Reg); 2103 for (unsigned i = 0; i < T.size(); ++i) { 2104 const Constant *CI = T.Values[i]; 2105 if (constToInt(CI, C) && C.getBitWidth() > 32) 2106 CI = intToConst(C.trunc(32)); 2107 RC.add(CI); 2108 } 2109 Outputs.update(DefR.Reg, RC); 2110 break; 2111 } 2112 2113 case Hexagon::S2_cl0: 2114 case Hexagon::S2_cl0p: 2115 case Hexagon::S2_cl1: 2116 case Hexagon::S2_cl1p: 2117 case Hexagon::S2_clb: 2118 case Hexagon::S2_clbp: 2119 { 2120 using namespace Hexagon; 2121 2122 bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p); 2123 bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p); 2124 RegisterSubReg R1(MI.getOperand(1)); 2125 assert(Inputs.has(R1.Reg)); 2126 LatticeCell T; 2127 bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T); 2128 if (!Eval) 2129 return false; 2130 // All of these instructions return a 32-bit value. The evaluate 2131 // will generate the same type as the operand, so truncate the 2132 // result if necessary. 2133 APInt C; 2134 LatticeCell RC = Outputs.get(DefR.Reg); 2135 for (unsigned i = 0; i < T.size(); ++i) { 2136 const Constant *CI = T.Values[i]; 2137 if (constToInt(CI, C) && C.getBitWidth() > 32) 2138 CI = intToConst(C.trunc(32)); 2139 RC.add(CI); 2140 } 2141 Outputs.update(DefR.Reg, RC); 2142 break; 2143 } 2144 2145 case Hexagon::S4_extract: 2146 case Hexagon::S4_extractp: 2147 case Hexagon::S2_extractu: 2148 case Hexagon::S2_extractup: 2149 { 2150 bool Signed = (Opc == Hexagon::S4_extract) || 2151 (Opc == Hexagon::S4_extractp); 2152 RegisterSubReg R1(MI.getOperand(1)); 2153 unsigned BW = getRegBitWidth(R1.Reg); 2154 unsigned Bits = MI.getOperand(2).getImm(); 2155 unsigned Offset = MI.getOperand(3).getImm(); 2156 LatticeCell RC = Outputs.get(DefR.Reg); 2157 if (Offset >= BW) { 2158 APInt Zero(BW, 0, false); 2159 RC.add(intToConst(Zero)); 2160 break; 2161 } 2162 if (Offset+Bits > BW) { 2163 // If the requested bitfield extends beyond the most significant bit, 2164 // the extra bits are treated as 0s. To emulate this behavior, reduce 2165 // the number of requested bits, and make the extract unsigned. 2166 Bits = BW-Offset; 2167 Signed = false; 2168 } 2169 bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC); 2170 if (!Eval) 2171 return false; 2172 Outputs.update(DefR.Reg, RC); 2173 break; 2174 } 2175 2176 case Hexagon::S2_vsplatrb: 2177 case Hexagon::S2_vsplatrh: 2178 // vabsh, vabsh:sat 2179 // vabsw, vabsw:sat 2180 // vconj:sat 2181 // vrndwh, vrndwh:sat 2182 // vsathb, vsathub, vsatwuh 2183 // vsxtbh, vsxthw 2184 // vtrunehb, vtrunohb 2185 // vzxtbh, vzxthw 2186 { 2187 bool Eval = evaluateHexVector1(MI, Inputs, Outputs); 2188 if (!Eval) 2189 return false; 2190 break; 2191 } 2192 2193 // TODO: 2194 // A2_vaddh 2195 // A2_vaddhs 2196 // A2_vaddw 2197 // A2_vaddws 2198 } 2199 2200 return true; 2201 } 2202 2203 bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R, 2204 const LatticeCell &Input, LatticeCell &Result) { 2205 if (!R.SubReg) { 2206 Result = Input; 2207 return true; 2208 } 2209 const TargetRegisterClass *RC = MRI->getRegClass(R.Reg); 2210 if (RC != &Hexagon::DoubleRegsRegClass) 2211 return false; 2212 if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi) 2213 return false; 2214 2215 assert(!Input.isTop()); 2216 if (Input.isBottom()) 2217 return false; 2218 2219 using P = ConstantProperties; 2220 2221 if (Input.isProperty()) { 2222 uint32_t Ps = Input.properties(); 2223 if (Ps & (P::Zero|P::NaN)) { 2224 uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties)); 2225 Result.add(Ns); 2226 return true; 2227 } 2228 if (R.SubReg == Hexagon::isub_hi) { 2229 uint32_t Ns = (Ps & P::SignProperties); 2230 Result.add(Ns); 2231 return true; 2232 } 2233 return false; 2234 } 2235 2236 // The Input cell contains some known values. Pick the word corresponding 2237 // to the subregister. 2238 APInt A; 2239 for (unsigned i = 0; i < Input.size(); ++i) { 2240 const Constant *C = Input.Values[i]; 2241 if (!constToInt(C, A)) 2242 return false; 2243 if (!A.isIntN(64)) 2244 return false; 2245 uint64_t U = A.getZExtValue(); 2246 if (R.SubReg == Hexagon::isub_hi) 2247 U >>= 32; 2248 U &= 0xFFFFFFFFULL; 2249 uint32_t U32 = Lo_32(U); 2250 int32_t V32; 2251 memcpy(&V32, &U32, sizeof V32); 2252 IntegerType *Ty = Type::getInt32Ty(CX); 2253 const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32)); 2254 Result.add(C32); 2255 } 2256 return true; 2257 } 2258 2259 bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI, 2260 const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets, 2261 bool &FallsThru) { 2262 // We need to evaluate one branch at a time. TII::analyzeBranch checks 2263 // all the branches in a basic block at once, so we cannot use it. 2264 unsigned Opc = BrI.getOpcode(); 2265 bool SimpleBranch = false; 2266 bool Negated = false; 2267 switch (Opc) { 2268 case Hexagon::J2_jumpf: 2269 case Hexagon::J2_jumpfnew: 2270 case Hexagon::J2_jumpfnewpt: 2271 Negated = true; 2272 LLVM_FALLTHROUGH; 2273 case Hexagon::J2_jumpt: 2274 case Hexagon::J2_jumptnew: 2275 case Hexagon::J2_jumptnewpt: 2276 // Simple branch: if([!]Pn) jump ... 2277 // i.e. Op0 = predicate, Op1 = branch target. 2278 SimpleBranch = true; 2279 break; 2280 case Hexagon::J2_jump: 2281 Targets.insert(BrI.getOperand(0).getMBB()); 2282 FallsThru = false; 2283 return true; 2284 default: 2285 Undetermined: 2286 // If the branch is of unknown type, assume that all successors are 2287 // executable. 2288 FallsThru = !BrI.isUnconditionalBranch(); 2289 return false; 2290 } 2291 2292 if (SimpleBranch) { 2293 const MachineOperand &MD = BrI.getOperand(0); 2294 RegisterSubReg PR(MD); 2295 // If the condition operand has a subregister, this is not something 2296 // we currently recognize. 2297 if (PR.SubReg) 2298 goto Undetermined; 2299 assert(Inputs.has(PR.Reg)); 2300 const LatticeCell &PredC = Inputs.get(PR.Reg); 2301 if (PredC.isBottom()) 2302 goto Undetermined; 2303 2304 uint32_t Props = PredC.properties(); 2305 bool CTrue = false, CFalse = false; 2306 if (Props & ConstantProperties::Zero) 2307 CFalse = true; 2308 else if (Props & ConstantProperties::NonZero) 2309 CTrue = true; 2310 // If the condition is not known to be either, bail out. 2311 if (!CTrue && !CFalse) 2312 goto Undetermined; 2313 2314 const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB(); 2315 2316 FallsThru = false; 2317 if ((!Negated && CTrue) || (Negated && CFalse)) 2318 Targets.insert(BranchTarget); 2319 else if ((!Negated && CFalse) || (Negated && CTrue)) 2320 FallsThru = true; 2321 else 2322 goto Undetermined; 2323 } 2324 2325 return true; 2326 } 2327 2328 bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) { 2329 if (MI.isBranch()) 2330 return rewriteHexBranch(MI, Inputs); 2331 2332 unsigned Opc = MI.getOpcode(); 2333 switch (Opc) { 2334 default: 2335 break; 2336 case Hexagon::A2_tfrsi: 2337 case Hexagon::A2_tfrpi: 2338 case Hexagon::CONST32: 2339 case Hexagon::CONST64: 2340 case Hexagon::PS_true: 2341 case Hexagon::PS_false: 2342 return false; 2343 } 2344 2345 unsigned NumOp = MI.getNumOperands(); 2346 if (NumOp == 0) 2347 return false; 2348 2349 bool AllDefs, Changed; 2350 Changed = rewriteHexConstDefs(MI, Inputs, AllDefs); 2351 // If not all defs have been rewritten (i.e. the instruction defines 2352 // a register that is not compile-time constant), then try to rewrite 2353 // register operands that are known to be constant with immediates. 2354 if (!AllDefs) 2355 Changed |= rewriteHexConstUses(MI, Inputs); 2356 2357 return Changed; 2358 } 2359 2360 unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const { 2361 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2362 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) 2363 return 32; 2364 if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) 2365 return 64; 2366 if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) 2367 return 8; 2368 llvm_unreachable("Invalid register"); 2369 return 0; 2370 } 2371 2372 uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) { 2373 switch (Opc) { 2374 case Hexagon::C2_cmpeq: 2375 case Hexagon::C2_cmpeqp: 2376 case Hexagon::A4_cmpbeq: 2377 case Hexagon::A4_cmpheq: 2378 case Hexagon::A4_cmpbeqi: 2379 case Hexagon::A4_cmpheqi: 2380 case Hexagon::C2_cmpeqi: 2381 case Hexagon::J4_cmpeqn1_t_jumpnv_nt: 2382 case Hexagon::J4_cmpeqn1_t_jumpnv_t: 2383 case Hexagon::J4_cmpeqi_t_jumpnv_nt: 2384 case Hexagon::J4_cmpeqi_t_jumpnv_t: 2385 case Hexagon::J4_cmpeq_t_jumpnv_nt: 2386 case Hexagon::J4_cmpeq_t_jumpnv_t: 2387 return Comparison::EQ; 2388 2389 case Hexagon::C4_cmpneq: 2390 case Hexagon::C4_cmpneqi: 2391 case Hexagon::J4_cmpeqn1_f_jumpnv_nt: 2392 case Hexagon::J4_cmpeqn1_f_jumpnv_t: 2393 case Hexagon::J4_cmpeqi_f_jumpnv_nt: 2394 case Hexagon::J4_cmpeqi_f_jumpnv_t: 2395 case Hexagon::J4_cmpeq_f_jumpnv_nt: 2396 case Hexagon::J4_cmpeq_f_jumpnv_t: 2397 return Comparison::NE; 2398 2399 case Hexagon::C2_cmpgt: 2400 case Hexagon::C2_cmpgtp: 2401 case Hexagon::A4_cmpbgt: 2402 case Hexagon::A4_cmphgt: 2403 case Hexagon::A4_cmpbgti: 2404 case Hexagon::A4_cmphgti: 2405 case Hexagon::C2_cmpgti: 2406 case Hexagon::J4_cmpgtn1_t_jumpnv_nt: 2407 case Hexagon::J4_cmpgtn1_t_jumpnv_t: 2408 case Hexagon::J4_cmpgti_t_jumpnv_nt: 2409 case Hexagon::J4_cmpgti_t_jumpnv_t: 2410 case Hexagon::J4_cmpgt_t_jumpnv_nt: 2411 case Hexagon::J4_cmpgt_t_jumpnv_t: 2412 return Comparison::GTs; 2413 2414 case Hexagon::C4_cmplte: 2415 case Hexagon::C4_cmpltei: 2416 case Hexagon::J4_cmpgtn1_f_jumpnv_nt: 2417 case Hexagon::J4_cmpgtn1_f_jumpnv_t: 2418 case Hexagon::J4_cmpgti_f_jumpnv_nt: 2419 case Hexagon::J4_cmpgti_f_jumpnv_t: 2420 case Hexagon::J4_cmpgt_f_jumpnv_nt: 2421 case Hexagon::J4_cmpgt_f_jumpnv_t: 2422 return Comparison::LEs; 2423 2424 case Hexagon::C2_cmpgtu: 2425 case Hexagon::C2_cmpgtup: 2426 case Hexagon::A4_cmpbgtu: 2427 case Hexagon::A4_cmpbgtui: 2428 case Hexagon::A4_cmphgtu: 2429 case Hexagon::A4_cmphgtui: 2430 case Hexagon::C2_cmpgtui: 2431 case Hexagon::J4_cmpgtui_t_jumpnv_nt: 2432 case Hexagon::J4_cmpgtui_t_jumpnv_t: 2433 case Hexagon::J4_cmpgtu_t_jumpnv_nt: 2434 case Hexagon::J4_cmpgtu_t_jumpnv_t: 2435 return Comparison::GTu; 2436 2437 case Hexagon::J4_cmpltu_f_jumpnv_nt: 2438 case Hexagon::J4_cmpltu_f_jumpnv_t: 2439 return Comparison::GEu; 2440 2441 case Hexagon::J4_cmpltu_t_jumpnv_nt: 2442 case Hexagon::J4_cmpltu_t_jumpnv_t: 2443 return Comparison::LTu; 2444 2445 case Hexagon::J4_cmplt_f_jumpnv_nt: 2446 case Hexagon::J4_cmplt_f_jumpnv_t: 2447 return Comparison::GEs; 2448 2449 case Hexagon::C4_cmplteu: 2450 case Hexagon::C4_cmplteui: 2451 case Hexagon::J4_cmpgtui_f_jumpnv_nt: 2452 case Hexagon::J4_cmpgtui_f_jumpnv_t: 2453 case Hexagon::J4_cmpgtu_f_jumpnv_nt: 2454 case Hexagon::J4_cmpgtu_f_jumpnv_t: 2455 return Comparison::LEu; 2456 2457 case Hexagon::J4_cmplt_t_jumpnv_nt: 2458 case Hexagon::J4_cmplt_t_jumpnv_t: 2459 return Comparison::LTs; 2460 2461 default: 2462 break; 2463 } 2464 return Comparison::Unk; 2465 } 2466 2467 APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX, 2468 const MachineOperand &MO) { 2469 bool Signed = false; 2470 switch (Opc) { 2471 case Hexagon::A4_cmpbgtui: // u7 2472 case Hexagon::A4_cmphgtui: // u7 2473 break; 2474 case Hexagon::A4_cmpheqi: // s8 2475 case Hexagon::C4_cmpneqi: // s8 2476 Signed = true; 2477 break; 2478 case Hexagon::A4_cmpbeqi: // u8 2479 break; 2480 case Hexagon::C2_cmpgtui: // u9 2481 case Hexagon::C4_cmplteui: // u9 2482 break; 2483 case Hexagon::C2_cmpeqi: // s10 2484 case Hexagon::C2_cmpgti: // s10 2485 case Hexagon::C4_cmpltei: // s10 2486 Signed = true; 2487 break; 2488 case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5 2489 case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5 2490 case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5 2491 case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5 2492 case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5 2493 case Hexagon::J4_cmpgti_f_jumpnv_t: // u5 2494 case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5 2495 case Hexagon::J4_cmpgti_t_jumpnv_t: // u5 2496 case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5 2497 case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5 2498 case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5 2499 case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5 2500 break; 2501 default: 2502 llvm_unreachable("Unhandled instruction"); 2503 break; 2504 } 2505 2506 uint64_t Val = MO.getImm(); 2507 return APInt(32, Val, Signed); 2508 } 2509 2510 void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) { 2511 MI.setDesc(HII.get(Hexagon::A2_nop)); 2512 while (MI.getNumOperands() > 0) 2513 MI.removeOperand(0); 2514 } 2515 2516 bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, 2517 const CellMap &Inputs, LatticeCell &Result) { 2518 assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg)); 2519 LatticeCell LSL, LSH; 2520 if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH)) 2521 return false; 2522 if (LSL.isProperty() || LSH.isProperty()) 2523 return false; 2524 2525 unsigned LN = LSL.size(), HN = LSH.size(); 2526 SmallVector<APInt,4> LoVs(LN), HiVs(HN); 2527 for (unsigned i = 0; i < LN; ++i) { 2528 bool Eval = constToInt(LSL.Values[i], LoVs[i]); 2529 if (!Eval) 2530 return false; 2531 assert(LoVs[i].getBitWidth() == 32); 2532 } 2533 for (unsigned i = 0; i < HN; ++i) { 2534 bool Eval = constToInt(LSH.Values[i], HiVs[i]); 2535 if (!Eval) 2536 return false; 2537 assert(HiVs[i].getBitWidth() == 32); 2538 } 2539 2540 for (unsigned i = 0; i < HiVs.size(); ++i) { 2541 APInt HV = HiVs[i].zext(64) << 32; 2542 for (unsigned j = 0; j < LoVs.size(); ++j) { 2543 APInt LV = LoVs[j].zext(64); 2544 const Constant *C = intToConst(HV | LV); 2545 Result.add(C); 2546 if (Result.isBottom()) 2547 return false; 2548 } 2549 } 2550 return !Result.isBottom(); 2551 } 2552 2553 bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI, 2554 const CellMap &Inputs, CellMap &Outputs) { 2555 unsigned Opc = MI.getOpcode(); 2556 bool Classic = false; 2557 switch (Opc) { 2558 case Hexagon::C2_cmpeq: 2559 case Hexagon::C2_cmpeqp: 2560 case Hexagon::C2_cmpgt: 2561 case Hexagon::C2_cmpgtp: 2562 case Hexagon::C2_cmpgtu: 2563 case Hexagon::C2_cmpgtup: 2564 case Hexagon::C2_cmpeqi: 2565 case Hexagon::C2_cmpgti: 2566 case Hexagon::C2_cmpgtui: 2567 // Classic compare: Dst0 = CMP Src1, Src2 2568 Classic = true; 2569 break; 2570 default: 2571 // Not handling other compare instructions now. 2572 return false; 2573 } 2574 2575 if (Classic) { 2576 const MachineOperand &Src1 = MI.getOperand(1); 2577 const MachineOperand &Src2 = MI.getOperand(2); 2578 2579 bool Result; 2580 unsigned Opc = MI.getOpcode(); 2581 bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result); 2582 if (Computed) { 2583 // Only create a zero/non-zero cell. At this time there isn't really 2584 // much need for specific values. 2585 RegisterSubReg DefR(MI.getOperand(0)); 2586 LatticeCell L = Outputs.get(DefR.Reg); 2587 uint32_t P = Result ? ConstantProperties::NonZero 2588 : ConstantProperties::Zero; 2589 L.add(P); 2590 Outputs.update(DefR.Reg, L); 2591 return true; 2592 } 2593 } 2594 2595 return false; 2596 } 2597 2598 bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc, 2599 const MachineOperand &Src1, const MachineOperand &Src2, 2600 const CellMap &Inputs, bool &Result) { 2601 uint32_t Cmp = getCmp(Opc); 2602 bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg(); 2603 bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm(); 2604 if (Reg1) { 2605 RegisterSubReg R1(Src1); 2606 if (Reg2) { 2607 RegisterSubReg R2(Src2); 2608 return evaluateCMPrr(Cmp, R1, R2, Inputs, Result); 2609 } else if (Imm2) { 2610 APInt A2 = getCmpImm(Opc, 2, Src2); 2611 return evaluateCMPri(Cmp, R1, A2, Inputs, Result); 2612 } 2613 } else if (Imm1) { 2614 APInt A1 = getCmpImm(Opc, 1, Src1); 2615 if (Reg2) { 2616 RegisterSubReg R2(Src2); 2617 uint32_t NegCmp = Comparison::negate(Cmp); 2618 return evaluateCMPri(NegCmp, R2, A1, Inputs, Result); 2619 } else if (Imm2) { 2620 APInt A2 = getCmpImm(Opc, 2, Src2); 2621 return evaluateCMPii(Cmp, A1, A2, Result); 2622 } 2623 } 2624 // Unknown kind of comparison. 2625 return false; 2626 } 2627 2628 bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI, 2629 const CellMap &Inputs, CellMap &Outputs) { 2630 unsigned Opc = MI.getOpcode(); 2631 if (MI.getNumOperands() != 3) 2632 return false; 2633 const MachineOperand &Src1 = MI.getOperand(1); 2634 const MachineOperand &Src2 = MI.getOperand(2); 2635 RegisterSubReg R1(Src1); 2636 bool Eval = false; 2637 LatticeCell RC; 2638 switch (Opc) { 2639 default: 2640 return false; 2641 case Hexagon::A2_and: 2642 case Hexagon::A2_andp: 2643 Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC); 2644 break; 2645 case Hexagon::A2_andir: { 2646 if (!Src2.isImm()) 2647 return false; 2648 APInt A(32, Src2.getImm(), true); 2649 Eval = evaluateANDri(R1, A, Inputs, RC); 2650 break; 2651 } 2652 case Hexagon::A2_or: 2653 case Hexagon::A2_orp: 2654 Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC); 2655 break; 2656 case Hexagon::A2_orir: { 2657 if (!Src2.isImm()) 2658 return false; 2659 APInt A(32, Src2.getImm(), true); 2660 Eval = evaluateORri(R1, A, Inputs, RC); 2661 break; 2662 } 2663 case Hexagon::A2_xor: 2664 case Hexagon::A2_xorp: 2665 Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC); 2666 break; 2667 } 2668 if (Eval) { 2669 RegisterSubReg DefR(MI.getOperand(0)); 2670 Outputs.update(DefR.Reg, RC); 2671 } 2672 return Eval; 2673 } 2674 2675 bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI, 2676 const CellMap &Inputs, CellMap &Outputs) { 2677 // Dst0 = Cond1 ? Src2 : Src3 2678 RegisterSubReg CR(MI.getOperand(1)); 2679 assert(Inputs.has(CR.Reg)); 2680 LatticeCell LS; 2681 if (!getCell(CR, Inputs, LS)) 2682 return false; 2683 uint32_t Ps = LS.properties(); 2684 unsigned TakeOp; 2685 if (Ps & ConstantProperties::Zero) 2686 TakeOp = 3; 2687 else if (Ps & ConstantProperties::NonZero) 2688 TakeOp = 2; 2689 else 2690 return false; 2691 2692 const MachineOperand &ValOp = MI.getOperand(TakeOp); 2693 RegisterSubReg DefR(MI.getOperand(0)); 2694 LatticeCell RC = Outputs.get(DefR.Reg); 2695 2696 if (ValOp.isImm()) { 2697 int64_t V = ValOp.getImm(); 2698 unsigned W = getRegBitWidth(DefR.Reg); 2699 APInt A(W, V, true); 2700 const Constant *C = intToConst(A); 2701 RC.add(C); 2702 Outputs.update(DefR.Reg, RC); 2703 return true; 2704 } 2705 if (ValOp.isReg()) { 2706 RegisterSubReg R(ValOp); 2707 const LatticeCell &LR = Inputs.get(R.Reg); 2708 LatticeCell LSR; 2709 if (!evaluate(R, LR, LSR)) 2710 return false; 2711 RC.meet(LSR); 2712 Outputs.update(DefR.Reg, RC); 2713 return true; 2714 } 2715 return false; 2716 } 2717 2718 bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI, 2719 const CellMap &Inputs, CellMap &Outputs) { 2720 // Dst0 = ext R1 2721 RegisterSubReg R1(MI.getOperand(1)); 2722 assert(Inputs.has(R1.Reg)); 2723 2724 unsigned Opc = MI.getOpcode(); 2725 unsigned Bits; 2726 switch (Opc) { 2727 case Hexagon::A2_sxtb: 2728 case Hexagon::A2_zxtb: 2729 Bits = 8; 2730 break; 2731 case Hexagon::A2_sxth: 2732 case Hexagon::A2_zxth: 2733 Bits = 16; 2734 break; 2735 case Hexagon::A2_sxtw: 2736 Bits = 32; 2737 break; 2738 default: 2739 llvm_unreachable("Unhandled extension opcode"); 2740 } 2741 2742 bool Signed = false; 2743 switch (Opc) { 2744 case Hexagon::A2_sxtb: 2745 case Hexagon::A2_sxth: 2746 case Hexagon::A2_sxtw: 2747 Signed = true; 2748 break; 2749 } 2750 2751 RegisterSubReg DefR(MI.getOperand(0)); 2752 unsigned BW = getRegBitWidth(DefR.Reg); 2753 LatticeCell RC = Outputs.get(DefR.Reg); 2754 bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC) 2755 : evaluateZEXTr(R1, BW, Bits, Inputs, RC); 2756 if (!Eval) 2757 return false; 2758 Outputs.update(DefR.Reg, RC); 2759 return true; 2760 } 2761 2762 bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI, 2763 const CellMap &Inputs, CellMap &Outputs) { 2764 // DefR = op R1 2765 RegisterSubReg DefR(MI.getOperand(0)); 2766 RegisterSubReg R1(MI.getOperand(1)); 2767 assert(Inputs.has(R1.Reg)); 2768 LatticeCell RC = Outputs.get(DefR.Reg); 2769 bool Eval; 2770 2771 unsigned Opc = MI.getOpcode(); 2772 switch (Opc) { 2773 case Hexagon::S2_vsplatrb: 2774 // Rd = 4 times Rs:0..7 2775 Eval = evaluateSplatr(R1, 8, 4, Inputs, RC); 2776 break; 2777 case Hexagon::S2_vsplatrh: 2778 // Rdd = 4 times Rs:0..15 2779 Eval = evaluateSplatr(R1, 16, 4, Inputs, RC); 2780 break; 2781 default: 2782 return false; 2783 } 2784 2785 if (!Eval) 2786 return false; 2787 Outputs.update(DefR.Reg, RC); 2788 return true; 2789 } 2790 2791 bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI, 2792 const CellMap &Inputs, bool &AllDefs) { 2793 AllDefs = false; 2794 2795 // Some diagnostics. 2796 // LLVM_DEBUG({...}) gets confused with all this code as an argument. 2797 #ifndef NDEBUG 2798 bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE); 2799 if (Debugging) { 2800 bool Const = true, HasUse = false; 2801 for (const MachineOperand &MO : MI.operands()) { 2802 if (!MO.isReg() || !MO.isUse() || MO.isImplicit()) 2803 continue; 2804 RegisterSubReg R(MO); 2805 if (!R.Reg.isVirtual()) 2806 continue; 2807 HasUse = true; 2808 // PHIs can legitimately have "top" cells after propagation. 2809 if (!MI.isPHI() && !Inputs.has(R.Reg)) { 2810 dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg) 2811 << " in MI: " << MI; 2812 continue; 2813 } 2814 const LatticeCell &L = Inputs.get(R.Reg); 2815 Const &= L.isSingle(); 2816 if (!Const) 2817 break; 2818 } 2819 if (HasUse && Const) { 2820 if (!MI.isCopy()) { 2821 dbgs() << "CONST: " << MI; 2822 for (const MachineOperand &MO : MI.operands()) { 2823 if (!MO.isReg() || !MO.isUse() || MO.isImplicit()) 2824 continue; 2825 Register R = MO.getReg(); 2826 dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n"; 2827 } 2828 } 2829 } 2830 } 2831 #endif 2832 2833 // Avoid generating TFRIs for register transfers---this will keep the 2834 // coalescing opportunities. 2835 if (MI.isCopy()) 2836 return false; 2837 2838 MachineFunction *MF = MI.getParent()->getParent(); 2839 auto &HST = MF->getSubtarget<HexagonSubtarget>(); 2840 2841 // Collect all virtual register-def operands. 2842 SmallVector<unsigned,2> DefRegs; 2843 for (const MachineOperand &MO : MI.operands()) { 2844 if (!MO.isReg() || !MO.isDef()) 2845 continue; 2846 Register R = MO.getReg(); 2847 if (!R.isVirtual()) 2848 continue; 2849 assert(!MO.getSubReg()); 2850 assert(Inputs.has(R)); 2851 DefRegs.push_back(R); 2852 } 2853 2854 MachineBasicBlock &B = *MI.getParent(); 2855 const DebugLoc &DL = MI.getDebugLoc(); 2856 unsigned ChangedNum = 0; 2857 #ifndef NDEBUG 2858 SmallVector<const MachineInstr*,4> NewInstrs; 2859 #endif 2860 2861 // For each defined register, if it is a constant, create an instruction 2862 // NewR = const 2863 // and replace all uses of the defined register with NewR. 2864 for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) { 2865 unsigned R = DefRegs[i]; 2866 const LatticeCell &L = Inputs.get(R); 2867 if (L.isBottom()) 2868 continue; 2869 const TargetRegisterClass *RC = MRI->getRegClass(R); 2870 MachineBasicBlock::iterator At = MI.getIterator(); 2871 2872 if (!L.isSingle()) { 2873 // If this a zero/non-zero cell, we can fold a definition 2874 // of a predicate register. 2875 using P = ConstantProperties; 2876 2877 uint64_t Ps = L.properties(); 2878 if (!(Ps & (P::Zero|P::NonZero))) 2879 continue; 2880 const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass; 2881 if (RC != PredRC) 2882 continue; 2883 const MCInstrDesc *NewD = (Ps & P::Zero) ? 2884 &HII.get(Hexagon::PS_false) : 2885 &HII.get(Hexagon::PS_true); 2886 Register NewR = MRI->createVirtualRegister(PredRC); 2887 const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR); 2888 (void)MIB; 2889 #ifndef NDEBUG 2890 NewInstrs.push_back(&*MIB); 2891 #endif 2892 replaceAllRegUsesWith(R, NewR); 2893 } else { 2894 // This cell has a single value. 2895 APInt A; 2896 if (!constToInt(L.Value, A) || !A.isSignedIntN(64)) 2897 continue; 2898 const TargetRegisterClass *NewRC; 2899 const MCInstrDesc *NewD; 2900 2901 unsigned W = getRegBitWidth(R); 2902 int64_t V = A.getSExtValue(); 2903 assert(W == 32 || W == 64); 2904 if (W == 32) 2905 NewRC = &Hexagon::IntRegsRegClass; 2906 else 2907 NewRC = &Hexagon::DoubleRegsRegClass; 2908 Register NewR = MRI->createVirtualRegister(NewRC); 2909 const MachineInstr *NewMI; 2910 2911 if (W == 32) { 2912 NewD = &HII.get(Hexagon::A2_tfrsi); 2913 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2914 .addImm(V); 2915 } else { 2916 if (A.isSignedIntN(8)) { 2917 NewD = &HII.get(Hexagon::A2_tfrpi); 2918 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2919 .addImm(V); 2920 } else { 2921 int32_t Hi = V >> 32; 2922 int32_t Lo = V & 0xFFFFFFFFLL; 2923 if (isInt<8>(Hi) && isInt<8>(Lo)) { 2924 NewD = &HII.get(Hexagon::A2_combineii); 2925 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2926 .addImm(Hi) 2927 .addImm(Lo); 2928 } else if (MF->getFunction().hasOptSize() || !HST.isTinyCore()) { 2929 // Disable CONST64 for tiny core since it takes a LD resource. 2930 NewD = &HII.get(Hexagon::CONST64); 2931 NewMI = BuildMI(B, At, DL, *NewD, NewR) 2932 .addImm(V); 2933 } else 2934 return false; 2935 } 2936 } 2937 (void)NewMI; 2938 #ifndef NDEBUG 2939 NewInstrs.push_back(NewMI); 2940 #endif 2941 replaceAllRegUsesWith(R, NewR); 2942 } 2943 ChangedNum++; 2944 } 2945 2946 LLVM_DEBUG({ 2947 if (!NewInstrs.empty()) { 2948 MachineFunction &MF = *MI.getParent()->getParent(); 2949 dbgs() << "In function: " << MF.getName() << "\n"; 2950 dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0]; 2951 for (unsigned i = 1; i < NewInstrs.size(); ++i) 2952 dbgs() << " " << *NewInstrs[i]; 2953 } 2954 }); 2955 2956 AllDefs = (ChangedNum == DefRegs.size()); 2957 return ChangedNum > 0; 2958 } 2959 2960 bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI, 2961 const CellMap &Inputs) { 2962 bool Changed = false; 2963 unsigned Opc = MI.getOpcode(); 2964 MachineBasicBlock &B = *MI.getParent(); 2965 const DebugLoc &DL = MI.getDebugLoc(); 2966 MachineBasicBlock::iterator At = MI.getIterator(); 2967 MachineInstr *NewMI = nullptr; 2968 2969 switch (Opc) { 2970 case Hexagon::M2_maci: 2971 // Convert DefR += mpyi(R2, R3) 2972 // to DefR += mpyi(R, #imm), 2973 // or DefR -= mpyi(R, #imm). 2974 { 2975 RegisterSubReg DefR(MI.getOperand(0)); 2976 assert(!DefR.SubReg); 2977 RegisterSubReg R2(MI.getOperand(2)); 2978 RegisterSubReg R3(MI.getOperand(3)); 2979 assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg)); 2980 LatticeCell LS2, LS3; 2981 // It is enough to get one of the input cells, since we will only try 2982 // to replace one argument---whichever happens to be a single constant. 2983 bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3); 2984 if (!HasC2 && !HasC3) 2985 return false; 2986 bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) || 2987 (HasC3 && (LS3.properties() & ConstantProperties::Zero))); 2988 // If one of the operands is zero, eliminate the multiplication. 2989 if (Zero) { 2990 // DefR == R1 (tied operands). 2991 MachineOperand &Acc = MI.getOperand(1); 2992 RegisterSubReg R1(Acc); 2993 unsigned NewR = R1.Reg; 2994 if (R1.SubReg) { 2995 // Generate COPY. FIXME: Replace with the register:subregister. 2996 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 2997 NewR = MRI->createVirtualRegister(RC); 2998 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 2999 .addReg(R1.Reg, getRegState(Acc), R1.SubReg); 3000 } 3001 replaceAllRegUsesWith(DefR.Reg, NewR); 3002 MRI->clearKillFlags(NewR); 3003 Changed = true; 3004 break; 3005 } 3006 3007 bool Swap = false; 3008 if (!LS3.isSingle()) { 3009 if (!LS2.isSingle()) 3010 return false; 3011 Swap = true; 3012 } 3013 const LatticeCell &LI = Swap ? LS2 : LS3; 3014 const MachineOperand &OpR2 = Swap ? MI.getOperand(3) 3015 : MI.getOperand(2); 3016 // LI is single here. 3017 APInt A; 3018 if (!constToInt(LI.Value, A) || !A.isSignedIntN(8)) 3019 return false; 3020 int64_t V = A.getSExtValue(); 3021 const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip) 3022 : HII.get(Hexagon::M2_macsin); 3023 if (V < 0) 3024 V = -V; 3025 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 3026 Register NewR = MRI->createVirtualRegister(RC); 3027 const MachineOperand &Src1 = MI.getOperand(1); 3028 NewMI = BuildMI(B, At, DL, D, NewR) 3029 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg()) 3030 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg()) 3031 .addImm(V); 3032 replaceAllRegUsesWith(DefR.Reg, NewR); 3033 Changed = true; 3034 break; 3035 } 3036 3037 case Hexagon::A2_and: 3038 { 3039 RegisterSubReg R1(MI.getOperand(1)); 3040 RegisterSubReg R2(MI.getOperand(2)); 3041 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 3042 LatticeCell LS1, LS2; 3043 unsigned CopyOf = 0; 3044 // Check if any of the operands is -1 (i.e. all bits set). 3045 if (getCell(R1, Inputs, LS1) && LS1.isSingle()) { 3046 APInt M1; 3047 if (constToInt(LS1.Value, M1) && !~M1) 3048 CopyOf = 2; 3049 } 3050 else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) { 3051 APInt M1; 3052 if (constToInt(LS2.Value, M1) && !~M1) 3053 CopyOf = 1; 3054 } 3055 if (!CopyOf) 3056 return false; 3057 MachineOperand &SO = MI.getOperand(CopyOf); 3058 RegisterSubReg SR(SO); 3059 RegisterSubReg DefR(MI.getOperand(0)); 3060 unsigned NewR = SR.Reg; 3061 if (SR.SubReg) { 3062 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 3063 NewR = MRI->createVirtualRegister(RC); 3064 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 3065 .addReg(SR.Reg, getRegState(SO), SR.SubReg); 3066 } 3067 replaceAllRegUsesWith(DefR.Reg, NewR); 3068 MRI->clearKillFlags(NewR); 3069 Changed = true; 3070 } 3071 break; 3072 3073 case Hexagon::A2_or: 3074 { 3075 RegisterSubReg R1(MI.getOperand(1)); 3076 RegisterSubReg R2(MI.getOperand(2)); 3077 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); 3078 LatticeCell LS1, LS2; 3079 unsigned CopyOf = 0; 3080 3081 using P = ConstantProperties; 3082 3083 if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero)) 3084 CopyOf = 2; 3085 else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero)) 3086 CopyOf = 1; 3087 if (!CopyOf) 3088 return false; 3089 MachineOperand &SO = MI.getOperand(CopyOf); 3090 RegisterSubReg SR(SO); 3091 RegisterSubReg DefR(MI.getOperand(0)); 3092 unsigned NewR = SR.Reg; 3093 if (SR.SubReg) { 3094 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); 3095 NewR = MRI->createVirtualRegister(RC); 3096 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 3097 .addReg(SR.Reg, getRegState(SO), SR.SubReg); 3098 } 3099 replaceAllRegUsesWith(DefR.Reg, NewR); 3100 MRI->clearKillFlags(NewR); 3101 Changed = true; 3102 } 3103 break; 3104 } 3105 3106 if (NewMI) { 3107 // clear all the kill flags of this new instruction. 3108 for (MachineOperand &MO : NewMI->operands()) 3109 if (MO.isReg() && MO.isUse()) 3110 MO.setIsKill(false); 3111 } 3112 3113 LLVM_DEBUG({ 3114 if (NewMI) { 3115 dbgs() << "Rewrite: for " << MI; 3116 if (NewMI != &MI) 3117 dbgs() << " created " << *NewMI; 3118 else 3119 dbgs() << " modified the instruction itself and created:" << *NewMI; 3120 } 3121 }); 3122 3123 return Changed; 3124 } 3125 3126 void HexagonConstEvaluator::replaceAllRegUsesWith(Register FromReg, 3127 Register ToReg) { 3128 assert(FromReg.isVirtual()); 3129 assert(ToReg.isVirtual()); 3130 for (MachineOperand &O : 3131 llvm::make_early_inc_range(MRI->use_operands(FromReg))) 3132 O.setReg(ToReg); 3133 } 3134 3135 bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI, 3136 const CellMap &Inputs) { 3137 MachineBasicBlock &B = *BrI.getParent(); 3138 unsigned NumOp = BrI.getNumOperands(); 3139 if (!NumOp) 3140 return false; 3141 3142 bool FallsThru; 3143 SetVector<const MachineBasicBlock*> Targets; 3144 bool Eval = evaluate(BrI, Inputs, Targets, FallsThru); 3145 unsigned NumTargets = Targets.size(); 3146 if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru)) 3147 return false; 3148 if (BrI.getOpcode() == Hexagon::J2_jump) 3149 return false; 3150 3151 LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI); 3152 bool Rewritten = false; 3153 if (NumTargets > 0) { 3154 assert(!FallsThru && "This should have been checked before"); 3155 // MIB.addMBB needs non-const pointer. 3156 MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]); 3157 bool Moot = B.isLayoutSuccessor(TargetB); 3158 if (!Moot) { 3159 // If we build a branch here, we must make sure that it won't be 3160 // erased as "non-executable". We can't mark any new instructions 3161 // as executable here, so we need to overwrite the BrI, which we 3162 // know is executable. 3163 const MCInstrDesc &JD = HII.get(Hexagon::J2_jump); 3164 auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD) 3165 .addMBB(TargetB); 3166 BrI.setDesc(JD); 3167 while (BrI.getNumOperands() > 0) 3168 BrI.removeOperand(0); 3169 // This ensures that all implicit operands (e.g. implicit-def %r31, etc) 3170 // are present in the rewritten branch. 3171 for (auto &Op : NI->operands()) 3172 BrI.addOperand(Op); 3173 NI->eraseFromParent(); 3174 Rewritten = true; 3175 } 3176 } 3177 3178 // Do not erase instructions. A newly created instruction could get 3179 // the same address as an instruction marked as executable during the 3180 // propagation. 3181 if (!Rewritten) 3182 replaceWithNop(BrI); 3183 return true; 3184 } 3185 3186 FunctionPass *llvm::createHexagonConstPropagationPass() { 3187 return new HexagonConstPropagation(); 3188 } 3189