1 //===- HexagonConstExtenders.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonInstrInfo.h" 10 #include "HexagonRegisterInfo.h" 11 #include "HexagonSubtarget.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFunctionPass.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/Register.h" 19 #include "llvm/InitializePasses.h" 20 #include "llvm/Pass.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <map> 24 #include <set> 25 #include <utility> 26 #include <vector> 27 28 #define DEBUG_TYPE "hexagon-cext-opt" 29 30 using namespace llvm; 31 32 static cl::opt<unsigned> CountThreshold( 33 "hexagon-cext-threshold", cl::init(3), cl::Hidden, 34 cl::desc("Minimum number of extenders to trigger replacement")); 35 36 static cl::opt<unsigned> 37 ReplaceLimit("hexagon-cext-limit", cl::init(0), cl::Hidden, 38 cl::desc("Maximum number of replacements")); 39 40 namespace llvm { 41 void initializeHexagonConstExtendersPass(PassRegistry&); 42 FunctionPass *createHexagonConstExtenders(); 43 } 44 45 static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { 46 assert(isPowerOf2_32(A)); 47 int32_t U = (V & -A) + O; 48 return U >= V ? U : U+A; 49 } 50 51 static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { 52 assert(isPowerOf2_32(A)); 53 int32_t U = (V & -A) + O; 54 return U <= V ? U : U-A; 55 } 56 57 namespace { 58 struct OffsetRange { 59 // The range of values between Min and Max that are of form Align*N+Offset, 60 // for some integer N. Min and Max are required to be of that form as well, 61 // except in the case of an empty range. 62 int32_t Min = INT_MIN, Max = INT_MAX; 63 uint8_t Align = 1; 64 uint8_t Offset = 0; 65 66 OffsetRange() = default; 67 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) 68 : Min(L), Max(H), Align(A), Offset(O) {} 69 OffsetRange &intersect(OffsetRange A) { 70 if (Align < A.Align) 71 std::swap(*this, A); 72 73 // Align >= A.Align. 74 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { 75 Min = adjustUp(std::max(Min, A.Min), Align, Offset); 76 Max = adjustDown(std::min(Max, A.Max), Align, Offset); 77 } else { 78 // Make an empty range. 79 Min = 0; 80 Max = -1; 81 } 82 // Canonicalize empty ranges. 83 if (Min > Max) 84 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); 85 return *this; 86 } 87 OffsetRange &shift(int32_t S) { 88 Min += S; 89 Max += S; 90 Offset = (Offset+S) % Align; 91 return *this; 92 } 93 OffsetRange &extendBy(int32_t D) { 94 // If D < 0, extend Min, otherwise extend Max. 95 assert(D % Align == 0); 96 if (D < 0) 97 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; 98 else 99 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; 100 return *this; 101 } 102 bool empty() const { 103 return Min > Max; 104 } 105 bool contains(int32_t V) const { 106 return Min <= V && V <= Max && (V-Offset) % Align == 0; 107 } 108 bool operator==(const OffsetRange &R) const { 109 return Min == R.Min && Max == R.Max && Align == R.Align; 110 } 111 bool operator!=(const OffsetRange &R) const { 112 return !operator==(R); 113 } 114 bool operator<(const OffsetRange &R) const { 115 if (Min != R.Min) 116 return Min < R.Min; 117 if (Max != R.Max) 118 return Max < R.Max; 119 return Align < R.Align; 120 } 121 static OffsetRange zero() { return {0, 0, 1}; } 122 }; 123 124 struct RangeTree { 125 struct Node { 126 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} 127 unsigned Height = 1; 128 unsigned Count = 1; 129 int32_t MaxEnd; 130 const OffsetRange &Range; 131 Node *Left = nullptr, *Right = nullptr; 132 }; 133 134 Node *Root = nullptr; 135 136 void add(const OffsetRange &R) { 137 Root = add(Root, R); 138 } 139 void erase(const Node *N) { 140 Root = remove(Root, N); 141 delete N; 142 } 143 void order(SmallVectorImpl<Node*> &Seq) const { 144 order(Root, Seq); 145 } 146 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { 147 SmallVector<Node*,8> Nodes; 148 nodesWith(Root, P, CheckAlign, Nodes); 149 return Nodes; 150 } 151 void dump() const; 152 ~RangeTree() { 153 SmallVector<Node*,8> Nodes; 154 order(Nodes); 155 for (Node *N : Nodes) 156 delete N; 157 } 158 159 private: 160 void dump(const Node *N) const; 161 void order(Node *N, SmallVectorImpl<Node*> &Seq) const; 162 void nodesWith(Node *N, int32_t P, bool CheckA, 163 SmallVectorImpl<Node*> &Seq) const; 164 165 Node *add(Node *N, const OffsetRange &R); 166 Node *remove(Node *N, const Node *D); 167 Node *rotateLeft(Node *Lower, Node *Higher); 168 Node *rotateRight(Node *Lower, Node *Higher); 169 unsigned height(Node *N) { 170 return N != nullptr ? N->Height : 0; 171 } 172 Node *update(Node *N) { 173 assert(N != nullptr); 174 N->Height = 1 + std::max(height(N->Left), height(N->Right)); 175 if (N->Left) 176 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); 177 if (N->Right) 178 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); 179 return N; 180 } 181 Node *rebalance(Node *N) { 182 assert(N != nullptr); 183 int32_t Balance = height(N->Right) - height(N->Left); 184 if (Balance < -1) 185 return rotateRight(N->Left, N); 186 if (Balance > 1) 187 return rotateLeft(N->Right, N); 188 return N; 189 } 190 }; 191 192 struct Loc { 193 MachineBasicBlock *Block = nullptr; 194 MachineBasicBlock::iterator At; 195 196 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) 197 : Block(B), At(It) { 198 if (B->end() == It) { 199 Pos = -1; 200 } else { 201 assert(It->getParent() == B); 202 Pos = std::distance(B->begin(), It); 203 } 204 } 205 bool operator<(Loc A) const { 206 if (Block != A.Block) 207 return Block->getNumber() < A.Block->getNumber(); 208 if (A.Pos == -1) 209 return Pos != A.Pos; 210 return Pos != -1 && Pos < A.Pos; 211 } 212 private: 213 int Pos = 0; 214 }; 215 216 struct HexagonConstExtenders : public MachineFunctionPass { 217 static char ID; 218 HexagonConstExtenders() : MachineFunctionPass(ID) {} 219 220 void getAnalysisUsage(AnalysisUsage &AU) const override { 221 AU.addRequired<MachineDominatorTreeWrapperPass>(); 222 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 223 MachineFunctionPass::getAnalysisUsage(AU); 224 } 225 226 StringRef getPassName() const override { 227 return "Hexagon constant-extender optimization"; 228 } 229 bool runOnMachineFunction(MachineFunction &MF) override; 230 231 private: 232 struct Register { 233 Register() = default; 234 Register(llvm::Register R, unsigned S) : Reg(R), Sub(S) {} 235 Register(const MachineOperand &Op) 236 : Reg(Op.getReg()), Sub(Op.getSubReg()) {} 237 Register &operator=(const MachineOperand &Op) { 238 if (Op.isReg()) { 239 Reg = Op.getReg(); 240 Sub = Op.getSubReg(); 241 } else if (Op.isFI()) { 242 Reg = llvm::Register::index2StackSlot(Op.getIndex()); 243 } 244 return *this; 245 } 246 bool isVReg() const { 247 return Reg != 0 && !Reg.isStack() && Reg.isVirtual(); 248 } 249 bool isSlot() const { return Reg != 0 && Reg.isStack(); } 250 operator MachineOperand() const { 251 if (isVReg()) 252 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, 253 /*Kill*/false, /*Dead*/false, /*Undef*/false, 254 /*EarlyClobber*/false, Sub); 255 if (Reg.isStack()) { 256 int FI = llvm::Register::stackSlot2Index(Reg); 257 return MachineOperand::CreateFI(FI); 258 } 259 llvm_unreachable("Cannot create MachineOperand"); 260 } 261 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } 262 bool operator!=(Register R) const { return !operator==(R); } 263 bool operator<(Register R) const { 264 // For std::map. 265 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); 266 } 267 llvm::Register Reg; 268 unsigned Sub = 0; 269 }; 270 271 struct ExtExpr { 272 // A subexpression in which the extender is used. In general, this 273 // represents an expression where adding D to the extender will be 274 // equivalent to adding D to the expression as a whole. In other 275 // words, expr(add(##V,D) = add(expr(##V),D). 276 277 // The original motivation for this are the io/ur addressing modes, 278 // where the offset is extended. Consider the io example: 279 // In memw(Rs+##V), the ##V could be replaced by a register Rt to 280 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the 281 // register Rt must have exactly the value of ##V. If there was 282 // another instruction memw(Rs+##V+4), it would need a different Rt. 283 // Now, if Rt was initialized as "##V+Rs<<0", both of these 284 // instructions could use the same Rt, just with different offsets. 285 // Here it's clear that "initializer+4" should be the same as if 286 // the offset 4 was added to the ##V in the initializer. 287 288 // The only kinds of expressions that support the requirement of 289 // commuting with addition are addition and subtraction from ##V. 290 // Include shifting the Rs to account for the ur addressing mode: 291 // ##Val + Rs << S 292 // ##Val - Rs 293 Register Rs; 294 unsigned S = 0; 295 bool Neg = false; 296 297 ExtExpr() = default; 298 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} 299 // Expression is trivial if it does not modify the extender. 300 bool trivial() const { 301 return Rs.Reg == 0; 302 } 303 bool operator==(const ExtExpr &Ex) const { 304 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; 305 } 306 bool operator!=(const ExtExpr &Ex) const { 307 return !operator==(Ex); 308 } 309 bool operator<(const ExtExpr &Ex) const { 310 if (Rs != Ex.Rs) 311 return Rs < Ex.Rs; 312 if (S != Ex.S) 313 return S < Ex.S; 314 return !Neg && Ex.Neg; 315 } 316 }; 317 318 struct ExtDesc { 319 MachineInstr *UseMI = nullptr; 320 unsigned OpNum = -1u; 321 // The subexpression in which the extender is used (e.g. address 322 // computation). 323 ExtExpr Expr; 324 // Optional register that is assigned the value of Expr. 325 Register Rd; 326 // Def means that the output of the instruction may differ from the 327 // original by a constant c, and that the difference can be corrected 328 // by adding/subtracting c in all users of the defined register. 329 bool IsDef = false; 330 331 MachineOperand &getOp() { 332 return UseMI->getOperand(OpNum); 333 } 334 const MachineOperand &getOp() const { 335 return UseMI->getOperand(OpNum); 336 } 337 }; 338 339 struct ExtRoot { 340 union { 341 const ConstantFP *CFP; // MO_FPImmediate 342 const char *SymbolName; // MO_ExternalSymbol 343 const GlobalValue *GV; // MO_GlobalAddress 344 const BlockAddress *BA; // MO_BlockAddress 345 int64_t ImmVal; // MO_Immediate, MO_TargetIndex, 346 // and MO_ConstantPoolIndex 347 } V; 348 unsigned Kind; // Same as in MachineOperand. 349 unsigned char TF; // TargetFlags. 350 351 ExtRoot(const MachineOperand &Op); 352 bool operator==(const ExtRoot &ER) const { 353 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; 354 } 355 bool operator!=(const ExtRoot &ER) const { 356 return !operator==(ER); 357 } 358 bool operator<(const ExtRoot &ER) const; 359 }; 360 361 struct ExtValue : public ExtRoot { 362 int32_t Offset; 363 364 ExtValue(const MachineOperand &Op); 365 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} 366 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} 367 bool operator<(const ExtValue &EV) const; 368 bool operator==(const ExtValue &EV) const { 369 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; 370 } 371 bool operator!=(const ExtValue &EV) const { 372 return !operator==(EV); 373 } 374 explicit operator MachineOperand() const; 375 }; 376 377 using IndexList = SetVector<unsigned>; 378 using ExtenderInit = std::pair<ExtValue, ExtExpr>; 379 using AssignmentMap = std::map<ExtenderInit, IndexList>; 380 using LocDefList = std::vector<std::pair<Loc, IndexList>>; 381 382 const HexagonSubtarget *HST = nullptr; 383 const HexagonInstrInfo *HII = nullptr; 384 const HexagonRegisterInfo *HRI = nullptr; 385 MachineDominatorTree *MDT = nullptr; 386 MachineRegisterInfo *MRI = nullptr; 387 std::vector<ExtDesc> Extenders; 388 std::vector<unsigned> NewRegs; 389 390 bool isStoreImmediate(unsigned Opc) const; 391 bool isRegOffOpcode(unsigned ExtOpc) const ; 392 unsigned getRegOffOpcode(unsigned ExtOpc) const; 393 unsigned getDirectRegReplacement(unsigned ExtOpc) const; 394 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; 395 OffsetRange getOffsetRange(const ExtDesc &ED) const; 396 OffsetRange getOffsetRange(Register Rd) const; 397 398 void recordExtender(MachineInstr &MI, unsigned OpNum); 399 void collectInstr(MachineInstr &MI); 400 void collect(MachineFunction &MF); 401 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 402 AssignmentMap &IMap); 403 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 404 LocDefList &Defs); 405 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); 406 bool replaceInstrExact(const ExtDesc &ED, Register ExtR); 407 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 408 Register ExtR, int32_t &Diff); 409 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); 410 bool replaceExtenders(const AssignmentMap &IMap); 411 412 unsigned getOperandIndex(const MachineInstr &MI, 413 const MachineOperand &Op) const; 414 const MachineOperand &getPredicateOp(const MachineInstr &MI) const; 415 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; 416 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; 417 418 friend struct PrintRegister; 419 friend struct PrintExpr; 420 friend struct PrintInit; 421 friend struct PrintIMap; 422 friend raw_ostream &operator<< (raw_ostream &OS, 423 const struct PrintRegister &P); 424 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); 425 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); 426 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); 427 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); 428 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); 429 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); 430 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); 431 }; 432 433 using HCE = HexagonConstExtenders; 434 435 LLVM_ATTRIBUTE_UNUSED 436 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { 437 if (OR.Min > OR.Max) 438 OS << '!'; 439 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) 440 << '+' << unsigned(OR.Offset); 441 return OS; 442 } 443 444 struct PrintRegister { 445 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) 446 : Rs(R), HRI(I) {} 447 HCE::Register Rs; 448 const HexagonRegisterInfo &HRI; 449 }; 450 451 LLVM_ATTRIBUTE_UNUSED 452 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { 453 if (P.Rs.Reg != 0) 454 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); 455 else 456 OS << "noreg"; 457 return OS; 458 } 459 460 struct PrintExpr { 461 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) 462 : Ex(E), HRI(I) {} 463 const HCE::ExtExpr &Ex; 464 const HexagonRegisterInfo &HRI; 465 }; 466 467 LLVM_ATTRIBUTE_UNUSED 468 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { 469 OS << "## " << (P.Ex.Neg ? "- " : "+ "); 470 if (P.Ex.Rs.Reg != 0) 471 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); 472 else 473 OS << "__"; 474 OS << " << " << P.Ex.S; 475 return OS; 476 } 477 478 struct PrintInit { 479 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) 480 : ExtI(EI), HRI(I) {} 481 const HCE::ExtenderInit &ExtI; 482 const HexagonRegisterInfo &HRI; 483 }; 484 485 LLVM_ATTRIBUTE_UNUSED 486 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { 487 OS << '[' << P.ExtI.first << ", " 488 << PrintExpr(P.ExtI.second, P.HRI) << ']'; 489 return OS; 490 } 491 492 LLVM_ATTRIBUTE_UNUSED 493 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { 494 assert(ED.OpNum != -1u); 495 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); 496 const MachineFunction &MF = *MBB.getParent(); 497 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 498 OS << "bb#" << MBB.getNumber() << ": "; 499 if (ED.Rd.Reg != 0) 500 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); 501 else 502 OS << "__"; 503 OS << " = " << PrintExpr(ED.Expr, HRI); 504 if (ED.IsDef) 505 OS << ", def"; 506 return OS; 507 } 508 509 LLVM_ATTRIBUTE_UNUSED 510 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { 511 switch (ER.Kind) { 512 case MachineOperand::MO_Immediate: 513 OS << "imm:" << ER.V.ImmVal; 514 break; 515 case MachineOperand::MO_FPImmediate: 516 OS << "fpi:" << *ER.V.CFP; 517 break; 518 case MachineOperand::MO_ExternalSymbol: 519 OS << "sym:" << *ER.V.SymbolName; 520 break; 521 case MachineOperand::MO_GlobalAddress: 522 OS << "gad:" << ER.V.GV->getName(); 523 break; 524 case MachineOperand::MO_BlockAddress: 525 OS << "blk:" << *ER.V.BA; 526 break; 527 case MachineOperand::MO_TargetIndex: 528 OS << "tgi:" << ER.V.ImmVal; 529 break; 530 case MachineOperand::MO_ConstantPoolIndex: 531 OS << "cpi:" << ER.V.ImmVal; 532 break; 533 case MachineOperand::MO_JumpTableIndex: 534 OS << "jti:" << ER.V.ImmVal; 535 break; 536 default: 537 OS << "???:" << ER.V.ImmVal; 538 break; 539 } 540 return OS; 541 } 542 543 LLVM_ATTRIBUTE_UNUSED 544 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { 545 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; 546 return OS; 547 } 548 549 struct PrintIMap { 550 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) 551 : IMap(M), HRI(I) {} 552 const HCE::AssignmentMap &IMap; 553 const HexagonRegisterInfo &HRI; 554 }; 555 556 LLVM_ATTRIBUTE_UNUSED 557 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { 558 OS << "{\n"; 559 for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) { 560 OS << " " << PrintInit(Q.first, P.HRI) << " -> {"; 561 for (unsigned I : Q.second) 562 OS << ' ' << I; 563 OS << " }\n"; 564 } 565 OS << "}\n"; 566 return OS; 567 } 568 } 569 570 INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", 571 "Hexagon constant-extender optimization", false, false) 572 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 573 INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", 574 "Hexagon constant-extender optimization", false, false) 575 576 static unsigned ReplaceCounter = 0; 577 578 char HCE::ID = 0; 579 580 #ifndef NDEBUG 581 LLVM_DUMP_METHOD void RangeTree::dump() const { 582 dbgs() << "Root: " << Root << '\n'; 583 if (Root) 584 dump(Root); 585 } 586 587 LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { 588 dbgs() << "Node: " << N << '\n'; 589 dbgs() << " Height: " << N->Height << '\n'; 590 dbgs() << " Count: " << N->Count << '\n'; 591 dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; 592 dbgs() << " Range: " << N->Range << '\n'; 593 dbgs() << " Left: " << N->Left << '\n'; 594 dbgs() << " Right: " << N->Right << "\n\n"; 595 596 if (N->Left) 597 dump(N->Left); 598 if (N->Right) 599 dump(N->Right); 600 } 601 #endif 602 603 void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { 604 if (N == nullptr) 605 return; 606 order(N->Left, Seq); 607 Seq.push_back(N); 608 order(N->Right, Seq); 609 } 610 611 void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, 612 SmallVectorImpl<Node*> &Seq) const { 613 if (N == nullptr || N->MaxEnd < P) 614 return; 615 nodesWith(N->Left, P, CheckA, Seq); 616 if (N->Range.Min <= P) { 617 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) 618 Seq.push_back(N); 619 nodesWith(N->Right, P, CheckA, Seq); 620 } 621 } 622 623 RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { 624 if (N == nullptr) 625 return new Node(R); 626 627 if (N->Range == R) { 628 N->Count++; 629 return N; 630 } 631 632 if (R < N->Range) 633 N->Left = add(N->Left, R); 634 else 635 N->Right = add(N->Right, R); 636 return rebalance(update(N)); 637 } 638 639 RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { 640 assert(N != nullptr); 641 642 if (N != D) { 643 assert(N->Range != D->Range && "N and D should not be equal"); 644 if (D->Range < N->Range) 645 N->Left = remove(N->Left, D); 646 else 647 N->Right = remove(N->Right, D); 648 return rebalance(update(N)); 649 } 650 651 // We got to the node we need to remove. If any of its children are 652 // missing, simply replace it with the other child. 653 if (N->Left == nullptr || N->Right == nullptr) 654 return (N->Left == nullptr) ? N->Right : N->Left; 655 656 // Find the rightmost child of N->Left, remove it and plug it in place 657 // of N. 658 Node *M = N->Left; 659 while (M->Right) 660 M = M->Right; 661 M->Left = remove(N->Left, M); 662 M->Right = N->Right; 663 return rebalance(update(M)); 664 } 665 666 RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { 667 assert(Higher->Right == Lower); 668 // The Lower node is on the right from Higher. Make sure that Lower's 669 // balance is greater to the right. Otherwise the rotation will create 670 // an unbalanced tree again. 671 if (height(Lower->Left) > height(Lower->Right)) 672 Lower = rotateRight(Lower->Left, Lower); 673 assert(height(Lower->Left) <= height(Lower->Right)); 674 Higher->Right = Lower->Left; 675 update(Higher); 676 Lower->Left = Higher; 677 update(Lower); 678 return Lower; 679 } 680 681 RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { 682 assert(Higher->Left == Lower); 683 // The Lower node is on the left from Higher. Make sure that Lower's 684 // balance is greater to the left. Otherwise the rotation will create 685 // an unbalanced tree again. 686 if (height(Lower->Left) < height(Lower->Right)) 687 Lower = rotateLeft(Lower->Right, Lower); 688 assert(height(Lower->Left) >= height(Lower->Right)); 689 Higher->Left = Lower->Right; 690 update(Higher); 691 Lower->Right = Higher; 692 update(Lower); 693 return Lower; 694 } 695 696 697 HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { 698 // Always store ImmVal, since it's the field used for comparisons. 699 V.ImmVal = 0; 700 if (Op.isImm()) 701 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). 702 else if (Op.isFPImm()) 703 V.CFP = Op.getFPImm(); 704 else if (Op.isSymbol()) 705 V.SymbolName = Op.getSymbolName(); 706 else if (Op.isGlobal()) 707 V.GV = Op.getGlobal(); 708 else if (Op.isBlockAddress()) 709 V.BA = Op.getBlockAddress(); 710 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) 711 V.ImmVal = Op.getIndex(); 712 else 713 llvm_unreachable("Unexpected operand type"); 714 715 Kind = Op.getType(); 716 TF = Op.getTargetFlags(); 717 } 718 719 bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { 720 if (Kind != ER.Kind) 721 return Kind < ER.Kind; 722 switch (Kind) { 723 case MachineOperand::MO_Immediate: 724 case MachineOperand::MO_TargetIndex: 725 case MachineOperand::MO_ConstantPoolIndex: 726 case MachineOperand::MO_JumpTableIndex: 727 return V.ImmVal < ER.V.ImmVal; 728 case MachineOperand::MO_FPImmediate: { 729 const APFloat &ThisF = V.CFP->getValueAPF(); 730 const APFloat &OtherF = ER.V.CFP->getValueAPF(); 731 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); 732 } 733 case MachineOperand::MO_ExternalSymbol: 734 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); 735 case MachineOperand::MO_GlobalAddress: 736 // Do not use GUIDs, since they depend on the source path. Moving the 737 // source file to a different directory could cause different GUID 738 // values for a pair of given symbols. These symbols could then compare 739 // "less" in one directory, but "greater" in another. 740 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); 741 return V.GV->getName() < ER.V.GV->getName(); 742 case MachineOperand::MO_BlockAddress: { 743 const BasicBlock *ThisB = V.BA->getBasicBlock(); 744 const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); 745 assert(ThisB->getParent() == OtherB->getParent()); 746 const Function &F = *ThisB->getParent(); 747 return std::distance(F.begin(), ThisB->getIterator()) < 748 std::distance(F.begin(), OtherB->getIterator()); 749 } 750 } 751 return V.ImmVal < ER.V.ImmVal; 752 } 753 754 HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { 755 if (Op.isImm()) 756 Offset = Op.getImm(); 757 else if (Op.isFPImm() || Op.isJTI()) 758 Offset = 0; 759 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || 760 Op.isCPI() || Op.isTargetIndex()) 761 Offset = Op.getOffset(); 762 else 763 llvm_unreachable("Unexpected operand type"); 764 } 765 766 bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { 767 const ExtRoot &ER = *this; 768 if (!(ER == ExtRoot(EV))) 769 return ER < EV; 770 return Offset < EV.Offset; 771 } 772 773 HCE::ExtValue::operator MachineOperand() const { 774 switch (Kind) { 775 case MachineOperand::MO_Immediate: 776 return MachineOperand::CreateImm(V.ImmVal + Offset); 777 case MachineOperand::MO_FPImmediate: 778 assert(Offset == 0); 779 return MachineOperand::CreateFPImm(V.CFP); 780 case MachineOperand::MO_ExternalSymbol: 781 assert(Offset == 0); 782 return MachineOperand::CreateES(V.SymbolName, TF); 783 case MachineOperand::MO_GlobalAddress: 784 return MachineOperand::CreateGA(V.GV, Offset, TF); 785 case MachineOperand::MO_BlockAddress: 786 return MachineOperand::CreateBA(V.BA, Offset, TF); 787 case MachineOperand::MO_TargetIndex: 788 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); 789 case MachineOperand::MO_ConstantPoolIndex: 790 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); 791 case MachineOperand::MO_JumpTableIndex: 792 assert(Offset == 0); 793 return MachineOperand::CreateJTI(V.ImmVal, TF); 794 default: 795 llvm_unreachable("Unhandled kind"); 796 } 797 } 798 799 bool HCE::isStoreImmediate(unsigned Opc) const { 800 switch (Opc) { 801 case Hexagon::S4_storeirbt_io: 802 case Hexagon::S4_storeirbf_io: 803 case Hexagon::S4_storeirht_io: 804 case Hexagon::S4_storeirhf_io: 805 case Hexagon::S4_storeirit_io: 806 case Hexagon::S4_storeirif_io: 807 case Hexagon::S4_storeirb_io: 808 case Hexagon::S4_storeirh_io: 809 case Hexagon::S4_storeiri_io: 810 return true; 811 default: 812 break; 813 } 814 return false; 815 } 816 817 bool HCE::isRegOffOpcode(unsigned Opc) const { 818 switch (Opc) { 819 case Hexagon::L2_loadrub_io: 820 case Hexagon::L2_loadrb_io: 821 case Hexagon::L2_loadruh_io: 822 case Hexagon::L2_loadrh_io: 823 case Hexagon::L2_loadri_io: 824 case Hexagon::L2_loadrd_io: 825 case Hexagon::L2_loadbzw2_io: 826 case Hexagon::L2_loadbzw4_io: 827 case Hexagon::L2_loadbsw2_io: 828 case Hexagon::L2_loadbsw4_io: 829 case Hexagon::L2_loadalignh_io: 830 case Hexagon::L2_loadalignb_io: 831 case Hexagon::L2_ploadrubt_io: 832 case Hexagon::L2_ploadrubf_io: 833 case Hexagon::L2_ploadrbt_io: 834 case Hexagon::L2_ploadrbf_io: 835 case Hexagon::L2_ploadruht_io: 836 case Hexagon::L2_ploadruhf_io: 837 case Hexagon::L2_ploadrht_io: 838 case Hexagon::L2_ploadrhf_io: 839 case Hexagon::L2_ploadrit_io: 840 case Hexagon::L2_ploadrif_io: 841 case Hexagon::L2_ploadrdt_io: 842 case Hexagon::L2_ploadrdf_io: 843 case Hexagon::S2_storerb_io: 844 case Hexagon::S2_storerh_io: 845 case Hexagon::S2_storerf_io: 846 case Hexagon::S2_storeri_io: 847 case Hexagon::S2_storerd_io: 848 case Hexagon::S2_pstorerbt_io: 849 case Hexagon::S2_pstorerbf_io: 850 case Hexagon::S2_pstorerht_io: 851 case Hexagon::S2_pstorerhf_io: 852 case Hexagon::S2_pstorerft_io: 853 case Hexagon::S2_pstorerff_io: 854 case Hexagon::S2_pstorerit_io: 855 case Hexagon::S2_pstorerif_io: 856 case Hexagon::S2_pstorerdt_io: 857 case Hexagon::S2_pstorerdf_io: 858 case Hexagon::A2_addi: 859 return true; 860 default: 861 break; 862 } 863 return false; 864 } 865 866 unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { 867 // If there exists an instruction that takes a register and offset, 868 // that corresponds to the ExtOpc, return it, otherwise return 0. 869 using namespace Hexagon; 870 switch (ExtOpc) { 871 case A2_tfrsi: return A2_addi; 872 default: 873 break; 874 } 875 const MCInstrDesc &D = HII->get(ExtOpc); 876 if (D.mayLoad() || D.mayStore()) { 877 uint64_t F = D.TSFlags; 878 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; 879 switch (AM) { 880 case HexagonII::Absolute: 881 case HexagonII::AbsoluteSet: 882 case HexagonII::BaseLongOffset: 883 switch (ExtOpc) { 884 case PS_loadrubabs: 885 case L4_loadrub_ap: 886 case L4_loadrub_ur: return L2_loadrub_io; 887 case PS_loadrbabs: 888 case L4_loadrb_ap: 889 case L4_loadrb_ur: return L2_loadrb_io; 890 case PS_loadruhabs: 891 case L4_loadruh_ap: 892 case L4_loadruh_ur: return L2_loadruh_io; 893 case PS_loadrhabs: 894 case L4_loadrh_ap: 895 case L4_loadrh_ur: return L2_loadrh_io; 896 case PS_loadriabs: 897 case L4_loadri_ap: 898 case L4_loadri_ur: return L2_loadri_io; 899 case PS_loadrdabs: 900 case L4_loadrd_ap: 901 case L4_loadrd_ur: return L2_loadrd_io; 902 case L4_loadbzw2_ap: 903 case L4_loadbzw2_ur: return L2_loadbzw2_io; 904 case L4_loadbzw4_ap: 905 case L4_loadbzw4_ur: return L2_loadbzw4_io; 906 case L4_loadbsw2_ap: 907 case L4_loadbsw2_ur: return L2_loadbsw2_io; 908 case L4_loadbsw4_ap: 909 case L4_loadbsw4_ur: return L2_loadbsw4_io; 910 case L4_loadalignh_ap: 911 case L4_loadalignh_ur: return L2_loadalignh_io; 912 case L4_loadalignb_ap: 913 case L4_loadalignb_ur: return L2_loadalignb_io; 914 case L4_ploadrubt_abs: return L2_ploadrubt_io; 915 case L4_ploadrubf_abs: return L2_ploadrubf_io; 916 case L4_ploadrbt_abs: return L2_ploadrbt_io; 917 case L4_ploadrbf_abs: return L2_ploadrbf_io; 918 case L4_ploadruht_abs: return L2_ploadruht_io; 919 case L4_ploadruhf_abs: return L2_ploadruhf_io; 920 case L4_ploadrht_abs: return L2_ploadrht_io; 921 case L4_ploadrhf_abs: return L2_ploadrhf_io; 922 case L4_ploadrit_abs: return L2_ploadrit_io; 923 case L4_ploadrif_abs: return L2_ploadrif_io; 924 case L4_ploadrdt_abs: return L2_ploadrdt_io; 925 case L4_ploadrdf_abs: return L2_ploadrdf_io; 926 case PS_storerbabs: 927 case S4_storerb_ap: 928 case S4_storerb_ur: return S2_storerb_io; 929 case PS_storerhabs: 930 case S4_storerh_ap: 931 case S4_storerh_ur: return S2_storerh_io; 932 case PS_storerfabs: 933 case S4_storerf_ap: 934 case S4_storerf_ur: return S2_storerf_io; 935 case PS_storeriabs: 936 case S4_storeri_ap: 937 case S4_storeri_ur: return S2_storeri_io; 938 case PS_storerdabs: 939 case S4_storerd_ap: 940 case S4_storerd_ur: return S2_storerd_io; 941 case S4_pstorerbt_abs: return S2_pstorerbt_io; 942 case S4_pstorerbf_abs: return S2_pstorerbf_io; 943 case S4_pstorerht_abs: return S2_pstorerht_io; 944 case S4_pstorerhf_abs: return S2_pstorerhf_io; 945 case S4_pstorerft_abs: return S2_pstorerft_io; 946 case S4_pstorerff_abs: return S2_pstorerff_io; 947 case S4_pstorerit_abs: return S2_pstorerit_io; 948 case S4_pstorerif_abs: return S2_pstorerif_io; 949 case S4_pstorerdt_abs: return S2_pstorerdt_io; 950 case S4_pstorerdf_abs: return S2_pstorerdf_io; 951 default: 952 break; 953 } 954 break; 955 case HexagonII::BaseImmOffset: 956 if (!isStoreImmediate(ExtOpc)) 957 return ExtOpc; 958 break; 959 default: 960 break; 961 } 962 } 963 return 0; 964 } 965 966 unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { 967 switch (ExtOpc) { 968 case Hexagon::A2_addi: return Hexagon::A2_add; 969 case Hexagon::A2_andir: return Hexagon::A2_and; 970 case Hexagon::A2_combineii: return Hexagon::A4_combineri; 971 case Hexagon::A2_orir: return Hexagon::A2_or; 972 case Hexagon::A2_paddif: return Hexagon::A2_paddf; 973 case Hexagon::A2_paddit: return Hexagon::A2_paddt; 974 case Hexagon::A2_subri: return Hexagon::A2_sub; 975 case Hexagon::A2_tfrsi: return TargetOpcode::COPY; 976 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; 977 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; 978 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; 979 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; 980 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; 981 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; 982 case Hexagon::A4_combineii: return Hexagon::A4_combineir; 983 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; 984 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; 985 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; 986 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; 987 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; 988 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; 989 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; 990 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; 991 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; 992 case Hexagon::C2_muxii: return Hexagon::C2_muxir; 993 case Hexagon::C2_muxir: return Hexagon::C2_mux; 994 case Hexagon::C2_muxri: return Hexagon::C2_mux; 995 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; 996 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; 997 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; 998 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T 999 /* No M2_macsin */ 1000 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T 1001 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; 1002 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; 1003 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; 1004 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T 1005 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; 1006 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T 1007 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T 1008 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T 1009 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T 1010 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T 1011 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T 1012 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T 1013 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T 1014 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T 1015 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T 1016 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T 1017 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T 1018 1019 // Store-immediates: 1020 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; 1021 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; 1022 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; 1023 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; 1024 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; 1025 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; 1026 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; 1027 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; 1028 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; 1029 1030 default: 1031 break; 1032 } 1033 return 0; 1034 } 1035 1036 // Return the allowable deviation from the current value of Rb (i.e. the 1037 // range of values that can be added to the current value) which the 1038 // instruction MI can accommodate. 1039 // The instruction MI is a user of register Rb, which is defined via an 1040 // extender. It may be possible for MI to be tweaked to work for a register 1041 // defined with a slightly different value. For example 1042 // ... = L2_loadrub_io Rb, 1 1043 // can be modifed to be 1044 // ... = L2_loadrub_io Rb', 0 1045 // if Rb' = Rb+1. 1046 // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range 1047 // for L2_loadrub with offset 0. That means that Rb could be replaced with 1048 // Rc, where Rc-Rb belongs to [Min+1, Max+1]. 1049 OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { 1050 unsigned Opc = MI.getOpcode(); 1051 // Instructions that are constant-extended may be replaced with something 1052 // else that no longer offers the same range as the original. 1053 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) 1054 return OffsetRange::zero(); 1055 1056 if (Opc == Hexagon::A2_addi) { 1057 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); 1058 if (Rb != Register(Op1) || !Op2.isImm()) 1059 return OffsetRange::zero(); 1060 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; 1061 return R.shift(Op2.getImm()); 1062 } 1063 1064 // HII::getBaseAndOffsetPosition returns the increment position as "offset". 1065 if (HII->isPostIncrement(MI)) 1066 return OffsetRange::zero(); 1067 1068 const MCInstrDesc &D = HII->get(Opc); 1069 assert(D.mayLoad() || D.mayStore()); 1070 1071 unsigned BaseP, OffP; 1072 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || 1073 Rb != Register(MI.getOperand(BaseP)) || 1074 !MI.getOperand(OffP).isImm()) 1075 return OffsetRange::zero(); 1076 1077 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1078 HexagonII::MemAccesSizeMask; 1079 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1080 unsigned L = Log2_32(A); 1081 unsigned S = 10+L; // sint11_L 1082 int32_t Min = -alignDown((1<<S)-1, A); 1083 1084 // The range will be shifted by Off. To prefer non-negative offsets, 1085 // adjust Max accordingly. 1086 int32_t Off = MI.getOperand(OffP).getImm(); 1087 int32_t Max = Off >= 0 ? 0 : -Off; 1088 1089 OffsetRange R = { Min, Max, A }; 1090 return R.shift(Off); 1091 } 1092 1093 // Return the allowable deviation from the current value of the extender ED, 1094 // for which the instruction corresponding to ED can be modified without 1095 // using an extender. 1096 // The instruction uses the extender directly. It will be replaced with 1097 // another instruction, say MJ, where the extender will be replaced with a 1098 // register. MJ can allow some variability with respect to the value of 1099 // that register, as is the case with indexed memory instructions. 1100 OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { 1101 // The only way that there can be a non-zero range available is if 1102 // the instruction using ED will be converted to an indexed memory 1103 // instruction. 1104 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); 1105 switch (IdxOpc) { 1106 case 0: 1107 return OffsetRange::zero(); 1108 case Hexagon::A2_addi: // s16 1109 return { -32767, 32767, 1 }; 1110 case Hexagon::A2_subri: // s10 1111 return { -511, 511, 1 }; 1112 } 1113 1114 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) 1115 return OffsetRange::zero(); 1116 const MCInstrDesc &D = HII->get(IdxOpc); 1117 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1118 HexagonII::MemAccesSizeMask; 1119 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1120 unsigned L = Log2_32(A); 1121 unsigned S = 10+L; // sint11_L 1122 int32_t Min = -alignDown((1<<S)-1, A); 1123 int32_t Max = 0; // Force non-negative offsets. 1124 return { Min, Max, A }; 1125 } 1126 1127 // Get the allowable deviation from the current value of Rd by checking 1128 // all uses of Rd. 1129 OffsetRange HCE::getOffsetRange(Register Rd) const { 1130 OffsetRange Range; 1131 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { 1132 // Make sure that the register being used by this operand is identical 1133 // to the register that was defined: using a different subregister 1134 // precludes any non-trivial range. 1135 if (Rd != Register(Op)) 1136 return OffsetRange::zero(); 1137 Range.intersect(getOffsetRange(Rd, *Op.getParent())); 1138 } 1139 return Range; 1140 } 1141 1142 void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { 1143 unsigned Opc = MI.getOpcode(); 1144 ExtDesc ED; 1145 ED.OpNum = OpNum; 1146 1147 bool IsLoad = MI.mayLoad(); 1148 bool IsStore = MI.mayStore(); 1149 1150 // Fixed stack slots have negative indexes, and they cannot be used 1151 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat 1152 // unfortunate, but should not be a frequent thing. 1153 for (MachineOperand &Op : MI.operands()) 1154 if (Op.isFI() && Op.getIndex() < 0) 1155 return; 1156 1157 if (IsLoad || IsStore) { 1158 unsigned AM = HII->getAddrMode(MI); 1159 switch (AM) { 1160 // (Re: ##Off + Rb<<S) = Rd: ##Val 1161 case HexagonII::Absolute: // (__: ## + __<<_) 1162 break; 1163 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) 1164 ED.Rd = MI.getOperand(OpNum-1); 1165 ED.IsDef = true; 1166 break; 1167 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) 1168 // Store-immediates are treated as non-memory operations, since 1169 // it's the value being stored that is extended (as opposed to 1170 // a part of the address). 1171 if (!isStoreImmediate(Opc)) 1172 ED.Expr.Rs = MI.getOperand(OpNum-1); 1173 break; 1174 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) 1175 ED.Expr.Rs = MI.getOperand(OpNum-2); 1176 ED.Expr.S = MI.getOperand(OpNum-1).getImm(); 1177 break; 1178 default: 1179 llvm_unreachable("Unhandled memory instruction"); 1180 } 1181 } else { 1182 switch (Opc) { 1183 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) 1184 ED.Rd = MI.getOperand(0); 1185 ED.IsDef = true; 1186 break; 1187 case Hexagon::A2_combineii: // (Rd: ## + __<<_) 1188 case Hexagon::A4_combineir: 1189 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; 1190 ED.IsDef = true; 1191 break; 1192 case Hexagon::A4_combineri: // (Rd: ## + __<<_) 1193 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; 1194 ED.IsDef = true; 1195 break; 1196 case Hexagon::A2_addi: // (Rd: ## + Rs<<0) 1197 ED.Rd = MI.getOperand(0); 1198 ED.Expr.Rs = MI.getOperand(OpNum-1); 1199 break; 1200 case Hexagon::M2_accii: // (__: ## + Rs<<0) 1201 case Hexagon::M2_naccii: 1202 case Hexagon::S4_addaddi: 1203 ED.Expr.Rs = MI.getOperand(OpNum-1); 1204 break; 1205 case Hexagon::A2_subri: // (Rd: ## - Rs<<0) 1206 ED.Rd = MI.getOperand(0); 1207 ED.Expr.Rs = MI.getOperand(OpNum+1); 1208 ED.Expr.Neg = true; 1209 break; 1210 case Hexagon::S4_subaddi: // (__: ## - Rs<<0) 1211 ED.Expr.Rs = MI.getOperand(OpNum+1); 1212 ED.Expr.Neg = true; 1213 break; 1214 default: // (__: ## + __<<_) 1215 break; 1216 } 1217 } 1218 1219 ED.UseMI = &MI; 1220 1221 // Ignore unnamed globals. 1222 ExtRoot ER(ED.getOp()); 1223 if (ER.Kind == MachineOperand::MO_GlobalAddress) 1224 if (ER.V.GV->getName().empty()) 1225 return; 1226 // Ignore block address that points to block in another function 1227 if (ER.Kind == MachineOperand::MO_BlockAddress) 1228 if (ER.V.BA->getFunction() != &(MI.getMF()->getFunction())) 1229 return; 1230 Extenders.push_back(ED); 1231 } 1232 1233 void HCE::collectInstr(MachineInstr &MI) { 1234 if (!HII->isConstExtended(MI)) 1235 return; 1236 1237 // Skip some non-convertible instructions. 1238 unsigned Opc = MI.getOpcode(); 1239 switch (Opc) { 1240 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). 1241 case Hexagon::C4_addipc: 1242 case Hexagon::S4_or_andi: 1243 case Hexagon::S4_or_andix: 1244 case Hexagon::S4_or_ori: 1245 return; 1246 } 1247 recordExtender(MI, HII->getCExtOpNum(MI)); 1248 } 1249 1250 void HCE::collect(MachineFunction &MF) { 1251 Extenders.clear(); 1252 for (MachineBasicBlock &MBB : MF) { 1253 // Skip unreachable blocks. 1254 if (MBB.getNumber() == -1) 1255 continue; 1256 for (MachineInstr &MI : MBB) 1257 collectInstr(MI); 1258 } 1259 } 1260 1261 void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 1262 AssignmentMap &IMap) { 1263 // Basic correctness: make sure that all extenders in the range [Begin..End) 1264 // share the same root ER. 1265 for (unsigned I = Begin; I != End; ++I) 1266 assert(ER == ExtRoot(Extenders[I].getOp())); 1267 1268 // Construct the list of ranges, such that for each P in Ranges[I], 1269 // a register Reg = ER+P can be used in place of Extender[I]. If the 1270 // instruction allows, uses in the form of Reg+Off are considered 1271 // (here, Off = required_value - P). 1272 std::vector<OffsetRange> Ranges(End-Begin); 1273 1274 // For each extender that is a def, visit all uses of the defined register, 1275 // and produce an offset range that works for all uses. The def doesn't 1276 // have to be checked, because it can become dead if all uses can be updated 1277 // to use a different reg/offset. 1278 for (unsigned I = Begin; I != End; ++I) { 1279 const ExtDesc &ED = Extenders[I]; 1280 if (!ED.IsDef) 1281 continue; 1282 ExtValue EV(ED); 1283 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); 1284 assert(ED.Rd.Reg != 0); 1285 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); 1286 // A2_tfrsi is a special case: it will be replaced with A2_addi, which 1287 // has a 16-bit signed offset. This means that A2_tfrsi not only has a 1288 // range coming from its uses, but also from the fact that its replacement 1289 // has a range as well. 1290 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { 1291 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded 1292 Ranges[I-Begin].extendBy(-D).extendBy(D); 1293 } 1294 } 1295 1296 // Visit all non-def extenders. For each one, determine the offset range 1297 // available for it. 1298 for (unsigned I = Begin; I != End; ++I) { 1299 const ExtDesc &ED = Extenders[I]; 1300 if (ED.IsDef) 1301 continue; 1302 ExtValue EV(ED); 1303 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); 1304 OffsetRange Dev = getOffsetRange(ED); 1305 Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); 1306 } 1307 1308 // Here for each I there is a corresponding Range[I]. Construct the 1309 // inverse map, that to each range will assign the set of indexes in 1310 // [Begin..End) that this range corresponds to. 1311 std::map<OffsetRange, IndexList> RangeMap; 1312 for (unsigned I = Begin; I != End; ++I) 1313 RangeMap[Ranges[I-Begin]].insert(I); 1314 1315 LLVM_DEBUG({ 1316 dbgs() << "Ranges\n"; 1317 for (unsigned I = Begin; I != End; ++I) 1318 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; 1319 dbgs() << "RangeMap\n"; 1320 for (auto &P : RangeMap) { 1321 dbgs() << " " << P.first << " ->"; 1322 for (unsigned I : P.second) 1323 dbgs() << ' ' << I; 1324 dbgs() << '\n'; 1325 } 1326 }); 1327 1328 // Select the definition points, and generate the assignment between 1329 // these points and the uses. 1330 1331 // For each candidate offset, keep a pair CandData consisting of 1332 // the total number of ranges containing that candidate, and the 1333 // vector of corresponding RangeTree nodes. 1334 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; 1335 std::map<int32_t, CandData> CandMap; 1336 1337 RangeTree Tree; 1338 for (const OffsetRange &R : Ranges) 1339 Tree.add(R); 1340 SmallVector<RangeTree::Node*,8> Nodes; 1341 Tree.order(Nodes); 1342 1343 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, 1344 uint8_t Align, uint8_t Offset) { 1345 for (RangeTree::Node *N : Nodes) { 1346 if (N->Range.Align <= Align || N->Range.Offset < Offset) 1347 continue; 1348 if ((N->Range.Offset - Offset) % Align != 0) 1349 continue; 1350 Align = N->Range.Align; 1351 Offset = N->Range.Offset; 1352 } 1353 return std::make_pair(Align, Offset); 1354 }; 1355 1356 // Construct the set of all potential definition points from the endpoints 1357 // of the ranges. If a given endpoint also belongs to a different range, 1358 // but with a higher alignment, also consider the more-highly-aligned 1359 // value of this endpoint. 1360 std::set<int32_t> CandSet; 1361 for (RangeTree::Node *N : Nodes) { 1362 const OffsetRange &R = N->Range; 1363 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset); 1364 CandSet.insert(R.Min); 1365 if (R.Align < P0.first) 1366 CandSet.insert(adjustUp(R.Min, P0.first, P0.second)); 1367 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset); 1368 CandSet.insert(R.Max); 1369 if (R.Align < P1.first) 1370 CandSet.insert(adjustDown(R.Max, P1.first, P1.second)); 1371 } 1372 1373 // Build the assignment map: candidate C -> { list of extender indexes }. 1374 // This has to be done iteratively: 1375 // - pick the candidate that covers the maximum number of extenders, 1376 // - add the candidate to the map, 1377 // - remove the extenders from the pool. 1378 while (true) { 1379 using CMap = std::map<int32_t,unsigned>; 1380 CMap Counts; 1381 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { 1382 auto &&V = Tree.nodesWith(*It); 1383 unsigned N = std::accumulate(V.begin(), V.end(), 0u, 1384 [](unsigned Acc, const RangeTree::Node *N) { 1385 return Acc + N->Count; 1386 }); 1387 if (N != 0) 1388 Counts.insert({*It, N}); 1389 It = (N != 0) ? std::next(It) : CandSet.erase(It); 1390 } 1391 if (Counts.empty()) 1392 break; 1393 1394 // Find the best candidate with respect to the number of extenders covered. 1395 auto BestIt = llvm::max_element( 1396 Counts, [](const CMap::value_type &A, const CMap::value_type &B) { 1397 return A.second < B.second || (A.second == B.second && A < B); 1398 }); 1399 int32_t Best = BestIt->first; 1400 ExtValue BestV(ER, Best); 1401 for (RangeTree::Node *N : Tree.nodesWith(Best)) { 1402 for (unsigned I : RangeMap[N->Range]) 1403 IMap[{BestV,Extenders[I].Expr}].insert(I); 1404 Tree.erase(N); 1405 } 1406 } 1407 1408 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); 1409 1410 // There is some ambiguity in what initializer should be used, if the 1411 // descriptor's subexpression is non-trivial: it can be the entire 1412 // subexpression (which is what has been done so far), or it can be 1413 // the extender's value itself, if all corresponding extenders have the 1414 // exact value of the initializer (i.e. require offset of 0). 1415 1416 // To reduce the number of initializers, merge such special cases. 1417 for (std::pair<const ExtenderInit,IndexList> &P : IMap) { 1418 // Skip trivial initializers. 1419 if (P.first.second.trivial()) 1420 continue; 1421 // If the corresponding trivial initializer does not exist, skip this 1422 // entry. 1423 const ExtValue &EV = P.first.first; 1424 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); 1425 if (F == IMap.end()) 1426 continue; 1427 1428 // Finally, check if all extenders have the same value as the initializer. 1429 // Make sure that extenders that are a part of a stack address are not 1430 // merged with those that aren't. Stack addresses need an offset field 1431 // (to be used by frame index elimination), while non-stack expressions 1432 // can be replaced with forms (such as rr) that do not have such a field. 1433 // Example: 1434 // 1435 // Collected 3 extenders 1436 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def 1437 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 1438 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 1439 // Ranges 1440 // 0. [-756,267]a1+0 1441 // 1. [-756,267]a1+0 1442 // 2. [201,65735]a1+0 1443 // RangeMap 1444 // [-756,267]a1+0 -> 0 1 1445 // [201,65735]a1+0 -> 2 1446 // IMap (before fixup) = { 1447 // [imm:0 off:267, ## + __ << 0] -> { 2 } 1448 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } 1449 // } 1450 // IMap (after fixup) = { 1451 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } 1452 // [imm:0 off:267, ## + SS#1 << 0] -> { } 1453 // } 1454 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] 1455 // %12:intregs = A2_tfrsi 267 1456 // 1457 // The result was 1458 // %12:intregs = A2_tfrsi 267 1459 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 1460 // Which became 1461 // r0 = #267 1462 // if (p0.new) memb(r0+r29<<#4) = r2 1463 1464 bool IsStack = any_of(F->second, [this](unsigned I) { 1465 return Extenders[I].Expr.Rs.isSlot(); 1466 }); 1467 auto SameValue = [&EV,this,IsStack](unsigned I) { 1468 const ExtDesc &ED = Extenders[I]; 1469 return ED.Expr.Rs.isSlot() == IsStack && 1470 ExtValue(ED).Offset == EV.Offset; 1471 }; 1472 if (all_of(P.second, SameValue)) { 1473 F->second.insert(P.second.begin(), P.second.end()); 1474 P.second.clear(); 1475 } 1476 } 1477 1478 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); 1479 } 1480 1481 void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 1482 LocDefList &Defs) { 1483 if (Refs.empty()) 1484 return; 1485 1486 // The placement calculation is somewhat simple right now: it finds a 1487 // single location for the def that dominates all refs. Since this may 1488 // place the def far from the uses, producing several locations for 1489 // defs that collectively dominate all refs could be better. 1490 // For now only do the single one. 1491 DenseSet<MachineBasicBlock*> Blocks; 1492 DenseSet<MachineInstr*> RefMIs; 1493 const ExtDesc &ED0 = Extenders[Refs[0]]; 1494 MachineBasicBlock *DomB = ED0.UseMI->getParent(); 1495 RefMIs.insert(ED0.UseMI); 1496 Blocks.insert(DomB); 1497 for (unsigned i = 1, e = Refs.size(); i != e; ++i) { 1498 const ExtDesc &ED = Extenders[Refs[i]]; 1499 MachineBasicBlock *MBB = ED.UseMI->getParent(); 1500 RefMIs.insert(ED.UseMI); 1501 DomB = MDT->findNearestCommonDominator(DomB, MBB); 1502 Blocks.insert(MBB); 1503 } 1504 1505 #ifndef NDEBUG 1506 // The block DomB should be dominated by the def of each register used 1507 // in the initializer. 1508 Register Rs = ExtI.second.Rs; // Only one reg allowed now. 1509 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; 1510 1511 // This should be guaranteed given that the entire expression is used 1512 // at each instruction in Refs. Add an assertion just in case. 1513 assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); 1514 #endif 1515 1516 MachineBasicBlock::iterator It; 1517 if (Blocks.count(DomB)) { 1518 // Try to find the latest possible location for the def. 1519 MachineBasicBlock::iterator End = DomB->end(); 1520 for (It = DomB->begin(); It != End; ++It) 1521 if (RefMIs.count(&*It)) 1522 break; 1523 assert(It != End && "Should have found a ref in DomB"); 1524 } else { 1525 // DomB does not contain any refs. 1526 It = DomB->getFirstTerminator(); 1527 } 1528 Loc DefLoc(DomB, It); 1529 Defs.emplace_back(DefLoc, Refs); 1530 } 1531 1532 HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { 1533 llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1534 MachineBasicBlock &MBB = *DefL.Block; 1535 MachineBasicBlock::iterator At = DefL.At; 1536 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); 1537 const ExtValue &EV = ExtI.first; 1538 MachineOperand ExtOp(EV); 1539 1540 const ExtExpr &Ex = ExtI.second; 1541 const MachineInstr *InitI = nullptr; 1542 1543 if (Ex.Rs.isSlot()) { 1544 assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); 1545 assert(!Ex.Neg && "Cannot subtract a stack slot"); 1546 // DefR = PS_fi Rb,##EV 1547 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) 1548 .add(MachineOperand(Ex.Rs)) 1549 .add(ExtOp); 1550 } else { 1551 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); 1552 if (Ex.trivial()) { 1553 // DefR = ##EV 1554 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) 1555 .add(ExtOp); 1556 } else if (Ex.S == 0) { 1557 if (Ex.Neg) { 1558 // DefR = sub(##EV,Rb) 1559 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) 1560 .add(ExtOp) 1561 .add(MachineOperand(Ex.Rs)); 1562 } else { 1563 // DefR = add(Rb,##EV) 1564 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) 1565 .add(MachineOperand(Ex.Rs)) 1566 .add(ExtOp); 1567 } 1568 } else { 1569 if (HST->useCompound()) { 1570 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri 1571 : Hexagon::S4_addi_asl_ri; 1572 // DefR = add(##EV,asl(Rb,S)) 1573 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) 1574 .add(ExtOp) 1575 .add(MachineOperand(Ex.Rs)) 1576 .addImm(Ex.S); 1577 } else { 1578 // No compounds are available. It is not clear whether we should 1579 // even process such extenders where the initializer cannot be 1580 // a single instruction, but do it for now. 1581 llvm::Register TmpR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1582 BuildMI(MBB, At, dl, HII->get(Hexagon::S2_asl_i_r), TmpR) 1583 .add(MachineOperand(Ex.Rs)) 1584 .addImm(Ex.S); 1585 if (Ex.Neg) 1586 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) 1587 .add(ExtOp) 1588 .add(MachineOperand(Register(TmpR, 0))); 1589 else 1590 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) 1591 .add(MachineOperand(Register(TmpR, 0))) 1592 .add(ExtOp); 1593 } 1594 } 1595 } 1596 1597 assert(InitI); 1598 (void)InitI; 1599 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() 1600 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " 1601 << *InitI); 1602 return { DefR, 0 }; 1603 } 1604 1605 // Replace the extender at index Idx with the register ExtR. 1606 bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { 1607 MachineInstr &MI = *ED.UseMI; 1608 MachineBasicBlock &MBB = *MI.getParent(); 1609 MachineBasicBlock::iterator At = MI.getIterator(); 1610 DebugLoc dl = MI.getDebugLoc(); 1611 unsigned ExtOpc = MI.getOpcode(); 1612 1613 // With a few exceptions, direct replacement amounts to creating an 1614 // instruction with a corresponding register opcode, with all operands 1615 // the same, except for the register used in place of the extender. 1616 unsigned RegOpc = getDirectRegReplacement(ExtOpc); 1617 1618 if (RegOpc == TargetOpcode::REG_SEQUENCE) { 1619 if (ExtOpc == Hexagon::A4_combineri) 1620 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1621 .add(MI.getOperand(0)) 1622 .add(MI.getOperand(1)) 1623 .addImm(Hexagon::isub_hi) 1624 .add(MachineOperand(ExtR)) 1625 .addImm(Hexagon::isub_lo); 1626 else if (ExtOpc == Hexagon::A4_combineir) 1627 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1628 .add(MI.getOperand(0)) 1629 .add(MachineOperand(ExtR)) 1630 .addImm(Hexagon::isub_hi) 1631 .add(MI.getOperand(2)) 1632 .addImm(Hexagon::isub_lo); 1633 else 1634 llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); 1635 MBB.erase(MI); 1636 return true; 1637 } 1638 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { 1639 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt 1640 : Hexagon::C2_cmpltu; 1641 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1642 .add(MI.getOperand(0)) 1643 .add(MachineOperand(ExtR)) 1644 .add(MI.getOperand(1)); 1645 MBB.erase(MI); 1646 return true; 1647 } 1648 1649 if (RegOpc != 0) { 1650 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1651 unsigned RegN = ED.OpNum; 1652 // Copy all operands except the one that has the extender. 1653 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1654 if (i != RegN) 1655 MIB.add(MI.getOperand(i)); 1656 else 1657 MIB.add(MachineOperand(ExtR)); 1658 } 1659 MIB.cloneMemRefs(MI); 1660 MBB.erase(MI); 1661 return true; 1662 } 1663 1664 if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) { 1665 // For memory instructions, there is an asymmetry in the addressing 1666 // modes. Addressing modes allowing extenders can be replaced with 1667 // addressing modes that use registers, but the order of operands 1668 // (or even their number) may be different. 1669 // Replacements: 1670 // BaseImmOffset (io) -> BaseRegOffset (rr) 1671 // BaseLongOffset (ur) -> BaseRegOffset (rr) 1672 unsigned RegOpc, Shift; 1673 unsigned AM = HII->getAddrMode(MI); 1674 if (AM == HexagonII::BaseImmOffset) { 1675 RegOpc = HII->changeAddrMode_io_rr(ExtOpc); 1676 Shift = 0; 1677 } else if (AM == HexagonII::BaseLongOffset) { 1678 // Loads: Rd = L4_loadri_ur Rs, S, ## 1679 // Stores: S4_storeri_ur Rs, S, ##, Rt 1680 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); 1681 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); 1682 } else { 1683 llvm_unreachable("Unexpected addressing mode"); 1684 } 1685 #ifndef NDEBUG 1686 if (RegOpc == -1u) { 1687 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; 1688 llvm_unreachable("No corresponding rr instruction"); 1689 } 1690 #endif 1691 1692 unsigned BaseP, OffP; 1693 HII->getBaseAndOffsetPosition(MI, BaseP, OffP); 1694 1695 // Build an rr instruction: (RegOff + RegBase<<0) 1696 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1697 // First, add the def for loads. 1698 if (MI.mayLoad()) 1699 MIB.add(getLoadResultOp(MI)); 1700 // Handle possible predication. 1701 if (HII->isPredicated(MI)) 1702 MIB.add(getPredicateOp(MI)); 1703 // Build the address. 1704 MIB.add(MachineOperand(ExtR)); // RegOff 1705 MIB.add(MI.getOperand(BaseP)); // RegBase 1706 MIB.addImm(Shift); // << Shift 1707 // Add the stored value for stores. 1708 if (MI.mayStore()) 1709 MIB.add(getStoredValueOp(MI)); 1710 MIB.cloneMemRefs(MI); 1711 MBB.erase(MI); 1712 return true; 1713 } 1714 1715 #ifndef NDEBUG 1716 dbgs() << '\n' << MI; 1717 #endif 1718 llvm_unreachable("Unhandled exact replacement"); 1719 return false; 1720 } 1721 1722 // Replace the extender ED with a form corresponding to the initializer ExtI. 1723 bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 1724 Register ExtR, int32_t &Diff) { 1725 MachineInstr &MI = *ED.UseMI; 1726 MachineBasicBlock &MBB = *MI.getParent(); 1727 MachineBasicBlock::iterator At = MI.getIterator(); 1728 DebugLoc dl = MI.getDebugLoc(); 1729 unsigned ExtOpc = MI.getOpcode(); 1730 1731 if (ExtOpc == Hexagon::A2_tfrsi) { 1732 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces 1733 // another range. One range is the one that's common to all tfrsi's uses, 1734 // this one is the range of immediates in A2_addi. When calculating ranges, 1735 // the addi's 16-bit argument was included, so now we need to make it such 1736 // that the produced value is in the range for the uses alone. 1737 // Most of the time, simply adding Diff will make the addi produce exact 1738 // result, but if Diff is outside of the 16-bit range, some adjustment 1739 // will be needed. 1740 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1741 assert(IdxOpc == Hexagon::A2_addi); 1742 1743 // Clamp Diff to the 16 bit range. 1744 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768); 1745 if (Diff > 32767) { 1746 // Split Diff into two values: one that is close to min/max int16, 1747 // and the other being the rest, and such that both have the same 1748 // "alignment" as Diff. 1749 uint32_t UD = Diff; 1750 OffsetRange R = getOffsetRange(MI.getOperand(0)); 1751 uint32_t A = std::min<uint32_t>(R.Align, 1u << llvm::countr_zero(UD)); 1752 D &= ~(A-1); 1753 } 1754 BuildMI(MBB, At, dl, HII->get(IdxOpc)) 1755 .add(MI.getOperand(0)) 1756 .add(MachineOperand(ExtR)) 1757 .addImm(D); 1758 Diff -= D; 1759 #ifndef NDEBUG 1760 // Make sure the output is within allowable range for uses. 1761 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, 1762 // not DefV - Ext, as the getOffsetRange would calculate. 1763 OffsetRange Uses = getOffsetRange(MI.getOperand(0)); 1764 if (!Uses.contains(-Diff)) 1765 dbgs() << "Diff: " << -Diff << " out of range " << Uses 1766 << " for " << MI; 1767 assert(Uses.contains(-Diff)); 1768 #endif 1769 MBB.erase(MI); 1770 return true; 1771 } 1772 1773 const ExtValue &EV = ExtI.first; (void)EV; 1774 const ExtExpr &Ex = ExtI.second; (void)Ex; 1775 1776 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { 1777 // If addi/subri are replaced with the exactly matching initializer, 1778 // they amount to COPY. 1779 // Check that the initializer is an exact match (for simplicity). 1780 #ifndef NDEBUG 1781 bool IsAddi = ExtOpc == Hexagon::A2_addi; 1782 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); 1783 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); 1784 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && 1785 "Initializer mismatch"); 1786 #endif 1787 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) 1788 .add(MI.getOperand(0)) 1789 .add(MachineOperand(ExtR)); 1790 Diff = 0; 1791 MBB.erase(MI); 1792 return true; 1793 } 1794 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || 1795 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { 1796 // M2_accii: add(Rt,add(Rs,V)) (tied) 1797 // M2_naccii: sub(Rt,add(Rs,V)) 1798 // S4_addaddi: add(Rt,add(Rs,V)) 1799 // S4_subaddi: add(Rt,sub(V,Rs)) 1800 // Check that Rs and V match the initializer expression. The Rs+V is the 1801 // combination that is considered "subexpression" for V, although Rx+V 1802 // would also be valid. 1803 #ifndef NDEBUG 1804 bool IsSub = ExtOpc == Hexagon::S4_subaddi; 1805 Register Rs = MI.getOperand(IsSub ? 3 : 2); 1806 ExtValue V = MI.getOperand(IsSub ? 2 : 3); 1807 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); 1808 #endif 1809 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub 1810 : Hexagon::A2_add; 1811 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1812 .add(MI.getOperand(0)) 1813 .add(MI.getOperand(1)) 1814 .add(MachineOperand(ExtR)); 1815 MBB.erase(MI); 1816 return true; 1817 } 1818 1819 if (MI.mayLoadOrStore()) { 1820 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1821 assert(IdxOpc && "Expecting indexed opcode"); 1822 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); 1823 // Construct the new indexed instruction. 1824 // First, add the def for loads. 1825 if (MI.mayLoad()) 1826 MIB.add(getLoadResultOp(MI)); 1827 // Handle possible predication. 1828 if (HII->isPredicated(MI)) 1829 MIB.add(getPredicateOp(MI)); 1830 // Build the address. 1831 MIB.add(MachineOperand(ExtR)); 1832 MIB.addImm(Diff); 1833 // Add the stored value for stores. 1834 if (MI.mayStore()) 1835 MIB.add(getStoredValueOp(MI)); 1836 MIB.cloneMemRefs(MI); 1837 MBB.erase(MI); 1838 return true; 1839 } 1840 1841 #ifndef NDEBUG 1842 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; 1843 #endif 1844 llvm_unreachable("Unhandled expr replacement"); 1845 return false; 1846 } 1847 1848 bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { 1849 if (ReplaceLimit.getNumOccurrences()) { 1850 if (ReplaceLimit <= ReplaceCounter) 1851 return false; 1852 ++ReplaceCounter; 1853 } 1854 const ExtDesc &ED = Extenders[Idx]; 1855 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); 1856 const ExtValue &DefV = ExtI.first; 1857 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); 1858 const ExtExpr &DefEx = ExtI.second; 1859 1860 ExtValue EV(ED); 1861 int32_t Diff = EV.Offset - DefV.Offset; 1862 const MachineInstr &MI = *ED.UseMI; 1863 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" 1864 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); 1865 1866 // These two addressing modes must be converted into indexed forms 1867 // regardless of what the initializer looks like. 1868 bool IsAbs = false, IsAbsSet = false; 1869 if (MI.mayLoadOrStore()) { 1870 unsigned AM = HII->getAddrMode(MI); 1871 IsAbs = AM == HexagonII::Absolute; 1872 IsAbsSet = AM == HexagonII::AbsoluteSet; 1873 } 1874 1875 // If it's a def, remember all operands that need to be updated. 1876 // If ED is a def, and Diff is not 0, then all uses of the register Rd 1877 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset 1878 // must follow the Rd in the operand list. 1879 std::vector<std::pair<MachineInstr*,unsigned>> RegOps; 1880 if (ED.IsDef && Diff != 0) { 1881 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { 1882 MachineInstr &UI = *Op.getParent(); 1883 RegOps.push_back({&UI, getOperandIndex(UI, Op)}); 1884 } 1885 } 1886 1887 // Replace the instruction. 1888 bool Replaced = false; 1889 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) 1890 Replaced = replaceInstrExact(ED, ExtR); 1891 else 1892 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); 1893 1894 if (Diff != 0 && Replaced && ED.IsDef) { 1895 // Update offsets of the def's uses. 1896 for (std::pair<MachineInstr*,unsigned> P : RegOps) { 1897 unsigned J = P.second; 1898 assert(P.first->getNumOperands() > J+1 && 1899 P.first->getOperand(J+1).isImm()); 1900 MachineOperand &ImmOp = P.first->getOperand(J+1); 1901 ImmOp.setImm(ImmOp.getImm() + Diff); 1902 } 1903 // If it was an absolute-set instruction, the "set" part has been removed. 1904 // ExtR will now be the register with the extended value, and since all 1905 // users of Rd have been updated, all that needs to be done is to replace 1906 // Rd with ExtR. 1907 if (IsAbsSet) { 1908 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); 1909 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); 1910 } 1911 } 1912 1913 return Replaced; 1914 } 1915 1916 bool HCE::replaceExtenders(const AssignmentMap &IMap) { 1917 LocDefList Defs; 1918 bool Changed = false; 1919 1920 for (const std::pair<const ExtenderInit, IndexList> &P : IMap) { 1921 const IndexList &Idxs = P.second; 1922 if (Idxs.size() < CountThreshold) 1923 continue; 1924 1925 Defs.clear(); 1926 calculatePlacement(P.first, Idxs, Defs); 1927 for (const std::pair<Loc,IndexList> &Q : Defs) { 1928 Register DefR = insertInitializer(Q.first, P.first); 1929 NewRegs.push_back(DefR.Reg); 1930 for (unsigned I : Q.second) 1931 Changed |= replaceInstr(I, DefR, P.first); 1932 } 1933 } 1934 return Changed; 1935 } 1936 1937 unsigned HCE::getOperandIndex(const MachineInstr &MI, 1938 const MachineOperand &Op) const { 1939 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) 1940 if (&MI.getOperand(i) == &Op) 1941 return i; 1942 llvm_unreachable("Not an operand of MI"); 1943 } 1944 1945 const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { 1946 assert(HII->isPredicated(MI)); 1947 for (const MachineOperand &Op : MI.operands()) { 1948 if (!Op.isReg() || !Op.isUse() || 1949 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) 1950 continue; 1951 assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); 1952 return Op; 1953 } 1954 llvm_unreachable("Predicate operand not found"); 1955 } 1956 1957 const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { 1958 assert(MI.mayLoad()); 1959 return MI.getOperand(0); 1960 } 1961 1962 const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { 1963 assert(MI.mayStore()); 1964 return MI.getOperand(MI.getNumExplicitOperands()-1); 1965 } 1966 1967 bool HCE::runOnMachineFunction(MachineFunction &MF) { 1968 if (skipFunction(MF.getFunction())) 1969 return false; 1970 if (MF.getFunction().hasPersonalityFn()) { 1971 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() 1972 << " due to exception handling\n"); 1973 return false; 1974 } 1975 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); 1976 1977 HST = &MF.getSubtarget<HexagonSubtarget>(); 1978 HII = HST->getInstrInfo(); 1979 HRI = HST->getRegisterInfo(); 1980 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 1981 MRI = &MF.getRegInfo(); 1982 AssignmentMap IMap; 1983 1984 collect(MF); 1985 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) { 1986 ExtValue VA(A), VB(B); 1987 if (VA != VB) 1988 return VA < VB; 1989 const MachineInstr *MA = A.UseMI; 1990 const MachineInstr *MB = B.UseMI; 1991 if (MA == MB) { 1992 // If it's the same instruction, compare operand numbers. 1993 return A.OpNum < B.OpNum; 1994 } 1995 1996 const MachineBasicBlock *BA = MA->getParent(); 1997 const MachineBasicBlock *BB = MB->getParent(); 1998 assert(BA->getNumber() != -1 && BB->getNumber() != -1); 1999 if (BA != BB) 2000 return BA->getNumber() < BB->getNumber(); 2001 return MDT->dominates(MA, MB); 2002 }); 2003 2004 bool Changed = false; 2005 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); 2006 for (unsigned I = 0, E = Extenders.size(); I != E; ) { 2007 unsigned B = I; 2008 const ExtRoot &T = Extenders[B].getOp(); 2009 while (I != E && ExtRoot(Extenders[I].getOp()) == T) 2010 ++I; 2011 2012 IMap.clear(); 2013 assignInits(T, B, I, IMap); 2014 Changed |= replaceExtenders(IMap); 2015 } 2016 2017 LLVM_DEBUG({ 2018 if (Changed) 2019 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); 2020 else 2021 dbgs() << "No changes\n"; 2022 }); 2023 return Changed; 2024 } 2025 2026 FunctionPass *llvm::createHexagonConstExtenders() { 2027 return new HexagonConstExtenders(); 2028 } 2029