1 //===- HexagonConstExtenders.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonInstrInfo.h" 10 #include "HexagonRegisterInfo.h" 11 #include "HexagonSubtarget.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/CodeGen/MachineDominators.h" 14 #include "llvm/CodeGen/MachineFunctionPass.h" 15 #include "llvm/CodeGen/MachineInstrBuilder.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/Register.h" 18 #include "llvm/InitializePasses.h" 19 #include "llvm/Pass.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <map> 23 #include <set> 24 #include <utility> 25 #include <vector> 26 27 #define DEBUG_TYPE "hexagon-cext-opt" 28 29 using namespace llvm; 30 31 static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold", 32 cl::init(3), cl::Hidden, cl::ZeroOrMore, 33 cl::desc("Minimum number of extenders to trigger replacement")); 34 35 static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0), 36 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements")); 37 38 namespace llvm { 39 void initializeHexagonConstExtendersPass(PassRegistry&); 40 FunctionPass *createHexagonConstExtenders(); 41 } 42 43 static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { 44 assert(isPowerOf2_32(A)); 45 int32_t U = (V & -A) + O; 46 return U >= V ? U : U+A; 47 } 48 49 static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { 50 assert(isPowerOf2_32(A)); 51 int32_t U = (V & -A) + O; 52 return U <= V ? U : U-A; 53 } 54 55 namespace { 56 struct OffsetRange { 57 // The range of values between Min and Max that are of form Align*N+Offset, 58 // for some integer N. Min and Max are required to be of that form as well, 59 // except in the case of an empty range. 60 int32_t Min = INT_MIN, Max = INT_MAX; 61 uint8_t Align = 1; 62 uint8_t Offset = 0; 63 64 OffsetRange() = default; 65 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) 66 : Min(L), Max(H), Align(A), Offset(O) {} 67 OffsetRange &intersect(OffsetRange A) { 68 if (Align < A.Align) 69 std::swap(*this, A); 70 71 // Align >= A.Align. 72 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { 73 Min = adjustUp(std::max(Min, A.Min), Align, Offset); 74 Max = adjustDown(std::min(Max, A.Max), Align, Offset); 75 } else { 76 // Make an empty range. 77 Min = 0; 78 Max = -1; 79 } 80 // Canonicalize empty ranges. 81 if (Min > Max) 82 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); 83 return *this; 84 } 85 OffsetRange &shift(int32_t S) { 86 Min += S; 87 Max += S; 88 Offset = (Offset+S) % Align; 89 return *this; 90 } 91 OffsetRange &extendBy(int32_t D) { 92 // If D < 0, extend Min, otherwise extend Max. 93 assert(D % Align == 0); 94 if (D < 0) 95 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; 96 else 97 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; 98 return *this; 99 } 100 bool empty() const { 101 return Min > Max; 102 } 103 bool contains(int32_t V) const { 104 return Min <= V && V <= Max && (V-Offset) % Align == 0; 105 } 106 bool operator==(const OffsetRange &R) const { 107 return Min == R.Min && Max == R.Max && Align == R.Align; 108 } 109 bool operator!=(const OffsetRange &R) const { 110 return !operator==(R); 111 } 112 bool operator<(const OffsetRange &R) const { 113 if (Min != R.Min) 114 return Min < R.Min; 115 if (Max != R.Max) 116 return Max < R.Max; 117 return Align < R.Align; 118 } 119 static OffsetRange zero() { return {0, 0, 1}; } 120 }; 121 122 struct RangeTree { 123 struct Node { 124 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} 125 unsigned Height = 1; 126 unsigned Count = 1; 127 int32_t MaxEnd; 128 const OffsetRange &Range; 129 Node *Left = nullptr, *Right = nullptr; 130 }; 131 132 Node *Root = nullptr; 133 134 void add(const OffsetRange &R) { 135 Root = add(Root, R); 136 } 137 void erase(const Node *N) { 138 Root = remove(Root, N); 139 delete N; 140 } 141 void order(SmallVectorImpl<Node*> &Seq) const { 142 order(Root, Seq); 143 } 144 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { 145 SmallVector<Node*,8> Nodes; 146 nodesWith(Root, P, CheckAlign, Nodes); 147 return Nodes; 148 } 149 void dump() const; 150 ~RangeTree() { 151 SmallVector<Node*,8> Nodes; 152 order(Nodes); 153 for (Node *N : Nodes) 154 delete N; 155 } 156 157 private: 158 void dump(const Node *N) const; 159 void order(Node *N, SmallVectorImpl<Node*> &Seq) const; 160 void nodesWith(Node *N, int32_t P, bool CheckA, 161 SmallVectorImpl<Node*> &Seq) const; 162 163 Node *add(Node *N, const OffsetRange &R); 164 Node *remove(Node *N, const Node *D); 165 Node *rotateLeft(Node *Lower, Node *Higher); 166 Node *rotateRight(Node *Lower, Node *Higher); 167 unsigned height(Node *N) { 168 return N != nullptr ? N->Height : 0; 169 } 170 Node *update(Node *N) { 171 assert(N != nullptr); 172 N->Height = 1 + std::max(height(N->Left), height(N->Right)); 173 if (N->Left) 174 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); 175 if (N->Right) 176 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); 177 return N; 178 } 179 Node *rebalance(Node *N) { 180 assert(N != nullptr); 181 int32_t Balance = height(N->Right) - height(N->Left); 182 if (Balance < -1) 183 return rotateRight(N->Left, N); 184 if (Balance > 1) 185 return rotateLeft(N->Right, N); 186 return N; 187 } 188 }; 189 190 struct Loc { 191 MachineBasicBlock *Block = nullptr; 192 MachineBasicBlock::iterator At; 193 194 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) 195 : Block(B), At(It) { 196 if (B->end() == It) { 197 Pos = -1; 198 } else { 199 assert(It->getParent() == B); 200 Pos = std::distance(B->begin(), It); 201 } 202 } 203 bool operator<(Loc A) const { 204 if (Block != A.Block) 205 return Block->getNumber() < A.Block->getNumber(); 206 if (A.Pos == -1) 207 return Pos != A.Pos; 208 return Pos != -1 && Pos < A.Pos; 209 } 210 private: 211 int Pos = 0; 212 }; 213 214 struct HexagonConstExtenders : public MachineFunctionPass { 215 static char ID; 216 HexagonConstExtenders() : MachineFunctionPass(ID) {} 217 218 void getAnalysisUsage(AnalysisUsage &AU) const override { 219 AU.addRequired<MachineDominatorTree>(); 220 AU.addPreserved<MachineDominatorTree>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 StringRef getPassName() const override { 225 return "Hexagon constant-extender optimization"; 226 } 227 bool runOnMachineFunction(MachineFunction &MF) override; 228 229 private: 230 struct Register { 231 Register() = default; 232 Register(unsigned R, unsigned S) : Reg(R), Sub(S) {} 233 Register(const MachineOperand &Op) 234 : Reg(Op.getReg()), Sub(Op.getSubReg()) {} 235 Register &operator=(const MachineOperand &Op) { 236 if (Op.isReg()) { 237 Reg = Op.getReg(); 238 Sub = Op.getSubReg(); 239 } else if (Op.isFI()) { 240 Reg = llvm::Register::index2StackSlot(Op.getIndex()); 241 } 242 return *this; 243 } 244 bool isVReg() const { 245 return Reg != 0 && !llvm::Register::isStackSlot(Reg) && 246 llvm::Register::isVirtualRegister(Reg); 247 } 248 bool isSlot() const { 249 return Reg != 0 && llvm::Register::isStackSlot(Reg); 250 } 251 operator MachineOperand() const { 252 if (isVReg()) 253 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, 254 /*Kill*/false, /*Dead*/false, /*Undef*/false, 255 /*EarlyClobber*/false, Sub); 256 if (llvm::Register::isStackSlot(Reg)) { 257 int FI = llvm::Register::stackSlot2Index(Reg); 258 return MachineOperand::CreateFI(FI); 259 } 260 llvm_unreachable("Cannot create MachineOperand"); 261 } 262 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } 263 bool operator!=(Register R) const { return !operator==(R); } 264 bool operator<(Register R) const { 265 // For std::map. 266 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); 267 } 268 unsigned Reg = 0, Sub = 0; 269 }; 270 271 struct ExtExpr { 272 // A subexpression in which the extender is used. In general, this 273 // represents an expression where adding D to the extender will be 274 // equivalent to adding D to the expression as a whole. In other 275 // words, expr(add(##V,D) = add(expr(##V),D). 276 277 // The original motivation for this are the io/ur addressing modes, 278 // where the offset is extended. Consider the io example: 279 // In memw(Rs+##V), the ##V could be replaced by a register Rt to 280 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the 281 // register Rt must have exactly the value of ##V. If there was 282 // another instruction memw(Rs+##V+4), it would need a different Rt. 283 // Now, if Rt was initialized as "##V+Rs<<0", both of these 284 // instructions could use the same Rt, just with different offsets. 285 // Here it's clear that "initializer+4" should be the same as if 286 // the offset 4 was added to the ##V in the initializer. 287 288 // The only kinds of expressions that support the requirement of 289 // commuting with addition are addition and subtraction from ##V. 290 // Include shifting the Rs to account for the ur addressing mode: 291 // ##Val + Rs << S 292 // ##Val - Rs 293 Register Rs; 294 unsigned S = 0; 295 bool Neg = false; 296 297 ExtExpr() = default; 298 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} 299 // Expression is trivial if it does not modify the extender. 300 bool trivial() const { 301 return Rs.Reg == 0; 302 } 303 bool operator==(const ExtExpr &Ex) const { 304 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; 305 } 306 bool operator!=(const ExtExpr &Ex) const { 307 return !operator==(Ex); 308 } 309 bool operator<(const ExtExpr &Ex) const { 310 if (Rs != Ex.Rs) 311 return Rs < Ex.Rs; 312 if (S != Ex.S) 313 return S < Ex.S; 314 return !Neg && Ex.Neg; 315 } 316 }; 317 318 struct ExtDesc { 319 MachineInstr *UseMI = nullptr; 320 unsigned OpNum = -1u; 321 // The subexpression in which the extender is used (e.g. address 322 // computation). 323 ExtExpr Expr; 324 // Optional register that is assigned the value of Expr. 325 Register Rd; 326 // Def means that the output of the instruction may differ from the 327 // original by a constant c, and that the difference can be corrected 328 // by adding/subtracting c in all users of the defined register. 329 bool IsDef = false; 330 331 MachineOperand &getOp() { 332 return UseMI->getOperand(OpNum); 333 } 334 const MachineOperand &getOp() const { 335 return UseMI->getOperand(OpNum); 336 } 337 }; 338 339 struct ExtRoot { 340 union { 341 const ConstantFP *CFP; // MO_FPImmediate 342 const char *SymbolName; // MO_ExternalSymbol 343 const GlobalValue *GV; // MO_GlobalAddress 344 const BlockAddress *BA; // MO_BlockAddress 345 int64_t ImmVal; // MO_Immediate, MO_TargetIndex, 346 // and MO_ConstantPoolIndex 347 } V; 348 unsigned Kind; // Same as in MachineOperand. 349 unsigned char TF; // TargetFlags. 350 351 ExtRoot(const MachineOperand &Op); 352 bool operator==(const ExtRoot &ER) const { 353 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; 354 } 355 bool operator!=(const ExtRoot &ER) const { 356 return !operator==(ER); 357 } 358 bool operator<(const ExtRoot &ER) const; 359 }; 360 361 struct ExtValue : public ExtRoot { 362 int32_t Offset; 363 364 ExtValue(const MachineOperand &Op); 365 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} 366 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} 367 bool operator<(const ExtValue &EV) const; 368 bool operator==(const ExtValue &EV) const { 369 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; 370 } 371 bool operator!=(const ExtValue &EV) const { 372 return !operator==(EV); 373 } 374 explicit operator MachineOperand() const; 375 }; 376 377 using IndexList = SetVector<unsigned>; 378 using ExtenderInit = std::pair<ExtValue, ExtExpr>; 379 using AssignmentMap = std::map<ExtenderInit, IndexList>; 380 using LocDefList = std::vector<std::pair<Loc, IndexList>>; 381 382 const HexagonInstrInfo *HII = nullptr; 383 const HexagonRegisterInfo *HRI = nullptr; 384 MachineDominatorTree *MDT = nullptr; 385 MachineRegisterInfo *MRI = nullptr; 386 std::vector<ExtDesc> Extenders; 387 std::vector<unsigned> NewRegs; 388 389 bool isStoreImmediate(unsigned Opc) const; 390 bool isRegOffOpcode(unsigned ExtOpc) const ; 391 unsigned getRegOffOpcode(unsigned ExtOpc) const; 392 unsigned getDirectRegReplacement(unsigned ExtOpc) const; 393 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; 394 OffsetRange getOffsetRange(const ExtDesc &ED) const; 395 OffsetRange getOffsetRange(Register Rd) const; 396 397 void recordExtender(MachineInstr &MI, unsigned OpNum); 398 void collectInstr(MachineInstr &MI); 399 void collect(MachineFunction &MF); 400 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 401 AssignmentMap &IMap); 402 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 403 LocDefList &Defs); 404 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); 405 bool replaceInstrExact(const ExtDesc &ED, Register ExtR); 406 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 407 Register ExtR, int32_t &Diff); 408 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); 409 bool replaceExtenders(const AssignmentMap &IMap); 410 411 unsigned getOperandIndex(const MachineInstr &MI, 412 const MachineOperand &Op) const; 413 const MachineOperand &getPredicateOp(const MachineInstr &MI) const; 414 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; 415 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; 416 417 friend struct PrintRegister; 418 friend struct PrintExpr; 419 friend struct PrintInit; 420 friend struct PrintIMap; 421 friend raw_ostream &operator<< (raw_ostream &OS, 422 const struct PrintRegister &P); 423 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); 424 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); 425 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); 426 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); 427 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); 428 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); 429 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); 430 }; 431 432 using HCE = HexagonConstExtenders; 433 434 LLVM_ATTRIBUTE_UNUSED 435 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { 436 if (OR.Min > OR.Max) 437 OS << '!'; 438 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) 439 << '+' << unsigned(OR.Offset); 440 return OS; 441 } 442 443 struct PrintRegister { 444 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) 445 : Rs(R), HRI(I) {} 446 HCE::Register Rs; 447 const HexagonRegisterInfo &HRI; 448 }; 449 450 LLVM_ATTRIBUTE_UNUSED 451 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { 452 if (P.Rs.Reg != 0) 453 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); 454 else 455 OS << "noreg"; 456 return OS; 457 } 458 459 struct PrintExpr { 460 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) 461 : Ex(E), HRI(I) {} 462 const HCE::ExtExpr &Ex; 463 const HexagonRegisterInfo &HRI; 464 }; 465 466 LLVM_ATTRIBUTE_UNUSED 467 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { 468 OS << "## " << (P.Ex.Neg ? "- " : "+ "); 469 if (P.Ex.Rs.Reg != 0) 470 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); 471 else 472 OS << "__"; 473 OS << " << " << P.Ex.S; 474 return OS; 475 } 476 477 struct PrintInit { 478 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) 479 : ExtI(EI), HRI(I) {} 480 const HCE::ExtenderInit &ExtI; 481 const HexagonRegisterInfo &HRI; 482 }; 483 484 LLVM_ATTRIBUTE_UNUSED 485 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { 486 OS << '[' << P.ExtI.first << ", " 487 << PrintExpr(P.ExtI.second, P.HRI) << ']'; 488 return OS; 489 } 490 491 LLVM_ATTRIBUTE_UNUSED 492 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { 493 assert(ED.OpNum != -1u); 494 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); 495 const MachineFunction &MF = *MBB.getParent(); 496 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 497 OS << "bb#" << MBB.getNumber() << ": "; 498 if (ED.Rd.Reg != 0) 499 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); 500 else 501 OS << "__"; 502 OS << " = " << PrintExpr(ED.Expr, HRI); 503 if (ED.IsDef) 504 OS << ", def"; 505 return OS; 506 } 507 508 LLVM_ATTRIBUTE_UNUSED 509 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { 510 switch (ER.Kind) { 511 case MachineOperand::MO_Immediate: 512 OS << "imm:" << ER.V.ImmVal; 513 break; 514 case MachineOperand::MO_FPImmediate: 515 OS << "fpi:" << *ER.V.CFP; 516 break; 517 case MachineOperand::MO_ExternalSymbol: 518 OS << "sym:" << *ER.V.SymbolName; 519 break; 520 case MachineOperand::MO_GlobalAddress: 521 OS << "gad:" << ER.V.GV->getName(); 522 break; 523 case MachineOperand::MO_BlockAddress: 524 OS << "blk:" << *ER.V.BA; 525 break; 526 case MachineOperand::MO_TargetIndex: 527 OS << "tgi:" << ER.V.ImmVal; 528 break; 529 case MachineOperand::MO_ConstantPoolIndex: 530 OS << "cpi:" << ER.V.ImmVal; 531 break; 532 case MachineOperand::MO_JumpTableIndex: 533 OS << "jti:" << ER.V.ImmVal; 534 break; 535 default: 536 OS << "???:" << ER.V.ImmVal; 537 break; 538 } 539 return OS; 540 } 541 542 LLVM_ATTRIBUTE_UNUSED 543 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { 544 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; 545 return OS; 546 } 547 548 struct PrintIMap { 549 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) 550 : IMap(M), HRI(I) {} 551 const HCE::AssignmentMap &IMap; 552 const HexagonRegisterInfo &HRI; 553 }; 554 555 LLVM_ATTRIBUTE_UNUSED 556 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { 557 OS << "{\n"; 558 for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) { 559 OS << " " << PrintInit(Q.first, P.HRI) << " -> {"; 560 for (unsigned I : Q.second) 561 OS << ' ' << I; 562 OS << " }\n"; 563 } 564 OS << "}\n"; 565 return OS; 566 } 567 } 568 569 INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", 570 "Hexagon constant-extender optimization", false, false) 571 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 572 INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", 573 "Hexagon constant-extender optimization", false, false) 574 575 static unsigned ReplaceCounter = 0; 576 577 char HCE::ID = 0; 578 579 #ifndef NDEBUG 580 LLVM_DUMP_METHOD void RangeTree::dump() const { 581 dbgs() << "Root: " << Root << '\n'; 582 if (Root) 583 dump(Root); 584 } 585 586 LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { 587 dbgs() << "Node: " << N << '\n'; 588 dbgs() << " Height: " << N->Height << '\n'; 589 dbgs() << " Count: " << N->Count << '\n'; 590 dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; 591 dbgs() << " Range: " << N->Range << '\n'; 592 dbgs() << " Left: " << N->Left << '\n'; 593 dbgs() << " Right: " << N->Right << "\n\n"; 594 595 if (N->Left) 596 dump(N->Left); 597 if (N->Right) 598 dump(N->Right); 599 } 600 #endif 601 602 void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { 603 if (N == nullptr) 604 return; 605 order(N->Left, Seq); 606 Seq.push_back(N); 607 order(N->Right, Seq); 608 } 609 610 void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, 611 SmallVectorImpl<Node*> &Seq) const { 612 if (N == nullptr || N->MaxEnd < P) 613 return; 614 nodesWith(N->Left, P, CheckA, Seq); 615 if (N->Range.Min <= P) { 616 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) 617 Seq.push_back(N); 618 nodesWith(N->Right, P, CheckA, Seq); 619 } 620 } 621 622 RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { 623 if (N == nullptr) 624 return new Node(R); 625 626 if (N->Range == R) { 627 N->Count++; 628 return N; 629 } 630 631 if (R < N->Range) 632 N->Left = add(N->Left, R); 633 else 634 N->Right = add(N->Right, R); 635 return rebalance(update(N)); 636 } 637 638 RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { 639 assert(N != nullptr); 640 641 if (N != D) { 642 assert(N->Range != D->Range && "N and D should not be equal"); 643 if (D->Range < N->Range) 644 N->Left = remove(N->Left, D); 645 else 646 N->Right = remove(N->Right, D); 647 return rebalance(update(N)); 648 } 649 650 // We got to the node we need to remove. If any of its children are 651 // missing, simply replace it with the other child. 652 if (N->Left == nullptr || N->Right == nullptr) 653 return (N->Left == nullptr) ? N->Right : N->Left; 654 655 // Find the rightmost child of N->Left, remove it and plug it in place 656 // of N. 657 Node *M = N->Left; 658 while (M->Right) 659 M = M->Right; 660 M->Left = remove(N->Left, M); 661 M->Right = N->Right; 662 return rebalance(update(M)); 663 } 664 665 RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { 666 assert(Higher->Right == Lower); 667 // The Lower node is on the right from Higher. Make sure that Lower's 668 // balance is greater to the right. Otherwise the rotation will create 669 // an unbalanced tree again. 670 if (height(Lower->Left) > height(Lower->Right)) 671 Lower = rotateRight(Lower->Left, Lower); 672 assert(height(Lower->Left) <= height(Lower->Right)); 673 Higher->Right = Lower->Left; 674 update(Higher); 675 Lower->Left = Higher; 676 update(Lower); 677 return Lower; 678 } 679 680 RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { 681 assert(Higher->Left == Lower); 682 // The Lower node is on the left from Higher. Make sure that Lower's 683 // balance is greater to the left. Otherwise the rotation will create 684 // an unbalanced tree again. 685 if (height(Lower->Left) < height(Lower->Right)) 686 Lower = rotateLeft(Lower->Right, Lower); 687 assert(height(Lower->Left) >= height(Lower->Right)); 688 Higher->Left = Lower->Right; 689 update(Higher); 690 Lower->Right = Higher; 691 update(Lower); 692 return Lower; 693 } 694 695 696 HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { 697 // Always store ImmVal, since it's the field used for comparisons. 698 V.ImmVal = 0; 699 if (Op.isImm()) 700 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). 701 else if (Op.isFPImm()) 702 V.CFP = Op.getFPImm(); 703 else if (Op.isSymbol()) 704 V.SymbolName = Op.getSymbolName(); 705 else if (Op.isGlobal()) 706 V.GV = Op.getGlobal(); 707 else if (Op.isBlockAddress()) 708 V.BA = Op.getBlockAddress(); 709 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) 710 V.ImmVal = Op.getIndex(); 711 else 712 llvm_unreachable("Unexpected operand type"); 713 714 Kind = Op.getType(); 715 TF = Op.getTargetFlags(); 716 } 717 718 bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { 719 if (Kind != ER.Kind) 720 return Kind < ER.Kind; 721 switch (Kind) { 722 case MachineOperand::MO_Immediate: 723 case MachineOperand::MO_TargetIndex: 724 case MachineOperand::MO_ConstantPoolIndex: 725 case MachineOperand::MO_JumpTableIndex: 726 return V.ImmVal < ER.V.ImmVal; 727 case MachineOperand::MO_FPImmediate: { 728 const APFloat &ThisF = V.CFP->getValueAPF(); 729 const APFloat &OtherF = ER.V.CFP->getValueAPF(); 730 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); 731 } 732 case MachineOperand::MO_ExternalSymbol: 733 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); 734 case MachineOperand::MO_GlobalAddress: 735 // Do not use GUIDs, since they depend on the source path. Moving the 736 // source file to a different directory could cause different GUID 737 // values for a pair of given symbols. These symbols could then compare 738 // "less" in one directory, but "greater" in another. 739 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); 740 return V.GV->getName() < ER.V.GV->getName(); 741 case MachineOperand::MO_BlockAddress: { 742 const BasicBlock *ThisB = V.BA->getBasicBlock(); 743 const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); 744 assert(ThisB->getParent() == OtherB->getParent()); 745 const Function &F = *ThisB->getParent(); 746 return std::distance(F.begin(), ThisB->getIterator()) < 747 std::distance(F.begin(), OtherB->getIterator()); 748 } 749 } 750 return V.ImmVal < ER.V.ImmVal; 751 } 752 753 HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { 754 if (Op.isImm()) 755 Offset = Op.getImm(); 756 else if (Op.isFPImm() || Op.isJTI()) 757 Offset = 0; 758 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || 759 Op.isCPI() || Op.isTargetIndex()) 760 Offset = Op.getOffset(); 761 else 762 llvm_unreachable("Unexpected operand type"); 763 } 764 765 bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { 766 const ExtRoot &ER = *this; 767 if (!(ER == ExtRoot(EV))) 768 return ER < EV; 769 return Offset < EV.Offset; 770 } 771 772 HCE::ExtValue::operator MachineOperand() const { 773 switch (Kind) { 774 case MachineOperand::MO_Immediate: 775 return MachineOperand::CreateImm(V.ImmVal + Offset); 776 case MachineOperand::MO_FPImmediate: 777 assert(Offset == 0); 778 return MachineOperand::CreateFPImm(V.CFP); 779 case MachineOperand::MO_ExternalSymbol: 780 assert(Offset == 0); 781 return MachineOperand::CreateES(V.SymbolName, TF); 782 case MachineOperand::MO_GlobalAddress: 783 return MachineOperand::CreateGA(V.GV, Offset, TF); 784 case MachineOperand::MO_BlockAddress: 785 return MachineOperand::CreateBA(V.BA, Offset, TF); 786 case MachineOperand::MO_TargetIndex: 787 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); 788 case MachineOperand::MO_ConstantPoolIndex: 789 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); 790 case MachineOperand::MO_JumpTableIndex: 791 assert(Offset == 0); 792 return MachineOperand::CreateJTI(V.ImmVal, TF); 793 default: 794 llvm_unreachable("Unhandled kind"); 795 } 796 } 797 798 bool HCE::isStoreImmediate(unsigned Opc) const { 799 switch (Opc) { 800 case Hexagon::S4_storeirbt_io: 801 case Hexagon::S4_storeirbf_io: 802 case Hexagon::S4_storeirht_io: 803 case Hexagon::S4_storeirhf_io: 804 case Hexagon::S4_storeirit_io: 805 case Hexagon::S4_storeirif_io: 806 case Hexagon::S4_storeirb_io: 807 case Hexagon::S4_storeirh_io: 808 case Hexagon::S4_storeiri_io: 809 return true; 810 default: 811 break; 812 } 813 return false; 814 } 815 816 bool HCE::isRegOffOpcode(unsigned Opc) const { 817 switch (Opc) { 818 case Hexagon::L2_loadrub_io: 819 case Hexagon::L2_loadrb_io: 820 case Hexagon::L2_loadruh_io: 821 case Hexagon::L2_loadrh_io: 822 case Hexagon::L2_loadri_io: 823 case Hexagon::L2_loadrd_io: 824 case Hexagon::L2_loadbzw2_io: 825 case Hexagon::L2_loadbzw4_io: 826 case Hexagon::L2_loadbsw2_io: 827 case Hexagon::L2_loadbsw4_io: 828 case Hexagon::L2_loadalignh_io: 829 case Hexagon::L2_loadalignb_io: 830 case Hexagon::L2_ploadrubt_io: 831 case Hexagon::L2_ploadrubf_io: 832 case Hexagon::L2_ploadrbt_io: 833 case Hexagon::L2_ploadrbf_io: 834 case Hexagon::L2_ploadruht_io: 835 case Hexagon::L2_ploadruhf_io: 836 case Hexagon::L2_ploadrht_io: 837 case Hexagon::L2_ploadrhf_io: 838 case Hexagon::L2_ploadrit_io: 839 case Hexagon::L2_ploadrif_io: 840 case Hexagon::L2_ploadrdt_io: 841 case Hexagon::L2_ploadrdf_io: 842 case Hexagon::S2_storerb_io: 843 case Hexagon::S2_storerh_io: 844 case Hexagon::S2_storerf_io: 845 case Hexagon::S2_storeri_io: 846 case Hexagon::S2_storerd_io: 847 case Hexagon::S2_pstorerbt_io: 848 case Hexagon::S2_pstorerbf_io: 849 case Hexagon::S2_pstorerht_io: 850 case Hexagon::S2_pstorerhf_io: 851 case Hexagon::S2_pstorerft_io: 852 case Hexagon::S2_pstorerff_io: 853 case Hexagon::S2_pstorerit_io: 854 case Hexagon::S2_pstorerif_io: 855 case Hexagon::S2_pstorerdt_io: 856 case Hexagon::S2_pstorerdf_io: 857 case Hexagon::A2_addi: 858 return true; 859 default: 860 break; 861 } 862 return false; 863 } 864 865 unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { 866 // If there exists an instruction that takes a register and offset, 867 // that corresponds to the ExtOpc, return it, otherwise return 0. 868 using namespace Hexagon; 869 switch (ExtOpc) { 870 case A2_tfrsi: return A2_addi; 871 default: 872 break; 873 } 874 const MCInstrDesc &D = HII->get(ExtOpc); 875 if (D.mayLoad() || D.mayStore()) { 876 uint64_t F = D.TSFlags; 877 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; 878 switch (AM) { 879 case HexagonII::Absolute: 880 case HexagonII::AbsoluteSet: 881 case HexagonII::BaseLongOffset: 882 switch (ExtOpc) { 883 case PS_loadrubabs: 884 case L4_loadrub_ap: 885 case L4_loadrub_ur: return L2_loadrub_io; 886 case PS_loadrbabs: 887 case L4_loadrb_ap: 888 case L4_loadrb_ur: return L2_loadrb_io; 889 case PS_loadruhabs: 890 case L4_loadruh_ap: 891 case L4_loadruh_ur: return L2_loadruh_io; 892 case PS_loadrhabs: 893 case L4_loadrh_ap: 894 case L4_loadrh_ur: return L2_loadrh_io; 895 case PS_loadriabs: 896 case L4_loadri_ap: 897 case L4_loadri_ur: return L2_loadri_io; 898 case PS_loadrdabs: 899 case L4_loadrd_ap: 900 case L4_loadrd_ur: return L2_loadrd_io; 901 case L4_loadbzw2_ap: 902 case L4_loadbzw2_ur: return L2_loadbzw2_io; 903 case L4_loadbzw4_ap: 904 case L4_loadbzw4_ur: return L2_loadbzw4_io; 905 case L4_loadbsw2_ap: 906 case L4_loadbsw2_ur: return L2_loadbsw2_io; 907 case L4_loadbsw4_ap: 908 case L4_loadbsw4_ur: return L2_loadbsw4_io; 909 case L4_loadalignh_ap: 910 case L4_loadalignh_ur: return L2_loadalignh_io; 911 case L4_loadalignb_ap: 912 case L4_loadalignb_ur: return L2_loadalignb_io; 913 case L4_ploadrubt_abs: return L2_ploadrubt_io; 914 case L4_ploadrubf_abs: return L2_ploadrubf_io; 915 case L4_ploadrbt_abs: return L2_ploadrbt_io; 916 case L4_ploadrbf_abs: return L2_ploadrbf_io; 917 case L4_ploadruht_abs: return L2_ploadruht_io; 918 case L4_ploadruhf_abs: return L2_ploadruhf_io; 919 case L4_ploadrht_abs: return L2_ploadrht_io; 920 case L4_ploadrhf_abs: return L2_ploadrhf_io; 921 case L4_ploadrit_abs: return L2_ploadrit_io; 922 case L4_ploadrif_abs: return L2_ploadrif_io; 923 case L4_ploadrdt_abs: return L2_ploadrdt_io; 924 case L4_ploadrdf_abs: return L2_ploadrdf_io; 925 case PS_storerbabs: 926 case S4_storerb_ap: 927 case S4_storerb_ur: return S2_storerb_io; 928 case PS_storerhabs: 929 case S4_storerh_ap: 930 case S4_storerh_ur: return S2_storerh_io; 931 case PS_storerfabs: 932 case S4_storerf_ap: 933 case S4_storerf_ur: return S2_storerf_io; 934 case PS_storeriabs: 935 case S4_storeri_ap: 936 case S4_storeri_ur: return S2_storeri_io; 937 case PS_storerdabs: 938 case S4_storerd_ap: 939 case S4_storerd_ur: return S2_storerd_io; 940 case S4_pstorerbt_abs: return S2_pstorerbt_io; 941 case S4_pstorerbf_abs: return S2_pstorerbf_io; 942 case S4_pstorerht_abs: return S2_pstorerht_io; 943 case S4_pstorerhf_abs: return S2_pstorerhf_io; 944 case S4_pstorerft_abs: return S2_pstorerft_io; 945 case S4_pstorerff_abs: return S2_pstorerff_io; 946 case S4_pstorerit_abs: return S2_pstorerit_io; 947 case S4_pstorerif_abs: return S2_pstorerif_io; 948 case S4_pstorerdt_abs: return S2_pstorerdt_io; 949 case S4_pstorerdf_abs: return S2_pstorerdf_io; 950 default: 951 break; 952 } 953 break; 954 case HexagonII::BaseImmOffset: 955 if (!isStoreImmediate(ExtOpc)) 956 return ExtOpc; 957 break; 958 default: 959 break; 960 } 961 } 962 return 0; 963 } 964 965 unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { 966 switch (ExtOpc) { 967 case Hexagon::A2_addi: return Hexagon::A2_add; 968 case Hexagon::A2_andir: return Hexagon::A2_and; 969 case Hexagon::A2_combineii: return Hexagon::A4_combineri; 970 case Hexagon::A2_orir: return Hexagon::A2_or; 971 case Hexagon::A2_paddif: return Hexagon::A2_paddf; 972 case Hexagon::A2_paddit: return Hexagon::A2_paddt; 973 case Hexagon::A2_subri: return Hexagon::A2_sub; 974 case Hexagon::A2_tfrsi: return TargetOpcode::COPY; 975 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; 976 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; 977 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; 978 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; 979 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; 980 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; 981 case Hexagon::A4_combineii: return Hexagon::A4_combineir; 982 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; 983 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; 984 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; 985 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; 986 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; 987 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; 988 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; 989 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; 990 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; 991 case Hexagon::C2_muxii: return Hexagon::C2_muxir; 992 case Hexagon::C2_muxir: return Hexagon::C2_mux; 993 case Hexagon::C2_muxri: return Hexagon::C2_mux; 994 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; 995 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; 996 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; 997 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T 998 /* No M2_macsin */ 999 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T 1000 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; 1001 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; 1002 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; 1003 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T 1004 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; 1005 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T 1006 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T 1007 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T 1008 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T 1009 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T 1010 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T 1011 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T 1012 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T 1013 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T 1014 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T 1015 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T 1016 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T 1017 1018 // Store-immediates: 1019 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; 1020 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; 1021 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; 1022 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; 1023 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; 1024 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; 1025 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; 1026 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; 1027 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; 1028 1029 default: 1030 break; 1031 } 1032 return 0; 1033 } 1034 1035 // Return the allowable deviation from the current value of Rb (i.e. the 1036 // range of values that can be added to the current value) which the 1037 // instruction MI can accommodate. 1038 // The instruction MI is a user of register Rb, which is defined via an 1039 // extender. It may be possible for MI to be tweaked to work for a register 1040 // defined with a slightly different value. For example 1041 // ... = L2_loadrub_io Rb, 1 1042 // can be modifed to be 1043 // ... = L2_loadrub_io Rb', 0 1044 // if Rb' = Rb+1. 1045 // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range 1046 // for L2_loadrub with offset 0. That means that Rb could be replaced with 1047 // Rc, where Rc-Rb belongs to [Min+1, Max+1]. 1048 OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { 1049 unsigned Opc = MI.getOpcode(); 1050 // Instructions that are constant-extended may be replaced with something 1051 // else that no longer offers the same range as the original. 1052 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) 1053 return OffsetRange::zero(); 1054 1055 if (Opc == Hexagon::A2_addi) { 1056 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); 1057 if (Rb != Register(Op1) || !Op2.isImm()) 1058 return OffsetRange::zero(); 1059 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; 1060 return R.shift(Op2.getImm()); 1061 } 1062 1063 // HII::getBaseAndOffsetPosition returns the increment position as "offset". 1064 if (HII->isPostIncrement(MI)) 1065 return OffsetRange::zero(); 1066 1067 const MCInstrDesc &D = HII->get(Opc); 1068 assert(D.mayLoad() || D.mayStore()); 1069 1070 unsigned BaseP, OffP; 1071 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || 1072 Rb != Register(MI.getOperand(BaseP)) || 1073 !MI.getOperand(OffP).isImm()) 1074 return OffsetRange::zero(); 1075 1076 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1077 HexagonII::MemAccesSizeMask; 1078 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1079 unsigned L = Log2_32(A); 1080 unsigned S = 10+L; // sint11_L 1081 int32_t Min = -alignDown((1<<S)-1, A); 1082 1083 // The range will be shifted by Off. To prefer non-negative offsets, 1084 // adjust Max accordingly. 1085 int32_t Off = MI.getOperand(OffP).getImm(); 1086 int32_t Max = Off >= 0 ? 0 : -Off; 1087 1088 OffsetRange R = { Min, Max, A }; 1089 return R.shift(Off); 1090 } 1091 1092 // Return the allowable deviation from the current value of the extender ED, 1093 // for which the instruction corresponding to ED can be modified without 1094 // using an extender. 1095 // The instruction uses the extender directly. It will be replaced with 1096 // another instruction, say MJ, where the extender will be replaced with a 1097 // register. MJ can allow some variability with respect to the value of 1098 // that register, as is the case with indexed memory instructions. 1099 OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { 1100 // The only way that there can be a non-zero range available is if 1101 // the instruction using ED will be converted to an indexed memory 1102 // instruction. 1103 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); 1104 switch (IdxOpc) { 1105 case 0: 1106 return OffsetRange::zero(); 1107 case Hexagon::A2_addi: // s16 1108 return { -32767, 32767, 1 }; 1109 case Hexagon::A2_subri: // s10 1110 return { -511, 511, 1 }; 1111 } 1112 1113 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) 1114 return OffsetRange::zero(); 1115 const MCInstrDesc &D = HII->get(IdxOpc); 1116 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1117 HexagonII::MemAccesSizeMask; 1118 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1119 unsigned L = Log2_32(A); 1120 unsigned S = 10+L; // sint11_L 1121 int32_t Min = -alignDown((1<<S)-1, A); 1122 int32_t Max = 0; // Force non-negative offsets. 1123 return { Min, Max, A }; 1124 } 1125 1126 // Get the allowable deviation from the current value of Rd by checking 1127 // all uses of Rd. 1128 OffsetRange HCE::getOffsetRange(Register Rd) const { 1129 OffsetRange Range; 1130 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { 1131 // Make sure that the register being used by this operand is identical 1132 // to the register that was defined: using a different subregister 1133 // precludes any non-trivial range. 1134 if (Rd != Register(Op)) 1135 return OffsetRange::zero(); 1136 Range.intersect(getOffsetRange(Rd, *Op.getParent())); 1137 } 1138 return Range; 1139 } 1140 1141 void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { 1142 unsigned Opc = MI.getOpcode(); 1143 ExtDesc ED; 1144 ED.OpNum = OpNum; 1145 1146 bool IsLoad = MI.mayLoad(); 1147 bool IsStore = MI.mayStore(); 1148 1149 // Fixed stack slots have negative indexes, and they cannot be used 1150 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat 1151 // unfortunate, but should not be a frequent thing. 1152 for (MachineOperand &Op : MI.operands()) 1153 if (Op.isFI() && Op.getIndex() < 0) 1154 return; 1155 1156 if (IsLoad || IsStore) { 1157 unsigned AM = HII->getAddrMode(MI); 1158 switch (AM) { 1159 // (Re: ##Off + Rb<<S) = Rd: ##Val 1160 case HexagonII::Absolute: // (__: ## + __<<_) 1161 break; 1162 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) 1163 ED.Rd = MI.getOperand(OpNum-1); 1164 ED.IsDef = true; 1165 break; 1166 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) 1167 // Store-immediates are treated as non-memory operations, since 1168 // it's the value being stored that is extended (as opposed to 1169 // a part of the address). 1170 if (!isStoreImmediate(Opc)) 1171 ED.Expr.Rs = MI.getOperand(OpNum-1); 1172 break; 1173 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) 1174 ED.Expr.Rs = MI.getOperand(OpNum-2); 1175 ED.Expr.S = MI.getOperand(OpNum-1).getImm(); 1176 break; 1177 default: 1178 llvm_unreachable("Unhandled memory instruction"); 1179 } 1180 } else { 1181 switch (Opc) { 1182 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) 1183 ED.Rd = MI.getOperand(0); 1184 ED.IsDef = true; 1185 break; 1186 case Hexagon::A2_combineii: // (Rd: ## + __<<_) 1187 case Hexagon::A4_combineir: 1188 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; 1189 ED.IsDef = true; 1190 break; 1191 case Hexagon::A4_combineri: // (Rd: ## + __<<_) 1192 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; 1193 ED.IsDef = true; 1194 break; 1195 case Hexagon::A2_addi: // (Rd: ## + Rs<<0) 1196 ED.Rd = MI.getOperand(0); 1197 ED.Expr.Rs = MI.getOperand(OpNum-1); 1198 break; 1199 case Hexagon::M2_accii: // (__: ## + Rs<<0) 1200 case Hexagon::M2_naccii: 1201 case Hexagon::S4_addaddi: 1202 ED.Expr.Rs = MI.getOperand(OpNum-1); 1203 break; 1204 case Hexagon::A2_subri: // (Rd: ## - Rs<<0) 1205 ED.Rd = MI.getOperand(0); 1206 ED.Expr.Rs = MI.getOperand(OpNum+1); 1207 ED.Expr.Neg = true; 1208 break; 1209 case Hexagon::S4_subaddi: // (__: ## - Rs<<0) 1210 ED.Expr.Rs = MI.getOperand(OpNum+1); 1211 ED.Expr.Neg = true; 1212 break; 1213 default: // (__: ## + __<<_) 1214 break; 1215 } 1216 } 1217 1218 ED.UseMI = &MI; 1219 1220 // Ignore unnamed globals. 1221 ExtRoot ER(ED.getOp()); 1222 if (ER.Kind == MachineOperand::MO_GlobalAddress) 1223 if (ER.V.GV->getName().empty()) 1224 return; 1225 Extenders.push_back(ED); 1226 } 1227 1228 void HCE::collectInstr(MachineInstr &MI) { 1229 if (!HII->isConstExtended(MI)) 1230 return; 1231 1232 // Skip some non-convertible instructions. 1233 unsigned Opc = MI.getOpcode(); 1234 switch (Opc) { 1235 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). 1236 case Hexagon::C4_addipc: 1237 case Hexagon::S4_or_andi: 1238 case Hexagon::S4_or_andix: 1239 case Hexagon::S4_or_ori: 1240 return; 1241 } 1242 recordExtender(MI, HII->getCExtOpNum(MI)); 1243 } 1244 1245 void HCE::collect(MachineFunction &MF) { 1246 Extenders.clear(); 1247 for (MachineBasicBlock &MBB : MF) { 1248 // Skip unreachable blocks. 1249 if (MBB.getNumber() == -1) 1250 continue; 1251 for (MachineInstr &MI : MBB) 1252 collectInstr(MI); 1253 } 1254 } 1255 1256 void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 1257 AssignmentMap &IMap) { 1258 // Sanity check: make sure that all extenders in the range [Begin..End) 1259 // share the same root ER. 1260 for (unsigned I = Begin; I != End; ++I) 1261 assert(ER == ExtRoot(Extenders[I].getOp())); 1262 1263 // Construct the list of ranges, such that for each P in Ranges[I], 1264 // a register Reg = ER+P can be used in place of Extender[I]. If the 1265 // instruction allows, uses in the form of Reg+Off are considered 1266 // (here, Off = required_value - P). 1267 std::vector<OffsetRange> Ranges(End-Begin); 1268 1269 // For each extender that is a def, visit all uses of the defined register, 1270 // and produce an offset range that works for all uses. The def doesn't 1271 // have to be checked, because it can become dead if all uses can be updated 1272 // to use a different reg/offset. 1273 for (unsigned I = Begin; I != End; ++I) { 1274 const ExtDesc &ED = Extenders[I]; 1275 if (!ED.IsDef) 1276 continue; 1277 ExtValue EV(ED); 1278 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); 1279 assert(ED.Rd.Reg != 0); 1280 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); 1281 // A2_tfrsi is a special case: it will be replaced with A2_addi, which 1282 // has a 16-bit signed offset. This means that A2_tfrsi not only has a 1283 // range coming from its uses, but also from the fact that its replacement 1284 // has a range as well. 1285 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { 1286 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded 1287 Ranges[I-Begin].extendBy(-D).extendBy(D); 1288 } 1289 } 1290 1291 // Visit all non-def extenders. For each one, determine the offset range 1292 // available for it. 1293 for (unsigned I = Begin; I != End; ++I) { 1294 const ExtDesc &ED = Extenders[I]; 1295 if (ED.IsDef) 1296 continue; 1297 ExtValue EV(ED); 1298 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); 1299 OffsetRange Dev = getOffsetRange(ED); 1300 Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); 1301 } 1302 1303 // Here for each I there is a corresponding Range[I]. Construct the 1304 // inverse map, that to each range will assign the set of indexes in 1305 // [Begin..End) that this range corresponds to. 1306 std::map<OffsetRange, IndexList> RangeMap; 1307 for (unsigned I = Begin; I != End; ++I) 1308 RangeMap[Ranges[I-Begin]].insert(I); 1309 1310 LLVM_DEBUG({ 1311 dbgs() << "Ranges\n"; 1312 for (unsigned I = Begin; I != End; ++I) 1313 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; 1314 dbgs() << "RangeMap\n"; 1315 for (auto &P : RangeMap) { 1316 dbgs() << " " << P.first << " ->"; 1317 for (unsigned I : P.second) 1318 dbgs() << ' ' << I; 1319 dbgs() << '\n'; 1320 } 1321 }); 1322 1323 // Select the definition points, and generate the assignment between 1324 // these points and the uses. 1325 1326 // For each candidate offset, keep a pair CandData consisting of 1327 // the total number of ranges containing that candidate, and the 1328 // vector of corresponding RangeTree nodes. 1329 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; 1330 std::map<int32_t, CandData> CandMap; 1331 1332 RangeTree Tree; 1333 for (const OffsetRange &R : Ranges) 1334 Tree.add(R); 1335 SmallVector<RangeTree::Node*,8> Nodes; 1336 Tree.order(Nodes); 1337 1338 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, 1339 uint8_t Align, uint8_t Offset) { 1340 for (RangeTree::Node *N : Nodes) { 1341 if (N->Range.Align <= Align || N->Range.Offset < Offset) 1342 continue; 1343 if ((N->Range.Offset - Offset) % Align != 0) 1344 continue; 1345 Align = N->Range.Align; 1346 Offset = N->Range.Offset; 1347 } 1348 return std::make_pair(Align, Offset); 1349 }; 1350 1351 // Construct the set of all potential definition points from the endpoints 1352 // of the ranges. If a given endpoint also belongs to a different range, 1353 // but with a higher alignment, also consider the more-highly-aligned 1354 // value of this endpoint. 1355 std::set<int32_t> CandSet; 1356 for (RangeTree::Node *N : Nodes) { 1357 const OffsetRange &R = N->Range; 1358 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset); 1359 CandSet.insert(R.Min); 1360 if (R.Align < P0.first) 1361 CandSet.insert(adjustUp(R.Min, P0.first, P0.second)); 1362 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset); 1363 CandSet.insert(R.Max); 1364 if (R.Align < P1.first) 1365 CandSet.insert(adjustDown(R.Max, P1.first, P1.second)); 1366 } 1367 1368 // Build the assignment map: candidate C -> { list of extender indexes }. 1369 // This has to be done iteratively: 1370 // - pick the candidate that covers the maximum number of extenders, 1371 // - add the candidate to the map, 1372 // - remove the extenders from the pool. 1373 while (true) { 1374 using CMap = std::map<int32_t,unsigned>; 1375 CMap Counts; 1376 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { 1377 auto &&V = Tree.nodesWith(*It); 1378 unsigned N = std::accumulate(V.begin(), V.end(), 0u, 1379 [](unsigned Acc, const RangeTree::Node *N) { 1380 return Acc + N->Count; 1381 }); 1382 if (N != 0) 1383 Counts.insert({*It, N}); 1384 It = (N != 0) ? std::next(It) : CandSet.erase(It); 1385 } 1386 if (Counts.empty()) 1387 break; 1388 1389 // Find the best candidate with respect to the number of extenders covered. 1390 auto BestIt = std::max_element(Counts.begin(), Counts.end(), 1391 [](const CMap::value_type &A, const CMap::value_type &B) { 1392 return A.second < B.second || 1393 (A.second == B.second && A < B); 1394 }); 1395 int32_t Best = BestIt->first; 1396 ExtValue BestV(ER, Best); 1397 for (RangeTree::Node *N : Tree.nodesWith(Best)) { 1398 for (unsigned I : RangeMap[N->Range]) 1399 IMap[{BestV,Extenders[I].Expr}].insert(I); 1400 Tree.erase(N); 1401 } 1402 } 1403 1404 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); 1405 1406 // There is some ambiguity in what initializer should be used, if the 1407 // descriptor's subexpression is non-trivial: it can be the entire 1408 // subexpression (which is what has been done so far), or it can be 1409 // the extender's value itself, if all corresponding extenders have the 1410 // exact value of the initializer (i.e. require offset of 0). 1411 1412 // To reduce the number of initializers, merge such special cases. 1413 for (std::pair<const ExtenderInit,IndexList> &P : IMap) { 1414 // Skip trivial initializers. 1415 if (P.first.second.trivial()) 1416 continue; 1417 // If the corresponding trivial initializer does not exist, skip this 1418 // entry. 1419 const ExtValue &EV = P.first.first; 1420 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); 1421 if (F == IMap.end()) 1422 continue; 1423 1424 // Finally, check if all extenders have the same value as the initializer. 1425 // Make sure that extenders that are a part of a stack address are not 1426 // merged with those that aren't. Stack addresses need an offset field 1427 // (to be used by frame index elimination), while non-stack expressions 1428 // can be replaced with forms (such as rr) that do not have such a field. 1429 // Example: 1430 // 1431 // Collected 3 extenders 1432 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def 1433 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 1434 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 1435 // Ranges 1436 // 0. [-756,267]a1+0 1437 // 1. [-756,267]a1+0 1438 // 2. [201,65735]a1+0 1439 // RangeMap 1440 // [-756,267]a1+0 -> 0 1 1441 // [201,65735]a1+0 -> 2 1442 // IMap (before fixup) = { 1443 // [imm:0 off:267, ## + __ << 0] -> { 2 } 1444 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } 1445 // } 1446 // IMap (after fixup) = { 1447 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } 1448 // [imm:0 off:267, ## + SS#1 << 0] -> { } 1449 // } 1450 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] 1451 // %12:intregs = A2_tfrsi 267 1452 // 1453 // The result was 1454 // %12:intregs = A2_tfrsi 267 1455 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 1456 // Which became 1457 // r0 = #267 1458 // if (p0.new) memb(r0+r29<<#4) = r2 1459 1460 bool IsStack = any_of(F->second, [this](unsigned I) { 1461 return Extenders[I].Expr.Rs.isSlot(); 1462 }); 1463 auto SameValue = [&EV,this,IsStack](unsigned I) { 1464 const ExtDesc &ED = Extenders[I]; 1465 return ED.Expr.Rs.isSlot() == IsStack && 1466 ExtValue(ED).Offset == EV.Offset; 1467 }; 1468 if (all_of(P.second, SameValue)) { 1469 F->second.insert(P.second.begin(), P.second.end()); 1470 P.second.clear(); 1471 } 1472 } 1473 1474 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); 1475 } 1476 1477 void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 1478 LocDefList &Defs) { 1479 if (Refs.empty()) 1480 return; 1481 1482 // The placement calculation is somewhat simple right now: it finds a 1483 // single location for the def that dominates all refs. Since this may 1484 // place the def far from the uses, producing several locations for 1485 // defs that collectively dominate all refs could be better. 1486 // For now only do the single one. 1487 DenseSet<MachineBasicBlock*> Blocks; 1488 DenseSet<MachineInstr*> RefMIs; 1489 const ExtDesc &ED0 = Extenders[Refs[0]]; 1490 MachineBasicBlock *DomB = ED0.UseMI->getParent(); 1491 RefMIs.insert(ED0.UseMI); 1492 Blocks.insert(DomB); 1493 for (unsigned i = 1, e = Refs.size(); i != e; ++i) { 1494 const ExtDesc &ED = Extenders[Refs[i]]; 1495 MachineBasicBlock *MBB = ED.UseMI->getParent(); 1496 RefMIs.insert(ED.UseMI); 1497 DomB = MDT->findNearestCommonDominator(DomB, MBB); 1498 Blocks.insert(MBB); 1499 } 1500 1501 #ifndef NDEBUG 1502 // The block DomB should be dominated by the def of each register used 1503 // in the initializer. 1504 Register Rs = ExtI.second.Rs; // Only one reg allowed now. 1505 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; 1506 1507 // This should be guaranteed given that the entire expression is used 1508 // at each instruction in Refs. Add an assertion just in case. 1509 assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); 1510 #endif 1511 1512 MachineBasicBlock::iterator It; 1513 if (Blocks.count(DomB)) { 1514 // Try to find the latest possible location for the def. 1515 MachineBasicBlock::iterator End = DomB->end(); 1516 for (It = DomB->begin(); It != End; ++It) 1517 if (RefMIs.count(&*It)) 1518 break; 1519 assert(It != End && "Should have found a ref in DomB"); 1520 } else { 1521 // DomB does not contain any refs. 1522 It = DomB->getFirstTerminator(); 1523 } 1524 Loc DefLoc(DomB, It); 1525 Defs.emplace_back(DefLoc, Refs); 1526 } 1527 1528 HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { 1529 llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1530 MachineBasicBlock &MBB = *DefL.Block; 1531 MachineBasicBlock::iterator At = DefL.At; 1532 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); 1533 const ExtValue &EV = ExtI.first; 1534 MachineOperand ExtOp(EV); 1535 1536 const ExtExpr &Ex = ExtI.second; 1537 const MachineInstr *InitI = nullptr; 1538 1539 if (Ex.Rs.isSlot()) { 1540 assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); 1541 assert(!Ex.Neg && "Cannot subtract a stack slot"); 1542 // DefR = PS_fi Rb,##EV 1543 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) 1544 .add(MachineOperand(Ex.Rs)) 1545 .add(ExtOp); 1546 } else { 1547 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); 1548 if (Ex.trivial()) { 1549 // DefR = ##EV 1550 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) 1551 .add(ExtOp); 1552 } else if (Ex.S == 0) { 1553 if (Ex.Neg) { 1554 // DefR = sub(##EV,Rb) 1555 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) 1556 .add(ExtOp) 1557 .add(MachineOperand(Ex.Rs)); 1558 } else { 1559 // DefR = add(Rb,##EV) 1560 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) 1561 .add(MachineOperand(Ex.Rs)) 1562 .add(ExtOp); 1563 } 1564 } else { 1565 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri 1566 : Hexagon::S4_addi_asl_ri; 1567 // DefR = add(##EV,asl(Rb,S)) 1568 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) 1569 .add(ExtOp) 1570 .add(MachineOperand(Ex.Rs)) 1571 .addImm(Ex.S); 1572 } 1573 } 1574 1575 assert(InitI); 1576 (void)InitI; 1577 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() 1578 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " 1579 << *InitI); 1580 return { DefR, 0 }; 1581 } 1582 1583 // Replace the extender at index Idx with the register ExtR. 1584 bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { 1585 MachineInstr &MI = *ED.UseMI; 1586 MachineBasicBlock &MBB = *MI.getParent(); 1587 MachineBasicBlock::iterator At = MI.getIterator(); 1588 DebugLoc dl = MI.getDebugLoc(); 1589 unsigned ExtOpc = MI.getOpcode(); 1590 1591 // With a few exceptions, direct replacement amounts to creating an 1592 // instruction with a corresponding register opcode, with all operands 1593 // the same, except for the register used in place of the extender. 1594 unsigned RegOpc = getDirectRegReplacement(ExtOpc); 1595 1596 if (RegOpc == TargetOpcode::REG_SEQUENCE) { 1597 if (ExtOpc == Hexagon::A4_combineri) 1598 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1599 .add(MI.getOperand(0)) 1600 .add(MI.getOperand(1)) 1601 .addImm(Hexagon::isub_hi) 1602 .add(MachineOperand(ExtR)) 1603 .addImm(Hexagon::isub_lo); 1604 else if (ExtOpc == Hexagon::A4_combineir) 1605 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1606 .add(MI.getOperand(0)) 1607 .add(MachineOperand(ExtR)) 1608 .addImm(Hexagon::isub_hi) 1609 .add(MI.getOperand(2)) 1610 .addImm(Hexagon::isub_lo); 1611 else 1612 llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); 1613 MBB.erase(MI); 1614 return true; 1615 } 1616 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { 1617 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt 1618 : Hexagon::C2_cmpltu; 1619 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1620 .add(MI.getOperand(0)) 1621 .add(MachineOperand(ExtR)) 1622 .add(MI.getOperand(1)); 1623 MBB.erase(MI); 1624 return true; 1625 } 1626 1627 if (RegOpc != 0) { 1628 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1629 unsigned RegN = ED.OpNum; 1630 // Copy all operands except the one that has the extender. 1631 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1632 if (i != RegN) 1633 MIB.add(MI.getOperand(i)); 1634 else 1635 MIB.add(MachineOperand(ExtR)); 1636 } 1637 MIB.cloneMemRefs(MI); 1638 MBB.erase(MI); 1639 return true; 1640 } 1641 1642 if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) { 1643 // For memory instructions, there is an asymmetry in the addressing 1644 // modes. Addressing modes allowing extenders can be replaced with 1645 // addressing modes that use registers, but the order of operands 1646 // (or even their number) may be different. 1647 // Replacements: 1648 // BaseImmOffset (io) -> BaseRegOffset (rr) 1649 // BaseLongOffset (ur) -> BaseRegOffset (rr) 1650 unsigned RegOpc, Shift; 1651 unsigned AM = HII->getAddrMode(MI); 1652 if (AM == HexagonII::BaseImmOffset) { 1653 RegOpc = HII->changeAddrMode_io_rr(ExtOpc); 1654 Shift = 0; 1655 } else if (AM == HexagonII::BaseLongOffset) { 1656 // Loads: Rd = L4_loadri_ur Rs, S, ## 1657 // Stores: S4_storeri_ur Rs, S, ##, Rt 1658 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); 1659 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); 1660 } else { 1661 llvm_unreachable("Unexpected addressing mode"); 1662 } 1663 #ifndef NDEBUG 1664 if (RegOpc == -1u) { 1665 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; 1666 llvm_unreachable("No corresponding rr instruction"); 1667 } 1668 #endif 1669 1670 unsigned BaseP, OffP; 1671 HII->getBaseAndOffsetPosition(MI, BaseP, OffP); 1672 1673 // Build an rr instruction: (RegOff + RegBase<<0) 1674 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1675 // First, add the def for loads. 1676 if (MI.mayLoad()) 1677 MIB.add(getLoadResultOp(MI)); 1678 // Handle possible predication. 1679 if (HII->isPredicated(MI)) 1680 MIB.add(getPredicateOp(MI)); 1681 // Build the address. 1682 MIB.add(MachineOperand(ExtR)); // RegOff 1683 MIB.add(MI.getOperand(BaseP)); // RegBase 1684 MIB.addImm(Shift); // << Shift 1685 // Add the stored value for stores. 1686 if (MI.mayStore()) 1687 MIB.add(getStoredValueOp(MI)); 1688 MIB.cloneMemRefs(MI); 1689 MBB.erase(MI); 1690 return true; 1691 } 1692 1693 #ifndef NDEBUG 1694 dbgs() << '\n' << MI; 1695 #endif 1696 llvm_unreachable("Unhandled exact replacement"); 1697 return false; 1698 } 1699 1700 // Replace the extender ED with a form corresponding to the initializer ExtI. 1701 bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 1702 Register ExtR, int32_t &Diff) { 1703 MachineInstr &MI = *ED.UseMI; 1704 MachineBasicBlock &MBB = *MI.getParent(); 1705 MachineBasicBlock::iterator At = MI.getIterator(); 1706 DebugLoc dl = MI.getDebugLoc(); 1707 unsigned ExtOpc = MI.getOpcode(); 1708 1709 if (ExtOpc == Hexagon::A2_tfrsi) { 1710 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces 1711 // another range. One range is the one that's common to all tfrsi's uses, 1712 // this one is the range of immediates in A2_addi. When calculating ranges, 1713 // the addi's 16-bit argument was included, so now we need to make it such 1714 // that the produced value is in the range for the uses alone. 1715 // Most of the time, simply adding Diff will make the addi produce exact 1716 // result, but if Diff is outside of the 16-bit range, some adjustment 1717 // will be needed. 1718 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1719 assert(IdxOpc == Hexagon::A2_addi); 1720 1721 // Clamp Diff to the 16 bit range. 1722 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768); 1723 if (Diff > 32767) { 1724 // Split Diff into two values: one that is close to min/max int16, 1725 // and the other being the rest, and such that both have the same 1726 // "alignment" as Diff. 1727 uint32_t UD = Diff; 1728 OffsetRange R = getOffsetRange(MI.getOperand(0)); 1729 uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD)); 1730 D &= ~(A-1); 1731 } 1732 BuildMI(MBB, At, dl, HII->get(IdxOpc)) 1733 .add(MI.getOperand(0)) 1734 .add(MachineOperand(ExtR)) 1735 .addImm(D); 1736 Diff -= D; 1737 #ifndef NDEBUG 1738 // Make sure the output is within allowable range for uses. 1739 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, 1740 // not DefV - Ext, as the getOffsetRange would calculate. 1741 OffsetRange Uses = getOffsetRange(MI.getOperand(0)); 1742 if (!Uses.contains(-Diff)) 1743 dbgs() << "Diff: " << -Diff << " out of range " << Uses 1744 << " for " << MI; 1745 assert(Uses.contains(-Diff)); 1746 #endif 1747 MBB.erase(MI); 1748 return true; 1749 } 1750 1751 const ExtValue &EV = ExtI.first; (void)EV; 1752 const ExtExpr &Ex = ExtI.second; (void)Ex; 1753 1754 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { 1755 // If addi/subri are replaced with the exactly matching initializer, 1756 // they amount to COPY. 1757 // Check that the initializer is an exact match (for simplicity). 1758 #ifndef NDEBUG 1759 bool IsAddi = ExtOpc == Hexagon::A2_addi; 1760 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); 1761 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); 1762 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && 1763 "Initializer mismatch"); 1764 #endif 1765 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) 1766 .add(MI.getOperand(0)) 1767 .add(MachineOperand(ExtR)); 1768 Diff = 0; 1769 MBB.erase(MI); 1770 return true; 1771 } 1772 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || 1773 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { 1774 // M2_accii: add(Rt,add(Rs,V)) (tied) 1775 // M2_naccii: sub(Rt,add(Rs,V)) 1776 // S4_addaddi: add(Rt,add(Rs,V)) 1777 // S4_subaddi: add(Rt,sub(V,Rs)) 1778 // Check that Rs and V match the initializer expression. The Rs+V is the 1779 // combination that is considered "subexpression" for V, although Rx+V 1780 // would also be valid. 1781 #ifndef NDEBUG 1782 bool IsSub = ExtOpc == Hexagon::S4_subaddi; 1783 Register Rs = MI.getOperand(IsSub ? 3 : 2); 1784 ExtValue V = MI.getOperand(IsSub ? 2 : 3); 1785 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); 1786 #endif 1787 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub 1788 : Hexagon::A2_add; 1789 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1790 .add(MI.getOperand(0)) 1791 .add(MI.getOperand(1)) 1792 .add(MachineOperand(ExtR)); 1793 MBB.erase(MI); 1794 return true; 1795 } 1796 1797 if (MI.mayLoadOrStore()) { 1798 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1799 assert(IdxOpc && "Expecting indexed opcode"); 1800 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); 1801 // Construct the new indexed instruction. 1802 // First, add the def for loads. 1803 if (MI.mayLoad()) 1804 MIB.add(getLoadResultOp(MI)); 1805 // Handle possible predication. 1806 if (HII->isPredicated(MI)) 1807 MIB.add(getPredicateOp(MI)); 1808 // Build the address. 1809 MIB.add(MachineOperand(ExtR)); 1810 MIB.addImm(Diff); 1811 // Add the stored value for stores. 1812 if (MI.mayStore()) 1813 MIB.add(getStoredValueOp(MI)); 1814 MIB.cloneMemRefs(MI); 1815 MBB.erase(MI); 1816 return true; 1817 } 1818 1819 #ifndef NDEBUG 1820 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; 1821 #endif 1822 llvm_unreachable("Unhandled expr replacement"); 1823 return false; 1824 } 1825 1826 bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { 1827 if (ReplaceLimit.getNumOccurrences()) { 1828 if (ReplaceLimit <= ReplaceCounter) 1829 return false; 1830 ++ReplaceCounter; 1831 } 1832 const ExtDesc &ED = Extenders[Idx]; 1833 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); 1834 const ExtValue &DefV = ExtI.first; 1835 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); 1836 const ExtExpr &DefEx = ExtI.second; 1837 1838 ExtValue EV(ED); 1839 int32_t Diff = EV.Offset - DefV.Offset; 1840 const MachineInstr &MI = *ED.UseMI; 1841 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" 1842 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); 1843 1844 // These two addressing modes must be converted into indexed forms 1845 // regardless of what the initializer looks like. 1846 bool IsAbs = false, IsAbsSet = false; 1847 if (MI.mayLoadOrStore()) { 1848 unsigned AM = HII->getAddrMode(MI); 1849 IsAbs = AM == HexagonII::Absolute; 1850 IsAbsSet = AM == HexagonII::AbsoluteSet; 1851 } 1852 1853 // If it's a def, remember all operands that need to be updated. 1854 // If ED is a def, and Diff is not 0, then all uses of the register Rd 1855 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset 1856 // must follow the Rd in the operand list. 1857 std::vector<std::pair<MachineInstr*,unsigned>> RegOps; 1858 if (ED.IsDef && Diff != 0) { 1859 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { 1860 MachineInstr &UI = *Op.getParent(); 1861 RegOps.push_back({&UI, getOperandIndex(UI, Op)}); 1862 } 1863 } 1864 1865 // Replace the instruction. 1866 bool Replaced = false; 1867 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) 1868 Replaced = replaceInstrExact(ED, ExtR); 1869 else 1870 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); 1871 1872 if (Diff != 0 && Replaced && ED.IsDef) { 1873 // Update offsets of the def's uses. 1874 for (std::pair<MachineInstr*,unsigned> P : RegOps) { 1875 unsigned J = P.second; 1876 assert(P.first->getNumOperands() > J+1 && 1877 P.first->getOperand(J+1).isImm()); 1878 MachineOperand &ImmOp = P.first->getOperand(J+1); 1879 ImmOp.setImm(ImmOp.getImm() + Diff); 1880 } 1881 // If it was an absolute-set instruction, the "set" part has been removed. 1882 // ExtR will now be the register with the extended value, and since all 1883 // users of Rd have been updated, all that needs to be done is to replace 1884 // Rd with ExtR. 1885 if (IsAbsSet) { 1886 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); 1887 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); 1888 } 1889 } 1890 1891 return Replaced; 1892 } 1893 1894 bool HCE::replaceExtenders(const AssignmentMap &IMap) { 1895 LocDefList Defs; 1896 bool Changed = false; 1897 1898 for (const std::pair<const ExtenderInit, IndexList> &P : IMap) { 1899 const IndexList &Idxs = P.second; 1900 if (Idxs.size() < CountThreshold) 1901 continue; 1902 1903 Defs.clear(); 1904 calculatePlacement(P.first, Idxs, Defs); 1905 for (const std::pair<Loc,IndexList> &Q : Defs) { 1906 Register DefR = insertInitializer(Q.first, P.first); 1907 NewRegs.push_back(DefR.Reg); 1908 for (unsigned I : Q.second) 1909 Changed |= replaceInstr(I, DefR, P.first); 1910 } 1911 } 1912 return Changed; 1913 } 1914 1915 unsigned HCE::getOperandIndex(const MachineInstr &MI, 1916 const MachineOperand &Op) const { 1917 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) 1918 if (&MI.getOperand(i) == &Op) 1919 return i; 1920 llvm_unreachable("Not an operand of MI"); 1921 } 1922 1923 const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { 1924 assert(HII->isPredicated(MI)); 1925 for (const MachineOperand &Op : MI.operands()) { 1926 if (!Op.isReg() || !Op.isUse() || 1927 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) 1928 continue; 1929 assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); 1930 return Op; 1931 } 1932 llvm_unreachable("Predicate operand not found"); 1933 } 1934 1935 const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { 1936 assert(MI.mayLoad()); 1937 return MI.getOperand(0); 1938 } 1939 1940 const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { 1941 assert(MI.mayStore()); 1942 return MI.getOperand(MI.getNumExplicitOperands()-1); 1943 } 1944 1945 bool HCE::runOnMachineFunction(MachineFunction &MF) { 1946 if (skipFunction(MF.getFunction())) 1947 return false; 1948 if (MF.getFunction().hasPersonalityFn()) { 1949 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() 1950 << " due to exception handling\n"); 1951 return false; 1952 } 1953 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); 1954 1955 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 1956 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1957 MDT = &getAnalysis<MachineDominatorTree>(); 1958 MRI = &MF.getRegInfo(); 1959 AssignmentMap IMap; 1960 1961 collect(MF); 1962 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) { 1963 ExtValue VA(A), VB(B); 1964 if (VA != VB) 1965 return VA < VB; 1966 const MachineInstr *MA = A.UseMI; 1967 const MachineInstr *MB = B.UseMI; 1968 if (MA == MB) { 1969 // If it's the same instruction, compare operand numbers. 1970 return A.OpNum < B.OpNum; 1971 } 1972 1973 const MachineBasicBlock *BA = MA->getParent(); 1974 const MachineBasicBlock *BB = MB->getParent(); 1975 assert(BA->getNumber() != -1 && BB->getNumber() != -1); 1976 if (BA != BB) 1977 return BA->getNumber() < BB->getNumber(); 1978 return MDT->dominates(MA, MB); 1979 }); 1980 1981 bool Changed = false; 1982 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); 1983 for (unsigned I = 0, E = Extenders.size(); I != E; ) { 1984 unsigned B = I; 1985 const ExtRoot &T = Extenders[B].getOp(); 1986 while (I != E && ExtRoot(Extenders[I].getOp()) == T) 1987 ++I; 1988 1989 IMap.clear(); 1990 assignInits(T, B, I, IMap); 1991 Changed |= replaceExtenders(IMap); 1992 } 1993 1994 LLVM_DEBUG({ 1995 if (Changed) 1996 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); 1997 else 1998 dbgs() << "No changes\n"; 1999 }); 2000 return Changed; 2001 } 2002 2003 FunctionPass *llvm::createHexagonConstExtenders() { 2004 return new HexagonConstExtenders(); 2005 } 2006