1 //===- HexagonConstExtenders.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonInstrInfo.h" 10 #include "HexagonRegisterInfo.h" 11 #include "HexagonSubtarget.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/CodeGen/MachineDominators.h" 14 #include "llvm/CodeGen/MachineFunctionPass.h" 15 #include "llvm/CodeGen/MachineInstrBuilder.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/Register.h" 18 #include "llvm/InitializePasses.h" 19 #include "llvm/Pass.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <map> 23 #include <set> 24 #include <utility> 25 #include <vector> 26 27 #define DEBUG_TYPE "hexagon-cext-opt" 28 29 using namespace llvm; 30 31 static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold", 32 cl::init(3), cl::Hidden, cl::ZeroOrMore, 33 cl::desc("Minimum number of extenders to trigger replacement")); 34 35 static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0), 36 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements")); 37 38 namespace llvm { 39 void initializeHexagonConstExtendersPass(PassRegistry&); 40 FunctionPass *createHexagonConstExtenders(); 41 } 42 43 static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { 44 assert(isPowerOf2_32(A)); 45 int32_t U = (V & -A) + O; 46 return U >= V ? U : U+A; 47 } 48 49 static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { 50 assert(isPowerOf2_32(A)); 51 int32_t U = (V & -A) + O; 52 return U <= V ? U : U-A; 53 } 54 55 namespace { 56 struct OffsetRange { 57 // The range of values between Min and Max that are of form Align*N+Offset, 58 // for some integer N. Min and Max are required to be of that form as well, 59 // except in the case of an empty range. 60 int32_t Min = INT_MIN, Max = INT_MAX; 61 uint8_t Align = 1; 62 uint8_t Offset = 0; 63 64 OffsetRange() = default; 65 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) 66 : Min(L), Max(H), Align(A), Offset(O) {} 67 OffsetRange &intersect(OffsetRange A) { 68 if (Align < A.Align) 69 std::swap(*this, A); 70 71 // Align >= A.Align. 72 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { 73 Min = adjustUp(std::max(Min, A.Min), Align, Offset); 74 Max = adjustDown(std::min(Max, A.Max), Align, Offset); 75 } else { 76 // Make an empty range. 77 Min = 0; 78 Max = -1; 79 } 80 // Canonicalize empty ranges. 81 if (Min > Max) 82 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); 83 return *this; 84 } 85 OffsetRange &shift(int32_t S) { 86 Min += S; 87 Max += S; 88 Offset = (Offset+S) % Align; 89 return *this; 90 } 91 OffsetRange &extendBy(int32_t D) { 92 // If D < 0, extend Min, otherwise extend Max. 93 assert(D % Align == 0); 94 if (D < 0) 95 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; 96 else 97 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; 98 return *this; 99 } 100 bool empty() const { 101 return Min > Max; 102 } 103 bool contains(int32_t V) const { 104 return Min <= V && V <= Max && (V-Offset) % Align == 0; 105 } 106 bool operator==(const OffsetRange &R) const { 107 return Min == R.Min && Max == R.Max && Align == R.Align; 108 } 109 bool operator!=(const OffsetRange &R) const { 110 return !operator==(R); 111 } 112 bool operator<(const OffsetRange &R) const { 113 if (Min != R.Min) 114 return Min < R.Min; 115 if (Max != R.Max) 116 return Max < R.Max; 117 return Align < R.Align; 118 } 119 static OffsetRange zero() { return {0, 0, 1}; } 120 }; 121 122 struct RangeTree { 123 struct Node { 124 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} 125 unsigned Height = 1; 126 unsigned Count = 1; 127 int32_t MaxEnd; 128 const OffsetRange &Range; 129 Node *Left = nullptr, *Right = nullptr; 130 }; 131 132 Node *Root = nullptr; 133 134 void add(const OffsetRange &R) { 135 Root = add(Root, R); 136 } 137 void erase(const Node *N) { 138 Root = remove(Root, N); 139 delete N; 140 } 141 void order(SmallVectorImpl<Node*> &Seq) const { 142 order(Root, Seq); 143 } 144 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { 145 SmallVector<Node*,8> Nodes; 146 nodesWith(Root, P, CheckAlign, Nodes); 147 return Nodes; 148 } 149 void dump() const; 150 ~RangeTree() { 151 SmallVector<Node*,8> Nodes; 152 order(Nodes); 153 for (Node *N : Nodes) 154 delete N; 155 } 156 157 private: 158 void dump(const Node *N) const; 159 void order(Node *N, SmallVectorImpl<Node*> &Seq) const; 160 void nodesWith(Node *N, int32_t P, bool CheckA, 161 SmallVectorImpl<Node*> &Seq) const; 162 163 Node *add(Node *N, const OffsetRange &R); 164 Node *remove(Node *N, const Node *D); 165 Node *rotateLeft(Node *Lower, Node *Higher); 166 Node *rotateRight(Node *Lower, Node *Higher); 167 unsigned height(Node *N) { 168 return N != nullptr ? N->Height : 0; 169 } 170 Node *update(Node *N) { 171 assert(N != nullptr); 172 N->Height = 1 + std::max(height(N->Left), height(N->Right)); 173 if (N->Left) 174 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); 175 if (N->Right) 176 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); 177 return N; 178 } 179 Node *rebalance(Node *N) { 180 assert(N != nullptr); 181 int32_t Balance = height(N->Right) - height(N->Left); 182 if (Balance < -1) 183 return rotateRight(N->Left, N); 184 if (Balance > 1) 185 return rotateLeft(N->Right, N); 186 return N; 187 } 188 }; 189 190 struct Loc { 191 MachineBasicBlock *Block = nullptr; 192 MachineBasicBlock::iterator At; 193 194 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) 195 : Block(B), At(It) { 196 if (B->end() == It) { 197 Pos = -1; 198 } else { 199 assert(It->getParent() == B); 200 Pos = std::distance(B->begin(), It); 201 } 202 } 203 bool operator<(Loc A) const { 204 if (Block != A.Block) 205 return Block->getNumber() < A.Block->getNumber(); 206 if (A.Pos == -1) 207 return Pos != A.Pos; 208 return Pos != -1 && Pos < A.Pos; 209 } 210 private: 211 int Pos = 0; 212 }; 213 214 struct HexagonConstExtenders : public MachineFunctionPass { 215 static char ID; 216 HexagonConstExtenders() : MachineFunctionPass(ID) {} 217 218 void getAnalysisUsage(AnalysisUsage &AU) const override { 219 AU.addRequired<MachineDominatorTree>(); 220 AU.addPreserved<MachineDominatorTree>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 StringRef getPassName() const override { 225 return "Hexagon constant-extender optimization"; 226 } 227 bool runOnMachineFunction(MachineFunction &MF) override; 228 229 private: 230 struct Register { 231 Register() = default; 232 Register(llvm::Register R, unsigned S) : Reg(R), Sub(S) {} 233 Register(const MachineOperand &Op) 234 : Reg(Op.getReg()), Sub(Op.getSubReg()) {} 235 Register &operator=(const MachineOperand &Op) { 236 if (Op.isReg()) { 237 Reg = Op.getReg(); 238 Sub = Op.getSubReg(); 239 } else if (Op.isFI()) { 240 Reg = llvm::Register::index2StackSlot(Op.getIndex()); 241 } 242 return *this; 243 } 244 bool isVReg() const { 245 return Reg != 0 && !Reg.isStack() && Reg.isVirtual(); 246 } 247 bool isSlot() const { return Reg != 0 && Reg.isStack(); } 248 operator MachineOperand() const { 249 if (isVReg()) 250 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, 251 /*Kill*/false, /*Dead*/false, /*Undef*/false, 252 /*EarlyClobber*/false, Sub); 253 if (Reg.isStack()) { 254 int FI = llvm::Register::stackSlot2Index(Reg); 255 return MachineOperand::CreateFI(FI); 256 } 257 llvm_unreachable("Cannot create MachineOperand"); 258 } 259 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } 260 bool operator!=(Register R) const { return !operator==(R); } 261 bool operator<(Register R) const { 262 // For std::map. 263 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); 264 } 265 llvm::Register Reg; 266 unsigned Sub = 0; 267 }; 268 269 struct ExtExpr { 270 // A subexpression in which the extender is used. In general, this 271 // represents an expression where adding D to the extender will be 272 // equivalent to adding D to the expression as a whole. In other 273 // words, expr(add(##V,D) = add(expr(##V),D). 274 275 // The original motivation for this are the io/ur addressing modes, 276 // where the offset is extended. Consider the io example: 277 // In memw(Rs+##V), the ##V could be replaced by a register Rt to 278 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the 279 // register Rt must have exactly the value of ##V. If there was 280 // another instruction memw(Rs+##V+4), it would need a different Rt. 281 // Now, if Rt was initialized as "##V+Rs<<0", both of these 282 // instructions could use the same Rt, just with different offsets. 283 // Here it's clear that "initializer+4" should be the same as if 284 // the offset 4 was added to the ##V in the initializer. 285 286 // The only kinds of expressions that support the requirement of 287 // commuting with addition are addition and subtraction from ##V. 288 // Include shifting the Rs to account for the ur addressing mode: 289 // ##Val + Rs << S 290 // ##Val - Rs 291 Register Rs; 292 unsigned S = 0; 293 bool Neg = false; 294 295 ExtExpr() = default; 296 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} 297 // Expression is trivial if it does not modify the extender. 298 bool trivial() const { 299 return Rs.Reg == 0; 300 } 301 bool operator==(const ExtExpr &Ex) const { 302 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; 303 } 304 bool operator!=(const ExtExpr &Ex) const { 305 return !operator==(Ex); 306 } 307 bool operator<(const ExtExpr &Ex) const { 308 if (Rs != Ex.Rs) 309 return Rs < Ex.Rs; 310 if (S != Ex.S) 311 return S < Ex.S; 312 return !Neg && Ex.Neg; 313 } 314 }; 315 316 struct ExtDesc { 317 MachineInstr *UseMI = nullptr; 318 unsigned OpNum = -1u; 319 // The subexpression in which the extender is used (e.g. address 320 // computation). 321 ExtExpr Expr; 322 // Optional register that is assigned the value of Expr. 323 Register Rd; 324 // Def means that the output of the instruction may differ from the 325 // original by a constant c, and that the difference can be corrected 326 // by adding/subtracting c in all users of the defined register. 327 bool IsDef = false; 328 329 MachineOperand &getOp() { 330 return UseMI->getOperand(OpNum); 331 } 332 const MachineOperand &getOp() const { 333 return UseMI->getOperand(OpNum); 334 } 335 }; 336 337 struct ExtRoot { 338 union { 339 const ConstantFP *CFP; // MO_FPImmediate 340 const char *SymbolName; // MO_ExternalSymbol 341 const GlobalValue *GV; // MO_GlobalAddress 342 const BlockAddress *BA; // MO_BlockAddress 343 int64_t ImmVal; // MO_Immediate, MO_TargetIndex, 344 // and MO_ConstantPoolIndex 345 } V; 346 unsigned Kind; // Same as in MachineOperand. 347 unsigned char TF; // TargetFlags. 348 349 ExtRoot(const MachineOperand &Op); 350 bool operator==(const ExtRoot &ER) const { 351 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; 352 } 353 bool operator!=(const ExtRoot &ER) const { 354 return !operator==(ER); 355 } 356 bool operator<(const ExtRoot &ER) const; 357 }; 358 359 struct ExtValue : public ExtRoot { 360 int32_t Offset; 361 362 ExtValue(const MachineOperand &Op); 363 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} 364 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} 365 bool operator<(const ExtValue &EV) const; 366 bool operator==(const ExtValue &EV) const { 367 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; 368 } 369 bool operator!=(const ExtValue &EV) const { 370 return !operator==(EV); 371 } 372 explicit operator MachineOperand() const; 373 }; 374 375 using IndexList = SetVector<unsigned>; 376 using ExtenderInit = std::pair<ExtValue, ExtExpr>; 377 using AssignmentMap = std::map<ExtenderInit, IndexList>; 378 using LocDefList = std::vector<std::pair<Loc, IndexList>>; 379 380 const HexagonSubtarget *HST = nullptr; 381 const HexagonInstrInfo *HII = nullptr; 382 const HexagonRegisterInfo *HRI = nullptr; 383 MachineDominatorTree *MDT = nullptr; 384 MachineRegisterInfo *MRI = nullptr; 385 std::vector<ExtDesc> Extenders; 386 std::vector<unsigned> NewRegs; 387 388 bool isStoreImmediate(unsigned Opc) const; 389 bool isRegOffOpcode(unsigned ExtOpc) const ; 390 unsigned getRegOffOpcode(unsigned ExtOpc) const; 391 unsigned getDirectRegReplacement(unsigned ExtOpc) const; 392 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; 393 OffsetRange getOffsetRange(const ExtDesc &ED) const; 394 OffsetRange getOffsetRange(Register Rd) const; 395 396 void recordExtender(MachineInstr &MI, unsigned OpNum); 397 void collectInstr(MachineInstr &MI); 398 void collect(MachineFunction &MF); 399 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 400 AssignmentMap &IMap); 401 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 402 LocDefList &Defs); 403 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); 404 bool replaceInstrExact(const ExtDesc &ED, Register ExtR); 405 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 406 Register ExtR, int32_t &Diff); 407 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); 408 bool replaceExtenders(const AssignmentMap &IMap); 409 410 unsigned getOperandIndex(const MachineInstr &MI, 411 const MachineOperand &Op) const; 412 const MachineOperand &getPredicateOp(const MachineInstr &MI) const; 413 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; 414 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; 415 416 friend struct PrintRegister; 417 friend struct PrintExpr; 418 friend struct PrintInit; 419 friend struct PrintIMap; 420 friend raw_ostream &operator<< (raw_ostream &OS, 421 const struct PrintRegister &P); 422 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); 423 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); 424 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); 425 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); 426 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); 427 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); 428 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); 429 }; 430 431 using HCE = HexagonConstExtenders; 432 433 LLVM_ATTRIBUTE_UNUSED 434 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { 435 if (OR.Min > OR.Max) 436 OS << '!'; 437 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) 438 << '+' << unsigned(OR.Offset); 439 return OS; 440 } 441 442 struct PrintRegister { 443 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) 444 : Rs(R), HRI(I) {} 445 HCE::Register Rs; 446 const HexagonRegisterInfo &HRI; 447 }; 448 449 LLVM_ATTRIBUTE_UNUSED 450 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { 451 if (P.Rs.Reg != 0) 452 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); 453 else 454 OS << "noreg"; 455 return OS; 456 } 457 458 struct PrintExpr { 459 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) 460 : Ex(E), HRI(I) {} 461 const HCE::ExtExpr &Ex; 462 const HexagonRegisterInfo &HRI; 463 }; 464 465 LLVM_ATTRIBUTE_UNUSED 466 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { 467 OS << "## " << (P.Ex.Neg ? "- " : "+ "); 468 if (P.Ex.Rs.Reg != 0) 469 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); 470 else 471 OS << "__"; 472 OS << " << " << P.Ex.S; 473 return OS; 474 } 475 476 struct PrintInit { 477 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) 478 : ExtI(EI), HRI(I) {} 479 const HCE::ExtenderInit &ExtI; 480 const HexagonRegisterInfo &HRI; 481 }; 482 483 LLVM_ATTRIBUTE_UNUSED 484 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { 485 OS << '[' << P.ExtI.first << ", " 486 << PrintExpr(P.ExtI.second, P.HRI) << ']'; 487 return OS; 488 } 489 490 LLVM_ATTRIBUTE_UNUSED 491 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { 492 assert(ED.OpNum != -1u); 493 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); 494 const MachineFunction &MF = *MBB.getParent(); 495 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 496 OS << "bb#" << MBB.getNumber() << ": "; 497 if (ED.Rd.Reg != 0) 498 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); 499 else 500 OS << "__"; 501 OS << " = " << PrintExpr(ED.Expr, HRI); 502 if (ED.IsDef) 503 OS << ", def"; 504 return OS; 505 } 506 507 LLVM_ATTRIBUTE_UNUSED 508 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { 509 switch (ER.Kind) { 510 case MachineOperand::MO_Immediate: 511 OS << "imm:" << ER.V.ImmVal; 512 break; 513 case MachineOperand::MO_FPImmediate: 514 OS << "fpi:" << *ER.V.CFP; 515 break; 516 case MachineOperand::MO_ExternalSymbol: 517 OS << "sym:" << *ER.V.SymbolName; 518 break; 519 case MachineOperand::MO_GlobalAddress: 520 OS << "gad:" << ER.V.GV->getName(); 521 break; 522 case MachineOperand::MO_BlockAddress: 523 OS << "blk:" << *ER.V.BA; 524 break; 525 case MachineOperand::MO_TargetIndex: 526 OS << "tgi:" << ER.V.ImmVal; 527 break; 528 case MachineOperand::MO_ConstantPoolIndex: 529 OS << "cpi:" << ER.V.ImmVal; 530 break; 531 case MachineOperand::MO_JumpTableIndex: 532 OS << "jti:" << ER.V.ImmVal; 533 break; 534 default: 535 OS << "???:" << ER.V.ImmVal; 536 break; 537 } 538 return OS; 539 } 540 541 LLVM_ATTRIBUTE_UNUSED 542 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { 543 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; 544 return OS; 545 } 546 547 struct PrintIMap { 548 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) 549 : IMap(M), HRI(I) {} 550 const HCE::AssignmentMap &IMap; 551 const HexagonRegisterInfo &HRI; 552 }; 553 554 LLVM_ATTRIBUTE_UNUSED 555 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { 556 OS << "{\n"; 557 for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) { 558 OS << " " << PrintInit(Q.first, P.HRI) << " -> {"; 559 for (unsigned I : Q.second) 560 OS << ' ' << I; 561 OS << " }\n"; 562 } 563 OS << "}\n"; 564 return OS; 565 } 566 } 567 568 INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", 569 "Hexagon constant-extender optimization", false, false) 570 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 571 INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", 572 "Hexagon constant-extender optimization", false, false) 573 574 static unsigned ReplaceCounter = 0; 575 576 char HCE::ID = 0; 577 578 #ifndef NDEBUG 579 LLVM_DUMP_METHOD void RangeTree::dump() const { 580 dbgs() << "Root: " << Root << '\n'; 581 if (Root) 582 dump(Root); 583 } 584 585 LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { 586 dbgs() << "Node: " << N << '\n'; 587 dbgs() << " Height: " << N->Height << '\n'; 588 dbgs() << " Count: " << N->Count << '\n'; 589 dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; 590 dbgs() << " Range: " << N->Range << '\n'; 591 dbgs() << " Left: " << N->Left << '\n'; 592 dbgs() << " Right: " << N->Right << "\n\n"; 593 594 if (N->Left) 595 dump(N->Left); 596 if (N->Right) 597 dump(N->Right); 598 } 599 #endif 600 601 void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { 602 if (N == nullptr) 603 return; 604 order(N->Left, Seq); 605 Seq.push_back(N); 606 order(N->Right, Seq); 607 } 608 609 void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, 610 SmallVectorImpl<Node*> &Seq) const { 611 if (N == nullptr || N->MaxEnd < P) 612 return; 613 nodesWith(N->Left, P, CheckA, Seq); 614 if (N->Range.Min <= P) { 615 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) 616 Seq.push_back(N); 617 nodesWith(N->Right, P, CheckA, Seq); 618 } 619 } 620 621 RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { 622 if (N == nullptr) 623 return new Node(R); 624 625 if (N->Range == R) { 626 N->Count++; 627 return N; 628 } 629 630 if (R < N->Range) 631 N->Left = add(N->Left, R); 632 else 633 N->Right = add(N->Right, R); 634 return rebalance(update(N)); 635 } 636 637 RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { 638 assert(N != nullptr); 639 640 if (N != D) { 641 assert(N->Range != D->Range && "N and D should not be equal"); 642 if (D->Range < N->Range) 643 N->Left = remove(N->Left, D); 644 else 645 N->Right = remove(N->Right, D); 646 return rebalance(update(N)); 647 } 648 649 // We got to the node we need to remove. If any of its children are 650 // missing, simply replace it with the other child. 651 if (N->Left == nullptr || N->Right == nullptr) 652 return (N->Left == nullptr) ? N->Right : N->Left; 653 654 // Find the rightmost child of N->Left, remove it and plug it in place 655 // of N. 656 Node *M = N->Left; 657 while (M->Right) 658 M = M->Right; 659 M->Left = remove(N->Left, M); 660 M->Right = N->Right; 661 return rebalance(update(M)); 662 } 663 664 RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { 665 assert(Higher->Right == Lower); 666 // The Lower node is on the right from Higher. Make sure that Lower's 667 // balance is greater to the right. Otherwise the rotation will create 668 // an unbalanced tree again. 669 if (height(Lower->Left) > height(Lower->Right)) 670 Lower = rotateRight(Lower->Left, Lower); 671 assert(height(Lower->Left) <= height(Lower->Right)); 672 Higher->Right = Lower->Left; 673 update(Higher); 674 Lower->Left = Higher; 675 update(Lower); 676 return Lower; 677 } 678 679 RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { 680 assert(Higher->Left == Lower); 681 // The Lower node is on the left from Higher. Make sure that Lower's 682 // balance is greater to the left. Otherwise the rotation will create 683 // an unbalanced tree again. 684 if (height(Lower->Left) < height(Lower->Right)) 685 Lower = rotateLeft(Lower->Right, Lower); 686 assert(height(Lower->Left) >= height(Lower->Right)); 687 Higher->Left = Lower->Right; 688 update(Higher); 689 Lower->Right = Higher; 690 update(Lower); 691 return Lower; 692 } 693 694 695 HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { 696 // Always store ImmVal, since it's the field used for comparisons. 697 V.ImmVal = 0; 698 if (Op.isImm()) 699 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). 700 else if (Op.isFPImm()) 701 V.CFP = Op.getFPImm(); 702 else if (Op.isSymbol()) 703 V.SymbolName = Op.getSymbolName(); 704 else if (Op.isGlobal()) 705 V.GV = Op.getGlobal(); 706 else if (Op.isBlockAddress()) 707 V.BA = Op.getBlockAddress(); 708 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) 709 V.ImmVal = Op.getIndex(); 710 else 711 llvm_unreachable("Unexpected operand type"); 712 713 Kind = Op.getType(); 714 TF = Op.getTargetFlags(); 715 } 716 717 bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { 718 if (Kind != ER.Kind) 719 return Kind < ER.Kind; 720 switch (Kind) { 721 case MachineOperand::MO_Immediate: 722 case MachineOperand::MO_TargetIndex: 723 case MachineOperand::MO_ConstantPoolIndex: 724 case MachineOperand::MO_JumpTableIndex: 725 return V.ImmVal < ER.V.ImmVal; 726 case MachineOperand::MO_FPImmediate: { 727 const APFloat &ThisF = V.CFP->getValueAPF(); 728 const APFloat &OtherF = ER.V.CFP->getValueAPF(); 729 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); 730 } 731 case MachineOperand::MO_ExternalSymbol: 732 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); 733 case MachineOperand::MO_GlobalAddress: 734 // Do not use GUIDs, since they depend on the source path. Moving the 735 // source file to a different directory could cause different GUID 736 // values for a pair of given symbols. These symbols could then compare 737 // "less" in one directory, but "greater" in another. 738 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); 739 return V.GV->getName() < ER.V.GV->getName(); 740 case MachineOperand::MO_BlockAddress: { 741 const BasicBlock *ThisB = V.BA->getBasicBlock(); 742 const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); 743 assert(ThisB->getParent() == OtherB->getParent()); 744 const Function &F = *ThisB->getParent(); 745 return std::distance(F.begin(), ThisB->getIterator()) < 746 std::distance(F.begin(), OtherB->getIterator()); 747 } 748 } 749 return V.ImmVal < ER.V.ImmVal; 750 } 751 752 HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { 753 if (Op.isImm()) 754 Offset = Op.getImm(); 755 else if (Op.isFPImm() || Op.isJTI()) 756 Offset = 0; 757 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || 758 Op.isCPI() || Op.isTargetIndex()) 759 Offset = Op.getOffset(); 760 else 761 llvm_unreachable("Unexpected operand type"); 762 } 763 764 bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { 765 const ExtRoot &ER = *this; 766 if (!(ER == ExtRoot(EV))) 767 return ER < EV; 768 return Offset < EV.Offset; 769 } 770 771 HCE::ExtValue::operator MachineOperand() const { 772 switch (Kind) { 773 case MachineOperand::MO_Immediate: 774 return MachineOperand::CreateImm(V.ImmVal + Offset); 775 case MachineOperand::MO_FPImmediate: 776 assert(Offset == 0); 777 return MachineOperand::CreateFPImm(V.CFP); 778 case MachineOperand::MO_ExternalSymbol: 779 assert(Offset == 0); 780 return MachineOperand::CreateES(V.SymbolName, TF); 781 case MachineOperand::MO_GlobalAddress: 782 return MachineOperand::CreateGA(V.GV, Offset, TF); 783 case MachineOperand::MO_BlockAddress: 784 return MachineOperand::CreateBA(V.BA, Offset, TF); 785 case MachineOperand::MO_TargetIndex: 786 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); 787 case MachineOperand::MO_ConstantPoolIndex: 788 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); 789 case MachineOperand::MO_JumpTableIndex: 790 assert(Offset == 0); 791 return MachineOperand::CreateJTI(V.ImmVal, TF); 792 default: 793 llvm_unreachable("Unhandled kind"); 794 } 795 } 796 797 bool HCE::isStoreImmediate(unsigned Opc) const { 798 switch (Opc) { 799 case Hexagon::S4_storeirbt_io: 800 case Hexagon::S4_storeirbf_io: 801 case Hexagon::S4_storeirht_io: 802 case Hexagon::S4_storeirhf_io: 803 case Hexagon::S4_storeirit_io: 804 case Hexagon::S4_storeirif_io: 805 case Hexagon::S4_storeirb_io: 806 case Hexagon::S4_storeirh_io: 807 case Hexagon::S4_storeiri_io: 808 return true; 809 default: 810 break; 811 } 812 return false; 813 } 814 815 bool HCE::isRegOffOpcode(unsigned Opc) const { 816 switch (Opc) { 817 case Hexagon::L2_loadrub_io: 818 case Hexagon::L2_loadrb_io: 819 case Hexagon::L2_loadruh_io: 820 case Hexagon::L2_loadrh_io: 821 case Hexagon::L2_loadri_io: 822 case Hexagon::L2_loadrd_io: 823 case Hexagon::L2_loadbzw2_io: 824 case Hexagon::L2_loadbzw4_io: 825 case Hexagon::L2_loadbsw2_io: 826 case Hexagon::L2_loadbsw4_io: 827 case Hexagon::L2_loadalignh_io: 828 case Hexagon::L2_loadalignb_io: 829 case Hexagon::L2_ploadrubt_io: 830 case Hexagon::L2_ploadrubf_io: 831 case Hexagon::L2_ploadrbt_io: 832 case Hexagon::L2_ploadrbf_io: 833 case Hexagon::L2_ploadruht_io: 834 case Hexagon::L2_ploadruhf_io: 835 case Hexagon::L2_ploadrht_io: 836 case Hexagon::L2_ploadrhf_io: 837 case Hexagon::L2_ploadrit_io: 838 case Hexagon::L2_ploadrif_io: 839 case Hexagon::L2_ploadrdt_io: 840 case Hexagon::L2_ploadrdf_io: 841 case Hexagon::S2_storerb_io: 842 case Hexagon::S2_storerh_io: 843 case Hexagon::S2_storerf_io: 844 case Hexagon::S2_storeri_io: 845 case Hexagon::S2_storerd_io: 846 case Hexagon::S2_pstorerbt_io: 847 case Hexagon::S2_pstorerbf_io: 848 case Hexagon::S2_pstorerht_io: 849 case Hexagon::S2_pstorerhf_io: 850 case Hexagon::S2_pstorerft_io: 851 case Hexagon::S2_pstorerff_io: 852 case Hexagon::S2_pstorerit_io: 853 case Hexagon::S2_pstorerif_io: 854 case Hexagon::S2_pstorerdt_io: 855 case Hexagon::S2_pstorerdf_io: 856 case Hexagon::A2_addi: 857 return true; 858 default: 859 break; 860 } 861 return false; 862 } 863 864 unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { 865 // If there exists an instruction that takes a register and offset, 866 // that corresponds to the ExtOpc, return it, otherwise return 0. 867 using namespace Hexagon; 868 switch (ExtOpc) { 869 case A2_tfrsi: return A2_addi; 870 default: 871 break; 872 } 873 const MCInstrDesc &D = HII->get(ExtOpc); 874 if (D.mayLoad() || D.mayStore()) { 875 uint64_t F = D.TSFlags; 876 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; 877 switch (AM) { 878 case HexagonII::Absolute: 879 case HexagonII::AbsoluteSet: 880 case HexagonII::BaseLongOffset: 881 switch (ExtOpc) { 882 case PS_loadrubabs: 883 case L4_loadrub_ap: 884 case L4_loadrub_ur: return L2_loadrub_io; 885 case PS_loadrbabs: 886 case L4_loadrb_ap: 887 case L4_loadrb_ur: return L2_loadrb_io; 888 case PS_loadruhabs: 889 case L4_loadruh_ap: 890 case L4_loadruh_ur: return L2_loadruh_io; 891 case PS_loadrhabs: 892 case L4_loadrh_ap: 893 case L4_loadrh_ur: return L2_loadrh_io; 894 case PS_loadriabs: 895 case L4_loadri_ap: 896 case L4_loadri_ur: return L2_loadri_io; 897 case PS_loadrdabs: 898 case L4_loadrd_ap: 899 case L4_loadrd_ur: return L2_loadrd_io; 900 case L4_loadbzw2_ap: 901 case L4_loadbzw2_ur: return L2_loadbzw2_io; 902 case L4_loadbzw4_ap: 903 case L4_loadbzw4_ur: return L2_loadbzw4_io; 904 case L4_loadbsw2_ap: 905 case L4_loadbsw2_ur: return L2_loadbsw2_io; 906 case L4_loadbsw4_ap: 907 case L4_loadbsw4_ur: return L2_loadbsw4_io; 908 case L4_loadalignh_ap: 909 case L4_loadalignh_ur: return L2_loadalignh_io; 910 case L4_loadalignb_ap: 911 case L4_loadalignb_ur: return L2_loadalignb_io; 912 case L4_ploadrubt_abs: return L2_ploadrubt_io; 913 case L4_ploadrubf_abs: return L2_ploadrubf_io; 914 case L4_ploadrbt_abs: return L2_ploadrbt_io; 915 case L4_ploadrbf_abs: return L2_ploadrbf_io; 916 case L4_ploadruht_abs: return L2_ploadruht_io; 917 case L4_ploadruhf_abs: return L2_ploadruhf_io; 918 case L4_ploadrht_abs: return L2_ploadrht_io; 919 case L4_ploadrhf_abs: return L2_ploadrhf_io; 920 case L4_ploadrit_abs: return L2_ploadrit_io; 921 case L4_ploadrif_abs: return L2_ploadrif_io; 922 case L4_ploadrdt_abs: return L2_ploadrdt_io; 923 case L4_ploadrdf_abs: return L2_ploadrdf_io; 924 case PS_storerbabs: 925 case S4_storerb_ap: 926 case S4_storerb_ur: return S2_storerb_io; 927 case PS_storerhabs: 928 case S4_storerh_ap: 929 case S4_storerh_ur: return S2_storerh_io; 930 case PS_storerfabs: 931 case S4_storerf_ap: 932 case S4_storerf_ur: return S2_storerf_io; 933 case PS_storeriabs: 934 case S4_storeri_ap: 935 case S4_storeri_ur: return S2_storeri_io; 936 case PS_storerdabs: 937 case S4_storerd_ap: 938 case S4_storerd_ur: return S2_storerd_io; 939 case S4_pstorerbt_abs: return S2_pstorerbt_io; 940 case S4_pstorerbf_abs: return S2_pstorerbf_io; 941 case S4_pstorerht_abs: return S2_pstorerht_io; 942 case S4_pstorerhf_abs: return S2_pstorerhf_io; 943 case S4_pstorerft_abs: return S2_pstorerft_io; 944 case S4_pstorerff_abs: return S2_pstorerff_io; 945 case S4_pstorerit_abs: return S2_pstorerit_io; 946 case S4_pstorerif_abs: return S2_pstorerif_io; 947 case S4_pstorerdt_abs: return S2_pstorerdt_io; 948 case S4_pstorerdf_abs: return S2_pstorerdf_io; 949 default: 950 break; 951 } 952 break; 953 case HexagonII::BaseImmOffset: 954 if (!isStoreImmediate(ExtOpc)) 955 return ExtOpc; 956 break; 957 default: 958 break; 959 } 960 } 961 return 0; 962 } 963 964 unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { 965 switch (ExtOpc) { 966 case Hexagon::A2_addi: return Hexagon::A2_add; 967 case Hexagon::A2_andir: return Hexagon::A2_and; 968 case Hexagon::A2_combineii: return Hexagon::A4_combineri; 969 case Hexagon::A2_orir: return Hexagon::A2_or; 970 case Hexagon::A2_paddif: return Hexagon::A2_paddf; 971 case Hexagon::A2_paddit: return Hexagon::A2_paddt; 972 case Hexagon::A2_subri: return Hexagon::A2_sub; 973 case Hexagon::A2_tfrsi: return TargetOpcode::COPY; 974 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; 975 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; 976 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; 977 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; 978 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; 979 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; 980 case Hexagon::A4_combineii: return Hexagon::A4_combineir; 981 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; 982 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; 983 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; 984 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; 985 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; 986 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; 987 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; 988 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; 989 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; 990 case Hexagon::C2_muxii: return Hexagon::C2_muxir; 991 case Hexagon::C2_muxir: return Hexagon::C2_mux; 992 case Hexagon::C2_muxri: return Hexagon::C2_mux; 993 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; 994 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; 995 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; 996 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T 997 /* No M2_macsin */ 998 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T 999 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; 1000 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; 1001 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; 1002 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T 1003 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; 1004 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T 1005 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T 1006 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T 1007 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T 1008 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T 1009 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T 1010 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T 1011 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T 1012 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T 1013 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T 1014 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T 1015 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T 1016 1017 // Store-immediates: 1018 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; 1019 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; 1020 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; 1021 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; 1022 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; 1023 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; 1024 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; 1025 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; 1026 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; 1027 1028 default: 1029 break; 1030 } 1031 return 0; 1032 } 1033 1034 // Return the allowable deviation from the current value of Rb (i.e. the 1035 // range of values that can be added to the current value) which the 1036 // instruction MI can accommodate. 1037 // The instruction MI is a user of register Rb, which is defined via an 1038 // extender. It may be possible for MI to be tweaked to work for a register 1039 // defined with a slightly different value. For example 1040 // ... = L2_loadrub_io Rb, 1 1041 // can be modifed to be 1042 // ... = L2_loadrub_io Rb', 0 1043 // if Rb' = Rb+1. 1044 // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range 1045 // for L2_loadrub with offset 0. That means that Rb could be replaced with 1046 // Rc, where Rc-Rb belongs to [Min+1, Max+1]. 1047 OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { 1048 unsigned Opc = MI.getOpcode(); 1049 // Instructions that are constant-extended may be replaced with something 1050 // else that no longer offers the same range as the original. 1051 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) 1052 return OffsetRange::zero(); 1053 1054 if (Opc == Hexagon::A2_addi) { 1055 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); 1056 if (Rb != Register(Op1) || !Op2.isImm()) 1057 return OffsetRange::zero(); 1058 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; 1059 return R.shift(Op2.getImm()); 1060 } 1061 1062 // HII::getBaseAndOffsetPosition returns the increment position as "offset". 1063 if (HII->isPostIncrement(MI)) 1064 return OffsetRange::zero(); 1065 1066 const MCInstrDesc &D = HII->get(Opc); 1067 assert(D.mayLoad() || D.mayStore()); 1068 1069 unsigned BaseP, OffP; 1070 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || 1071 Rb != Register(MI.getOperand(BaseP)) || 1072 !MI.getOperand(OffP).isImm()) 1073 return OffsetRange::zero(); 1074 1075 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1076 HexagonII::MemAccesSizeMask; 1077 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1078 unsigned L = Log2_32(A); 1079 unsigned S = 10+L; // sint11_L 1080 int32_t Min = -alignDown((1<<S)-1, A); 1081 1082 // The range will be shifted by Off. To prefer non-negative offsets, 1083 // adjust Max accordingly. 1084 int32_t Off = MI.getOperand(OffP).getImm(); 1085 int32_t Max = Off >= 0 ? 0 : -Off; 1086 1087 OffsetRange R = { Min, Max, A }; 1088 return R.shift(Off); 1089 } 1090 1091 // Return the allowable deviation from the current value of the extender ED, 1092 // for which the instruction corresponding to ED can be modified without 1093 // using an extender. 1094 // The instruction uses the extender directly. It will be replaced with 1095 // another instruction, say MJ, where the extender will be replaced with a 1096 // register. MJ can allow some variability with respect to the value of 1097 // that register, as is the case with indexed memory instructions. 1098 OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { 1099 // The only way that there can be a non-zero range available is if 1100 // the instruction using ED will be converted to an indexed memory 1101 // instruction. 1102 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); 1103 switch (IdxOpc) { 1104 case 0: 1105 return OffsetRange::zero(); 1106 case Hexagon::A2_addi: // s16 1107 return { -32767, 32767, 1 }; 1108 case Hexagon::A2_subri: // s10 1109 return { -511, 511, 1 }; 1110 } 1111 1112 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) 1113 return OffsetRange::zero(); 1114 const MCInstrDesc &D = HII->get(IdxOpc); 1115 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1116 HexagonII::MemAccesSizeMask; 1117 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1118 unsigned L = Log2_32(A); 1119 unsigned S = 10+L; // sint11_L 1120 int32_t Min = -alignDown((1<<S)-1, A); 1121 int32_t Max = 0; // Force non-negative offsets. 1122 return { Min, Max, A }; 1123 } 1124 1125 // Get the allowable deviation from the current value of Rd by checking 1126 // all uses of Rd. 1127 OffsetRange HCE::getOffsetRange(Register Rd) const { 1128 OffsetRange Range; 1129 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { 1130 // Make sure that the register being used by this operand is identical 1131 // to the register that was defined: using a different subregister 1132 // precludes any non-trivial range. 1133 if (Rd != Register(Op)) 1134 return OffsetRange::zero(); 1135 Range.intersect(getOffsetRange(Rd, *Op.getParent())); 1136 } 1137 return Range; 1138 } 1139 1140 void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { 1141 unsigned Opc = MI.getOpcode(); 1142 ExtDesc ED; 1143 ED.OpNum = OpNum; 1144 1145 bool IsLoad = MI.mayLoad(); 1146 bool IsStore = MI.mayStore(); 1147 1148 // Fixed stack slots have negative indexes, and they cannot be used 1149 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat 1150 // unfortunate, but should not be a frequent thing. 1151 for (MachineOperand &Op : MI.operands()) 1152 if (Op.isFI() && Op.getIndex() < 0) 1153 return; 1154 1155 if (IsLoad || IsStore) { 1156 unsigned AM = HII->getAddrMode(MI); 1157 switch (AM) { 1158 // (Re: ##Off + Rb<<S) = Rd: ##Val 1159 case HexagonII::Absolute: // (__: ## + __<<_) 1160 break; 1161 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) 1162 ED.Rd = MI.getOperand(OpNum-1); 1163 ED.IsDef = true; 1164 break; 1165 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) 1166 // Store-immediates are treated as non-memory operations, since 1167 // it's the value being stored that is extended (as opposed to 1168 // a part of the address). 1169 if (!isStoreImmediate(Opc)) 1170 ED.Expr.Rs = MI.getOperand(OpNum-1); 1171 break; 1172 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) 1173 ED.Expr.Rs = MI.getOperand(OpNum-2); 1174 ED.Expr.S = MI.getOperand(OpNum-1).getImm(); 1175 break; 1176 default: 1177 llvm_unreachable("Unhandled memory instruction"); 1178 } 1179 } else { 1180 switch (Opc) { 1181 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) 1182 ED.Rd = MI.getOperand(0); 1183 ED.IsDef = true; 1184 break; 1185 case Hexagon::A2_combineii: // (Rd: ## + __<<_) 1186 case Hexagon::A4_combineir: 1187 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; 1188 ED.IsDef = true; 1189 break; 1190 case Hexagon::A4_combineri: // (Rd: ## + __<<_) 1191 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; 1192 ED.IsDef = true; 1193 break; 1194 case Hexagon::A2_addi: // (Rd: ## + Rs<<0) 1195 ED.Rd = MI.getOperand(0); 1196 ED.Expr.Rs = MI.getOperand(OpNum-1); 1197 break; 1198 case Hexagon::M2_accii: // (__: ## + Rs<<0) 1199 case Hexagon::M2_naccii: 1200 case Hexagon::S4_addaddi: 1201 ED.Expr.Rs = MI.getOperand(OpNum-1); 1202 break; 1203 case Hexagon::A2_subri: // (Rd: ## - Rs<<0) 1204 ED.Rd = MI.getOperand(0); 1205 ED.Expr.Rs = MI.getOperand(OpNum+1); 1206 ED.Expr.Neg = true; 1207 break; 1208 case Hexagon::S4_subaddi: // (__: ## - Rs<<0) 1209 ED.Expr.Rs = MI.getOperand(OpNum+1); 1210 ED.Expr.Neg = true; 1211 break; 1212 default: // (__: ## + __<<_) 1213 break; 1214 } 1215 } 1216 1217 ED.UseMI = &MI; 1218 1219 // Ignore unnamed globals. 1220 ExtRoot ER(ED.getOp()); 1221 if (ER.Kind == MachineOperand::MO_GlobalAddress) 1222 if (ER.V.GV->getName().empty()) 1223 return; 1224 Extenders.push_back(ED); 1225 } 1226 1227 void HCE::collectInstr(MachineInstr &MI) { 1228 if (!HII->isConstExtended(MI)) 1229 return; 1230 1231 // Skip some non-convertible instructions. 1232 unsigned Opc = MI.getOpcode(); 1233 switch (Opc) { 1234 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). 1235 case Hexagon::C4_addipc: 1236 case Hexagon::S4_or_andi: 1237 case Hexagon::S4_or_andix: 1238 case Hexagon::S4_or_ori: 1239 return; 1240 } 1241 recordExtender(MI, HII->getCExtOpNum(MI)); 1242 } 1243 1244 void HCE::collect(MachineFunction &MF) { 1245 Extenders.clear(); 1246 for (MachineBasicBlock &MBB : MF) { 1247 // Skip unreachable blocks. 1248 if (MBB.getNumber() == -1) 1249 continue; 1250 for (MachineInstr &MI : MBB) 1251 collectInstr(MI); 1252 } 1253 } 1254 1255 void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 1256 AssignmentMap &IMap) { 1257 // Basic correctness: make sure that all extenders in the range [Begin..End) 1258 // share the same root ER. 1259 for (unsigned I = Begin; I != End; ++I) 1260 assert(ER == ExtRoot(Extenders[I].getOp())); 1261 1262 // Construct the list of ranges, such that for each P in Ranges[I], 1263 // a register Reg = ER+P can be used in place of Extender[I]. If the 1264 // instruction allows, uses in the form of Reg+Off are considered 1265 // (here, Off = required_value - P). 1266 std::vector<OffsetRange> Ranges(End-Begin); 1267 1268 // For each extender that is a def, visit all uses of the defined register, 1269 // and produce an offset range that works for all uses. The def doesn't 1270 // have to be checked, because it can become dead if all uses can be updated 1271 // to use a different reg/offset. 1272 for (unsigned I = Begin; I != End; ++I) { 1273 const ExtDesc &ED = Extenders[I]; 1274 if (!ED.IsDef) 1275 continue; 1276 ExtValue EV(ED); 1277 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); 1278 assert(ED.Rd.Reg != 0); 1279 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); 1280 // A2_tfrsi is a special case: it will be replaced with A2_addi, which 1281 // has a 16-bit signed offset. This means that A2_tfrsi not only has a 1282 // range coming from its uses, but also from the fact that its replacement 1283 // has a range as well. 1284 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { 1285 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded 1286 Ranges[I-Begin].extendBy(-D).extendBy(D); 1287 } 1288 } 1289 1290 // Visit all non-def extenders. For each one, determine the offset range 1291 // available for it. 1292 for (unsigned I = Begin; I != End; ++I) { 1293 const ExtDesc &ED = Extenders[I]; 1294 if (ED.IsDef) 1295 continue; 1296 ExtValue EV(ED); 1297 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); 1298 OffsetRange Dev = getOffsetRange(ED); 1299 Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); 1300 } 1301 1302 // Here for each I there is a corresponding Range[I]. Construct the 1303 // inverse map, that to each range will assign the set of indexes in 1304 // [Begin..End) that this range corresponds to. 1305 std::map<OffsetRange, IndexList> RangeMap; 1306 for (unsigned I = Begin; I != End; ++I) 1307 RangeMap[Ranges[I-Begin]].insert(I); 1308 1309 LLVM_DEBUG({ 1310 dbgs() << "Ranges\n"; 1311 for (unsigned I = Begin; I != End; ++I) 1312 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; 1313 dbgs() << "RangeMap\n"; 1314 for (auto &P : RangeMap) { 1315 dbgs() << " " << P.first << " ->"; 1316 for (unsigned I : P.second) 1317 dbgs() << ' ' << I; 1318 dbgs() << '\n'; 1319 } 1320 }); 1321 1322 // Select the definition points, and generate the assignment between 1323 // these points and the uses. 1324 1325 // For each candidate offset, keep a pair CandData consisting of 1326 // the total number of ranges containing that candidate, and the 1327 // vector of corresponding RangeTree nodes. 1328 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; 1329 std::map<int32_t, CandData> CandMap; 1330 1331 RangeTree Tree; 1332 for (const OffsetRange &R : Ranges) 1333 Tree.add(R); 1334 SmallVector<RangeTree::Node*,8> Nodes; 1335 Tree.order(Nodes); 1336 1337 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, 1338 uint8_t Align, uint8_t Offset) { 1339 for (RangeTree::Node *N : Nodes) { 1340 if (N->Range.Align <= Align || N->Range.Offset < Offset) 1341 continue; 1342 if ((N->Range.Offset - Offset) % Align != 0) 1343 continue; 1344 Align = N->Range.Align; 1345 Offset = N->Range.Offset; 1346 } 1347 return std::make_pair(Align, Offset); 1348 }; 1349 1350 // Construct the set of all potential definition points from the endpoints 1351 // of the ranges. If a given endpoint also belongs to a different range, 1352 // but with a higher alignment, also consider the more-highly-aligned 1353 // value of this endpoint. 1354 std::set<int32_t> CandSet; 1355 for (RangeTree::Node *N : Nodes) { 1356 const OffsetRange &R = N->Range; 1357 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset); 1358 CandSet.insert(R.Min); 1359 if (R.Align < P0.first) 1360 CandSet.insert(adjustUp(R.Min, P0.first, P0.second)); 1361 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset); 1362 CandSet.insert(R.Max); 1363 if (R.Align < P1.first) 1364 CandSet.insert(adjustDown(R.Max, P1.first, P1.second)); 1365 } 1366 1367 // Build the assignment map: candidate C -> { list of extender indexes }. 1368 // This has to be done iteratively: 1369 // - pick the candidate that covers the maximum number of extenders, 1370 // - add the candidate to the map, 1371 // - remove the extenders from the pool. 1372 while (true) { 1373 using CMap = std::map<int32_t,unsigned>; 1374 CMap Counts; 1375 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { 1376 auto &&V = Tree.nodesWith(*It); 1377 unsigned N = std::accumulate(V.begin(), V.end(), 0u, 1378 [](unsigned Acc, const RangeTree::Node *N) { 1379 return Acc + N->Count; 1380 }); 1381 if (N != 0) 1382 Counts.insert({*It, N}); 1383 It = (N != 0) ? std::next(It) : CandSet.erase(It); 1384 } 1385 if (Counts.empty()) 1386 break; 1387 1388 // Find the best candidate with respect to the number of extenders covered. 1389 auto BestIt = std::max_element(Counts.begin(), Counts.end(), 1390 [](const CMap::value_type &A, const CMap::value_type &B) { 1391 return A.second < B.second || 1392 (A.second == B.second && A < B); 1393 }); 1394 int32_t Best = BestIt->first; 1395 ExtValue BestV(ER, Best); 1396 for (RangeTree::Node *N : Tree.nodesWith(Best)) { 1397 for (unsigned I : RangeMap[N->Range]) 1398 IMap[{BestV,Extenders[I].Expr}].insert(I); 1399 Tree.erase(N); 1400 } 1401 } 1402 1403 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); 1404 1405 // There is some ambiguity in what initializer should be used, if the 1406 // descriptor's subexpression is non-trivial: it can be the entire 1407 // subexpression (which is what has been done so far), or it can be 1408 // the extender's value itself, if all corresponding extenders have the 1409 // exact value of the initializer (i.e. require offset of 0). 1410 1411 // To reduce the number of initializers, merge such special cases. 1412 for (std::pair<const ExtenderInit,IndexList> &P : IMap) { 1413 // Skip trivial initializers. 1414 if (P.first.second.trivial()) 1415 continue; 1416 // If the corresponding trivial initializer does not exist, skip this 1417 // entry. 1418 const ExtValue &EV = P.first.first; 1419 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); 1420 if (F == IMap.end()) 1421 continue; 1422 1423 // Finally, check if all extenders have the same value as the initializer. 1424 // Make sure that extenders that are a part of a stack address are not 1425 // merged with those that aren't. Stack addresses need an offset field 1426 // (to be used by frame index elimination), while non-stack expressions 1427 // can be replaced with forms (such as rr) that do not have such a field. 1428 // Example: 1429 // 1430 // Collected 3 extenders 1431 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def 1432 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 1433 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 1434 // Ranges 1435 // 0. [-756,267]a1+0 1436 // 1. [-756,267]a1+0 1437 // 2. [201,65735]a1+0 1438 // RangeMap 1439 // [-756,267]a1+0 -> 0 1 1440 // [201,65735]a1+0 -> 2 1441 // IMap (before fixup) = { 1442 // [imm:0 off:267, ## + __ << 0] -> { 2 } 1443 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } 1444 // } 1445 // IMap (after fixup) = { 1446 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } 1447 // [imm:0 off:267, ## + SS#1 << 0] -> { } 1448 // } 1449 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] 1450 // %12:intregs = A2_tfrsi 267 1451 // 1452 // The result was 1453 // %12:intregs = A2_tfrsi 267 1454 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 1455 // Which became 1456 // r0 = #267 1457 // if (p0.new) memb(r0+r29<<#4) = r2 1458 1459 bool IsStack = any_of(F->second, [this](unsigned I) { 1460 return Extenders[I].Expr.Rs.isSlot(); 1461 }); 1462 auto SameValue = [&EV,this,IsStack](unsigned I) { 1463 const ExtDesc &ED = Extenders[I]; 1464 return ED.Expr.Rs.isSlot() == IsStack && 1465 ExtValue(ED).Offset == EV.Offset; 1466 }; 1467 if (all_of(P.second, SameValue)) { 1468 F->second.insert(P.second.begin(), P.second.end()); 1469 P.second.clear(); 1470 } 1471 } 1472 1473 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); 1474 } 1475 1476 void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 1477 LocDefList &Defs) { 1478 if (Refs.empty()) 1479 return; 1480 1481 // The placement calculation is somewhat simple right now: it finds a 1482 // single location for the def that dominates all refs. Since this may 1483 // place the def far from the uses, producing several locations for 1484 // defs that collectively dominate all refs could be better. 1485 // For now only do the single one. 1486 DenseSet<MachineBasicBlock*> Blocks; 1487 DenseSet<MachineInstr*> RefMIs; 1488 const ExtDesc &ED0 = Extenders[Refs[0]]; 1489 MachineBasicBlock *DomB = ED0.UseMI->getParent(); 1490 RefMIs.insert(ED0.UseMI); 1491 Blocks.insert(DomB); 1492 for (unsigned i = 1, e = Refs.size(); i != e; ++i) { 1493 const ExtDesc &ED = Extenders[Refs[i]]; 1494 MachineBasicBlock *MBB = ED.UseMI->getParent(); 1495 RefMIs.insert(ED.UseMI); 1496 DomB = MDT->findNearestCommonDominator(DomB, MBB); 1497 Blocks.insert(MBB); 1498 } 1499 1500 #ifndef NDEBUG 1501 // The block DomB should be dominated by the def of each register used 1502 // in the initializer. 1503 Register Rs = ExtI.second.Rs; // Only one reg allowed now. 1504 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; 1505 1506 // This should be guaranteed given that the entire expression is used 1507 // at each instruction in Refs. Add an assertion just in case. 1508 assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); 1509 #endif 1510 1511 MachineBasicBlock::iterator It; 1512 if (Blocks.count(DomB)) { 1513 // Try to find the latest possible location for the def. 1514 MachineBasicBlock::iterator End = DomB->end(); 1515 for (It = DomB->begin(); It != End; ++It) 1516 if (RefMIs.count(&*It)) 1517 break; 1518 assert(It != End && "Should have found a ref in DomB"); 1519 } else { 1520 // DomB does not contain any refs. 1521 It = DomB->getFirstTerminator(); 1522 } 1523 Loc DefLoc(DomB, It); 1524 Defs.emplace_back(DefLoc, Refs); 1525 } 1526 1527 HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { 1528 llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1529 MachineBasicBlock &MBB = *DefL.Block; 1530 MachineBasicBlock::iterator At = DefL.At; 1531 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); 1532 const ExtValue &EV = ExtI.first; 1533 MachineOperand ExtOp(EV); 1534 1535 const ExtExpr &Ex = ExtI.second; 1536 const MachineInstr *InitI = nullptr; 1537 1538 if (Ex.Rs.isSlot()) { 1539 assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); 1540 assert(!Ex.Neg && "Cannot subtract a stack slot"); 1541 // DefR = PS_fi Rb,##EV 1542 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) 1543 .add(MachineOperand(Ex.Rs)) 1544 .add(ExtOp); 1545 } else { 1546 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); 1547 if (Ex.trivial()) { 1548 // DefR = ##EV 1549 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) 1550 .add(ExtOp); 1551 } else if (Ex.S == 0) { 1552 if (Ex.Neg) { 1553 // DefR = sub(##EV,Rb) 1554 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) 1555 .add(ExtOp) 1556 .add(MachineOperand(Ex.Rs)); 1557 } else { 1558 // DefR = add(Rb,##EV) 1559 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) 1560 .add(MachineOperand(Ex.Rs)) 1561 .add(ExtOp); 1562 } 1563 } else { 1564 if (HST->useCompound()) { 1565 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri 1566 : Hexagon::S4_addi_asl_ri; 1567 // DefR = add(##EV,asl(Rb,S)) 1568 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) 1569 .add(ExtOp) 1570 .add(MachineOperand(Ex.Rs)) 1571 .addImm(Ex.S); 1572 } else { 1573 // No compounds are available. It is not clear whether we should 1574 // even process such extenders where the initializer cannot be 1575 // a single instruction, but do it for now. 1576 llvm::Register TmpR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1577 BuildMI(MBB, At, dl, HII->get(Hexagon::S2_asl_i_r), TmpR) 1578 .add(MachineOperand(Ex.Rs)) 1579 .addImm(Ex.S); 1580 if (Ex.Neg) 1581 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) 1582 .add(ExtOp) 1583 .add(MachineOperand(Register(TmpR, 0))); 1584 else 1585 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) 1586 .add(MachineOperand(Register(TmpR, 0))) 1587 .add(ExtOp); 1588 } 1589 } 1590 } 1591 1592 assert(InitI); 1593 (void)InitI; 1594 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() 1595 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " 1596 << *InitI); 1597 return { DefR, 0 }; 1598 } 1599 1600 // Replace the extender at index Idx with the register ExtR. 1601 bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { 1602 MachineInstr &MI = *ED.UseMI; 1603 MachineBasicBlock &MBB = *MI.getParent(); 1604 MachineBasicBlock::iterator At = MI.getIterator(); 1605 DebugLoc dl = MI.getDebugLoc(); 1606 unsigned ExtOpc = MI.getOpcode(); 1607 1608 // With a few exceptions, direct replacement amounts to creating an 1609 // instruction with a corresponding register opcode, with all operands 1610 // the same, except for the register used in place of the extender. 1611 unsigned RegOpc = getDirectRegReplacement(ExtOpc); 1612 1613 if (RegOpc == TargetOpcode::REG_SEQUENCE) { 1614 if (ExtOpc == Hexagon::A4_combineri) 1615 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1616 .add(MI.getOperand(0)) 1617 .add(MI.getOperand(1)) 1618 .addImm(Hexagon::isub_hi) 1619 .add(MachineOperand(ExtR)) 1620 .addImm(Hexagon::isub_lo); 1621 else if (ExtOpc == Hexagon::A4_combineir) 1622 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1623 .add(MI.getOperand(0)) 1624 .add(MachineOperand(ExtR)) 1625 .addImm(Hexagon::isub_hi) 1626 .add(MI.getOperand(2)) 1627 .addImm(Hexagon::isub_lo); 1628 else 1629 llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); 1630 MBB.erase(MI); 1631 return true; 1632 } 1633 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { 1634 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt 1635 : Hexagon::C2_cmpltu; 1636 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1637 .add(MI.getOperand(0)) 1638 .add(MachineOperand(ExtR)) 1639 .add(MI.getOperand(1)); 1640 MBB.erase(MI); 1641 return true; 1642 } 1643 1644 if (RegOpc != 0) { 1645 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1646 unsigned RegN = ED.OpNum; 1647 // Copy all operands except the one that has the extender. 1648 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1649 if (i != RegN) 1650 MIB.add(MI.getOperand(i)); 1651 else 1652 MIB.add(MachineOperand(ExtR)); 1653 } 1654 MIB.cloneMemRefs(MI); 1655 MBB.erase(MI); 1656 return true; 1657 } 1658 1659 if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) { 1660 // For memory instructions, there is an asymmetry in the addressing 1661 // modes. Addressing modes allowing extenders can be replaced with 1662 // addressing modes that use registers, but the order of operands 1663 // (or even their number) may be different. 1664 // Replacements: 1665 // BaseImmOffset (io) -> BaseRegOffset (rr) 1666 // BaseLongOffset (ur) -> BaseRegOffset (rr) 1667 unsigned RegOpc, Shift; 1668 unsigned AM = HII->getAddrMode(MI); 1669 if (AM == HexagonII::BaseImmOffset) { 1670 RegOpc = HII->changeAddrMode_io_rr(ExtOpc); 1671 Shift = 0; 1672 } else if (AM == HexagonII::BaseLongOffset) { 1673 // Loads: Rd = L4_loadri_ur Rs, S, ## 1674 // Stores: S4_storeri_ur Rs, S, ##, Rt 1675 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); 1676 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); 1677 } else { 1678 llvm_unreachable("Unexpected addressing mode"); 1679 } 1680 #ifndef NDEBUG 1681 if (RegOpc == -1u) { 1682 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; 1683 llvm_unreachable("No corresponding rr instruction"); 1684 } 1685 #endif 1686 1687 unsigned BaseP, OffP; 1688 HII->getBaseAndOffsetPosition(MI, BaseP, OffP); 1689 1690 // Build an rr instruction: (RegOff + RegBase<<0) 1691 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1692 // First, add the def for loads. 1693 if (MI.mayLoad()) 1694 MIB.add(getLoadResultOp(MI)); 1695 // Handle possible predication. 1696 if (HII->isPredicated(MI)) 1697 MIB.add(getPredicateOp(MI)); 1698 // Build the address. 1699 MIB.add(MachineOperand(ExtR)); // RegOff 1700 MIB.add(MI.getOperand(BaseP)); // RegBase 1701 MIB.addImm(Shift); // << Shift 1702 // Add the stored value for stores. 1703 if (MI.mayStore()) 1704 MIB.add(getStoredValueOp(MI)); 1705 MIB.cloneMemRefs(MI); 1706 MBB.erase(MI); 1707 return true; 1708 } 1709 1710 #ifndef NDEBUG 1711 dbgs() << '\n' << MI; 1712 #endif 1713 llvm_unreachable("Unhandled exact replacement"); 1714 return false; 1715 } 1716 1717 // Replace the extender ED with a form corresponding to the initializer ExtI. 1718 bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 1719 Register ExtR, int32_t &Diff) { 1720 MachineInstr &MI = *ED.UseMI; 1721 MachineBasicBlock &MBB = *MI.getParent(); 1722 MachineBasicBlock::iterator At = MI.getIterator(); 1723 DebugLoc dl = MI.getDebugLoc(); 1724 unsigned ExtOpc = MI.getOpcode(); 1725 1726 if (ExtOpc == Hexagon::A2_tfrsi) { 1727 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces 1728 // another range. One range is the one that's common to all tfrsi's uses, 1729 // this one is the range of immediates in A2_addi. When calculating ranges, 1730 // the addi's 16-bit argument was included, so now we need to make it such 1731 // that the produced value is in the range for the uses alone. 1732 // Most of the time, simply adding Diff will make the addi produce exact 1733 // result, but if Diff is outside of the 16-bit range, some adjustment 1734 // will be needed. 1735 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1736 assert(IdxOpc == Hexagon::A2_addi); 1737 1738 // Clamp Diff to the 16 bit range. 1739 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768); 1740 if (Diff > 32767) { 1741 // Split Diff into two values: one that is close to min/max int16, 1742 // and the other being the rest, and such that both have the same 1743 // "alignment" as Diff. 1744 uint32_t UD = Diff; 1745 OffsetRange R = getOffsetRange(MI.getOperand(0)); 1746 uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD)); 1747 D &= ~(A-1); 1748 } 1749 BuildMI(MBB, At, dl, HII->get(IdxOpc)) 1750 .add(MI.getOperand(0)) 1751 .add(MachineOperand(ExtR)) 1752 .addImm(D); 1753 Diff -= D; 1754 #ifndef NDEBUG 1755 // Make sure the output is within allowable range for uses. 1756 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, 1757 // not DefV - Ext, as the getOffsetRange would calculate. 1758 OffsetRange Uses = getOffsetRange(MI.getOperand(0)); 1759 if (!Uses.contains(-Diff)) 1760 dbgs() << "Diff: " << -Diff << " out of range " << Uses 1761 << " for " << MI; 1762 assert(Uses.contains(-Diff)); 1763 #endif 1764 MBB.erase(MI); 1765 return true; 1766 } 1767 1768 const ExtValue &EV = ExtI.first; (void)EV; 1769 const ExtExpr &Ex = ExtI.second; (void)Ex; 1770 1771 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { 1772 // If addi/subri are replaced with the exactly matching initializer, 1773 // they amount to COPY. 1774 // Check that the initializer is an exact match (for simplicity). 1775 #ifndef NDEBUG 1776 bool IsAddi = ExtOpc == Hexagon::A2_addi; 1777 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); 1778 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); 1779 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && 1780 "Initializer mismatch"); 1781 #endif 1782 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) 1783 .add(MI.getOperand(0)) 1784 .add(MachineOperand(ExtR)); 1785 Diff = 0; 1786 MBB.erase(MI); 1787 return true; 1788 } 1789 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || 1790 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { 1791 // M2_accii: add(Rt,add(Rs,V)) (tied) 1792 // M2_naccii: sub(Rt,add(Rs,V)) 1793 // S4_addaddi: add(Rt,add(Rs,V)) 1794 // S4_subaddi: add(Rt,sub(V,Rs)) 1795 // Check that Rs and V match the initializer expression. The Rs+V is the 1796 // combination that is considered "subexpression" for V, although Rx+V 1797 // would also be valid. 1798 #ifndef NDEBUG 1799 bool IsSub = ExtOpc == Hexagon::S4_subaddi; 1800 Register Rs = MI.getOperand(IsSub ? 3 : 2); 1801 ExtValue V = MI.getOperand(IsSub ? 2 : 3); 1802 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); 1803 #endif 1804 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub 1805 : Hexagon::A2_add; 1806 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1807 .add(MI.getOperand(0)) 1808 .add(MI.getOperand(1)) 1809 .add(MachineOperand(ExtR)); 1810 MBB.erase(MI); 1811 return true; 1812 } 1813 1814 if (MI.mayLoadOrStore()) { 1815 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1816 assert(IdxOpc && "Expecting indexed opcode"); 1817 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); 1818 // Construct the new indexed instruction. 1819 // First, add the def for loads. 1820 if (MI.mayLoad()) 1821 MIB.add(getLoadResultOp(MI)); 1822 // Handle possible predication. 1823 if (HII->isPredicated(MI)) 1824 MIB.add(getPredicateOp(MI)); 1825 // Build the address. 1826 MIB.add(MachineOperand(ExtR)); 1827 MIB.addImm(Diff); 1828 // Add the stored value for stores. 1829 if (MI.mayStore()) 1830 MIB.add(getStoredValueOp(MI)); 1831 MIB.cloneMemRefs(MI); 1832 MBB.erase(MI); 1833 return true; 1834 } 1835 1836 #ifndef NDEBUG 1837 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; 1838 #endif 1839 llvm_unreachable("Unhandled expr replacement"); 1840 return false; 1841 } 1842 1843 bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { 1844 if (ReplaceLimit.getNumOccurrences()) { 1845 if (ReplaceLimit <= ReplaceCounter) 1846 return false; 1847 ++ReplaceCounter; 1848 } 1849 const ExtDesc &ED = Extenders[Idx]; 1850 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); 1851 const ExtValue &DefV = ExtI.first; 1852 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); 1853 const ExtExpr &DefEx = ExtI.second; 1854 1855 ExtValue EV(ED); 1856 int32_t Diff = EV.Offset - DefV.Offset; 1857 const MachineInstr &MI = *ED.UseMI; 1858 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" 1859 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); 1860 1861 // These two addressing modes must be converted into indexed forms 1862 // regardless of what the initializer looks like. 1863 bool IsAbs = false, IsAbsSet = false; 1864 if (MI.mayLoadOrStore()) { 1865 unsigned AM = HII->getAddrMode(MI); 1866 IsAbs = AM == HexagonII::Absolute; 1867 IsAbsSet = AM == HexagonII::AbsoluteSet; 1868 } 1869 1870 // If it's a def, remember all operands that need to be updated. 1871 // If ED is a def, and Diff is not 0, then all uses of the register Rd 1872 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset 1873 // must follow the Rd in the operand list. 1874 std::vector<std::pair<MachineInstr*,unsigned>> RegOps; 1875 if (ED.IsDef && Diff != 0) { 1876 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { 1877 MachineInstr &UI = *Op.getParent(); 1878 RegOps.push_back({&UI, getOperandIndex(UI, Op)}); 1879 } 1880 } 1881 1882 // Replace the instruction. 1883 bool Replaced = false; 1884 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) 1885 Replaced = replaceInstrExact(ED, ExtR); 1886 else 1887 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); 1888 1889 if (Diff != 0 && Replaced && ED.IsDef) { 1890 // Update offsets of the def's uses. 1891 for (std::pair<MachineInstr*,unsigned> P : RegOps) { 1892 unsigned J = P.second; 1893 assert(P.first->getNumOperands() > J+1 && 1894 P.first->getOperand(J+1).isImm()); 1895 MachineOperand &ImmOp = P.first->getOperand(J+1); 1896 ImmOp.setImm(ImmOp.getImm() + Diff); 1897 } 1898 // If it was an absolute-set instruction, the "set" part has been removed. 1899 // ExtR will now be the register with the extended value, and since all 1900 // users of Rd have been updated, all that needs to be done is to replace 1901 // Rd with ExtR. 1902 if (IsAbsSet) { 1903 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); 1904 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); 1905 } 1906 } 1907 1908 return Replaced; 1909 } 1910 1911 bool HCE::replaceExtenders(const AssignmentMap &IMap) { 1912 LocDefList Defs; 1913 bool Changed = false; 1914 1915 for (const std::pair<const ExtenderInit, IndexList> &P : IMap) { 1916 const IndexList &Idxs = P.second; 1917 if (Idxs.size() < CountThreshold) 1918 continue; 1919 1920 Defs.clear(); 1921 calculatePlacement(P.first, Idxs, Defs); 1922 for (const std::pair<Loc,IndexList> &Q : Defs) { 1923 Register DefR = insertInitializer(Q.first, P.first); 1924 NewRegs.push_back(DefR.Reg); 1925 for (unsigned I : Q.second) 1926 Changed |= replaceInstr(I, DefR, P.first); 1927 } 1928 } 1929 return Changed; 1930 } 1931 1932 unsigned HCE::getOperandIndex(const MachineInstr &MI, 1933 const MachineOperand &Op) const { 1934 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) 1935 if (&MI.getOperand(i) == &Op) 1936 return i; 1937 llvm_unreachable("Not an operand of MI"); 1938 } 1939 1940 const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { 1941 assert(HII->isPredicated(MI)); 1942 for (const MachineOperand &Op : MI.operands()) { 1943 if (!Op.isReg() || !Op.isUse() || 1944 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) 1945 continue; 1946 assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); 1947 return Op; 1948 } 1949 llvm_unreachable("Predicate operand not found"); 1950 } 1951 1952 const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { 1953 assert(MI.mayLoad()); 1954 return MI.getOperand(0); 1955 } 1956 1957 const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { 1958 assert(MI.mayStore()); 1959 return MI.getOperand(MI.getNumExplicitOperands()-1); 1960 } 1961 1962 bool HCE::runOnMachineFunction(MachineFunction &MF) { 1963 if (skipFunction(MF.getFunction())) 1964 return false; 1965 if (MF.getFunction().hasPersonalityFn()) { 1966 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() 1967 << " due to exception handling\n"); 1968 return false; 1969 } 1970 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); 1971 1972 HST = &MF.getSubtarget<HexagonSubtarget>(); 1973 HII = HST->getInstrInfo(); 1974 HRI = HST->getRegisterInfo(); 1975 MDT = &getAnalysis<MachineDominatorTree>(); 1976 MRI = &MF.getRegInfo(); 1977 AssignmentMap IMap; 1978 1979 collect(MF); 1980 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) { 1981 ExtValue VA(A), VB(B); 1982 if (VA != VB) 1983 return VA < VB; 1984 const MachineInstr *MA = A.UseMI; 1985 const MachineInstr *MB = B.UseMI; 1986 if (MA == MB) { 1987 // If it's the same instruction, compare operand numbers. 1988 return A.OpNum < B.OpNum; 1989 } 1990 1991 const MachineBasicBlock *BA = MA->getParent(); 1992 const MachineBasicBlock *BB = MB->getParent(); 1993 assert(BA->getNumber() != -1 && BB->getNumber() != -1); 1994 if (BA != BB) 1995 return BA->getNumber() < BB->getNumber(); 1996 return MDT->dominates(MA, MB); 1997 }); 1998 1999 bool Changed = false; 2000 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); 2001 for (unsigned I = 0, E = Extenders.size(); I != E; ) { 2002 unsigned B = I; 2003 const ExtRoot &T = Extenders[B].getOp(); 2004 while (I != E && ExtRoot(Extenders[I].getOp()) == T) 2005 ++I; 2006 2007 IMap.clear(); 2008 assignInits(T, B, I, IMap); 2009 Changed |= replaceExtenders(IMap); 2010 } 2011 2012 LLVM_DEBUG({ 2013 if (Changed) 2014 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); 2015 else 2016 dbgs() << "No changes\n"; 2017 }); 2018 return Changed; 2019 } 2020 2021 FunctionPass *llvm::createHexagonConstExtenders() { 2022 return new HexagonConstExtenders(); 2023 } 2024