1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/PostDominators.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/User.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstddef> 42 #include <cstdint> 43 #include <iterator> 44 #include <map> 45 #include <set> 46 #include <utility> 47 #include <vector> 48 49 #define DEBUG_TYPE "commgep" 50 51 using namespace llvm; 52 53 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 54 cl::Hidden, cl::ZeroOrMore); 55 56 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 57 cl::ZeroOrMore); 58 59 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 60 cl::Hidden, cl::ZeroOrMore); 61 62 namespace llvm { 63 64 void initializeHexagonCommonGEPPass(PassRegistry&); 65 66 } // end namespace llvm 67 68 namespace { 69 70 struct GepNode; 71 using NodeSet = std::set<GepNode *>; 72 using NodeToValueMap = std::map<GepNode *, Value *>; 73 using NodeVect = std::vector<GepNode *>; 74 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 75 using UseSet = SetVector<Use *>; 76 using NodeToUsesMap = std::map<GepNode *, UseSet>; 77 78 // Numbering map for gep nodes. Used to keep track of ordering for 79 // gep nodes. 80 struct NodeOrdering { 81 NodeOrdering() = default; 82 83 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 84 void clear() { Map.clear(); } 85 86 bool operator()(const GepNode *N1, const GepNode *N2) const { 87 auto F1 = Map.find(N1), F2 = Map.find(N2); 88 assert(F1 != Map.end() && F2 != Map.end()); 89 return F1->second < F2->second; 90 } 91 92 private: 93 std::map<const GepNode *, unsigned> Map; 94 unsigned LastNum = 0; 95 }; 96 97 class HexagonCommonGEP : public FunctionPass { 98 public: 99 static char ID; 100 101 HexagonCommonGEP() : FunctionPass(ID) { 102 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 103 } 104 105 bool runOnFunction(Function &F) override; 106 StringRef getPassName() const override { return "Hexagon Common GEP"; } 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addPreserved<DominatorTreeWrapperPass>(); 111 AU.addRequired<PostDominatorTreeWrapperPass>(); 112 AU.addPreserved<PostDominatorTreeWrapperPass>(); 113 AU.addRequired<LoopInfoWrapperPass>(); 114 AU.addPreserved<LoopInfoWrapperPass>(); 115 FunctionPass::getAnalysisUsage(AU); 116 } 117 118 private: 119 using ValueToNodeMap = std::map<Value *, GepNode *>; 120 using ValueVect = std::vector<Value *>; 121 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 122 123 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 124 bool isHandledGepForm(GetElementPtrInst *GepI); 125 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 126 void collect(); 127 void common(); 128 129 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 130 NodeToValueMap &Loc); 131 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 132 NodeToValueMap &Loc); 133 bool isInvariantIn(Value *Val, Loop *L); 134 bool isInvariantIn(GepNode *Node, Loop *L); 135 bool isInMainPath(BasicBlock *B, Loop *L); 136 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 137 NodeToValueMap &Loc); 138 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 139 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 140 NodeToValueMap &Loc); 141 void computeNodePlacement(NodeToValueMap &Loc); 142 143 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 144 BasicBlock *LocB); 145 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 146 NodeChildrenMap &NCM); 147 void materialize(NodeToValueMap &Loc); 148 149 void removeDeadCode(); 150 151 NodeVect Nodes; 152 NodeToUsesMap Uses; 153 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 154 SpecificBumpPtrAllocator<GepNode> *Mem; 155 LLVMContext *Ctx; 156 LoopInfo *LI; 157 DominatorTree *DT; 158 PostDominatorTree *PDT; 159 Function *Fn; 160 }; 161 162 } // end anonymous namespace 163 164 char HexagonCommonGEP::ID = 0; 165 166 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 167 false, false) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 171 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 172 false, false) 173 174 namespace { 175 176 struct GepNode { 177 enum { 178 None = 0, 179 Root = 0x01, 180 Internal = 0x02, 181 Used = 0x04, 182 InBounds = 0x08 183 }; 184 185 uint32_t Flags = 0; 186 union { 187 GepNode *Parent; 188 Value *BaseVal; 189 }; 190 Value *Idx = nullptr; 191 Type *PTy = nullptr; // Type of the pointer operand. 192 193 GepNode() : Parent(nullptr) {} 194 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 195 if (Flags & Root) 196 BaseVal = N->BaseVal; 197 else 198 Parent = N->Parent; 199 } 200 201 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 202 }; 203 204 Type *next_type(Type *Ty, Value *Idx) { 205 if (auto *PTy = dyn_cast<PointerType>(Ty)) 206 return PTy->getElementType(); 207 // Advance the type. 208 if (!Ty->isStructTy()) { 209 Type *NexTy = cast<SequentialType>(Ty)->getElementType(); 210 return NexTy; 211 } 212 // Otherwise it is a struct type. 213 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 214 assert(CI && "Struct type with non-constant index"); 215 int64_t i = CI->getValue().getSExtValue(); 216 Type *NextTy = cast<StructType>(Ty)->getElementType(i); 217 return NextTy; 218 } 219 220 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 221 OS << "{ {"; 222 bool Comma = false; 223 if (GN.Flags & GepNode::Root) { 224 OS << "root"; 225 Comma = true; 226 } 227 if (GN.Flags & GepNode::Internal) { 228 if (Comma) 229 OS << ','; 230 OS << "internal"; 231 Comma = true; 232 } 233 if (GN.Flags & GepNode::Used) { 234 if (Comma) 235 OS << ','; 236 OS << "used"; 237 } 238 if (GN.Flags & GepNode::InBounds) { 239 if (Comma) 240 OS << ','; 241 OS << "inbounds"; 242 } 243 OS << "} "; 244 if (GN.Flags & GepNode::Root) 245 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 246 else 247 OS << "Parent:" << GN.Parent; 248 249 OS << " Idx:"; 250 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 251 OS << CI->getValue().getSExtValue(); 252 else if (GN.Idx->hasName()) 253 OS << GN.Idx->getName(); 254 else 255 OS << "<anon> =" << *GN.Idx; 256 257 OS << " PTy:"; 258 if (GN.PTy->isStructTy()) { 259 StructType *STy = cast<StructType>(GN.PTy); 260 if (!STy->isLiteral()) 261 OS << GN.PTy->getStructName(); 262 else 263 OS << "<anon-struct>:" << *STy; 264 } 265 else 266 OS << *GN.PTy; 267 OS << " }"; 268 return OS; 269 } 270 271 template <typename NodeContainer> 272 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 273 using const_iterator = typename NodeContainer::const_iterator; 274 275 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 276 OS << *I << ' ' << **I << '\n'; 277 } 278 279 raw_ostream &operator<< (raw_ostream &OS, 280 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 281 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 282 dump_node_container(OS, S); 283 return OS; 284 } 285 286 raw_ostream &operator<< (raw_ostream &OS, 287 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 288 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 289 using const_iterator = NodeToUsesMap::const_iterator; 290 291 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 292 const UseSet &Us = I->second; 293 OS << I->first << " -> #" << Us.size() << '{'; 294 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 295 User *R = (*J)->getUser(); 296 if (R->hasName()) 297 OS << ' ' << R->getName(); 298 else 299 OS << " <?>(" << *R << ')'; 300 } 301 OS << " }\n"; 302 } 303 return OS; 304 } 305 306 struct in_set { 307 in_set(const NodeSet &S) : NS(S) {} 308 309 bool operator() (GepNode *N) const { 310 return NS.find(N) != NS.end(); 311 } 312 313 private: 314 const NodeSet &NS; 315 }; 316 317 } // end anonymous namespace 318 319 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 320 return A.Allocate(); 321 } 322 323 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 324 ValueVect &Order) { 325 // Compute block ordering for a typical DT-based traversal of the flow 326 // graph: "before visiting a block, all of its dominators must have been 327 // visited". 328 329 Order.push_back(Root); 330 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 331 getBlockTraversalOrder(DTN->getBlock(), Order); 332 } 333 334 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 335 // No vector GEPs. 336 if (!GepI->getType()->isPointerTy()) 337 return false; 338 // No GEPs without any indices. (Is this possible?) 339 if (GepI->idx_begin() == GepI->idx_end()) 340 return false; 341 return true; 342 } 343 344 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 345 ValueToNodeMap &NM) { 346 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 347 GepNode *N = new (*Mem) GepNode; 348 Value *PtrOp = GepI->getPointerOperand(); 349 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 350 ValueToNodeMap::iterator F = NM.find(PtrOp); 351 if (F == NM.end()) { 352 N->BaseVal = PtrOp; 353 N->Flags |= GepNode::Root | InBounds; 354 } else { 355 // If PtrOp was a GEP instruction, it must have already been processed. 356 // The ValueToNodeMap entry for it is the last gep node in the generated 357 // chain. Link to it here. 358 N->Parent = F->second; 359 } 360 N->PTy = PtrOp->getType(); 361 N->Idx = *GepI->idx_begin(); 362 363 // Collect the list of users of this GEP instruction. Will add it to the 364 // last node created for it. 365 UseSet Us; 366 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 367 UI != UE; ++UI) { 368 // Check if this gep is used by anything other than other geps that 369 // we will process. 370 if (isa<GetElementPtrInst>(*UI)) { 371 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 372 if (isHandledGepForm(UserG)) 373 continue; 374 } 375 Us.insert(&UI.getUse()); 376 } 377 Nodes.push_back(N); 378 NodeOrder.insert(N); 379 380 // Skip the first index operand, since we only handle 0. This dereferences 381 // the pointer operand. 382 GepNode *PN = N; 383 Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType(); 384 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); 385 OI != OE; ++OI) { 386 Value *Op = *OI; 387 GepNode *Nx = new (*Mem) GepNode; 388 Nx->Parent = PN; // Link Nx to the previous node. 389 Nx->Flags |= GepNode::Internal | InBounds; 390 Nx->PTy = PtrTy; 391 Nx->Idx = Op; 392 Nodes.push_back(Nx); 393 NodeOrder.insert(Nx); 394 PN = Nx; 395 396 PtrTy = next_type(PtrTy, Op); 397 } 398 399 // After last node has been created, update the use information. 400 if (!Us.empty()) { 401 PN->Flags |= GepNode::Used; 402 Uses[PN].insert(Us.begin(), Us.end()); 403 } 404 405 // Link the last node with the originating GEP instruction. This is to 406 // help with linking chained GEP instructions. 407 NM.insert(std::make_pair(GepI, PN)); 408 } 409 410 void HexagonCommonGEP::collect() { 411 // Establish depth-first traversal order of the dominator tree. 412 ValueVect BO; 413 getBlockTraversalOrder(&Fn->front(), BO); 414 415 // The creation of gep nodes requires DT-traversal. When processing a GEP 416 // instruction that uses another GEP instruction as the base pointer, the 417 // gep node for the base pointer should already exist. 418 ValueToNodeMap NM; 419 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { 420 BasicBlock *B = cast<BasicBlock>(*I); 421 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { 422 if (!isa<GetElementPtrInst>(J)) 423 continue; 424 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); 425 if (isHandledGepForm(GepI)) 426 processGepInst(GepI, NM); 427 } 428 } 429 430 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 431 } 432 433 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 434 NodeVect &Roots) { 435 using const_iterator = NodeVect::const_iterator; 436 437 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 438 GepNode *N = *I; 439 if (N->Flags & GepNode::Root) { 440 Roots.push_back(N); 441 continue; 442 } 443 GepNode *PN = N->Parent; 444 NCM[PN].push_back(N); 445 } 446 } 447 448 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 449 NodeSet &Nodes) { 450 NodeVect Work; 451 Work.push_back(Root); 452 Nodes.insert(Root); 453 454 while (!Work.empty()) { 455 NodeVect::iterator First = Work.begin(); 456 GepNode *N = *First; 457 Work.erase(First); 458 NodeChildrenMap::iterator CF = NCM.find(N); 459 if (CF != NCM.end()) { 460 Work.insert(Work.end(), CF->second.begin(), CF->second.end()); 461 Nodes.insert(CF->second.begin(), CF->second.end()); 462 } 463 } 464 } 465 466 namespace { 467 468 using NodeSymRel = std::set<NodeSet>; 469 using NodePair = std::pair<GepNode *, GepNode *>; 470 using NodePairSet = std::set<NodePair>; 471 472 } // end anonymous namespace 473 474 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 475 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) 476 if (I->count(N)) 477 return &*I; 478 return nullptr; 479 } 480 481 // Create an ordered pair of GepNode pointers. The pair will be used in 482 // determining equality. The only purpose of the ordering is to eliminate 483 // duplication due to the commutativity of equality/non-equality. 484 static NodePair node_pair(GepNode *N1, GepNode *N2) { 485 uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2); 486 if (P1 <= P2) 487 return std::make_pair(N1, N2); 488 return std::make_pair(N2, N1); 489 } 490 491 static unsigned node_hash(GepNode *N) { 492 // Include everything except flags and parent. 493 FoldingSetNodeID ID; 494 ID.AddPointer(N->Idx); 495 ID.AddPointer(N->PTy); 496 return ID.ComputeHash(); 497 } 498 499 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 500 NodePairSet &Ne) { 501 // Don't cache the result for nodes with different hashes. The hash 502 // comparison is fast enough. 503 if (node_hash(N1) != node_hash(N2)) 504 return false; 505 506 NodePair NP = node_pair(N1, N2); 507 NodePairSet::iterator FEq = Eq.find(NP); 508 if (FEq != Eq.end()) 509 return true; 510 NodePairSet::iterator FNe = Ne.find(NP); 511 if (FNe != Ne.end()) 512 return false; 513 // Not previously compared. 514 bool Root1 = N1->Flags & GepNode::Root; 515 bool Root2 = N2->Flags & GepNode::Root; 516 NodePair P = node_pair(N1, N2); 517 // If the Root flag has different values, the nodes are different. 518 // If both nodes are root nodes, but their base pointers differ, 519 // they are different. 520 if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) { 521 Ne.insert(P); 522 return false; 523 } 524 // Here the root flags are identical, and for root nodes the 525 // base pointers are equal, so the root nodes are equal. 526 // For non-root nodes, compare their parent nodes. 527 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 528 Eq.insert(P); 529 return true; 530 } 531 return false; 532 } 533 534 void HexagonCommonGEP::common() { 535 // The essence of this commoning is finding gep nodes that are equal. 536 // To do this we need to compare all pairs of nodes. To save time, 537 // first, partition the set of all nodes into sets of potentially equal 538 // nodes, and then compare pairs from within each partition. 539 using NodeSetMap = std::map<unsigned, NodeSet>; 540 NodeSetMap MaybeEq; 541 542 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 543 GepNode *N = *I; 544 unsigned H = node_hash(N); 545 MaybeEq[H].insert(N); 546 } 547 548 // Compute the equivalence relation for the gep nodes. Use two caches, 549 // one for equality and the other for non-equality. 550 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 551 NodePairSet Eq, Ne; // Caches. 552 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); 553 I != E; ++I) { 554 NodeSet &S = I->second; 555 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 556 GepNode *N = *NI; 557 // If node already has a class, then the class must have been created 558 // in a prior iteration of this loop. Since equality is transitive, 559 // nothing more will be added to that class, so skip it. 560 if (node_class(N, EqRel)) 561 continue; 562 563 // Create a new class candidate now. 564 NodeSet C; 565 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 566 if (node_eq(N, *NJ, Eq, Ne)) 567 C.insert(*NJ); 568 // If Tmp is empty, N would be the only element in it. Don't bother 569 // creating a class for it then. 570 if (!C.empty()) { 571 C.insert(N); // Finalize the set before adding it to the relation. 572 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 573 (void)Ins; 574 assert(Ins.second && "Cannot add a class"); 575 } 576 } 577 } 578 579 LLVM_DEBUG({ 580 dbgs() << "Gep node equality:\n"; 581 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 582 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 583 584 dbgs() << "Gep equivalence classes:\n"; 585 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 586 dbgs() << '{'; 587 const NodeSet &S = *I; 588 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 589 if (J != S.begin()) 590 dbgs() << ','; 591 dbgs() << ' ' << *J; 592 } 593 dbgs() << " }\n"; 594 } 595 }); 596 597 // Create a projection from a NodeSet to the minimal element in it. 598 using ProjMap = std::map<const NodeSet *, GepNode *>; 599 ProjMap PM; 600 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 601 const NodeSet &S = *I; 602 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 603 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 604 (void)Ins; 605 assert(Ins.second && "Cannot add minimal element"); 606 607 // Update the min element's flags, and user list. 608 uint32_t Flags = 0; 609 UseSet &MinUs = Uses[Min]; 610 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { 611 GepNode *N = *J; 612 uint32_t NF = N->Flags; 613 // If N is used, append all original values of N to the list of 614 // original values of Min. 615 if (NF & GepNode::Used) 616 MinUs.insert(Uses[N].begin(), Uses[N].end()); 617 Flags |= NF; 618 } 619 if (MinUs.empty()) 620 Uses.erase(Min); 621 622 // The collected flags should include all the flags from the min element. 623 assert((Min->Flags & Flags) == Min->Flags); 624 Min->Flags = Flags; 625 } 626 627 // Commoning: for each non-root gep node, replace "Parent" with the 628 // selected (minimum) node from the corresponding equivalence class. 629 // If a given parent does not have an equivalence class, leave it 630 // unchanged (it means that it's the only element in its class). 631 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 632 GepNode *N = *I; 633 if (N->Flags & GepNode::Root) 634 continue; 635 const NodeSet *PC = node_class(N->Parent, EqRel); 636 if (!PC) 637 continue; 638 ProjMap::iterator F = PM.find(PC); 639 if (F == PM.end()) 640 continue; 641 // Found a replacement, use it. 642 GepNode *Rep = F->second; 643 N->Parent = Rep; 644 } 645 646 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 647 648 // Finally, erase the nodes that are no longer used. 649 NodeSet Erase; 650 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 651 GepNode *N = *I; 652 const NodeSet *PC = node_class(N, EqRel); 653 if (!PC) 654 continue; 655 ProjMap::iterator F = PM.find(PC); 656 if (F == PM.end()) 657 continue; 658 if (N == F->second) 659 continue; 660 // Node for removal. 661 Erase.insert(*I); 662 } 663 NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase)); 664 Nodes.resize(std::distance(Nodes.begin(), NewE)); 665 666 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 667 } 668 669 template <typename T> 670 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 671 LLVM_DEBUG({ 672 dbgs() << "NCD of {"; 673 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 674 ++I) { 675 if (!*I) 676 continue; 677 BasicBlock *B = cast<BasicBlock>(*I); 678 dbgs() << ' ' << B->getName(); 679 } 680 dbgs() << " }\n"; 681 }); 682 683 // Allow null basic blocks in Blocks. In such cases, return nullptr. 684 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 685 if (I == E || !*I) 686 return nullptr; 687 BasicBlock *Dom = cast<BasicBlock>(*I); 688 while (++I != E) { 689 BasicBlock *B = cast_or_null<BasicBlock>(*I); 690 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 691 if (!Dom) 692 return nullptr; 693 } 694 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 695 return Dom; 696 } 697 698 template <typename T> 699 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 700 // If two blocks, A and B, dominate a block C, then A dominates B, 701 // or B dominates A. 702 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 703 // Find the first non-null block. 704 while (I != E && !*I) 705 ++I; 706 if (I == E) 707 return DT->getRoot(); 708 BasicBlock *DomB = cast<BasicBlock>(*I); 709 while (++I != E) { 710 if (!*I) 711 continue; 712 BasicBlock *B = cast<BasicBlock>(*I); 713 if (DT->dominates(B, DomB)) 714 continue; 715 if (!DT->dominates(DomB, B)) 716 return nullptr; 717 DomB = B; 718 } 719 return DomB; 720 } 721 722 // Find the first use in B of any value from Values. If no such use, 723 // return B->end(). 724 template <typename T> 725 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 726 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 727 728 using iterator = typename T::iterator; 729 730 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 731 Value *V = *I; 732 // If V is used in a PHI node, the use belongs to the incoming block, 733 // not the block with the PHI node. In the incoming block, the use 734 // would be considered as being at the end of it, so it cannot 735 // influence the position of the first use (which is assumed to be 736 // at the end to start with). 737 if (isa<PHINode>(V)) 738 continue; 739 if (!isa<Instruction>(V)) 740 continue; 741 Instruction *In = cast<Instruction>(V); 742 if (In->getParent() != B) 743 continue; 744 BasicBlock::iterator It = In->getIterator(); 745 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 746 FirstUse = It; 747 } 748 return FirstUse; 749 } 750 751 static bool is_empty(const BasicBlock *B) { 752 return B->empty() || (&*B->begin() == B->getTerminator()); 753 } 754 755 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 756 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 757 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 758 // Recalculate the placement for Node, assuming that the locations of 759 // its children in Loc are valid. 760 // Return nullptr if there is no valid placement for Node (for example, it 761 // uses an index value that is not available at the location required 762 // to dominate all children, etc.). 763 764 // Find the nearest common dominator for: 765 // - all users, if the node is used, and 766 // - all children. 767 ValueVect Bs; 768 if (Node->Flags & GepNode::Used) { 769 // Append all blocks with uses of the original values to the 770 // block vector Bs. 771 NodeToUsesMap::iterator UF = Uses.find(Node); 772 assert(UF != Uses.end() && "Used node with no use information"); 773 UseSet &Us = UF->second; 774 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 775 Use *U = *I; 776 User *R = U->getUser(); 777 if (!isa<Instruction>(R)) 778 continue; 779 BasicBlock *PB = isa<PHINode>(R) 780 ? cast<PHINode>(R)->getIncomingBlock(*U) 781 : cast<Instruction>(R)->getParent(); 782 Bs.push_back(PB); 783 } 784 } 785 // Append the location of each child. 786 NodeChildrenMap::iterator CF = NCM.find(Node); 787 if (CF != NCM.end()) { 788 NodeVect &Cs = CF->second; 789 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 790 GepNode *CN = *I; 791 NodeToValueMap::iterator LF = Loc.find(CN); 792 // If the child is only used in GEP instructions (i.e. is not used in 793 // non-GEP instructions), the nearest dominator computed for it may 794 // have been null. In such case it won't have a location available. 795 if (LF == Loc.end()) 796 continue; 797 Bs.push_back(LF->second); 798 } 799 } 800 801 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 802 if (!DomB) 803 return nullptr; 804 // Check if the index used by Node dominates the computed dominator. 805 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 806 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 807 return nullptr; 808 809 // Avoid putting nodes into empty blocks. 810 while (is_empty(DomB)) { 811 DomTreeNode *N = (*DT)[DomB]->getIDom(); 812 if (!N) 813 break; 814 DomB = N->getBlock(); 815 } 816 817 // Otherwise, DomB is fine. Update the location map. 818 Loc[Node] = DomB; 819 return DomB; 820 } 821 822 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 823 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 824 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 825 // Recalculate the placement of Node, after recursively recalculating the 826 // placements of all its children. 827 NodeChildrenMap::iterator CF = NCM.find(Node); 828 if (CF != NCM.end()) { 829 NodeVect &Cs = CF->second; 830 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 831 recalculatePlacementRec(*I, NCM, Loc); 832 } 833 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 834 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 835 return LB; 836 } 837 838 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 839 if (isa<Constant>(Val) || isa<Argument>(Val)) 840 return true; 841 Instruction *In = dyn_cast<Instruction>(Val); 842 if (!In) 843 return false; 844 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 845 return DT->properlyDominates(DefB, HdrB); 846 } 847 848 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 849 if (Node->Flags & GepNode::Root) 850 if (!isInvariantIn(Node->BaseVal, L)) 851 return false; 852 return isInvariantIn(Node->Idx, L); 853 } 854 855 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 856 BasicBlock *HB = L->getHeader(); 857 BasicBlock *LB = L->getLoopLatch(); 858 // B must post-dominate the loop header or dominate the loop latch. 859 if (PDT->dominates(B, HB)) 860 return true; 861 if (LB && DT->dominates(B, LB)) 862 return true; 863 return false; 864 } 865 866 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 867 if (BasicBlock *PH = L->getLoopPreheader()) 868 return PH; 869 if (!OptSpeculate) 870 return nullptr; 871 DomTreeNode *DN = DT->getNode(L->getHeader()); 872 if (!DN) 873 return nullptr; 874 return DN->getIDom()->getBlock(); 875 } 876 877 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 878 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 879 // Find the "topmost" location for Node: it must be dominated by both, 880 // its parent (or the BaseVal, if it's a root node), and by the index 881 // value. 882 ValueVect Bs; 883 if (Node->Flags & GepNode::Root) { 884 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 885 Bs.push_back(PIn->getParent()); 886 } else { 887 Bs.push_back(Loc[Node->Parent]); 888 } 889 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 890 Bs.push_back(IIn->getParent()); 891 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 892 893 // Traverse the loop nest upwards until we find a loop in which Node 894 // is no longer invariant, or until we get to the upper limit of Node's 895 // placement. The traversal will also stop when a suitable "preheader" 896 // cannot be found for a given loop. The "preheader" may actually be 897 // a regular block outside of the loop (i.e. not guarded), in which case 898 // the Node will be speculated. 899 // For nodes that are not in the main path of the containing loop (i.e. 900 // are not executed in each iteration), do not move them out of the loop. 901 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 902 if (LocB) { 903 Loop *Lp = LI->getLoopFor(LocB); 904 while (Lp) { 905 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 906 break; 907 BasicBlock *NewLoc = preheader(DT, Lp); 908 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 909 break; 910 Lp = Lp->getParentLoop(); 911 LocB = NewLoc; 912 } 913 } 914 Loc[Node] = LocB; 915 916 // Recursively compute the locations of all children nodes. 917 NodeChildrenMap::iterator CF = NCM.find(Node); 918 if (CF != NCM.end()) { 919 NodeVect &Cs = CF->second; 920 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 921 adjustForInvariance(*I, NCM, Loc); 922 } 923 return LocB; 924 } 925 926 namespace { 927 928 struct LocationAsBlock { 929 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 930 931 const NodeToValueMap ⤅ 932 }; 933 934 raw_ostream &operator<< (raw_ostream &OS, 935 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 936 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 937 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); 938 I != E; ++I) { 939 OS << I->first << " -> "; 940 BasicBlock *B = cast<BasicBlock>(I->second); 941 OS << B->getName() << '(' << B << ')'; 942 OS << '\n'; 943 } 944 return OS; 945 } 946 947 inline bool is_constant(GepNode *N) { 948 return isa<ConstantInt>(N->Idx); 949 } 950 951 } // end anonymous namespace 952 953 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 954 NodeToValueMap &Loc) { 955 User *R = U->getUser(); 956 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 957 << '\n'); 958 BasicBlock *PB = cast<Instruction>(R)->getParent(); 959 960 GepNode *N = Node; 961 GepNode *C = nullptr, *NewNode = nullptr; 962 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 963 // XXX if (single-use) dont-replicate; 964 GepNode *NewN = new (*Mem) GepNode(N); 965 Nodes.push_back(NewN); 966 Loc[NewN] = PB; 967 968 if (N == Node) 969 NewNode = NewN; 970 NewN->Flags &= ~GepNode::Used; 971 if (C) 972 C->Parent = NewN; 973 C = NewN; 974 N = N->Parent; 975 } 976 if (!NewNode) 977 return; 978 979 // Move over all uses that share the same user as U from Node to NewNode. 980 NodeToUsesMap::iterator UF = Uses.find(Node); 981 assert(UF != Uses.end()); 982 UseSet &Us = UF->second; 983 UseSet NewUs; 984 for (Use *U : Us) { 985 if (U->getUser() == R) 986 NewUs.insert(U); 987 } 988 for (Use *U : NewUs) 989 Us.remove(U); // erase takes an iterator. 990 991 if (Us.empty()) { 992 Node->Flags &= ~GepNode::Used; 993 Uses.erase(UF); 994 } 995 996 // Should at least have U in NewUs. 997 NewNode->Flags |= GepNode::Used; 998 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 999 assert(!NewUs.empty()); 1000 Uses[NewNode] = NewUs; 1001 } 1002 1003 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 1004 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 1005 // First approximation: extract all chains. 1006 NodeSet Ns; 1007 nodes_for_root(Node, NCM, Ns); 1008 1009 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1010 // Collect all used nodes together with the uses from loads and stores, 1011 // where the GEP node could be folded into the load/store instruction. 1012 NodeToUsesMap FNs; // Foldable nodes. 1013 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { 1014 GepNode *N = *I; 1015 if (!(N->Flags & GepNode::Used)) 1016 continue; 1017 NodeToUsesMap::iterator UF = Uses.find(N); 1018 assert(UF != Uses.end()); 1019 UseSet &Us = UF->second; 1020 // Loads/stores that use the node N. 1021 UseSet LSs; 1022 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 1023 Use *U = *J; 1024 User *R = U->getUser(); 1025 // We're interested in uses that provide the address. It can happen 1026 // that the value may also be provided via GEP, but we won't handle 1027 // those cases here for now. 1028 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1029 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1030 if (&Ld->getOperandUse(PtrX) == U) 1031 LSs.insert(U); 1032 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1033 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1034 if (&St->getOperandUse(PtrX) == U) 1035 LSs.insert(U); 1036 } 1037 } 1038 // Even if the total use count is 1, separating the chain may still be 1039 // beneficial, since the constant chain may be longer than the GEP alone 1040 // would be (e.g. if the parent node has a constant index and also has 1041 // other children). 1042 if (!LSs.empty()) 1043 FNs.insert(std::make_pair(N, LSs)); 1044 } 1045 1046 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1047 1048 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { 1049 GepNode *N = I->first; 1050 UseSet &Us = I->second; 1051 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) 1052 separateChainForNode(N, *J, Loc); 1053 } 1054 } 1055 1056 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1057 // Compute the inverse of the Node.Parent links. Also, collect the set 1058 // of root nodes. 1059 NodeChildrenMap NCM; 1060 NodeVect Roots; 1061 invert_find_roots(Nodes, NCM, Roots); 1062 1063 // Compute the initial placement determined by the users' locations, and 1064 // the locations of the child nodes. 1065 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1066 recalculatePlacementRec(*I, NCM, Loc); 1067 1068 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1069 1070 if (OptEnableInv) { 1071 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1072 adjustForInvariance(*I, NCM, Loc); 1073 1074 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1075 << LocationAsBlock(Loc)); 1076 } 1077 if (OptEnableConst) { 1078 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1079 separateConstantChains(*I, NCM, Loc); 1080 } 1081 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1082 1083 // At the moment, there is no further refinement of the initial placement. 1084 // Such a refinement could include splitting the nodes if they are placed 1085 // too far from some of its users. 1086 1087 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1088 } 1089 1090 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1091 BasicBlock *LocB) { 1092 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1093 << " for nodes:\n" 1094 << NA); 1095 unsigned Num = NA.size(); 1096 GepNode *RN = NA[0]; 1097 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1098 1099 GetElementPtrInst *NewInst = nullptr; 1100 Value *Input = RN->BaseVal; 1101 Value **IdxList = new Value*[Num+1]; 1102 unsigned nax = 0; 1103 do { 1104 unsigned IdxC = 0; 1105 // If the type of the input of the first node is not a pointer, 1106 // we need to add an artificial i32 0 to the indices (because the 1107 // actual input in the IR will be a pointer). 1108 if (!NA[nax]->PTy->isPointerTy()) { 1109 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1110 IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0); 1111 } 1112 1113 // Keep adding indices from NA until we have to stop and generate 1114 // an "intermediate" GEP. 1115 while (++nax <= Num) { 1116 GepNode *N = NA[nax-1]; 1117 IdxList[IdxC++] = N->Idx; 1118 if (nax < Num) { 1119 // We have to stop, if the expected type of the output of this node 1120 // is not the same as the input type of the next node. 1121 Type *NextTy = next_type(N->PTy, N->Idx); 1122 if (NextTy != NA[nax]->PTy) 1123 break; 1124 } 1125 } 1126 ArrayRef<Value*> A(IdxList, IdxC); 1127 Type *InpTy = Input->getType(); 1128 Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType(); 1129 NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At); 1130 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1131 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1132 Input = NewInst; 1133 } while (nax <= Num); 1134 1135 delete[] IdxList; 1136 return NewInst; 1137 } 1138 1139 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1140 NodeChildrenMap &NCM) { 1141 NodeVect Work; 1142 Work.push_back(Node); 1143 1144 while (!Work.empty()) { 1145 NodeVect::iterator First = Work.begin(); 1146 GepNode *N = *First; 1147 Work.erase(First); 1148 if (N->Flags & GepNode::Used) { 1149 NodeToUsesMap::iterator UF = Uses.find(N); 1150 assert(UF != Uses.end() && "No use information for used node"); 1151 UseSet &Us = UF->second; 1152 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) 1153 Values.push_back((*I)->getUser()); 1154 } 1155 NodeChildrenMap::iterator CF = NCM.find(N); 1156 if (CF != NCM.end()) { 1157 NodeVect &Cs = CF->second; 1158 Work.insert(Work.end(), Cs.begin(), Cs.end()); 1159 } 1160 } 1161 } 1162 1163 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1164 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1165 NodeChildrenMap NCM; 1166 NodeVect Roots; 1167 // Compute the inversion again, since computing placement could alter 1168 // "parent" relation between nodes. 1169 invert_find_roots(Nodes, NCM, Roots); 1170 1171 while (!Roots.empty()) { 1172 NodeVect::iterator First = Roots.begin(); 1173 GepNode *Root = *First, *Last = *First; 1174 Roots.erase(First); 1175 1176 NodeVect NA; // Nodes to assemble. 1177 // Append to NA all child nodes up to (and including) the first child 1178 // that: 1179 // (1) has more than 1 child, or 1180 // (2) is used, or 1181 // (3) has a child located in a different block. 1182 bool LastUsed = false; 1183 unsigned LastCN = 0; 1184 // The location may be null if the computation failed (it can legitimately 1185 // happen for nodes created from dead GEPs). 1186 Value *LocV = Loc[Last]; 1187 if (!LocV) 1188 continue; 1189 BasicBlock *LastB = cast<BasicBlock>(LocV); 1190 do { 1191 NA.push_back(Last); 1192 LastUsed = (Last->Flags & GepNode::Used); 1193 if (LastUsed) 1194 break; 1195 NodeChildrenMap::iterator CF = NCM.find(Last); 1196 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1197 if (LastCN != 1) 1198 break; 1199 GepNode *Child = CF->second.front(); 1200 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1201 if (ChildB != nullptr && LastB != ChildB) 1202 break; 1203 Last = Child; 1204 } while (true); 1205 1206 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1207 if (LastUsed || LastCN > 0) { 1208 ValueVect Urs; 1209 getAllUsersForNode(Root, Urs, NCM); 1210 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1211 if (FirstUse != LastB->end()) 1212 InsertAt = FirstUse; 1213 } 1214 1215 // Generate a new instruction for NA. 1216 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1217 1218 // Convert all the children of Last node into roots, and append them 1219 // to the Roots list. 1220 if (LastCN > 0) { 1221 NodeVect &Cs = NCM[Last]; 1222 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 1223 GepNode *CN = *I; 1224 CN->Flags &= ~GepNode::Internal; 1225 CN->Flags |= GepNode::Root; 1226 CN->BaseVal = NewInst; 1227 Roots.push_back(CN); 1228 } 1229 } 1230 1231 // Lastly, if the Last node was used, replace all uses with the new GEP. 1232 // The uses reference the original GEP values. 1233 if (LastUsed) { 1234 NodeToUsesMap::iterator UF = Uses.find(Last); 1235 assert(UF != Uses.end() && "No use information found"); 1236 UseSet &Us = UF->second; 1237 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 1238 Use *U = *I; 1239 U->set(NewInst); 1240 } 1241 } 1242 } 1243 } 1244 1245 void HexagonCommonGEP::removeDeadCode() { 1246 ValueVect BO; 1247 BO.push_back(&Fn->front()); 1248 1249 for (unsigned i = 0; i < BO.size(); ++i) { 1250 BasicBlock *B = cast<BasicBlock>(BO[i]); 1251 for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) 1252 BO.push_back(DTN->getBlock()); 1253 } 1254 1255 for (unsigned i = BO.size(); i > 0; --i) { 1256 BasicBlock *B = cast<BasicBlock>(BO[i-1]); 1257 BasicBlock::InstListType &IL = B->getInstList(); 1258 1259 using reverse_iterator = BasicBlock::InstListType::reverse_iterator; 1260 1261 ValueVect Ins; 1262 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) 1263 Ins.push_back(&*I); 1264 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { 1265 Instruction *In = cast<Instruction>(*I); 1266 if (isInstructionTriviallyDead(In)) 1267 In->eraseFromParent(); 1268 } 1269 } 1270 } 1271 1272 bool HexagonCommonGEP::runOnFunction(Function &F) { 1273 if (skipFunction(F)) 1274 return false; 1275 1276 // For now bail out on C++ exception handling. 1277 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) 1278 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) 1279 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1280 return false; 1281 1282 Fn = &F; 1283 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1284 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1285 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1286 Ctx = &F.getContext(); 1287 1288 Nodes.clear(); 1289 Uses.clear(); 1290 NodeOrder.clear(); 1291 1292 SpecificBumpPtrAllocator<GepNode> Allocator; 1293 Mem = &Allocator; 1294 1295 collect(); 1296 common(); 1297 1298 NodeToValueMap Loc; 1299 computeNodePlacement(Loc); 1300 materialize(Loc); 1301 removeDeadCode(); 1302 1303 #ifdef EXPENSIVE_CHECKS 1304 // Run this only when expensive checks are enabled. 1305 verifyFunction(F); 1306 #endif 1307 return true; 1308 } 1309 1310 namespace llvm { 1311 1312 FunctionPass *createHexagonCommonGEP() { 1313 return new HexagonCommonGEP(); 1314 } 1315 1316 } // end namespace llvm 1317