xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- HexagonCommonGEP.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/ADT/FoldingSet.h"
11 #include "llvm/ADT/GraphTraits.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/User.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <iterator>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #define DEBUG_TYPE "commgep"
51 
52 using namespace llvm;
53 
54 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
55                                   cl::Hidden);
56 
57 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden);
58 
59 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
60                                     cl::Hidden);
61 
62 namespace llvm {
63 
64   void initializeHexagonCommonGEPPass(PassRegistry&);
65 
66 } // end namespace llvm
67 
68 namespace {
69 
70   struct GepNode;
71   using NodeSet = std::set<GepNode *>;
72   using NodeToValueMap = std::map<GepNode *, Value *>;
73   using NodeVect = std::vector<GepNode *>;
74   using NodeChildrenMap = std::map<GepNode *, NodeVect>;
75   using UseSet = SetVector<Use *>;
76   using NodeToUsesMap = std::map<GepNode *, UseSet>;
77 
78   // Numbering map for gep nodes. Used to keep track of ordering for
79   // gep nodes.
80   struct NodeOrdering {
81     NodeOrdering() = default;
82 
83     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
84     void clear() { Map.clear(); }
85 
86     bool operator()(const GepNode *N1, const GepNode *N2) const {
87       auto F1 = Map.find(N1), F2 = Map.find(N2);
88       assert(F1 != Map.end() && F2 != Map.end());
89       return F1->second < F2->second;
90     }
91 
92   private:
93     std::map<const GepNode *, unsigned> Map;
94     unsigned LastNum = 0;
95   };
96 
97   class HexagonCommonGEP : public FunctionPass {
98   public:
99     static char ID;
100 
101     HexagonCommonGEP() : FunctionPass(ID) {
102       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
103     }
104 
105     bool runOnFunction(Function &F) override;
106     StringRef getPassName() const override { return "Hexagon Common GEP"; }
107 
108     void getAnalysisUsage(AnalysisUsage &AU) const override {
109       AU.addRequired<DominatorTreeWrapperPass>();
110       AU.addPreserved<DominatorTreeWrapperPass>();
111       AU.addRequired<PostDominatorTreeWrapperPass>();
112       AU.addPreserved<PostDominatorTreeWrapperPass>();
113       AU.addRequired<LoopInfoWrapperPass>();
114       AU.addPreserved<LoopInfoWrapperPass>();
115       FunctionPass::getAnalysisUsage(AU);
116     }
117 
118   private:
119     using ValueToNodeMap = std::map<Value *, GepNode *>;
120     using ValueVect = std::vector<Value *>;
121     using NodeToValuesMap = std::map<GepNode *, ValueVect>;
122 
123     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
124     bool isHandledGepForm(GetElementPtrInst *GepI);
125     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
126     void collect();
127     void common();
128 
129     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
130                                      NodeToValueMap &Loc);
131     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
132                                         NodeToValueMap &Loc);
133     bool isInvariantIn(Value *Val, Loop *L);
134     bool isInvariantIn(GepNode *Node, Loop *L);
135     bool isInMainPath(BasicBlock *B, Loop *L);
136     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
137                                     NodeToValueMap &Loc);
138     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
139     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
140                                 NodeToValueMap &Loc);
141     void computeNodePlacement(NodeToValueMap &Loc);
142 
143     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
144                         BasicBlock *LocB);
145     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
146                             NodeChildrenMap &NCM);
147     void materialize(NodeToValueMap &Loc);
148 
149     void removeDeadCode();
150 
151     NodeVect Nodes;
152     NodeToUsesMap Uses;
153     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
154     SpecificBumpPtrAllocator<GepNode> *Mem;
155     LLVMContext *Ctx;
156     LoopInfo *LI;
157     DominatorTree *DT;
158     PostDominatorTree *PDT;
159     Function *Fn;
160   };
161 
162 } // end anonymous namespace
163 
164 char HexagonCommonGEP::ID = 0;
165 
166 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
167       false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
171 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
172       false, false)
173 
174 namespace {
175 
176   struct GepNode {
177     enum {
178       None      = 0,
179       Root      = 0x01,
180       Internal  = 0x02,
181       Used      = 0x04,
182       InBounds  = 0x08,
183       Pointer   = 0x10,   // See note below.
184     };
185     // Note: GEP indices generally traverse nested types, and so a GepNode
186     // (representing a single index) can be associated with some composite
187     // type. The exception is the GEP input, which is a pointer, and not
188     // a composite type (at least not in the sense of having sub-types).
189     // Also, the corresponding index plays a different role as well: it is
190     // simply added to the input pointer. Since pointer types are becoming
191     // opaque (i.e. are no longer going to include the pointee type), the
192     // two pieces of information (1) the fact that it's a pointer, and
193     // (2) the pointee type, need to be stored separately. The pointee type
194     // will be stored in the PTy member, while the fact that the node
195     // operates on a pointer will be reflected by the flag "Pointer".
196 
197     uint32_t Flags = 0;
198     union {
199       GepNode *Parent;
200       Value *BaseVal;
201     };
202     Value *Idx = nullptr;
203     Type *PTy = nullptr;    // Type indexed by this node. For pointer nodes
204                             // this is the "pointee" type, and indexing a
205                             // pointer does not change the type.
206 
207     GepNode() : Parent(nullptr) {}
208     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
209       if (Flags & Root)
210         BaseVal = N->BaseVal;
211       else
212         Parent = N->Parent;
213     }
214 
215     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
216   };
217 
218   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
219     OS << "{ {";
220     bool Comma = false;
221     if (GN.Flags & GepNode::Root) {
222       OS << "root";
223       Comma = true;
224     }
225     if (GN.Flags & GepNode::Internal) {
226       if (Comma)
227         OS << ',';
228       OS << "internal";
229       Comma = true;
230     }
231     if (GN.Flags & GepNode::Used) {
232       if (Comma)
233         OS << ',';
234       OS << "used";
235     }
236     if (GN.Flags & GepNode::InBounds) {
237       if (Comma)
238         OS << ',';
239       OS << "inbounds";
240     }
241     if (GN.Flags & GepNode::Pointer) {
242       if (Comma)
243         OS << ',';
244       OS << "pointer";
245     }
246     OS << "} ";
247     if (GN.Flags & GepNode::Root)
248       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
249     else
250       OS << "Parent:" << GN.Parent;
251 
252     OS << " Idx:";
253     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
254       OS << CI->getValue().getSExtValue();
255     else if (GN.Idx->hasName())
256       OS << GN.Idx->getName();
257     else
258       OS << "<anon> =" << *GN.Idx;
259 
260     OS << " PTy:";
261     if (GN.PTy->isStructTy()) {
262       StructType *STy = cast<StructType>(GN.PTy);
263       if (!STy->isLiteral())
264         OS << GN.PTy->getStructName();
265       else
266         OS << "<anon-struct>:" << *STy;
267     }
268     else
269       OS << *GN.PTy;
270     OS << " }";
271     return OS;
272   }
273 
274   template <typename NodeContainer>
275   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
276     using const_iterator = typename NodeContainer::const_iterator;
277 
278     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
279       OS << *I << ' ' << **I << '\n';
280   }
281 
282   raw_ostream &operator<< (raw_ostream &OS,
283                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
284   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
285     dump_node_container(OS, S);
286     return OS;
287   }
288 
289   raw_ostream &operator<< (raw_ostream &OS,
290                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
291   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
292     for (const auto &I : M) {
293       const UseSet &Us = I.second;
294       OS << I.first << " -> #" << Us.size() << '{';
295       for (const Use *U : Us) {
296         User *R = U->getUser();
297         if (R->hasName())
298           OS << ' ' << R->getName();
299         else
300           OS << " <?>(" << *R << ')';
301       }
302       OS << " }\n";
303     }
304     return OS;
305   }
306 
307   struct in_set {
308     in_set(const NodeSet &S) : NS(S) {}
309 
310     bool operator() (GepNode *N) const {
311       return NS.find(N) != NS.end();
312     }
313 
314   private:
315     const NodeSet &NS;
316   };
317 
318 } // end anonymous namespace
319 
320 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
321   return A.Allocate();
322 }
323 
324 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
325       ValueVect &Order) {
326   // Compute block ordering for a typical DT-based traversal of the flow
327   // graph: "before visiting a block, all of its dominators must have been
328   // visited".
329 
330   Order.push_back(Root);
331   for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
332     getBlockTraversalOrder(DTN->getBlock(), Order);
333 }
334 
335 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
336   // No vector GEPs.
337   if (!GepI->getType()->isPointerTy())
338     return false;
339   // No GEPs without any indices.  (Is this possible?)
340   if (GepI->idx_begin() == GepI->idx_end())
341     return false;
342   return true;
343 }
344 
345 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
346       ValueToNodeMap &NM) {
347   LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
348   GepNode *N = new (*Mem) GepNode;
349   Value *PtrOp = GepI->getPointerOperand();
350   uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
351   ValueToNodeMap::iterator F = NM.find(PtrOp);
352   if (F == NM.end()) {
353     N->BaseVal = PtrOp;
354     N->Flags |= GepNode::Root | InBounds;
355   } else {
356     // If PtrOp was a GEP instruction, it must have already been processed.
357     // The ValueToNodeMap entry for it is the last gep node in the generated
358     // chain. Link to it here.
359     N->Parent = F->second;
360   }
361   N->PTy = GepI->getSourceElementType();
362   N->Flags |= GepNode::Pointer;
363   N->Idx = *GepI->idx_begin();
364 
365   // Collect the list of users of this GEP instruction. Will add it to the
366   // last node created for it.
367   UseSet Us;
368   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
369        UI != UE; ++UI) {
370     // Check if this gep is used by anything other than other geps that
371     // we will process.
372     if (isa<GetElementPtrInst>(*UI)) {
373       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
374       if (isHandledGepForm(UserG))
375         continue;
376     }
377     Us.insert(&UI.getUse());
378   }
379   Nodes.push_back(N);
380   NodeOrder.insert(N);
381 
382   // Skip the first index operand, since it was already handled above. This
383   // dereferences the pointer operand.
384   GepNode *PN = N;
385   Type *PtrTy = GepI->getSourceElementType();
386   for (Use &U : llvm::drop_begin(GepI->indices())) {
387     Value *Op = U;
388     GepNode *Nx = new (*Mem) GepNode;
389     Nx->Parent = PN;  // Link Nx to the previous node.
390     Nx->Flags |= GepNode::Internal | InBounds;
391     Nx->PTy = PtrTy;
392     Nx->Idx = Op;
393     Nodes.push_back(Nx);
394     NodeOrder.insert(Nx);
395     PN = Nx;
396 
397     PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op);
398   }
399 
400   // After last node has been created, update the use information.
401   if (!Us.empty()) {
402     PN->Flags |= GepNode::Used;
403     Uses[PN].insert(Us.begin(), Us.end());
404   }
405 
406   // Link the last node with the originating GEP instruction. This is to
407   // help with linking chained GEP instructions.
408   NM.insert(std::make_pair(GepI, PN));
409 }
410 
411 void HexagonCommonGEP::collect() {
412   // Establish depth-first traversal order of the dominator tree.
413   ValueVect BO;
414   getBlockTraversalOrder(&Fn->front(), BO);
415 
416   // The creation of gep nodes requires DT-traversal. When processing a GEP
417   // instruction that uses another GEP instruction as the base pointer, the
418   // gep node for the base pointer should already exist.
419   ValueToNodeMap NM;
420   for (Value *I : BO) {
421     BasicBlock *B = cast<BasicBlock>(I);
422     for (Instruction &J : *B)
423       if (auto *GepI = dyn_cast<GetElementPtrInst>(&J))
424         if (isHandledGepForm(GepI))
425           processGepInst(GepI, NM);
426   }
427 
428   LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
429 }
430 
431 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
432                               NodeVect &Roots) {
433   for (GepNode *N : Nodes) {
434     if (N->Flags & GepNode::Root) {
435       Roots.push_back(N);
436       continue;
437     }
438     GepNode *PN = N->Parent;
439     NCM[PN].push_back(N);
440   }
441 }
442 
443 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
444                            NodeSet &Nodes) {
445     NodeVect Work;
446     Work.push_back(Root);
447     Nodes.insert(Root);
448 
449     while (!Work.empty()) {
450       NodeVect::iterator First = Work.begin();
451       GepNode *N = *First;
452       Work.erase(First);
453       NodeChildrenMap::iterator CF = NCM.find(N);
454       if (CF != NCM.end()) {
455         llvm::append_range(Work, CF->second);
456         Nodes.insert(CF->second.begin(), CF->second.end());
457       }
458     }
459 }
460 
461 namespace {
462 
463   using NodeSymRel = std::set<NodeSet>;
464   using NodePair = std::pair<GepNode *, GepNode *>;
465   using NodePairSet = std::set<NodePair>;
466 
467 } // end anonymous namespace
468 
469 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
470   for (const NodeSet &S : Rel)
471     if (S.count(N))
472       return &S;
473   return nullptr;
474 }
475 
476   // Create an ordered pair of GepNode pointers. The pair will be used in
477   // determining equality. The only purpose of the ordering is to eliminate
478   // duplication due to the commutativity of equality/non-equality.
479 static NodePair node_pair(GepNode *N1, GepNode *N2) {
480   uintptr_t P1 = reinterpret_cast<uintptr_t>(N1);
481   uintptr_t P2 = reinterpret_cast<uintptr_t>(N2);
482   if (P1 <= P2)
483     return std::make_pair(N1, N2);
484   return std::make_pair(N2, N1);
485 }
486 
487 static unsigned node_hash(GepNode *N) {
488     // Include everything except flags and parent.
489     FoldingSetNodeID ID;
490     ID.AddPointer(N->Idx);
491     ID.AddPointer(N->PTy);
492     return ID.ComputeHash();
493 }
494 
495 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
496                     NodePairSet &Ne) {
497     // Don't cache the result for nodes with different hashes. The hash
498     // comparison is fast enough.
499     if (node_hash(N1) != node_hash(N2))
500       return false;
501 
502     NodePair NP = node_pair(N1, N2);
503     NodePairSet::iterator FEq = Eq.find(NP);
504     if (FEq != Eq.end())
505       return true;
506     NodePairSet::iterator FNe = Ne.find(NP);
507     if (FNe != Ne.end())
508       return false;
509     // Not previously compared.
510     bool Root1 = N1->Flags & GepNode::Root;
511     uint32_t CmpFlags = GepNode::Root | GepNode::Pointer;
512     bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags);
513     NodePair P = node_pair(N1, N2);
514     // If the root/pointer flags have different values, the nodes are
515     // different.
516     // If both nodes are root nodes, but their base pointers differ,
517     // they are different.
518     if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) {
519       Ne.insert(P);
520       return false;
521     }
522     // Here the root/pointer flags are identical, and for root nodes the
523     // base pointers are equal, so the root nodes are equal.
524     // For non-root nodes, compare their parent nodes.
525     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
526       Eq.insert(P);
527       return true;
528     }
529     return false;
530 }
531 
532 void HexagonCommonGEP::common() {
533   // The essence of this commoning is finding gep nodes that are equal.
534   // To do this we need to compare all pairs of nodes. To save time,
535   // first, partition the set of all nodes into sets of potentially equal
536   // nodes, and then compare pairs from within each partition.
537   using NodeSetMap = std::map<unsigned, NodeSet>;
538   NodeSetMap MaybeEq;
539 
540   for (GepNode *N : Nodes) {
541     unsigned H = node_hash(N);
542     MaybeEq[H].insert(N);
543   }
544 
545   // Compute the equivalence relation for the gep nodes.  Use two caches,
546   // one for equality and the other for non-equality.
547   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
548   NodePairSet Eq, Ne;  // Caches.
549   for (auto &I : MaybeEq) {
550     NodeSet &S = I.second;
551     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
552       GepNode *N = *NI;
553       // If node already has a class, then the class must have been created
554       // in a prior iteration of this loop. Since equality is transitive,
555       // nothing more will be added to that class, so skip it.
556       if (node_class(N, EqRel))
557         continue;
558 
559       // Create a new class candidate now.
560       NodeSet C;
561       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
562         if (node_eq(N, *NJ, Eq, Ne))
563           C.insert(*NJ);
564       // If Tmp is empty, N would be the only element in it. Don't bother
565       // creating a class for it then.
566       if (!C.empty()) {
567         C.insert(N);  // Finalize the set before adding it to the relation.
568         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
569         (void)Ins;
570         assert(Ins.second && "Cannot add a class");
571       }
572     }
573   }
574 
575   LLVM_DEBUG({
576     dbgs() << "Gep node equality:\n";
577     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
578       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
579 
580     dbgs() << "Gep equivalence classes:\n";
581     for (const NodeSet &S : EqRel) {
582       dbgs() << '{';
583       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
584         if (J != S.begin())
585           dbgs() << ',';
586         dbgs() << ' ' << *J;
587       }
588       dbgs() << " }\n";
589     }
590   });
591 
592   // Create a projection from a NodeSet to the minimal element in it.
593   using ProjMap = std::map<const NodeSet *, GepNode *>;
594   ProjMap PM;
595   for (const NodeSet &S : EqRel) {
596     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
597     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
598     (void)Ins;
599     assert(Ins.second && "Cannot add minimal element");
600 
601     // Update the min element's flags, and user list.
602     uint32_t Flags = 0;
603     UseSet &MinUs = Uses[Min];
604     for (GepNode *N : S) {
605       uint32_t NF = N->Flags;
606       // If N is used, append all original values of N to the list of
607       // original values of Min.
608       if (NF & GepNode::Used)
609         MinUs.insert(Uses[N].begin(), Uses[N].end());
610       Flags |= NF;
611     }
612     if (MinUs.empty())
613       Uses.erase(Min);
614 
615     // The collected flags should include all the flags from the min element.
616     assert((Min->Flags & Flags) == Min->Flags);
617     Min->Flags = Flags;
618   }
619 
620   // Commoning: for each non-root gep node, replace "Parent" with the
621   // selected (minimum) node from the corresponding equivalence class.
622   // If a given parent does not have an equivalence class, leave it
623   // unchanged (it means that it's the only element in its class).
624   for (GepNode *N : Nodes) {
625     if (N->Flags & GepNode::Root)
626       continue;
627     const NodeSet *PC = node_class(N->Parent, EqRel);
628     if (!PC)
629       continue;
630     ProjMap::iterator F = PM.find(PC);
631     if (F == PM.end())
632       continue;
633     // Found a replacement, use it.
634     GepNode *Rep = F->second;
635     N->Parent = Rep;
636   }
637 
638   LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
639 
640   // Finally, erase the nodes that are no longer used.
641   NodeSet Erase;
642   for (GepNode *N : Nodes) {
643     const NodeSet *PC = node_class(N, EqRel);
644     if (!PC)
645       continue;
646     ProjMap::iterator F = PM.find(PC);
647     if (F == PM.end())
648       continue;
649     if (N == F->second)
650       continue;
651     // Node for removal.
652     Erase.insert(N);
653   }
654   erase_if(Nodes, in_set(Erase));
655 
656   LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
657 }
658 
659 template <typename T>
660 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
661   LLVM_DEBUG({
662     dbgs() << "NCD of {";
663     for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
664          ++I) {
665       if (!*I)
666         continue;
667       BasicBlock *B = cast<BasicBlock>(*I);
668       dbgs() << ' ' << B->getName();
669     }
670     dbgs() << " }\n";
671   });
672 
673   // Allow null basic blocks in Blocks.  In such cases, return nullptr.
674   typename T::iterator I = Blocks.begin(), E = Blocks.end();
675   if (I == E || !*I)
676     return nullptr;
677   BasicBlock *Dom = cast<BasicBlock>(*I);
678   while (++I != E) {
679     BasicBlock *B = cast_or_null<BasicBlock>(*I);
680     Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
681     if (!Dom)
682       return nullptr;
683     }
684     LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
685     return Dom;
686 }
687 
688 template <typename T>
689 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
690     // If two blocks, A and B, dominate a block C, then A dominates B,
691     // or B dominates A.
692     typename T::iterator I = Blocks.begin(), E = Blocks.end();
693     // Find the first non-null block.
694     while (I != E && !*I)
695       ++I;
696     if (I == E)
697       return DT->getRoot();
698     BasicBlock *DomB = cast<BasicBlock>(*I);
699     while (++I != E) {
700       if (!*I)
701         continue;
702       BasicBlock *B = cast<BasicBlock>(*I);
703       if (DT->dominates(B, DomB))
704         continue;
705       if (!DT->dominates(DomB, B))
706         return nullptr;
707       DomB = B;
708     }
709     return DomB;
710 }
711 
712 // Find the first use in B of any value from Values. If no such use,
713 // return B->end().
714 template <typename T>
715 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
716     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
717 
718     using iterator = typename T::iterator;
719 
720     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
721       Value *V = *I;
722       // If V is used in a PHI node, the use belongs to the incoming block,
723       // not the block with the PHI node. In the incoming block, the use
724       // would be considered as being at the end of it, so it cannot
725       // influence the position of the first use (which is assumed to be
726       // at the end to start with).
727       if (isa<PHINode>(V))
728         continue;
729       if (!isa<Instruction>(V))
730         continue;
731       Instruction *In = cast<Instruction>(V);
732       if (In->getParent() != B)
733         continue;
734       BasicBlock::iterator It = In->getIterator();
735       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
736         FirstUse = It;
737     }
738     return FirstUse;
739 }
740 
741 static bool is_empty(const BasicBlock *B) {
742     return B->empty() || (&*B->begin() == B->getTerminator());
743 }
744 
745 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
746       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
747   LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
748   // Recalculate the placement for Node, assuming that the locations of
749   // its children in Loc are valid.
750   // Return nullptr if there is no valid placement for Node (for example, it
751   // uses an index value that is not available at the location required
752   // to dominate all children, etc.).
753 
754   // Find the nearest common dominator for:
755   // - all users, if the node is used, and
756   // - all children.
757   ValueVect Bs;
758   if (Node->Flags & GepNode::Used) {
759     // Append all blocks with uses of the original values to the
760     // block vector Bs.
761     NodeToUsesMap::iterator UF = Uses.find(Node);
762     assert(UF != Uses.end() && "Used node with no use information");
763     UseSet &Us = UF->second;
764     for (Use *U : Us) {
765       User *R = U->getUser();
766       if (!isa<Instruction>(R))
767         continue;
768       BasicBlock *PB = isa<PHINode>(R)
769           ? cast<PHINode>(R)->getIncomingBlock(*U)
770           : cast<Instruction>(R)->getParent();
771       Bs.push_back(PB);
772     }
773   }
774   // Append the location of each child.
775   NodeChildrenMap::iterator CF = NCM.find(Node);
776   if (CF != NCM.end()) {
777     NodeVect &Cs = CF->second;
778     for (GepNode *CN : Cs) {
779       NodeToValueMap::iterator LF = Loc.find(CN);
780       // If the child is only used in GEP instructions (i.e. is not used in
781       // non-GEP instructions), the nearest dominator computed for it may
782       // have been null. In such case it won't have a location available.
783       if (LF == Loc.end())
784         continue;
785       Bs.push_back(LF->second);
786     }
787   }
788 
789   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
790   if (!DomB)
791     return nullptr;
792   // Check if the index used by Node dominates the computed dominator.
793   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
794   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
795     return nullptr;
796 
797   // Avoid putting nodes into empty blocks.
798   while (is_empty(DomB)) {
799     DomTreeNode *N = (*DT)[DomB]->getIDom();
800     if (!N)
801       break;
802     DomB = N->getBlock();
803   }
804 
805   // Otherwise, DomB is fine. Update the location map.
806   Loc[Node] = DomB;
807   return DomB;
808 }
809 
810 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
811       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
812   LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
813   // Recalculate the placement of Node, after recursively recalculating the
814   // placements of all its children.
815   NodeChildrenMap::iterator CF = NCM.find(Node);
816   if (CF != NCM.end()) {
817     NodeVect &Cs = CF->second;
818     for (GepNode *C : Cs)
819       recalculatePlacementRec(C, NCM, Loc);
820   }
821   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
822   LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
823   return LB;
824 }
825 
826 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
827   if (isa<Constant>(Val) || isa<Argument>(Val))
828     return true;
829   Instruction *In = dyn_cast<Instruction>(Val);
830   if (!In)
831     return false;
832   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
833   return DT->properlyDominates(DefB, HdrB);
834 }
835 
836 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
837   if (Node->Flags & GepNode::Root)
838     if (!isInvariantIn(Node->BaseVal, L))
839       return false;
840   return isInvariantIn(Node->Idx, L);
841 }
842 
843 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
844   BasicBlock *HB = L->getHeader();
845   BasicBlock *LB = L->getLoopLatch();
846   // B must post-dominate the loop header or dominate the loop latch.
847   if (PDT->dominates(B, HB))
848     return true;
849   if (LB && DT->dominates(B, LB))
850     return true;
851   return false;
852 }
853 
854 static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
855   if (BasicBlock *PH = L->getLoopPreheader())
856     return PH;
857   if (!OptSpeculate)
858     return nullptr;
859   DomTreeNode *DN = DT->getNode(L->getHeader());
860   if (!DN)
861     return nullptr;
862   return DN->getIDom()->getBlock();
863 }
864 
865 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
866       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
867   // Find the "topmost" location for Node: it must be dominated by both,
868   // its parent (or the BaseVal, if it's a root node), and by the index
869   // value.
870   ValueVect Bs;
871   if (Node->Flags & GepNode::Root) {
872     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
873       Bs.push_back(PIn->getParent());
874   } else {
875     Bs.push_back(Loc[Node->Parent]);
876   }
877   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
878     Bs.push_back(IIn->getParent());
879   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
880 
881   // Traverse the loop nest upwards until we find a loop in which Node
882   // is no longer invariant, or until we get to the upper limit of Node's
883   // placement. The traversal will also stop when a suitable "preheader"
884   // cannot be found for a given loop. The "preheader" may actually be
885   // a regular block outside of the loop (i.e. not guarded), in which case
886   // the Node will be speculated.
887   // For nodes that are not in the main path of the containing loop (i.e.
888   // are not executed in each iteration), do not move them out of the loop.
889   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
890   if (LocB) {
891     Loop *Lp = LI->getLoopFor(LocB);
892     while (Lp) {
893       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
894         break;
895       BasicBlock *NewLoc = preheader(DT, Lp);
896       if (!NewLoc || !DT->dominates(TopB, NewLoc))
897         break;
898       Lp = Lp->getParentLoop();
899       LocB = NewLoc;
900     }
901   }
902   Loc[Node] = LocB;
903 
904   // Recursively compute the locations of all children nodes.
905   NodeChildrenMap::iterator CF = NCM.find(Node);
906   if (CF != NCM.end()) {
907     NodeVect &Cs = CF->second;
908     for (GepNode *C : Cs)
909       adjustForInvariance(C, NCM, Loc);
910   }
911   return LocB;
912 }
913 
914 namespace {
915 
916   struct LocationAsBlock {
917     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
918 
919     const NodeToValueMap &Map;
920   };
921 
922   raw_ostream &operator<< (raw_ostream &OS,
923                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
924   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
925     for (const auto &I : Loc.Map) {
926       OS << I.first << " -> ";
927       if (BasicBlock *B = cast_or_null<BasicBlock>(I.second))
928         OS << B->getName() << '(' << B << ')';
929       else
930         OS << "<null-block>";
931       OS << '\n';
932     }
933     return OS;
934   }
935 
936   inline bool is_constant(GepNode *N) {
937     return isa<ConstantInt>(N->Idx);
938   }
939 
940 } // end anonymous namespace
941 
942 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
943       NodeToValueMap &Loc) {
944   User *R = U->getUser();
945   LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
946                     << '\n');
947   BasicBlock *PB = cast<Instruction>(R)->getParent();
948 
949   GepNode *N = Node;
950   GepNode *C = nullptr, *NewNode = nullptr;
951   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
952     // XXX if (single-use) dont-replicate;
953     GepNode *NewN = new (*Mem) GepNode(N);
954     Nodes.push_back(NewN);
955     Loc[NewN] = PB;
956 
957     if (N == Node)
958       NewNode = NewN;
959     NewN->Flags &= ~GepNode::Used;
960     if (C)
961       C->Parent = NewN;
962     C = NewN;
963     N = N->Parent;
964   }
965   if (!NewNode)
966     return;
967 
968   // Move over all uses that share the same user as U from Node to NewNode.
969   NodeToUsesMap::iterator UF = Uses.find(Node);
970   assert(UF != Uses.end());
971   UseSet &Us = UF->second;
972   UseSet NewUs;
973   for (Use *U : Us) {
974     if (U->getUser() == R)
975       NewUs.insert(U);
976   }
977   for (Use *U : NewUs)
978     Us.remove(U); // erase takes an iterator.
979 
980   if (Us.empty()) {
981     Node->Flags &= ~GepNode::Used;
982     Uses.erase(UF);
983   }
984 
985   // Should at least have U in NewUs.
986   NewNode->Flags |= GepNode::Used;
987   LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
988   assert(!NewUs.empty());
989   Uses[NewNode] = NewUs;
990 }
991 
992 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
993       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
994   // First approximation: extract all chains.
995   NodeSet Ns;
996   nodes_for_root(Node, NCM, Ns);
997 
998   LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
999   // Collect all used nodes together with the uses from loads and stores,
1000   // where the GEP node could be folded into the load/store instruction.
1001   NodeToUsesMap FNs; // Foldable nodes.
1002   for (GepNode *N : Ns) {
1003     if (!(N->Flags & GepNode::Used))
1004       continue;
1005     NodeToUsesMap::iterator UF = Uses.find(N);
1006     assert(UF != Uses.end());
1007     UseSet &Us = UF->second;
1008     // Loads/stores that use the node N.
1009     UseSet LSs;
1010     for (Use *U : Us) {
1011       User *R = U->getUser();
1012       // We're interested in uses that provide the address. It can happen
1013       // that the value may also be provided via GEP, but we won't handle
1014       // those cases here for now.
1015       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1016         unsigned PtrX = LoadInst::getPointerOperandIndex();
1017         if (&Ld->getOperandUse(PtrX) == U)
1018           LSs.insert(U);
1019       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1020         unsigned PtrX = StoreInst::getPointerOperandIndex();
1021         if (&St->getOperandUse(PtrX) == U)
1022           LSs.insert(U);
1023       }
1024     }
1025     // Even if the total use count is 1, separating the chain may still be
1026     // beneficial, since the constant chain may be longer than the GEP alone
1027     // would be (e.g. if the parent node has a constant index and also has
1028     // other children).
1029     if (!LSs.empty())
1030       FNs.insert(std::make_pair(N, LSs));
1031   }
1032 
1033   LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1034 
1035   for (auto &FN : FNs) {
1036     GepNode *N = FN.first;
1037     UseSet &Us = FN.second;
1038     for (Use *U : Us)
1039       separateChainForNode(N, U, Loc);
1040   }
1041 }
1042 
1043 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1044   // Compute the inverse of the Node.Parent links. Also, collect the set
1045   // of root nodes.
1046   NodeChildrenMap NCM;
1047   NodeVect Roots;
1048   invert_find_roots(Nodes, NCM, Roots);
1049 
1050   // Compute the initial placement determined by the users' locations, and
1051   // the locations of the child nodes.
1052   for (GepNode *Root : Roots)
1053     recalculatePlacementRec(Root, NCM, Loc);
1054 
1055   LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1056 
1057   if (OptEnableInv) {
1058     for (GepNode *Root : Roots)
1059       adjustForInvariance(Root, NCM, Loc);
1060 
1061     LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1062                       << LocationAsBlock(Loc));
1063   }
1064   if (OptEnableConst) {
1065     for (GepNode *Root : Roots)
1066       separateConstantChains(Root, NCM, Loc);
1067   }
1068   LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1069 
1070   // At the moment, there is no further refinement of the initial placement.
1071   // Such a refinement could include splitting the nodes if they are placed
1072   // too far from some of its users.
1073 
1074   LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1075 }
1076 
1077 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1078       BasicBlock *LocB) {
1079   LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1080                     << " for nodes:\n"
1081                     << NA);
1082   unsigned Num = NA.size();
1083   GepNode *RN = NA[0];
1084   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1085 
1086   GetElementPtrInst *NewInst = nullptr;
1087   Value *Input = RN->BaseVal;
1088   Type *InpTy = RN->PTy;
1089 
1090   unsigned Idx = 0;
1091   do {
1092     SmallVector<Value*, 4> IdxList;
1093     // If the type of the input of the first node is not a pointer,
1094     // we need to add an artificial i32 0 to the indices (because the
1095     // actual input in the IR will be a pointer).
1096     if (!(NA[Idx]->Flags & GepNode::Pointer)) {
1097       Type *Int32Ty = Type::getInt32Ty(*Ctx);
1098       IdxList.push_back(ConstantInt::get(Int32Ty, 0));
1099     }
1100 
1101     // Keep adding indices from NA until we have to stop and generate
1102     // an "intermediate" GEP.
1103     while (++Idx <= Num) {
1104       GepNode *N = NA[Idx-1];
1105       IdxList.push_back(N->Idx);
1106       if (Idx < Num) {
1107         // We have to stop if we reach a pointer.
1108         if (NA[Idx]->Flags & GepNode::Pointer)
1109           break;
1110       }
1111     }
1112     NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", &*At);
1113     NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1114     LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1115     if (Idx < Num) {
1116       Input = NewInst;
1117       InpTy = NA[Idx]->PTy;
1118     }
1119   } while (Idx <= Num);
1120 
1121   return NewInst;
1122 }
1123 
1124 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1125       NodeChildrenMap &NCM) {
1126   NodeVect Work;
1127   Work.push_back(Node);
1128 
1129   while (!Work.empty()) {
1130     NodeVect::iterator First = Work.begin();
1131     GepNode *N = *First;
1132     Work.erase(First);
1133     if (N->Flags & GepNode::Used) {
1134       NodeToUsesMap::iterator UF = Uses.find(N);
1135       assert(UF != Uses.end() && "No use information for used node");
1136       UseSet &Us = UF->second;
1137       for (const auto &U : Us)
1138         Values.push_back(U->getUser());
1139     }
1140     NodeChildrenMap::iterator CF = NCM.find(N);
1141     if (CF != NCM.end()) {
1142       NodeVect &Cs = CF->second;
1143       llvm::append_range(Work, Cs);
1144     }
1145   }
1146 }
1147 
1148 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1149   LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1150   NodeChildrenMap NCM;
1151   NodeVect Roots;
1152   // Compute the inversion again, since computing placement could alter
1153   // "parent" relation between nodes.
1154   invert_find_roots(Nodes, NCM, Roots);
1155 
1156   while (!Roots.empty()) {
1157     NodeVect::iterator First = Roots.begin();
1158     GepNode *Root = *First, *Last = *First;
1159     Roots.erase(First);
1160 
1161     NodeVect NA;  // Nodes to assemble.
1162     // Append to NA all child nodes up to (and including) the first child
1163     // that:
1164     // (1) has more than 1 child, or
1165     // (2) is used, or
1166     // (3) has a child located in a different block.
1167     bool LastUsed = false;
1168     unsigned LastCN = 0;
1169     // The location may be null if the computation failed (it can legitimately
1170     // happen for nodes created from dead GEPs).
1171     Value *LocV = Loc[Last];
1172     if (!LocV)
1173       continue;
1174     BasicBlock *LastB = cast<BasicBlock>(LocV);
1175     do {
1176       NA.push_back(Last);
1177       LastUsed = (Last->Flags & GepNode::Used);
1178       if (LastUsed)
1179         break;
1180       NodeChildrenMap::iterator CF = NCM.find(Last);
1181       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1182       if (LastCN != 1)
1183         break;
1184       GepNode *Child = CF->second.front();
1185       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1186       if (ChildB != nullptr && LastB != ChildB)
1187         break;
1188       Last = Child;
1189     } while (true);
1190 
1191     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1192     if (LastUsed || LastCN > 0) {
1193       ValueVect Urs;
1194       getAllUsersForNode(Root, Urs, NCM);
1195       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1196       if (FirstUse != LastB->end())
1197         InsertAt = FirstUse;
1198     }
1199 
1200     // Generate a new instruction for NA.
1201     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1202 
1203     // Convert all the children of Last node into roots, and append them
1204     // to the Roots list.
1205     if (LastCN > 0) {
1206       NodeVect &Cs = NCM[Last];
1207       for (GepNode *CN : Cs) {
1208         CN->Flags &= ~GepNode::Internal;
1209         CN->Flags |= GepNode::Root;
1210         CN->BaseVal = NewInst;
1211         Roots.push_back(CN);
1212       }
1213     }
1214 
1215     // Lastly, if the Last node was used, replace all uses with the new GEP.
1216     // The uses reference the original GEP values.
1217     if (LastUsed) {
1218       NodeToUsesMap::iterator UF = Uses.find(Last);
1219       assert(UF != Uses.end() && "No use information found");
1220       UseSet &Us = UF->second;
1221       for (Use *U : Us)
1222         U->set(NewInst);
1223     }
1224   }
1225 }
1226 
1227 void HexagonCommonGEP::removeDeadCode() {
1228   ValueVect BO;
1229   BO.push_back(&Fn->front());
1230 
1231   for (unsigned i = 0; i < BO.size(); ++i) {
1232     BasicBlock *B = cast<BasicBlock>(BO[i]);
1233     for (auto *DTN : children<DomTreeNode *>(DT->getNode(B)))
1234       BO.push_back(DTN->getBlock());
1235   }
1236 
1237   for (Value *V : llvm::reverse(BO)) {
1238     BasicBlock *B = cast<BasicBlock>(V);
1239     ValueVect Ins;
1240     for (Instruction &I : llvm::reverse(*B))
1241       Ins.push_back(&I);
1242     for (Value *I : Ins) {
1243       Instruction *In = cast<Instruction>(I);
1244       if (isInstructionTriviallyDead(In))
1245         In->eraseFromParent();
1246     }
1247   }
1248 }
1249 
1250 bool HexagonCommonGEP::runOnFunction(Function &F) {
1251   if (skipFunction(F))
1252     return false;
1253 
1254   // For now bail out on C++ exception handling.
1255   for (const BasicBlock &BB : F)
1256     for (const Instruction &I : BB)
1257       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1258         return false;
1259 
1260   Fn = &F;
1261   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1262   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1263   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1264   Ctx = &F.getContext();
1265 
1266   Nodes.clear();
1267   Uses.clear();
1268   NodeOrder.clear();
1269 
1270   SpecificBumpPtrAllocator<GepNode> Allocator;
1271   Mem = &Allocator;
1272 
1273   collect();
1274   common();
1275 
1276   NodeToValueMap Loc;
1277   computeNodePlacement(Loc);
1278   materialize(Loc);
1279   removeDeadCode();
1280 
1281 #ifdef EXPENSIVE_CHECKS
1282   // Run this only when expensive checks are enabled.
1283   if (verifyFunction(F, &dbgs()))
1284     report_fatal_error("Broken function");
1285 #endif
1286   return true;
1287 }
1288 
1289 namespace llvm {
1290 
1291   FunctionPass *createHexagonCommonGEP() {
1292     return new HexagonCommonGEP();
1293   }
1294 
1295 } // end namespace llvm
1296