1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/PostDominators.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/User.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstddef> 42 #include <cstdint> 43 #include <iterator> 44 #include <map> 45 #include <set> 46 #include <utility> 47 #include <vector> 48 49 #define DEBUG_TYPE "commgep" 50 51 using namespace llvm; 52 53 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 54 cl::Hidden, cl::ZeroOrMore); 55 56 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 57 cl::ZeroOrMore); 58 59 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 60 cl::Hidden, cl::ZeroOrMore); 61 62 namespace llvm { 63 64 void initializeHexagonCommonGEPPass(PassRegistry&); 65 66 } // end namespace llvm 67 68 namespace { 69 70 struct GepNode; 71 using NodeSet = std::set<GepNode *>; 72 using NodeToValueMap = std::map<GepNode *, Value *>; 73 using NodeVect = std::vector<GepNode *>; 74 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 75 using UseSet = SetVector<Use *>; 76 using NodeToUsesMap = std::map<GepNode *, UseSet>; 77 78 // Numbering map for gep nodes. Used to keep track of ordering for 79 // gep nodes. 80 struct NodeOrdering { 81 NodeOrdering() = default; 82 83 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 84 void clear() { Map.clear(); } 85 86 bool operator()(const GepNode *N1, const GepNode *N2) const { 87 auto F1 = Map.find(N1), F2 = Map.find(N2); 88 assert(F1 != Map.end() && F2 != Map.end()); 89 return F1->second < F2->second; 90 } 91 92 private: 93 std::map<const GepNode *, unsigned> Map; 94 unsigned LastNum = 0; 95 }; 96 97 class HexagonCommonGEP : public FunctionPass { 98 public: 99 static char ID; 100 101 HexagonCommonGEP() : FunctionPass(ID) { 102 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 103 } 104 105 bool runOnFunction(Function &F) override; 106 StringRef getPassName() const override { return "Hexagon Common GEP"; } 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addPreserved<DominatorTreeWrapperPass>(); 111 AU.addRequired<PostDominatorTreeWrapperPass>(); 112 AU.addPreserved<PostDominatorTreeWrapperPass>(); 113 AU.addRequired<LoopInfoWrapperPass>(); 114 AU.addPreserved<LoopInfoWrapperPass>(); 115 FunctionPass::getAnalysisUsage(AU); 116 } 117 118 private: 119 using ValueToNodeMap = std::map<Value *, GepNode *>; 120 using ValueVect = std::vector<Value *>; 121 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 122 123 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 124 bool isHandledGepForm(GetElementPtrInst *GepI); 125 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 126 void collect(); 127 void common(); 128 129 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 130 NodeToValueMap &Loc); 131 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 132 NodeToValueMap &Loc); 133 bool isInvariantIn(Value *Val, Loop *L); 134 bool isInvariantIn(GepNode *Node, Loop *L); 135 bool isInMainPath(BasicBlock *B, Loop *L); 136 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 137 NodeToValueMap &Loc); 138 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 139 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 140 NodeToValueMap &Loc); 141 void computeNodePlacement(NodeToValueMap &Loc); 142 143 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 144 BasicBlock *LocB); 145 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 146 NodeChildrenMap &NCM); 147 void materialize(NodeToValueMap &Loc); 148 149 void removeDeadCode(); 150 151 NodeVect Nodes; 152 NodeToUsesMap Uses; 153 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 154 SpecificBumpPtrAllocator<GepNode> *Mem; 155 LLVMContext *Ctx; 156 LoopInfo *LI; 157 DominatorTree *DT; 158 PostDominatorTree *PDT; 159 Function *Fn; 160 }; 161 162 } // end anonymous namespace 163 164 char HexagonCommonGEP::ID = 0; 165 166 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 167 false, false) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 171 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 172 false, false) 173 174 namespace { 175 176 struct GepNode { 177 enum { 178 None = 0, 179 Root = 0x01, 180 Internal = 0x02, 181 Used = 0x04, 182 InBounds = 0x08 183 }; 184 185 uint32_t Flags = 0; 186 union { 187 GepNode *Parent; 188 Value *BaseVal; 189 }; 190 Value *Idx = nullptr; 191 Type *PTy = nullptr; // Type of the pointer operand. 192 193 GepNode() : Parent(nullptr) {} 194 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 195 if (Flags & Root) 196 BaseVal = N->BaseVal; 197 else 198 Parent = N->Parent; 199 } 200 201 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 202 }; 203 204 Type *next_type(Type *Ty, Value *Idx) { 205 if (auto *PTy = dyn_cast<PointerType>(Ty)) 206 return PTy->getElementType(); 207 return GetElementPtrInst::getTypeAtIndex(Ty, Idx); 208 } 209 210 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 211 OS << "{ {"; 212 bool Comma = false; 213 if (GN.Flags & GepNode::Root) { 214 OS << "root"; 215 Comma = true; 216 } 217 if (GN.Flags & GepNode::Internal) { 218 if (Comma) 219 OS << ','; 220 OS << "internal"; 221 Comma = true; 222 } 223 if (GN.Flags & GepNode::Used) { 224 if (Comma) 225 OS << ','; 226 OS << "used"; 227 } 228 if (GN.Flags & GepNode::InBounds) { 229 if (Comma) 230 OS << ','; 231 OS << "inbounds"; 232 } 233 OS << "} "; 234 if (GN.Flags & GepNode::Root) 235 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 236 else 237 OS << "Parent:" << GN.Parent; 238 239 OS << " Idx:"; 240 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 241 OS << CI->getValue().getSExtValue(); 242 else if (GN.Idx->hasName()) 243 OS << GN.Idx->getName(); 244 else 245 OS << "<anon> =" << *GN.Idx; 246 247 OS << " PTy:"; 248 if (GN.PTy->isStructTy()) { 249 StructType *STy = cast<StructType>(GN.PTy); 250 if (!STy->isLiteral()) 251 OS << GN.PTy->getStructName(); 252 else 253 OS << "<anon-struct>:" << *STy; 254 } 255 else 256 OS << *GN.PTy; 257 OS << " }"; 258 return OS; 259 } 260 261 template <typename NodeContainer> 262 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 263 using const_iterator = typename NodeContainer::const_iterator; 264 265 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 266 OS << *I << ' ' << **I << '\n'; 267 } 268 269 raw_ostream &operator<< (raw_ostream &OS, 270 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 271 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 272 dump_node_container(OS, S); 273 return OS; 274 } 275 276 raw_ostream &operator<< (raw_ostream &OS, 277 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 278 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 279 using const_iterator = NodeToUsesMap::const_iterator; 280 281 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 282 const UseSet &Us = I->second; 283 OS << I->first << " -> #" << Us.size() << '{'; 284 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 285 User *R = (*J)->getUser(); 286 if (R->hasName()) 287 OS << ' ' << R->getName(); 288 else 289 OS << " <?>(" << *R << ')'; 290 } 291 OS << " }\n"; 292 } 293 return OS; 294 } 295 296 struct in_set { 297 in_set(const NodeSet &S) : NS(S) {} 298 299 bool operator() (GepNode *N) const { 300 return NS.find(N) != NS.end(); 301 } 302 303 private: 304 const NodeSet &NS; 305 }; 306 307 } // end anonymous namespace 308 309 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 310 return A.Allocate(); 311 } 312 313 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 314 ValueVect &Order) { 315 // Compute block ordering for a typical DT-based traversal of the flow 316 // graph: "before visiting a block, all of its dominators must have been 317 // visited". 318 319 Order.push_back(Root); 320 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 321 getBlockTraversalOrder(DTN->getBlock(), Order); 322 } 323 324 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 325 // No vector GEPs. 326 if (!GepI->getType()->isPointerTy()) 327 return false; 328 // No GEPs without any indices. (Is this possible?) 329 if (GepI->idx_begin() == GepI->idx_end()) 330 return false; 331 return true; 332 } 333 334 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 335 ValueToNodeMap &NM) { 336 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 337 GepNode *N = new (*Mem) GepNode; 338 Value *PtrOp = GepI->getPointerOperand(); 339 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 340 ValueToNodeMap::iterator F = NM.find(PtrOp); 341 if (F == NM.end()) { 342 N->BaseVal = PtrOp; 343 N->Flags |= GepNode::Root | InBounds; 344 } else { 345 // If PtrOp was a GEP instruction, it must have already been processed. 346 // The ValueToNodeMap entry for it is the last gep node in the generated 347 // chain. Link to it here. 348 N->Parent = F->second; 349 } 350 N->PTy = PtrOp->getType(); 351 N->Idx = *GepI->idx_begin(); 352 353 // Collect the list of users of this GEP instruction. Will add it to the 354 // last node created for it. 355 UseSet Us; 356 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 357 UI != UE; ++UI) { 358 // Check if this gep is used by anything other than other geps that 359 // we will process. 360 if (isa<GetElementPtrInst>(*UI)) { 361 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 362 if (isHandledGepForm(UserG)) 363 continue; 364 } 365 Us.insert(&UI.getUse()); 366 } 367 Nodes.push_back(N); 368 NodeOrder.insert(N); 369 370 // Skip the first index operand, since we only handle 0. This dereferences 371 // the pointer operand. 372 GepNode *PN = N; 373 Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType(); 374 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); 375 OI != OE; ++OI) { 376 Value *Op = *OI; 377 GepNode *Nx = new (*Mem) GepNode; 378 Nx->Parent = PN; // Link Nx to the previous node. 379 Nx->Flags |= GepNode::Internal | InBounds; 380 Nx->PTy = PtrTy; 381 Nx->Idx = Op; 382 Nodes.push_back(Nx); 383 NodeOrder.insert(Nx); 384 PN = Nx; 385 386 PtrTy = next_type(PtrTy, Op); 387 } 388 389 // After last node has been created, update the use information. 390 if (!Us.empty()) { 391 PN->Flags |= GepNode::Used; 392 Uses[PN].insert(Us.begin(), Us.end()); 393 } 394 395 // Link the last node with the originating GEP instruction. This is to 396 // help with linking chained GEP instructions. 397 NM.insert(std::make_pair(GepI, PN)); 398 } 399 400 void HexagonCommonGEP::collect() { 401 // Establish depth-first traversal order of the dominator tree. 402 ValueVect BO; 403 getBlockTraversalOrder(&Fn->front(), BO); 404 405 // The creation of gep nodes requires DT-traversal. When processing a GEP 406 // instruction that uses another GEP instruction as the base pointer, the 407 // gep node for the base pointer should already exist. 408 ValueToNodeMap NM; 409 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { 410 BasicBlock *B = cast<BasicBlock>(*I); 411 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { 412 if (!isa<GetElementPtrInst>(J)) 413 continue; 414 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); 415 if (isHandledGepForm(GepI)) 416 processGepInst(GepI, NM); 417 } 418 } 419 420 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 421 } 422 423 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 424 NodeVect &Roots) { 425 using const_iterator = NodeVect::const_iterator; 426 427 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 428 GepNode *N = *I; 429 if (N->Flags & GepNode::Root) { 430 Roots.push_back(N); 431 continue; 432 } 433 GepNode *PN = N->Parent; 434 NCM[PN].push_back(N); 435 } 436 } 437 438 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 439 NodeSet &Nodes) { 440 NodeVect Work; 441 Work.push_back(Root); 442 Nodes.insert(Root); 443 444 while (!Work.empty()) { 445 NodeVect::iterator First = Work.begin(); 446 GepNode *N = *First; 447 Work.erase(First); 448 NodeChildrenMap::iterator CF = NCM.find(N); 449 if (CF != NCM.end()) { 450 Work.insert(Work.end(), CF->second.begin(), CF->second.end()); 451 Nodes.insert(CF->second.begin(), CF->second.end()); 452 } 453 } 454 } 455 456 namespace { 457 458 using NodeSymRel = std::set<NodeSet>; 459 using NodePair = std::pair<GepNode *, GepNode *>; 460 using NodePairSet = std::set<NodePair>; 461 462 } // end anonymous namespace 463 464 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 465 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) 466 if (I->count(N)) 467 return &*I; 468 return nullptr; 469 } 470 471 // Create an ordered pair of GepNode pointers. The pair will be used in 472 // determining equality. The only purpose of the ordering is to eliminate 473 // duplication due to the commutativity of equality/non-equality. 474 static NodePair node_pair(GepNode *N1, GepNode *N2) { 475 uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2); 476 if (P1 <= P2) 477 return std::make_pair(N1, N2); 478 return std::make_pair(N2, N1); 479 } 480 481 static unsigned node_hash(GepNode *N) { 482 // Include everything except flags and parent. 483 FoldingSetNodeID ID; 484 ID.AddPointer(N->Idx); 485 ID.AddPointer(N->PTy); 486 return ID.ComputeHash(); 487 } 488 489 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 490 NodePairSet &Ne) { 491 // Don't cache the result for nodes with different hashes. The hash 492 // comparison is fast enough. 493 if (node_hash(N1) != node_hash(N2)) 494 return false; 495 496 NodePair NP = node_pair(N1, N2); 497 NodePairSet::iterator FEq = Eq.find(NP); 498 if (FEq != Eq.end()) 499 return true; 500 NodePairSet::iterator FNe = Ne.find(NP); 501 if (FNe != Ne.end()) 502 return false; 503 // Not previously compared. 504 bool Root1 = N1->Flags & GepNode::Root; 505 bool Root2 = N2->Flags & GepNode::Root; 506 NodePair P = node_pair(N1, N2); 507 // If the Root flag has different values, the nodes are different. 508 // If both nodes are root nodes, but their base pointers differ, 509 // they are different. 510 if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) { 511 Ne.insert(P); 512 return false; 513 } 514 // Here the root flags are identical, and for root nodes the 515 // base pointers are equal, so the root nodes are equal. 516 // For non-root nodes, compare their parent nodes. 517 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 518 Eq.insert(P); 519 return true; 520 } 521 return false; 522 } 523 524 void HexagonCommonGEP::common() { 525 // The essence of this commoning is finding gep nodes that are equal. 526 // To do this we need to compare all pairs of nodes. To save time, 527 // first, partition the set of all nodes into sets of potentially equal 528 // nodes, and then compare pairs from within each partition. 529 using NodeSetMap = std::map<unsigned, NodeSet>; 530 NodeSetMap MaybeEq; 531 532 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 533 GepNode *N = *I; 534 unsigned H = node_hash(N); 535 MaybeEq[H].insert(N); 536 } 537 538 // Compute the equivalence relation for the gep nodes. Use two caches, 539 // one for equality and the other for non-equality. 540 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 541 NodePairSet Eq, Ne; // Caches. 542 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); 543 I != E; ++I) { 544 NodeSet &S = I->second; 545 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 546 GepNode *N = *NI; 547 // If node already has a class, then the class must have been created 548 // in a prior iteration of this loop. Since equality is transitive, 549 // nothing more will be added to that class, so skip it. 550 if (node_class(N, EqRel)) 551 continue; 552 553 // Create a new class candidate now. 554 NodeSet C; 555 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 556 if (node_eq(N, *NJ, Eq, Ne)) 557 C.insert(*NJ); 558 // If Tmp is empty, N would be the only element in it. Don't bother 559 // creating a class for it then. 560 if (!C.empty()) { 561 C.insert(N); // Finalize the set before adding it to the relation. 562 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 563 (void)Ins; 564 assert(Ins.second && "Cannot add a class"); 565 } 566 } 567 } 568 569 LLVM_DEBUG({ 570 dbgs() << "Gep node equality:\n"; 571 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 572 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 573 574 dbgs() << "Gep equivalence classes:\n"; 575 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 576 dbgs() << '{'; 577 const NodeSet &S = *I; 578 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 579 if (J != S.begin()) 580 dbgs() << ','; 581 dbgs() << ' ' << *J; 582 } 583 dbgs() << " }\n"; 584 } 585 }); 586 587 // Create a projection from a NodeSet to the minimal element in it. 588 using ProjMap = std::map<const NodeSet *, GepNode *>; 589 ProjMap PM; 590 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 591 const NodeSet &S = *I; 592 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 593 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 594 (void)Ins; 595 assert(Ins.second && "Cannot add minimal element"); 596 597 // Update the min element's flags, and user list. 598 uint32_t Flags = 0; 599 UseSet &MinUs = Uses[Min]; 600 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { 601 GepNode *N = *J; 602 uint32_t NF = N->Flags; 603 // If N is used, append all original values of N to the list of 604 // original values of Min. 605 if (NF & GepNode::Used) 606 MinUs.insert(Uses[N].begin(), Uses[N].end()); 607 Flags |= NF; 608 } 609 if (MinUs.empty()) 610 Uses.erase(Min); 611 612 // The collected flags should include all the flags from the min element. 613 assert((Min->Flags & Flags) == Min->Flags); 614 Min->Flags = Flags; 615 } 616 617 // Commoning: for each non-root gep node, replace "Parent" with the 618 // selected (minimum) node from the corresponding equivalence class. 619 // If a given parent does not have an equivalence class, leave it 620 // unchanged (it means that it's the only element in its class). 621 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 622 GepNode *N = *I; 623 if (N->Flags & GepNode::Root) 624 continue; 625 const NodeSet *PC = node_class(N->Parent, EqRel); 626 if (!PC) 627 continue; 628 ProjMap::iterator F = PM.find(PC); 629 if (F == PM.end()) 630 continue; 631 // Found a replacement, use it. 632 GepNode *Rep = F->second; 633 N->Parent = Rep; 634 } 635 636 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 637 638 // Finally, erase the nodes that are no longer used. 639 NodeSet Erase; 640 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 641 GepNode *N = *I; 642 const NodeSet *PC = node_class(N, EqRel); 643 if (!PC) 644 continue; 645 ProjMap::iterator F = PM.find(PC); 646 if (F == PM.end()) 647 continue; 648 if (N == F->second) 649 continue; 650 // Node for removal. 651 Erase.insert(*I); 652 } 653 NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase)); 654 Nodes.resize(std::distance(Nodes.begin(), NewE)); 655 656 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 657 } 658 659 template <typename T> 660 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 661 LLVM_DEBUG({ 662 dbgs() << "NCD of {"; 663 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 664 ++I) { 665 if (!*I) 666 continue; 667 BasicBlock *B = cast<BasicBlock>(*I); 668 dbgs() << ' ' << B->getName(); 669 } 670 dbgs() << " }\n"; 671 }); 672 673 // Allow null basic blocks in Blocks. In such cases, return nullptr. 674 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 675 if (I == E || !*I) 676 return nullptr; 677 BasicBlock *Dom = cast<BasicBlock>(*I); 678 while (++I != E) { 679 BasicBlock *B = cast_or_null<BasicBlock>(*I); 680 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 681 if (!Dom) 682 return nullptr; 683 } 684 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 685 return Dom; 686 } 687 688 template <typename T> 689 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 690 // If two blocks, A and B, dominate a block C, then A dominates B, 691 // or B dominates A. 692 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 693 // Find the first non-null block. 694 while (I != E && !*I) 695 ++I; 696 if (I == E) 697 return DT->getRoot(); 698 BasicBlock *DomB = cast<BasicBlock>(*I); 699 while (++I != E) { 700 if (!*I) 701 continue; 702 BasicBlock *B = cast<BasicBlock>(*I); 703 if (DT->dominates(B, DomB)) 704 continue; 705 if (!DT->dominates(DomB, B)) 706 return nullptr; 707 DomB = B; 708 } 709 return DomB; 710 } 711 712 // Find the first use in B of any value from Values. If no such use, 713 // return B->end(). 714 template <typename T> 715 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 716 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 717 718 using iterator = typename T::iterator; 719 720 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 721 Value *V = *I; 722 // If V is used in a PHI node, the use belongs to the incoming block, 723 // not the block with the PHI node. In the incoming block, the use 724 // would be considered as being at the end of it, so it cannot 725 // influence the position of the first use (which is assumed to be 726 // at the end to start with). 727 if (isa<PHINode>(V)) 728 continue; 729 if (!isa<Instruction>(V)) 730 continue; 731 Instruction *In = cast<Instruction>(V); 732 if (In->getParent() != B) 733 continue; 734 BasicBlock::iterator It = In->getIterator(); 735 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 736 FirstUse = It; 737 } 738 return FirstUse; 739 } 740 741 static bool is_empty(const BasicBlock *B) { 742 return B->empty() || (&*B->begin() == B->getTerminator()); 743 } 744 745 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 746 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 747 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 748 // Recalculate the placement for Node, assuming that the locations of 749 // its children in Loc are valid. 750 // Return nullptr if there is no valid placement for Node (for example, it 751 // uses an index value that is not available at the location required 752 // to dominate all children, etc.). 753 754 // Find the nearest common dominator for: 755 // - all users, if the node is used, and 756 // - all children. 757 ValueVect Bs; 758 if (Node->Flags & GepNode::Used) { 759 // Append all blocks with uses of the original values to the 760 // block vector Bs. 761 NodeToUsesMap::iterator UF = Uses.find(Node); 762 assert(UF != Uses.end() && "Used node with no use information"); 763 UseSet &Us = UF->second; 764 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 765 Use *U = *I; 766 User *R = U->getUser(); 767 if (!isa<Instruction>(R)) 768 continue; 769 BasicBlock *PB = isa<PHINode>(R) 770 ? cast<PHINode>(R)->getIncomingBlock(*U) 771 : cast<Instruction>(R)->getParent(); 772 Bs.push_back(PB); 773 } 774 } 775 // Append the location of each child. 776 NodeChildrenMap::iterator CF = NCM.find(Node); 777 if (CF != NCM.end()) { 778 NodeVect &Cs = CF->second; 779 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 780 GepNode *CN = *I; 781 NodeToValueMap::iterator LF = Loc.find(CN); 782 // If the child is only used in GEP instructions (i.e. is not used in 783 // non-GEP instructions), the nearest dominator computed for it may 784 // have been null. In such case it won't have a location available. 785 if (LF == Loc.end()) 786 continue; 787 Bs.push_back(LF->second); 788 } 789 } 790 791 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 792 if (!DomB) 793 return nullptr; 794 // Check if the index used by Node dominates the computed dominator. 795 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 796 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 797 return nullptr; 798 799 // Avoid putting nodes into empty blocks. 800 while (is_empty(DomB)) { 801 DomTreeNode *N = (*DT)[DomB]->getIDom(); 802 if (!N) 803 break; 804 DomB = N->getBlock(); 805 } 806 807 // Otherwise, DomB is fine. Update the location map. 808 Loc[Node] = DomB; 809 return DomB; 810 } 811 812 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 813 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 814 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 815 // Recalculate the placement of Node, after recursively recalculating the 816 // placements of all its children. 817 NodeChildrenMap::iterator CF = NCM.find(Node); 818 if (CF != NCM.end()) { 819 NodeVect &Cs = CF->second; 820 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 821 recalculatePlacementRec(*I, NCM, Loc); 822 } 823 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 824 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 825 return LB; 826 } 827 828 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 829 if (isa<Constant>(Val) || isa<Argument>(Val)) 830 return true; 831 Instruction *In = dyn_cast<Instruction>(Val); 832 if (!In) 833 return false; 834 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 835 return DT->properlyDominates(DefB, HdrB); 836 } 837 838 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 839 if (Node->Flags & GepNode::Root) 840 if (!isInvariantIn(Node->BaseVal, L)) 841 return false; 842 return isInvariantIn(Node->Idx, L); 843 } 844 845 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 846 BasicBlock *HB = L->getHeader(); 847 BasicBlock *LB = L->getLoopLatch(); 848 // B must post-dominate the loop header or dominate the loop latch. 849 if (PDT->dominates(B, HB)) 850 return true; 851 if (LB && DT->dominates(B, LB)) 852 return true; 853 return false; 854 } 855 856 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 857 if (BasicBlock *PH = L->getLoopPreheader()) 858 return PH; 859 if (!OptSpeculate) 860 return nullptr; 861 DomTreeNode *DN = DT->getNode(L->getHeader()); 862 if (!DN) 863 return nullptr; 864 return DN->getIDom()->getBlock(); 865 } 866 867 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 868 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 869 // Find the "topmost" location for Node: it must be dominated by both, 870 // its parent (or the BaseVal, if it's a root node), and by the index 871 // value. 872 ValueVect Bs; 873 if (Node->Flags & GepNode::Root) { 874 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 875 Bs.push_back(PIn->getParent()); 876 } else { 877 Bs.push_back(Loc[Node->Parent]); 878 } 879 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 880 Bs.push_back(IIn->getParent()); 881 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 882 883 // Traverse the loop nest upwards until we find a loop in which Node 884 // is no longer invariant, or until we get to the upper limit of Node's 885 // placement. The traversal will also stop when a suitable "preheader" 886 // cannot be found for a given loop. The "preheader" may actually be 887 // a regular block outside of the loop (i.e. not guarded), in which case 888 // the Node will be speculated. 889 // For nodes that are not in the main path of the containing loop (i.e. 890 // are not executed in each iteration), do not move them out of the loop. 891 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 892 if (LocB) { 893 Loop *Lp = LI->getLoopFor(LocB); 894 while (Lp) { 895 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 896 break; 897 BasicBlock *NewLoc = preheader(DT, Lp); 898 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 899 break; 900 Lp = Lp->getParentLoop(); 901 LocB = NewLoc; 902 } 903 } 904 Loc[Node] = LocB; 905 906 // Recursively compute the locations of all children nodes. 907 NodeChildrenMap::iterator CF = NCM.find(Node); 908 if (CF != NCM.end()) { 909 NodeVect &Cs = CF->second; 910 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 911 adjustForInvariance(*I, NCM, Loc); 912 } 913 return LocB; 914 } 915 916 namespace { 917 918 struct LocationAsBlock { 919 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 920 921 const NodeToValueMap ⤅ 922 }; 923 924 raw_ostream &operator<< (raw_ostream &OS, 925 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 926 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 927 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); 928 I != E; ++I) { 929 OS << I->first << " -> "; 930 BasicBlock *B = cast<BasicBlock>(I->second); 931 OS << B->getName() << '(' << B << ')'; 932 OS << '\n'; 933 } 934 return OS; 935 } 936 937 inline bool is_constant(GepNode *N) { 938 return isa<ConstantInt>(N->Idx); 939 } 940 941 } // end anonymous namespace 942 943 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 944 NodeToValueMap &Loc) { 945 User *R = U->getUser(); 946 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 947 << '\n'); 948 BasicBlock *PB = cast<Instruction>(R)->getParent(); 949 950 GepNode *N = Node; 951 GepNode *C = nullptr, *NewNode = nullptr; 952 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 953 // XXX if (single-use) dont-replicate; 954 GepNode *NewN = new (*Mem) GepNode(N); 955 Nodes.push_back(NewN); 956 Loc[NewN] = PB; 957 958 if (N == Node) 959 NewNode = NewN; 960 NewN->Flags &= ~GepNode::Used; 961 if (C) 962 C->Parent = NewN; 963 C = NewN; 964 N = N->Parent; 965 } 966 if (!NewNode) 967 return; 968 969 // Move over all uses that share the same user as U from Node to NewNode. 970 NodeToUsesMap::iterator UF = Uses.find(Node); 971 assert(UF != Uses.end()); 972 UseSet &Us = UF->second; 973 UseSet NewUs; 974 for (Use *U : Us) { 975 if (U->getUser() == R) 976 NewUs.insert(U); 977 } 978 for (Use *U : NewUs) 979 Us.remove(U); // erase takes an iterator. 980 981 if (Us.empty()) { 982 Node->Flags &= ~GepNode::Used; 983 Uses.erase(UF); 984 } 985 986 // Should at least have U in NewUs. 987 NewNode->Flags |= GepNode::Used; 988 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 989 assert(!NewUs.empty()); 990 Uses[NewNode] = NewUs; 991 } 992 993 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 994 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 995 // First approximation: extract all chains. 996 NodeSet Ns; 997 nodes_for_root(Node, NCM, Ns); 998 999 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1000 // Collect all used nodes together with the uses from loads and stores, 1001 // where the GEP node could be folded into the load/store instruction. 1002 NodeToUsesMap FNs; // Foldable nodes. 1003 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { 1004 GepNode *N = *I; 1005 if (!(N->Flags & GepNode::Used)) 1006 continue; 1007 NodeToUsesMap::iterator UF = Uses.find(N); 1008 assert(UF != Uses.end()); 1009 UseSet &Us = UF->second; 1010 // Loads/stores that use the node N. 1011 UseSet LSs; 1012 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 1013 Use *U = *J; 1014 User *R = U->getUser(); 1015 // We're interested in uses that provide the address. It can happen 1016 // that the value may also be provided via GEP, but we won't handle 1017 // those cases here for now. 1018 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1019 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1020 if (&Ld->getOperandUse(PtrX) == U) 1021 LSs.insert(U); 1022 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1023 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1024 if (&St->getOperandUse(PtrX) == U) 1025 LSs.insert(U); 1026 } 1027 } 1028 // Even if the total use count is 1, separating the chain may still be 1029 // beneficial, since the constant chain may be longer than the GEP alone 1030 // would be (e.g. if the parent node has a constant index and also has 1031 // other children). 1032 if (!LSs.empty()) 1033 FNs.insert(std::make_pair(N, LSs)); 1034 } 1035 1036 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1037 1038 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { 1039 GepNode *N = I->first; 1040 UseSet &Us = I->second; 1041 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) 1042 separateChainForNode(N, *J, Loc); 1043 } 1044 } 1045 1046 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1047 // Compute the inverse of the Node.Parent links. Also, collect the set 1048 // of root nodes. 1049 NodeChildrenMap NCM; 1050 NodeVect Roots; 1051 invert_find_roots(Nodes, NCM, Roots); 1052 1053 // Compute the initial placement determined by the users' locations, and 1054 // the locations of the child nodes. 1055 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1056 recalculatePlacementRec(*I, NCM, Loc); 1057 1058 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1059 1060 if (OptEnableInv) { 1061 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1062 adjustForInvariance(*I, NCM, Loc); 1063 1064 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1065 << LocationAsBlock(Loc)); 1066 } 1067 if (OptEnableConst) { 1068 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1069 separateConstantChains(*I, NCM, Loc); 1070 } 1071 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1072 1073 // At the moment, there is no further refinement of the initial placement. 1074 // Such a refinement could include splitting the nodes if they are placed 1075 // too far from some of its users. 1076 1077 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1078 } 1079 1080 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1081 BasicBlock *LocB) { 1082 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1083 << " for nodes:\n" 1084 << NA); 1085 unsigned Num = NA.size(); 1086 GepNode *RN = NA[0]; 1087 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1088 1089 GetElementPtrInst *NewInst = nullptr; 1090 Value *Input = RN->BaseVal; 1091 Value **IdxList = new Value*[Num+1]; 1092 unsigned nax = 0; 1093 do { 1094 unsigned IdxC = 0; 1095 // If the type of the input of the first node is not a pointer, 1096 // we need to add an artificial i32 0 to the indices (because the 1097 // actual input in the IR will be a pointer). 1098 if (!NA[nax]->PTy->isPointerTy()) { 1099 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1100 IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0); 1101 } 1102 1103 // Keep adding indices from NA until we have to stop and generate 1104 // an "intermediate" GEP. 1105 while (++nax <= Num) { 1106 GepNode *N = NA[nax-1]; 1107 IdxList[IdxC++] = N->Idx; 1108 if (nax < Num) { 1109 // We have to stop, if the expected type of the output of this node 1110 // is not the same as the input type of the next node. 1111 Type *NextTy = next_type(N->PTy, N->Idx); 1112 if (NextTy != NA[nax]->PTy) 1113 break; 1114 } 1115 } 1116 ArrayRef<Value*> A(IdxList, IdxC); 1117 Type *InpTy = Input->getType(); 1118 Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType(); 1119 NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At); 1120 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1121 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1122 Input = NewInst; 1123 } while (nax <= Num); 1124 1125 delete[] IdxList; 1126 return NewInst; 1127 } 1128 1129 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1130 NodeChildrenMap &NCM) { 1131 NodeVect Work; 1132 Work.push_back(Node); 1133 1134 while (!Work.empty()) { 1135 NodeVect::iterator First = Work.begin(); 1136 GepNode *N = *First; 1137 Work.erase(First); 1138 if (N->Flags & GepNode::Used) { 1139 NodeToUsesMap::iterator UF = Uses.find(N); 1140 assert(UF != Uses.end() && "No use information for used node"); 1141 UseSet &Us = UF->second; 1142 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) 1143 Values.push_back((*I)->getUser()); 1144 } 1145 NodeChildrenMap::iterator CF = NCM.find(N); 1146 if (CF != NCM.end()) { 1147 NodeVect &Cs = CF->second; 1148 Work.insert(Work.end(), Cs.begin(), Cs.end()); 1149 } 1150 } 1151 } 1152 1153 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1154 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1155 NodeChildrenMap NCM; 1156 NodeVect Roots; 1157 // Compute the inversion again, since computing placement could alter 1158 // "parent" relation between nodes. 1159 invert_find_roots(Nodes, NCM, Roots); 1160 1161 while (!Roots.empty()) { 1162 NodeVect::iterator First = Roots.begin(); 1163 GepNode *Root = *First, *Last = *First; 1164 Roots.erase(First); 1165 1166 NodeVect NA; // Nodes to assemble. 1167 // Append to NA all child nodes up to (and including) the first child 1168 // that: 1169 // (1) has more than 1 child, or 1170 // (2) is used, or 1171 // (3) has a child located in a different block. 1172 bool LastUsed = false; 1173 unsigned LastCN = 0; 1174 // The location may be null if the computation failed (it can legitimately 1175 // happen for nodes created from dead GEPs). 1176 Value *LocV = Loc[Last]; 1177 if (!LocV) 1178 continue; 1179 BasicBlock *LastB = cast<BasicBlock>(LocV); 1180 do { 1181 NA.push_back(Last); 1182 LastUsed = (Last->Flags & GepNode::Used); 1183 if (LastUsed) 1184 break; 1185 NodeChildrenMap::iterator CF = NCM.find(Last); 1186 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1187 if (LastCN != 1) 1188 break; 1189 GepNode *Child = CF->second.front(); 1190 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1191 if (ChildB != nullptr && LastB != ChildB) 1192 break; 1193 Last = Child; 1194 } while (true); 1195 1196 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1197 if (LastUsed || LastCN > 0) { 1198 ValueVect Urs; 1199 getAllUsersForNode(Root, Urs, NCM); 1200 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1201 if (FirstUse != LastB->end()) 1202 InsertAt = FirstUse; 1203 } 1204 1205 // Generate a new instruction for NA. 1206 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1207 1208 // Convert all the children of Last node into roots, and append them 1209 // to the Roots list. 1210 if (LastCN > 0) { 1211 NodeVect &Cs = NCM[Last]; 1212 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 1213 GepNode *CN = *I; 1214 CN->Flags &= ~GepNode::Internal; 1215 CN->Flags |= GepNode::Root; 1216 CN->BaseVal = NewInst; 1217 Roots.push_back(CN); 1218 } 1219 } 1220 1221 // Lastly, if the Last node was used, replace all uses with the new GEP. 1222 // The uses reference the original GEP values. 1223 if (LastUsed) { 1224 NodeToUsesMap::iterator UF = Uses.find(Last); 1225 assert(UF != Uses.end() && "No use information found"); 1226 UseSet &Us = UF->second; 1227 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 1228 Use *U = *I; 1229 U->set(NewInst); 1230 } 1231 } 1232 } 1233 } 1234 1235 void HexagonCommonGEP::removeDeadCode() { 1236 ValueVect BO; 1237 BO.push_back(&Fn->front()); 1238 1239 for (unsigned i = 0; i < BO.size(); ++i) { 1240 BasicBlock *B = cast<BasicBlock>(BO[i]); 1241 for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) 1242 BO.push_back(DTN->getBlock()); 1243 } 1244 1245 for (unsigned i = BO.size(); i > 0; --i) { 1246 BasicBlock *B = cast<BasicBlock>(BO[i-1]); 1247 BasicBlock::InstListType &IL = B->getInstList(); 1248 1249 using reverse_iterator = BasicBlock::InstListType::reverse_iterator; 1250 1251 ValueVect Ins; 1252 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) 1253 Ins.push_back(&*I); 1254 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { 1255 Instruction *In = cast<Instruction>(*I); 1256 if (isInstructionTriviallyDead(In)) 1257 In->eraseFromParent(); 1258 } 1259 } 1260 } 1261 1262 bool HexagonCommonGEP::runOnFunction(Function &F) { 1263 if (skipFunction(F)) 1264 return false; 1265 1266 // For now bail out on C++ exception handling. 1267 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) 1268 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) 1269 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1270 return false; 1271 1272 Fn = &F; 1273 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1274 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1275 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1276 Ctx = &F.getContext(); 1277 1278 Nodes.clear(); 1279 Uses.clear(); 1280 NodeOrder.clear(); 1281 1282 SpecificBumpPtrAllocator<GepNode> Allocator; 1283 Mem = &Allocator; 1284 1285 collect(); 1286 common(); 1287 1288 NodeToValueMap Loc; 1289 computeNodePlacement(Loc); 1290 materialize(Loc); 1291 removeDeadCode(); 1292 1293 #ifdef EXPENSIVE_CHECKS 1294 // Run this only when expensive checks are enabled. 1295 if (verifyFunction(F, &dbgs())) 1296 report_fatal_error("Broken function"); 1297 #endif 1298 return true; 1299 } 1300 1301 namespace llvm { 1302 1303 FunctionPass *createHexagonCommonGEP() { 1304 return new HexagonCommonGEP(); 1305 } 1306 1307 } // end namespace llvm 1308