1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/PostDominators.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/User.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <cstdint> 44 #include <iterator> 45 #include <map> 46 #include <set> 47 #include <utility> 48 #include <vector> 49 50 #define DEBUG_TYPE "commgep" 51 52 using namespace llvm; 53 54 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 55 cl::Hidden, cl::ZeroOrMore); 56 57 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 58 cl::ZeroOrMore); 59 60 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 61 cl::Hidden, cl::ZeroOrMore); 62 63 namespace llvm { 64 65 void initializeHexagonCommonGEPPass(PassRegistry&); 66 67 } // end namespace llvm 68 69 namespace { 70 71 struct GepNode; 72 using NodeSet = std::set<GepNode *>; 73 using NodeToValueMap = std::map<GepNode *, Value *>; 74 using NodeVect = std::vector<GepNode *>; 75 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 76 using UseSet = SetVector<Use *>; 77 using NodeToUsesMap = std::map<GepNode *, UseSet>; 78 79 // Numbering map for gep nodes. Used to keep track of ordering for 80 // gep nodes. 81 struct NodeOrdering { 82 NodeOrdering() = default; 83 84 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 85 void clear() { Map.clear(); } 86 87 bool operator()(const GepNode *N1, const GepNode *N2) const { 88 auto F1 = Map.find(N1), F2 = Map.find(N2); 89 assert(F1 != Map.end() && F2 != Map.end()); 90 return F1->second < F2->second; 91 } 92 93 private: 94 std::map<const GepNode *, unsigned> Map; 95 unsigned LastNum = 0; 96 }; 97 98 class HexagonCommonGEP : public FunctionPass { 99 public: 100 static char ID; 101 102 HexagonCommonGEP() : FunctionPass(ID) { 103 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnFunction(Function &F) override; 107 StringRef getPassName() const override { return "Hexagon Common GEP"; } 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addPreserved<DominatorTreeWrapperPass>(); 112 AU.addRequired<PostDominatorTreeWrapperPass>(); 113 AU.addPreserved<PostDominatorTreeWrapperPass>(); 114 AU.addRequired<LoopInfoWrapperPass>(); 115 AU.addPreserved<LoopInfoWrapperPass>(); 116 FunctionPass::getAnalysisUsage(AU); 117 } 118 119 private: 120 using ValueToNodeMap = std::map<Value *, GepNode *>; 121 using ValueVect = std::vector<Value *>; 122 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 123 124 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 125 bool isHandledGepForm(GetElementPtrInst *GepI); 126 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 127 void collect(); 128 void common(); 129 130 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 131 NodeToValueMap &Loc); 132 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 133 NodeToValueMap &Loc); 134 bool isInvariantIn(Value *Val, Loop *L); 135 bool isInvariantIn(GepNode *Node, Loop *L); 136 bool isInMainPath(BasicBlock *B, Loop *L); 137 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 138 NodeToValueMap &Loc); 139 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 140 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 141 NodeToValueMap &Loc); 142 void computeNodePlacement(NodeToValueMap &Loc); 143 144 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 145 BasicBlock *LocB); 146 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 147 NodeChildrenMap &NCM); 148 void materialize(NodeToValueMap &Loc); 149 150 void removeDeadCode(); 151 152 NodeVect Nodes; 153 NodeToUsesMap Uses; 154 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 155 SpecificBumpPtrAllocator<GepNode> *Mem; 156 LLVMContext *Ctx; 157 LoopInfo *LI; 158 DominatorTree *DT; 159 PostDominatorTree *PDT; 160 Function *Fn; 161 }; 162 163 } // end anonymous namespace 164 165 char HexagonCommonGEP::ID = 0; 166 167 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 168 false, false) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 172 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 173 false, false) 174 175 namespace { 176 177 struct GepNode { 178 enum { 179 None = 0, 180 Root = 0x01, 181 Internal = 0x02, 182 Used = 0x04, 183 InBounds = 0x08, 184 Pointer = 0x10, // See note below. 185 }; 186 // Note: GEP indices generally traverse nested types, and so a GepNode 187 // (representing a single index) can be associated with some composite 188 // type. The exception is the GEP input, which is a pointer, and not 189 // a composite type (at least not in the sense of having sub-types). 190 // Also, the corresponding index plays a different role as well: it is 191 // simply added to the input pointer. Since pointer types are becoming 192 // opaque (i.e. are no longer going to include the pointee type), the 193 // two pieces of information (1) the fact that it's a pointer, and 194 // (2) the pointee type, need to be stored separately. The pointee type 195 // will be stored in the PTy member, while the fact that the node 196 // operates on a pointer will be reflected by the flag "Pointer". 197 198 uint32_t Flags = 0; 199 union { 200 GepNode *Parent; 201 Value *BaseVal; 202 }; 203 Value *Idx = nullptr; 204 Type *PTy = nullptr; // Type indexed by this node. For pointer nodes 205 // this is the "pointee" type, and indexing a 206 // pointer does not change the type. 207 208 GepNode() : Parent(nullptr) {} 209 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 210 if (Flags & Root) 211 BaseVal = N->BaseVal; 212 else 213 Parent = N->Parent; 214 } 215 216 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 217 }; 218 219 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 220 OS << "{ {"; 221 bool Comma = false; 222 if (GN.Flags & GepNode::Root) { 223 OS << "root"; 224 Comma = true; 225 } 226 if (GN.Flags & GepNode::Internal) { 227 if (Comma) 228 OS << ','; 229 OS << "internal"; 230 Comma = true; 231 } 232 if (GN.Flags & GepNode::Used) { 233 if (Comma) 234 OS << ','; 235 OS << "used"; 236 } 237 if (GN.Flags & GepNode::InBounds) { 238 if (Comma) 239 OS << ','; 240 OS << "inbounds"; 241 } 242 if (GN.Flags & GepNode::Pointer) { 243 if (Comma) 244 OS << ','; 245 OS << "pointer"; 246 } 247 OS << "} "; 248 if (GN.Flags & GepNode::Root) 249 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 250 else 251 OS << "Parent:" << GN.Parent; 252 253 OS << " Idx:"; 254 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 255 OS << CI->getValue().getSExtValue(); 256 else if (GN.Idx->hasName()) 257 OS << GN.Idx->getName(); 258 else 259 OS << "<anon> =" << *GN.Idx; 260 261 OS << " PTy:"; 262 if (GN.PTy->isStructTy()) { 263 StructType *STy = cast<StructType>(GN.PTy); 264 if (!STy->isLiteral()) 265 OS << GN.PTy->getStructName(); 266 else 267 OS << "<anon-struct>:" << *STy; 268 } 269 else 270 OS << *GN.PTy; 271 OS << " }"; 272 return OS; 273 } 274 275 template <typename NodeContainer> 276 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 277 using const_iterator = typename NodeContainer::const_iterator; 278 279 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 280 OS << *I << ' ' << **I << '\n'; 281 } 282 283 raw_ostream &operator<< (raw_ostream &OS, 284 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 285 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 286 dump_node_container(OS, S); 287 return OS; 288 } 289 290 raw_ostream &operator<< (raw_ostream &OS, 291 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 292 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 293 for (const auto &I : M) { 294 const UseSet &Us = I.second; 295 OS << I.first << " -> #" << Us.size() << '{'; 296 for (const Use *U : Us) { 297 User *R = U->getUser(); 298 if (R->hasName()) 299 OS << ' ' << R->getName(); 300 else 301 OS << " <?>(" << *R << ')'; 302 } 303 OS << " }\n"; 304 } 305 return OS; 306 } 307 308 struct in_set { 309 in_set(const NodeSet &S) : NS(S) {} 310 311 bool operator() (GepNode *N) const { 312 return NS.find(N) != NS.end(); 313 } 314 315 private: 316 const NodeSet &NS; 317 }; 318 319 } // end anonymous namespace 320 321 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 322 return A.Allocate(); 323 } 324 325 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 326 ValueVect &Order) { 327 // Compute block ordering for a typical DT-based traversal of the flow 328 // graph: "before visiting a block, all of its dominators must have been 329 // visited". 330 331 Order.push_back(Root); 332 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 333 getBlockTraversalOrder(DTN->getBlock(), Order); 334 } 335 336 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 337 // No vector GEPs. 338 if (!GepI->getType()->isPointerTy()) 339 return false; 340 // No GEPs without any indices. (Is this possible?) 341 if (GepI->idx_begin() == GepI->idx_end()) 342 return false; 343 return true; 344 } 345 346 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 347 ValueToNodeMap &NM) { 348 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 349 GepNode *N = new (*Mem) GepNode; 350 Value *PtrOp = GepI->getPointerOperand(); 351 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 352 ValueToNodeMap::iterator F = NM.find(PtrOp); 353 if (F == NM.end()) { 354 N->BaseVal = PtrOp; 355 N->Flags |= GepNode::Root | InBounds; 356 } else { 357 // If PtrOp was a GEP instruction, it must have already been processed. 358 // The ValueToNodeMap entry for it is the last gep node in the generated 359 // chain. Link to it here. 360 N->Parent = F->second; 361 } 362 N->PTy = GepI->getSourceElementType(); 363 N->Flags |= GepNode::Pointer; 364 N->Idx = *GepI->idx_begin(); 365 366 // Collect the list of users of this GEP instruction. Will add it to the 367 // last node created for it. 368 UseSet Us; 369 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 370 UI != UE; ++UI) { 371 // Check if this gep is used by anything other than other geps that 372 // we will process. 373 if (isa<GetElementPtrInst>(*UI)) { 374 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 375 if (isHandledGepForm(UserG)) 376 continue; 377 } 378 Us.insert(&UI.getUse()); 379 } 380 Nodes.push_back(N); 381 NodeOrder.insert(N); 382 383 // Skip the first index operand, since it was already handled above. This 384 // dereferences the pointer operand. 385 GepNode *PN = N; 386 Type *PtrTy = GepI->getSourceElementType(); 387 for (Use &U : llvm::drop_begin(GepI->indices())) { 388 Value *Op = U; 389 GepNode *Nx = new (*Mem) GepNode; 390 Nx->Parent = PN; // Link Nx to the previous node. 391 Nx->Flags |= GepNode::Internal | InBounds; 392 Nx->PTy = PtrTy; 393 Nx->Idx = Op; 394 Nodes.push_back(Nx); 395 NodeOrder.insert(Nx); 396 PN = Nx; 397 398 PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op); 399 } 400 401 // After last node has been created, update the use information. 402 if (!Us.empty()) { 403 PN->Flags |= GepNode::Used; 404 Uses[PN].insert(Us.begin(), Us.end()); 405 } 406 407 // Link the last node with the originating GEP instruction. This is to 408 // help with linking chained GEP instructions. 409 NM.insert(std::make_pair(GepI, PN)); 410 } 411 412 void HexagonCommonGEP::collect() { 413 // Establish depth-first traversal order of the dominator tree. 414 ValueVect BO; 415 getBlockTraversalOrder(&Fn->front(), BO); 416 417 // The creation of gep nodes requires DT-traversal. When processing a GEP 418 // instruction that uses another GEP instruction as the base pointer, the 419 // gep node for the base pointer should already exist. 420 ValueToNodeMap NM; 421 for (Value *I : BO) { 422 BasicBlock *B = cast<BasicBlock>(I); 423 for (Instruction &J : *B) 424 if (auto *GepI = dyn_cast<GetElementPtrInst>(&J)) 425 if (isHandledGepForm(GepI)) 426 processGepInst(GepI, NM); 427 } 428 429 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 430 } 431 432 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 433 NodeVect &Roots) { 434 for (GepNode *N : Nodes) { 435 if (N->Flags & GepNode::Root) { 436 Roots.push_back(N); 437 continue; 438 } 439 GepNode *PN = N->Parent; 440 NCM[PN].push_back(N); 441 } 442 } 443 444 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 445 NodeSet &Nodes) { 446 NodeVect Work; 447 Work.push_back(Root); 448 Nodes.insert(Root); 449 450 while (!Work.empty()) { 451 NodeVect::iterator First = Work.begin(); 452 GepNode *N = *First; 453 Work.erase(First); 454 NodeChildrenMap::iterator CF = NCM.find(N); 455 if (CF != NCM.end()) { 456 llvm::append_range(Work, CF->second); 457 Nodes.insert(CF->second.begin(), CF->second.end()); 458 } 459 } 460 } 461 462 namespace { 463 464 using NodeSymRel = std::set<NodeSet>; 465 using NodePair = std::pair<GepNode *, GepNode *>; 466 using NodePairSet = std::set<NodePair>; 467 468 } // end anonymous namespace 469 470 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 471 for (const NodeSet &S : Rel) 472 if (S.count(N)) 473 return &S; 474 return nullptr; 475 } 476 477 // Create an ordered pair of GepNode pointers. The pair will be used in 478 // determining equality. The only purpose of the ordering is to eliminate 479 // duplication due to the commutativity of equality/non-equality. 480 static NodePair node_pair(GepNode *N1, GepNode *N2) { 481 uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); 482 uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); 483 if (P1 <= P2) 484 return std::make_pair(N1, N2); 485 return std::make_pair(N2, N1); 486 } 487 488 static unsigned node_hash(GepNode *N) { 489 // Include everything except flags and parent. 490 FoldingSetNodeID ID; 491 ID.AddPointer(N->Idx); 492 ID.AddPointer(N->PTy); 493 return ID.ComputeHash(); 494 } 495 496 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 497 NodePairSet &Ne) { 498 // Don't cache the result for nodes with different hashes. The hash 499 // comparison is fast enough. 500 if (node_hash(N1) != node_hash(N2)) 501 return false; 502 503 NodePair NP = node_pair(N1, N2); 504 NodePairSet::iterator FEq = Eq.find(NP); 505 if (FEq != Eq.end()) 506 return true; 507 NodePairSet::iterator FNe = Ne.find(NP); 508 if (FNe != Ne.end()) 509 return false; 510 // Not previously compared. 511 bool Root1 = N1->Flags & GepNode::Root; 512 uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; 513 bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); 514 NodePair P = node_pair(N1, N2); 515 // If the root/pointer flags have different values, the nodes are 516 // different. 517 // If both nodes are root nodes, but their base pointers differ, 518 // they are different. 519 if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { 520 Ne.insert(P); 521 return false; 522 } 523 // Here the root/pointer flags are identical, and for root nodes the 524 // base pointers are equal, so the root nodes are equal. 525 // For non-root nodes, compare their parent nodes. 526 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 527 Eq.insert(P); 528 return true; 529 } 530 return false; 531 } 532 533 void HexagonCommonGEP::common() { 534 // The essence of this commoning is finding gep nodes that are equal. 535 // To do this we need to compare all pairs of nodes. To save time, 536 // first, partition the set of all nodes into sets of potentially equal 537 // nodes, and then compare pairs from within each partition. 538 using NodeSetMap = std::map<unsigned, NodeSet>; 539 NodeSetMap MaybeEq; 540 541 for (GepNode *N : Nodes) { 542 unsigned H = node_hash(N); 543 MaybeEq[H].insert(N); 544 } 545 546 // Compute the equivalence relation for the gep nodes. Use two caches, 547 // one for equality and the other for non-equality. 548 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 549 NodePairSet Eq, Ne; // Caches. 550 for (auto &I : MaybeEq) { 551 NodeSet &S = I.second; 552 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 553 GepNode *N = *NI; 554 // If node already has a class, then the class must have been created 555 // in a prior iteration of this loop. Since equality is transitive, 556 // nothing more will be added to that class, so skip it. 557 if (node_class(N, EqRel)) 558 continue; 559 560 // Create a new class candidate now. 561 NodeSet C; 562 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 563 if (node_eq(N, *NJ, Eq, Ne)) 564 C.insert(*NJ); 565 // If Tmp is empty, N would be the only element in it. Don't bother 566 // creating a class for it then. 567 if (!C.empty()) { 568 C.insert(N); // Finalize the set before adding it to the relation. 569 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 570 (void)Ins; 571 assert(Ins.second && "Cannot add a class"); 572 } 573 } 574 } 575 576 LLVM_DEBUG({ 577 dbgs() << "Gep node equality:\n"; 578 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 579 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 580 581 dbgs() << "Gep equivalence classes:\n"; 582 for (const NodeSet &S : EqRel) { 583 dbgs() << '{'; 584 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 585 if (J != S.begin()) 586 dbgs() << ','; 587 dbgs() << ' ' << *J; 588 } 589 dbgs() << " }\n"; 590 } 591 }); 592 593 // Create a projection from a NodeSet to the minimal element in it. 594 using ProjMap = std::map<const NodeSet *, GepNode *>; 595 ProjMap PM; 596 for (const NodeSet &S : EqRel) { 597 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 598 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 599 (void)Ins; 600 assert(Ins.second && "Cannot add minimal element"); 601 602 // Update the min element's flags, and user list. 603 uint32_t Flags = 0; 604 UseSet &MinUs = Uses[Min]; 605 for (GepNode *N : S) { 606 uint32_t NF = N->Flags; 607 // If N is used, append all original values of N to the list of 608 // original values of Min. 609 if (NF & GepNode::Used) 610 MinUs.insert(Uses[N].begin(), Uses[N].end()); 611 Flags |= NF; 612 } 613 if (MinUs.empty()) 614 Uses.erase(Min); 615 616 // The collected flags should include all the flags from the min element. 617 assert((Min->Flags & Flags) == Min->Flags); 618 Min->Flags = Flags; 619 } 620 621 // Commoning: for each non-root gep node, replace "Parent" with the 622 // selected (minimum) node from the corresponding equivalence class. 623 // If a given parent does not have an equivalence class, leave it 624 // unchanged (it means that it's the only element in its class). 625 for (GepNode *N : Nodes) { 626 if (N->Flags & GepNode::Root) 627 continue; 628 const NodeSet *PC = node_class(N->Parent, EqRel); 629 if (!PC) 630 continue; 631 ProjMap::iterator F = PM.find(PC); 632 if (F == PM.end()) 633 continue; 634 // Found a replacement, use it. 635 GepNode *Rep = F->second; 636 N->Parent = Rep; 637 } 638 639 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 640 641 // Finally, erase the nodes that are no longer used. 642 NodeSet Erase; 643 for (GepNode *N : Nodes) { 644 const NodeSet *PC = node_class(N, EqRel); 645 if (!PC) 646 continue; 647 ProjMap::iterator F = PM.find(PC); 648 if (F == PM.end()) 649 continue; 650 if (N == F->second) 651 continue; 652 // Node for removal. 653 Erase.insert(N); 654 } 655 erase_if(Nodes, in_set(Erase)); 656 657 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 658 } 659 660 template <typename T> 661 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 662 LLVM_DEBUG({ 663 dbgs() << "NCD of {"; 664 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 665 ++I) { 666 if (!*I) 667 continue; 668 BasicBlock *B = cast<BasicBlock>(*I); 669 dbgs() << ' ' << B->getName(); 670 } 671 dbgs() << " }\n"; 672 }); 673 674 // Allow null basic blocks in Blocks. In such cases, return nullptr. 675 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 676 if (I == E || !*I) 677 return nullptr; 678 BasicBlock *Dom = cast<BasicBlock>(*I); 679 while (++I != E) { 680 BasicBlock *B = cast_or_null<BasicBlock>(*I); 681 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 682 if (!Dom) 683 return nullptr; 684 } 685 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 686 return Dom; 687 } 688 689 template <typename T> 690 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 691 // If two blocks, A and B, dominate a block C, then A dominates B, 692 // or B dominates A. 693 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 694 // Find the first non-null block. 695 while (I != E && !*I) 696 ++I; 697 if (I == E) 698 return DT->getRoot(); 699 BasicBlock *DomB = cast<BasicBlock>(*I); 700 while (++I != E) { 701 if (!*I) 702 continue; 703 BasicBlock *B = cast<BasicBlock>(*I); 704 if (DT->dominates(B, DomB)) 705 continue; 706 if (!DT->dominates(DomB, B)) 707 return nullptr; 708 DomB = B; 709 } 710 return DomB; 711 } 712 713 // Find the first use in B of any value from Values. If no such use, 714 // return B->end(). 715 template <typename T> 716 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 717 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 718 719 using iterator = typename T::iterator; 720 721 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 722 Value *V = *I; 723 // If V is used in a PHI node, the use belongs to the incoming block, 724 // not the block with the PHI node. In the incoming block, the use 725 // would be considered as being at the end of it, so it cannot 726 // influence the position of the first use (which is assumed to be 727 // at the end to start with). 728 if (isa<PHINode>(V)) 729 continue; 730 if (!isa<Instruction>(V)) 731 continue; 732 Instruction *In = cast<Instruction>(V); 733 if (In->getParent() != B) 734 continue; 735 BasicBlock::iterator It = In->getIterator(); 736 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 737 FirstUse = It; 738 } 739 return FirstUse; 740 } 741 742 static bool is_empty(const BasicBlock *B) { 743 return B->empty() || (&*B->begin() == B->getTerminator()); 744 } 745 746 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 747 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 748 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 749 // Recalculate the placement for Node, assuming that the locations of 750 // its children in Loc are valid. 751 // Return nullptr if there is no valid placement for Node (for example, it 752 // uses an index value that is not available at the location required 753 // to dominate all children, etc.). 754 755 // Find the nearest common dominator for: 756 // - all users, if the node is used, and 757 // - all children. 758 ValueVect Bs; 759 if (Node->Flags & GepNode::Used) { 760 // Append all blocks with uses of the original values to the 761 // block vector Bs. 762 NodeToUsesMap::iterator UF = Uses.find(Node); 763 assert(UF != Uses.end() && "Used node with no use information"); 764 UseSet &Us = UF->second; 765 for (Use *U : Us) { 766 User *R = U->getUser(); 767 if (!isa<Instruction>(R)) 768 continue; 769 BasicBlock *PB = isa<PHINode>(R) 770 ? cast<PHINode>(R)->getIncomingBlock(*U) 771 : cast<Instruction>(R)->getParent(); 772 Bs.push_back(PB); 773 } 774 } 775 // Append the location of each child. 776 NodeChildrenMap::iterator CF = NCM.find(Node); 777 if (CF != NCM.end()) { 778 NodeVect &Cs = CF->second; 779 for (GepNode *CN : Cs) { 780 NodeToValueMap::iterator LF = Loc.find(CN); 781 // If the child is only used in GEP instructions (i.e. is not used in 782 // non-GEP instructions), the nearest dominator computed for it may 783 // have been null. In such case it won't have a location available. 784 if (LF == Loc.end()) 785 continue; 786 Bs.push_back(LF->second); 787 } 788 } 789 790 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 791 if (!DomB) 792 return nullptr; 793 // Check if the index used by Node dominates the computed dominator. 794 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 795 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 796 return nullptr; 797 798 // Avoid putting nodes into empty blocks. 799 while (is_empty(DomB)) { 800 DomTreeNode *N = (*DT)[DomB]->getIDom(); 801 if (!N) 802 break; 803 DomB = N->getBlock(); 804 } 805 806 // Otherwise, DomB is fine. Update the location map. 807 Loc[Node] = DomB; 808 return DomB; 809 } 810 811 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 812 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 813 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 814 // Recalculate the placement of Node, after recursively recalculating the 815 // placements of all its children. 816 NodeChildrenMap::iterator CF = NCM.find(Node); 817 if (CF != NCM.end()) { 818 NodeVect &Cs = CF->second; 819 for (GepNode *C : Cs) 820 recalculatePlacementRec(C, NCM, Loc); 821 } 822 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 823 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 824 return LB; 825 } 826 827 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 828 if (isa<Constant>(Val) || isa<Argument>(Val)) 829 return true; 830 Instruction *In = dyn_cast<Instruction>(Val); 831 if (!In) 832 return false; 833 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 834 return DT->properlyDominates(DefB, HdrB); 835 } 836 837 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 838 if (Node->Flags & GepNode::Root) 839 if (!isInvariantIn(Node->BaseVal, L)) 840 return false; 841 return isInvariantIn(Node->Idx, L); 842 } 843 844 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 845 BasicBlock *HB = L->getHeader(); 846 BasicBlock *LB = L->getLoopLatch(); 847 // B must post-dominate the loop header or dominate the loop latch. 848 if (PDT->dominates(B, HB)) 849 return true; 850 if (LB && DT->dominates(B, LB)) 851 return true; 852 return false; 853 } 854 855 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 856 if (BasicBlock *PH = L->getLoopPreheader()) 857 return PH; 858 if (!OptSpeculate) 859 return nullptr; 860 DomTreeNode *DN = DT->getNode(L->getHeader()); 861 if (!DN) 862 return nullptr; 863 return DN->getIDom()->getBlock(); 864 } 865 866 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 867 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 868 // Find the "topmost" location for Node: it must be dominated by both, 869 // its parent (or the BaseVal, if it's a root node), and by the index 870 // value. 871 ValueVect Bs; 872 if (Node->Flags & GepNode::Root) { 873 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 874 Bs.push_back(PIn->getParent()); 875 } else { 876 Bs.push_back(Loc[Node->Parent]); 877 } 878 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 879 Bs.push_back(IIn->getParent()); 880 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 881 882 // Traverse the loop nest upwards until we find a loop in which Node 883 // is no longer invariant, or until we get to the upper limit of Node's 884 // placement. The traversal will also stop when a suitable "preheader" 885 // cannot be found for a given loop. The "preheader" may actually be 886 // a regular block outside of the loop (i.e. not guarded), in which case 887 // the Node will be speculated. 888 // For nodes that are not in the main path of the containing loop (i.e. 889 // are not executed in each iteration), do not move them out of the loop. 890 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 891 if (LocB) { 892 Loop *Lp = LI->getLoopFor(LocB); 893 while (Lp) { 894 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 895 break; 896 BasicBlock *NewLoc = preheader(DT, Lp); 897 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 898 break; 899 Lp = Lp->getParentLoop(); 900 LocB = NewLoc; 901 } 902 } 903 Loc[Node] = LocB; 904 905 // Recursively compute the locations of all children nodes. 906 NodeChildrenMap::iterator CF = NCM.find(Node); 907 if (CF != NCM.end()) { 908 NodeVect &Cs = CF->second; 909 for (GepNode *C : Cs) 910 adjustForInvariance(C, NCM, Loc); 911 } 912 return LocB; 913 } 914 915 namespace { 916 917 struct LocationAsBlock { 918 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 919 920 const NodeToValueMap ⤅ 921 }; 922 923 raw_ostream &operator<< (raw_ostream &OS, 924 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 925 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 926 for (const auto &I : Loc.Map) { 927 OS << I.first << " -> "; 928 if (BasicBlock *B = cast_or_null<BasicBlock>(I.second)) 929 OS << B->getName() << '(' << B << ')'; 930 else 931 OS << "<null-block>"; 932 OS << '\n'; 933 } 934 return OS; 935 } 936 937 inline bool is_constant(GepNode *N) { 938 return isa<ConstantInt>(N->Idx); 939 } 940 941 } // end anonymous namespace 942 943 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 944 NodeToValueMap &Loc) { 945 User *R = U->getUser(); 946 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 947 << '\n'); 948 BasicBlock *PB = cast<Instruction>(R)->getParent(); 949 950 GepNode *N = Node; 951 GepNode *C = nullptr, *NewNode = nullptr; 952 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 953 // XXX if (single-use) dont-replicate; 954 GepNode *NewN = new (*Mem) GepNode(N); 955 Nodes.push_back(NewN); 956 Loc[NewN] = PB; 957 958 if (N == Node) 959 NewNode = NewN; 960 NewN->Flags &= ~GepNode::Used; 961 if (C) 962 C->Parent = NewN; 963 C = NewN; 964 N = N->Parent; 965 } 966 if (!NewNode) 967 return; 968 969 // Move over all uses that share the same user as U from Node to NewNode. 970 NodeToUsesMap::iterator UF = Uses.find(Node); 971 assert(UF != Uses.end()); 972 UseSet &Us = UF->second; 973 UseSet NewUs; 974 for (Use *U : Us) { 975 if (U->getUser() == R) 976 NewUs.insert(U); 977 } 978 for (Use *U : NewUs) 979 Us.remove(U); // erase takes an iterator. 980 981 if (Us.empty()) { 982 Node->Flags &= ~GepNode::Used; 983 Uses.erase(UF); 984 } 985 986 // Should at least have U in NewUs. 987 NewNode->Flags |= GepNode::Used; 988 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 989 assert(!NewUs.empty()); 990 Uses[NewNode] = NewUs; 991 } 992 993 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 994 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 995 // First approximation: extract all chains. 996 NodeSet Ns; 997 nodes_for_root(Node, NCM, Ns); 998 999 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1000 // Collect all used nodes together with the uses from loads and stores, 1001 // where the GEP node could be folded into the load/store instruction. 1002 NodeToUsesMap FNs; // Foldable nodes. 1003 for (GepNode *N : Ns) { 1004 if (!(N->Flags & GepNode::Used)) 1005 continue; 1006 NodeToUsesMap::iterator UF = Uses.find(N); 1007 assert(UF != Uses.end()); 1008 UseSet &Us = UF->second; 1009 // Loads/stores that use the node N. 1010 UseSet LSs; 1011 for (Use *U : Us) { 1012 User *R = U->getUser(); 1013 // We're interested in uses that provide the address. It can happen 1014 // that the value may also be provided via GEP, but we won't handle 1015 // those cases here for now. 1016 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1017 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1018 if (&Ld->getOperandUse(PtrX) == U) 1019 LSs.insert(U); 1020 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1021 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1022 if (&St->getOperandUse(PtrX) == U) 1023 LSs.insert(U); 1024 } 1025 } 1026 // Even if the total use count is 1, separating the chain may still be 1027 // beneficial, since the constant chain may be longer than the GEP alone 1028 // would be (e.g. if the parent node has a constant index and also has 1029 // other children). 1030 if (!LSs.empty()) 1031 FNs.insert(std::make_pair(N, LSs)); 1032 } 1033 1034 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1035 1036 for (auto &FN : FNs) { 1037 GepNode *N = FN.first; 1038 UseSet &Us = FN.second; 1039 for (Use *U : Us) 1040 separateChainForNode(N, U, Loc); 1041 } 1042 } 1043 1044 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1045 // Compute the inverse of the Node.Parent links. Also, collect the set 1046 // of root nodes. 1047 NodeChildrenMap NCM; 1048 NodeVect Roots; 1049 invert_find_roots(Nodes, NCM, Roots); 1050 1051 // Compute the initial placement determined by the users' locations, and 1052 // the locations of the child nodes. 1053 for (GepNode *Root : Roots) 1054 recalculatePlacementRec(Root, NCM, Loc); 1055 1056 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1057 1058 if (OptEnableInv) { 1059 for (GepNode *Root : Roots) 1060 adjustForInvariance(Root, NCM, Loc); 1061 1062 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1063 << LocationAsBlock(Loc)); 1064 } 1065 if (OptEnableConst) { 1066 for (GepNode *Root : Roots) 1067 separateConstantChains(Root, NCM, Loc); 1068 } 1069 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1070 1071 // At the moment, there is no further refinement of the initial placement. 1072 // Such a refinement could include splitting the nodes if they are placed 1073 // too far from some of its users. 1074 1075 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1076 } 1077 1078 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1079 BasicBlock *LocB) { 1080 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1081 << " for nodes:\n" 1082 << NA); 1083 unsigned Num = NA.size(); 1084 GepNode *RN = NA[0]; 1085 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1086 1087 GetElementPtrInst *NewInst = nullptr; 1088 Value *Input = RN->BaseVal; 1089 Type *InpTy = RN->PTy; 1090 1091 unsigned Idx = 0; 1092 do { 1093 SmallVector<Value*, 4> IdxList; 1094 // If the type of the input of the first node is not a pointer, 1095 // we need to add an artificial i32 0 to the indices (because the 1096 // actual input in the IR will be a pointer). 1097 if (!(NA[Idx]->Flags & GepNode::Pointer)) { 1098 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1099 IdxList.push_back(ConstantInt::get(Int32Ty, 0)); 1100 } 1101 1102 // Keep adding indices from NA until we have to stop and generate 1103 // an "intermediate" GEP. 1104 while (++Idx <= Num) { 1105 GepNode *N = NA[Idx-1]; 1106 IdxList.push_back(N->Idx); 1107 if (Idx < Num) { 1108 // We have to stop if we reach a pointer. 1109 if (NA[Idx]->Flags & GepNode::Pointer) 1110 break; 1111 } 1112 } 1113 NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", &*At); 1114 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1115 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1116 if (Idx < Num) { 1117 Input = NewInst; 1118 InpTy = NA[Idx]->PTy; 1119 } 1120 } while (Idx <= Num); 1121 1122 return NewInst; 1123 } 1124 1125 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1126 NodeChildrenMap &NCM) { 1127 NodeVect Work; 1128 Work.push_back(Node); 1129 1130 while (!Work.empty()) { 1131 NodeVect::iterator First = Work.begin(); 1132 GepNode *N = *First; 1133 Work.erase(First); 1134 if (N->Flags & GepNode::Used) { 1135 NodeToUsesMap::iterator UF = Uses.find(N); 1136 assert(UF != Uses.end() && "No use information for used node"); 1137 UseSet &Us = UF->second; 1138 for (const auto &U : Us) 1139 Values.push_back(U->getUser()); 1140 } 1141 NodeChildrenMap::iterator CF = NCM.find(N); 1142 if (CF != NCM.end()) { 1143 NodeVect &Cs = CF->second; 1144 llvm::append_range(Work, Cs); 1145 } 1146 } 1147 } 1148 1149 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1150 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1151 NodeChildrenMap NCM; 1152 NodeVect Roots; 1153 // Compute the inversion again, since computing placement could alter 1154 // "parent" relation between nodes. 1155 invert_find_roots(Nodes, NCM, Roots); 1156 1157 while (!Roots.empty()) { 1158 NodeVect::iterator First = Roots.begin(); 1159 GepNode *Root = *First, *Last = *First; 1160 Roots.erase(First); 1161 1162 NodeVect NA; // Nodes to assemble. 1163 // Append to NA all child nodes up to (and including) the first child 1164 // that: 1165 // (1) has more than 1 child, or 1166 // (2) is used, or 1167 // (3) has a child located in a different block. 1168 bool LastUsed = false; 1169 unsigned LastCN = 0; 1170 // The location may be null if the computation failed (it can legitimately 1171 // happen for nodes created from dead GEPs). 1172 Value *LocV = Loc[Last]; 1173 if (!LocV) 1174 continue; 1175 BasicBlock *LastB = cast<BasicBlock>(LocV); 1176 do { 1177 NA.push_back(Last); 1178 LastUsed = (Last->Flags & GepNode::Used); 1179 if (LastUsed) 1180 break; 1181 NodeChildrenMap::iterator CF = NCM.find(Last); 1182 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1183 if (LastCN != 1) 1184 break; 1185 GepNode *Child = CF->second.front(); 1186 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1187 if (ChildB != nullptr && LastB != ChildB) 1188 break; 1189 Last = Child; 1190 } while (true); 1191 1192 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1193 if (LastUsed || LastCN > 0) { 1194 ValueVect Urs; 1195 getAllUsersForNode(Root, Urs, NCM); 1196 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1197 if (FirstUse != LastB->end()) 1198 InsertAt = FirstUse; 1199 } 1200 1201 // Generate a new instruction for NA. 1202 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1203 1204 // Convert all the children of Last node into roots, and append them 1205 // to the Roots list. 1206 if (LastCN > 0) { 1207 NodeVect &Cs = NCM[Last]; 1208 for (GepNode *CN : Cs) { 1209 CN->Flags &= ~GepNode::Internal; 1210 CN->Flags |= GepNode::Root; 1211 CN->BaseVal = NewInst; 1212 Roots.push_back(CN); 1213 } 1214 } 1215 1216 // Lastly, if the Last node was used, replace all uses with the new GEP. 1217 // The uses reference the original GEP values. 1218 if (LastUsed) { 1219 NodeToUsesMap::iterator UF = Uses.find(Last); 1220 assert(UF != Uses.end() && "No use information found"); 1221 UseSet &Us = UF->second; 1222 for (Use *U : Us) 1223 U->set(NewInst); 1224 } 1225 } 1226 } 1227 1228 void HexagonCommonGEP::removeDeadCode() { 1229 ValueVect BO; 1230 BO.push_back(&Fn->front()); 1231 1232 for (unsigned i = 0; i < BO.size(); ++i) { 1233 BasicBlock *B = cast<BasicBlock>(BO[i]); 1234 for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) 1235 BO.push_back(DTN->getBlock()); 1236 } 1237 1238 for (Value *V : llvm::reverse(BO)) { 1239 BasicBlock *B = cast<BasicBlock>(V); 1240 ValueVect Ins; 1241 for (Instruction &I : llvm::reverse(*B)) 1242 Ins.push_back(&I); 1243 for (Value *I : Ins) { 1244 Instruction *In = cast<Instruction>(I); 1245 if (isInstructionTriviallyDead(In)) 1246 In->eraseFromParent(); 1247 } 1248 } 1249 } 1250 1251 bool HexagonCommonGEP::runOnFunction(Function &F) { 1252 if (skipFunction(F)) 1253 return false; 1254 1255 // For now bail out on C++ exception handling. 1256 for (const BasicBlock &BB : F) 1257 for (const Instruction &I : BB) 1258 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1259 return false; 1260 1261 Fn = &F; 1262 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1263 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1264 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1265 Ctx = &F.getContext(); 1266 1267 Nodes.clear(); 1268 Uses.clear(); 1269 NodeOrder.clear(); 1270 1271 SpecificBumpPtrAllocator<GepNode> Allocator; 1272 Mem = &Allocator; 1273 1274 collect(); 1275 common(); 1276 1277 NodeToValueMap Loc; 1278 computeNodePlacement(Loc); 1279 materialize(Loc); 1280 removeDeadCode(); 1281 1282 #ifdef EXPENSIVE_CHECKS 1283 // Run this only when expensive checks are enabled. 1284 if (verifyFunction(F, &dbgs())) 1285 report_fatal_error("Broken function"); 1286 #endif 1287 return true; 1288 } 1289 1290 namespace llvm { 1291 1292 FunctionPass *createHexagonCommonGEP() { 1293 return new HexagonCommonGEP(); 1294 } 1295 1296 } // end namespace llvm 1297