xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- HexagonCommonGEP.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #define DEBUG_TYPE "commgep"
10 
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/FoldingSet.h"
13 #include "llvm/ADT/GraphTraits.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/PostDominators.h"
19 #include "llvm/Transforms/Utils/Local.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Use.h"
30 #include "llvm/IR/User.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/IR/Verifier.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <iterator>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
53   cl::Hidden, cl::ZeroOrMore);
54 
55 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
56   cl::ZeroOrMore);
57 
58 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
59   cl::Hidden, cl::ZeroOrMore);
60 
61 namespace llvm {
62 
63   void initializeHexagonCommonGEPPass(PassRegistry&);
64 
65 } // end namespace llvm
66 
67 namespace {
68 
69   struct GepNode;
70   using NodeSet = std::set<GepNode *>;
71   using NodeToValueMap = std::map<GepNode *, Value *>;
72   using NodeVect = std::vector<GepNode *>;
73   using NodeChildrenMap = std::map<GepNode *, NodeVect>;
74   using UseSet = SetVector<Use *>;
75   using NodeToUsesMap = std::map<GepNode *, UseSet>;
76 
77   // Numbering map for gep nodes. Used to keep track of ordering for
78   // gep nodes.
79   struct NodeOrdering {
80     NodeOrdering() = default;
81 
82     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
83     void clear() { Map.clear(); }
84 
85     bool operator()(const GepNode *N1, const GepNode *N2) const {
86       auto F1 = Map.find(N1), F2 = Map.find(N2);
87       assert(F1 != Map.end() && F2 != Map.end());
88       return F1->second < F2->second;
89     }
90 
91   private:
92     std::map<const GepNode *, unsigned> Map;
93     unsigned LastNum = 0;
94   };
95 
96   class HexagonCommonGEP : public FunctionPass {
97   public:
98     static char ID;
99 
100     HexagonCommonGEP() : FunctionPass(ID) {
101       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
102     }
103 
104     bool runOnFunction(Function &F) override;
105     StringRef getPassName() const override { return "Hexagon Common GEP"; }
106 
107     void getAnalysisUsage(AnalysisUsage &AU) const override {
108       AU.addRequired<DominatorTreeWrapperPass>();
109       AU.addPreserved<DominatorTreeWrapperPass>();
110       AU.addRequired<PostDominatorTreeWrapperPass>();
111       AU.addPreserved<PostDominatorTreeWrapperPass>();
112       AU.addRequired<LoopInfoWrapperPass>();
113       AU.addPreserved<LoopInfoWrapperPass>();
114       FunctionPass::getAnalysisUsage(AU);
115     }
116 
117   private:
118     using ValueToNodeMap = std::map<Value *, GepNode *>;
119     using ValueVect = std::vector<Value *>;
120     using NodeToValuesMap = std::map<GepNode *, ValueVect>;
121 
122     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
123     bool isHandledGepForm(GetElementPtrInst *GepI);
124     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
125     void collect();
126     void common();
127 
128     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
129                                      NodeToValueMap &Loc);
130     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
131                                         NodeToValueMap &Loc);
132     bool isInvariantIn(Value *Val, Loop *L);
133     bool isInvariantIn(GepNode *Node, Loop *L);
134     bool isInMainPath(BasicBlock *B, Loop *L);
135     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
136                                     NodeToValueMap &Loc);
137     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
138     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
139                                 NodeToValueMap &Loc);
140     void computeNodePlacement(NodeToValueMap &Loc);
141 
142     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
143                         BasicBlock *LocB);
144     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
145                             NodeChildrenMap &NCM);
146     void materialize(NodeToValueMap &Loc);
147 
148     void removeDeadCode();
149 
150     NodeVect Nodes;
151     NodeToUsesMap Uses;
152     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
153     SpecificBumpPtrAllocator<GepNode> *Mem;
154     LLVMContext *Ctx;
155     LoopInfo *LI;
156     DominatorTree *DT;
157     PostDominatorTree *PDT;
158     Function *Fn;
159   };
160 
161 } // end anonymous namespace
162 
163 char HexagonCommonGEP::ID = 0;
164 
165 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
166       false, false)
167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
168 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
170 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
171       false, false)
172 
173 namespace {
174 
175   struct GepNode {
176     enum {
177       None      = 0,
178       Root      = 0x01,
179       Internal  = 0x02,
180       Used      = 0x04,
181       InBounds  = 0x08
182     };
183 
184     uint32_t Flags = 0;
185     union {
186       GepNode *Parent;
187       Value *BaseVal;
188     };
189     Value *Idx = nullptr;
190     Type *PTy = nullptr;  // Type of the pointer operand.
191 
192     GepNode() : Parent(nullptr) {}
193     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
194       if (Flags & Root)
195         BaseVal = N->BaseVal;
196       else
197         Parent = N->Parent;
198     }
199 
200     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
201   };
202 
203   Type *next_type(Type *Ty, Value *Idx) {
204     if (auto *PTy = dyn_cast<PointerType>(Ty))
205       return PTy->getElementType();
206     // Advance the type.
207     if (!Ty->isStructTy()) {
208       Type *NexTy = cast<SequentialType>(Ty)->getElementType();
209       return NexTy;
210     }
211     // Otherwise it is a struct type.
212     ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
213     assert(CI && "Struct type with non-constant index");
214     int64_t i = CI->getValue().getSExtValue();
215     Type *NextTy = cast<StructType>(Ty)->getElementType(i);
216     return NextTy;
217   }
218 
219   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
220     OS << "{ {";
221     bool Comma = false;
222     if (GN.Flags & GepNode::Root) {
223       OS << "root";
224       Comma = true;
225     }
226     if (GN.Flags & GepNode::Internal) {
227       if (Comma)
228         OS << ',';
229       OS << "internal";
230       Comma = true;
231     }
232     if (GN.Flags & GepNode::Used) {
233       if (Comma)
234         OS << ',';
235       OS << "used";
236     }
237     if (GN.Flags & GepNode::InBounds) {
238       if (Comma)
239         OS << ',';
240       OS << "inbounds";
241     }
242     OS << "} ";
243     if (GN.Flags & GepNode::Root)
244       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
245     else
246       OS << "Parent:" << GN.Parent;
247 
248     OS << " Idx:";
249     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
250       OS << CI->getValue().getSExtValue();
251     else if (GN.Idx->hasName())
252       OS << GN.Idx->getName();
253     else
254       OS << "<anon> =" << *GN.Idx;
255 
256     OS << " PTy:";
257     if (GN.PTy->isStructTy()) {
258       StructType *STy = cast<StructType>(GN.PTy);
259       if (!STy->isLiteral())
260         OS << GN.PTy->getStructName();
261       else
262         OS << "<anon-struct>:" << *STy;
263     }
264     else
265       OS << *GN.PTy;
266     OS << " }";
267     return OS;
268   }
269 
270   template <typename NodeContainer>
271   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
272     using const_iterator = typename NodeContainer::const_iterator;
273 
274     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
275       OS << *I << ' ' << **I << '\n';
276   }
277 
278   raw_ostream &operator<< (raw_ostream &OS,
279                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
280   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
281     dump_node_container(OS, S);
282     return OS;
283   }
284 
285   raw_ostream &operator<< (raw_ostream &OS,
286                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
287   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
288     using const_iterator = NodeToUsesMap::const_iterator;
289 
290     for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
291       const UseSet &Us = I->second;
292       OS << I->first << " -> #" << Us.size() << '{';
293       for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
294         User *R = (*J)->getUser();
295         if (R->hasName())
296           OS << ' ' << R->getName();
297         else
298           OS << " <?>(" << *R << ')';
299       }
300       OS << " }\n";
301     }
302     return OS;
303   }
304 
305   struct in_set {
306     in_set(const NodeSet &S) : NS(S) {}
307 
308     bool operator() (GepNode *N) const {
309       return NS.find(N) != NS.end();
310     }
311 
312   private:
313     const NodeSet &NS;
314   };
315 
316 } // end anonymous namespace
317 
318 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
319   return A.Allocate();
320 }
321 
322 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
323       ValueVect &Order) {
324   // Compute block ordering for a typical DT-based traversal of the flow
325   // graph: "before visiting a block, all of its dominators must have been
326   // visited".
327 
328   Order.push_back(Root);
329   for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
330     getBlockTraversalOrder(DTN->getBlock(), Order);
331 }
332 
333 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
334   // No vector GEPs.
335   if (!GepI->getType()->isPointerTy())
336     return false;
337   // No GEPs without any indices.  (Is this possible?)
338   if (GepI->idx_begin() == GepI->idx_end())
339     return false;
340   return true;
341 }
342 
343 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
344       ValueToNodeMap &NM) {
345   LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
346   GepNode *N = new (*Mem) GepNode;
347   Value *PtrOp = GepI->getPointerOperand();
348   uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
349   ValueToNodeMap::iterator F = NM.find(PtrOp);
350   if (F == NM.end()) {
351     N->BaseVal = PtrOp;
352     N->Flags |= GepNode::Root | InBounds;
353   } else {
354     // If PtrOp was a GEP instruction, it must have already been processed.
355     // The ValueToNodeMap entry for it is the last gep node in the generated
356     // chain. Link to it here.
357     N->Parent = F->second;
358   }
359   N->PTy = PtrOp->getType();
360   N->Idx = *GepI->idx_begin();
361 
362   // Collect the list of users of this GEP instruction. Will add it to the
363   // last node created for it.
364   UseSet Us;
365   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
366        UI != UE; ++UI) {
367     // Check if this gep is used by anything other than other geps that
368     // we will process.
369     if (isa<GetElementPtrInst>(*UI)) {
370       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
371       if (isHandledGepForm(UserG))
372         continue;
373     }
374     Us.insert(&UI.getUse());
375   }
376   Nodes.push_back(N);
377   NodeOrder.insert(N);
378 
379   // Skip the first index operand, since we only handle 0. This dereferences
380   // the pointer operand.
381   GepNode *PN = N;
382   Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
383   for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
384        OI != OE; ++OI) {
385     Value *Op = *OI;
386     GepNode *Nx = new (*Mem) GepNode;
387     Nx->Parent = PN;  // Link Nx to the previous node.
388     Nx->Flags |= GepNode::Internal | InBounds;
389     Nx->PTy = PtrTy;
390     Nx->Idx = Op;
391     Nodes.push_back(Nx);
392     NodeOrder.insert(Nx);
393     PN = Nx;
394 
395     PtrTy = next_type(PtrTy, Op);
396   }
397 
398   // After last node has been created, update the use information.
399   if (!Us.empty()) {
400     PN->Flags |= GepNode::Used;
401     Uses[PN].insert(Us.begin(), Us.end());
402   }
403 
404   // Link the last node with the originating GEP instruction. This is to
405   // help with linking chained GEP instructions.
406   NM.insert(std::make_pair(GepI, PN));
407 }
408 
409 void HexagonCommonGEP::collect() {
410   // Establish depth-first traversal order of the dominator tree.
411   ValueVect BO;
412   getBlockTraversalOrder(&Fn->front(), BO);
413 
414   // The creation of gep nodes requires DT-traversal. When processing a GEP
415   // instruction that uses another GEP instruction as the base pointer, the
416   // gep node for the base pointer should already exist.
417   ValueToNodeMap NM;
418   for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
419     BasicBlock *B = cast<BasicBlock>(*I);
420     for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
421       if (!isa<GetElementPtrInst>(J))
422         continue;
423       GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
424       if (isHandledGepForm(GepI))
425         processGepInst(GepI, NM);
426     }
427   }
428 
429   LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
430 }
431 
432 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
433                               NodeVect &Roots) {
434     using const_iterator = NodeVect::const_iterator;
435 
436     for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
437       GepNode *N = *I;
438       if (N->Flags & GepNode::Root) {
439         Roots.push_back(N);
440         continue;
441       }
442       GepNode *PN = N->Parent;
443       NCM[PN].push_back(N);
444     }
445 }
446 
447 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
448                            NodeSet &Nodes) {
449     NodeVect Work;
450     Work.push_back(Root);
451     Nodes.insert(Root);
452 
453     while (!Work.empty()) {
454       NodeVect::iterator First = Work.begin();
455       GepNode *N = *First;
456       Work.erase(First);
457       NodeChildrenMap::iterator CF = NCM.find(N);
458       if (CF != NCM.end()) {
459         Work.insert(Work.end(), CF->second.begin(), CF->second.end());
460         Nodes.insert(CF->second.begin(), CF->second.end());
461       }
462     }
463 }
464 
465 namespace {
466 
467   using NodeSymRel = std::set<NodeSet>;
468   using NodePair = std::pair<GepNode *, GepNode *>;
469   using NodePairSet = std::set<NodePair>;
470 
471 } // end anonymous namespace
472 
473 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
474     for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
475       if (I->count(N))
476         return &*I;
477     return nullptr;
478 }
479 
480   // Create an ordered pair of GepNode pointers. The pair will be used in
481   // determining equality. The only purpose of the ordering is to eliminate
482   // duplication due to the commutativity of equality/non-equality.
483 static NodePair node_pair(GepNode *N1, GepNode *N2) {
484     uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
485     if (P1 <= P2)
486       return std::make_pair(N1, N2);
487     return std::make_pair(N2, N1);
488 }
489 
490 static unsigned node_hash(GepNode *N) {
491     // Include everything except flags and parent.
492     FoldingSetNodeID ID;
493     ID.AddPointer(N->Idx);
494     ID.AddPointer(N->PTy);
495     return ID.ComputeHash();
496 }
497 
498 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
499                     NodePairSet &Ne) {
500     // Don't cache the result for nodes with different hashes. The hash
501     // comparison is fast enough.
502     if (node_hash(N1) != node_hash(N2))
503       return false;
504 
505     NodePair NP = node_pair(N1, N2);
506     NodePairSet::iterator FEq = Eq.find(NP);
507     if (FEq != Eq.end())
508       return true;
509     NodePairSet::iterator FNe = Ne.find(NP);
510     if (FNe != Ne.end())
511       return false;
512     // Not previously compared.
513     bool Root1 = N1->Flags & GepNode::Root;
514     bool Root2 = N2->Flags & GepNode::Root;
515     NodePair P = node_pair(N1, N2);
516     // If the Root flag has different values, the nodes are different.
517     // If both nodes are root nodes, but their base pointers differ,
518     // they are different.
519     if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
520       Ne.insert(P);
521       return false;
522     }
523     // Here the root flags are identical, and for root nodes the
524     // base pointers are equal, so the root nodes are equal.
525     // For non-root nodes, compare their parent nodes.
526     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
527       Eq.insert(P);
528       return true;
529     }
530     return false;
531 }
532 
533 void HexagonCommonGEP::common() {
534   // The essence of this commoning is finding gep nodes that are equal.
535   // To do this we need to compare all pairs of nodes. To save time,
536   // first, partition the set of all nodes into sets of potentially equal
537   // nodes, and then compare pairs from within each partition.
538   using NodeSetMap = std::map<unsigned, NodeSet>;
539   NodeSetMap MaybeEq;
540 
541   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
542     GepNode *N = *I;
543     unsigned H = node_hash(N);
544     MaybeEq[H].insert(N);
545   }
546 
547   // Compute the equivalence relation for the gep nodes.  Use two caches,
548   // one for equality and the other for non-equality.
549   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
550   NodePairSet Eq, Ne;  // Caches.
551   for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
552        I != E; ++I) {
553     NodeSet &S = I->second;
554     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
555       GepNode *N = *NI;
556       // If node already has a class, then the class must have been created
557       // in a prior iteration of this loop. Since equality is transitive,
558       // nothing more will be added to that class, so skip it.
559       if (node_class(N, EqRel))
560         continue;
561 
562       // Create a new class candidate now.
563       NodeSet C;
564       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
565         if (node_eq(N, *NJ, Eq, Ne))
566           C.insert(*NJ);
567       // If Tmp is empty, N would be the only element in it. Don't bother
568       // creating a class for it then.
569       if (!C.empty()) {
570         C.insert(N);  // Finalize the set before adding it to the relation.
571         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
572         (void)Ins;
573         assert(Ins.second && "Cannot add a class");
574       }
575     }
576   }
577 
578   LLVM_DEBUG({
579     dbgs() << "Gep node equality:\n";
580     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
581       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
582 
583     dbgs() << "Gep equivalence classes:\n";
584     for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
585       dbgs() << '{';
586       const NodeSet &S = *I;
587       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
588         if (J != S.begin())
589           dbgs() << ',';
590         dbgs() << ' ' << *J;
591       }
592       dbgs() << " }\n";
593     }
594   });
595 
596   // Create a projection from a NodeSet to the minimal element in it.
597   using ProjMap = std::map<const NodeSet *, GepNode *>;
598   ProjMap PM;
599   for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
600     const NodeSet &S = *I;
601     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
602     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
603     (void)Ins;
604     assert(Ins.second && "Cannot add minimal element");
605 
606     // Update the min element's flags, and user list.
607     uint32_t Flags = 0;
608     UseSet &MinUs = Uses[Min];
609     for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
610       GepNode *N = *J;
611       uint32_t NF = N->Flags;
612       // If N is used, append all original values of N to the list of
613       // original values of Min.
614       if (NF & GepNode::Used)
615         MinUs.insert(Uses[N].begin(), Uses[N].end());
616       Flags |= NF;
617     }
618     if (MinUs.empty())
619       Uses.erase(Min);
620 
621     // The collected flags should include all the flags from the min element.
622     assert((Min->Flags & Flags) == Min->Flags);
623     Min->Flags = Flags;
624   }
625 
626   // Commoning: for each non-root gep node, replace "Parent" with the
627   // selected (minimum) node from the corresponding equivalence class.
628   // If a given parent does not have an equivalence class, leave it
629   // unchanged (it means that it's the only element in its class).
630   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
631     GepNode *N = *I;
632     if (N->Flags & GepNode::Root)
633       continue;
634     const NodeSet *PC = node_class(N->Parent, EqRel);
635     if (!PC)
636       continue;
637     ProjMap::iterator F = PM.find(PC);
638     if (F == PM.end())
639       continue;
640     // Found a replacement, use it.
641     GepNode *Rep = F->second;
642     N->Parent = Rep;
643   }
644 
645   LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
646 
647   // Finally, erase the nodes that are no longer used.
648   NodeSet Erase;
649   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
650     GepNode *N = *I;
651     const NodeSet *PC = node_class(N, EqRel);
652     if (!PC)
653       continue;
654     ProjMap::iterator F = PM.find(PC);
655     if (F == PM.end())
656       continue;
657     if (N == F->second)
658       continue;
659     // Node for removal.
660     Erase.insert(*I);
661   }
662   NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase));
663   Nodes.resize(std::distance(Nodes.begin(), NewE));
664 
665   LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
666 }
667 
668 template <typename T>
669 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
670   LLVM_DEBUG({
671     dbgs() << "NCD of {";
672     for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
673          ++I) {
674       if (!*I)
675         continue;
676       BasicBlock *B = cast<BasicBlock>(*I);
677       dbgs() << ' ' << B->getName();
678     }
679     dbgs() << " }\n";
680   });
681 
682   // Allow null basic blocks in Blocks.  In such cases, return nullptr.
683   typename T::iterator I = Blocks.begin(), E = Blocks.end();
684   if (I == E || !*I)
685     return nullptr;
686   BasicBlock *Dom = cast<BasicBlock>(*I);
687   while (++I != E) {
688     BasicBlock *B = cast_or_null<BasicBlock>(*I);
689     Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
690     if (!Dom)
691       return nullptr;
692     }
693     LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
694     return Dom;
695 }
696 
697 template <typename T>
698 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
699     // If two blocks, A and B, dominate a block C, then A dominates B,
700     // or B dominates A.
701     typename T::iterator I = Blocks.begin(), E = Blocks.end();
702     // Find the first non-null block.
703     while (I != E && !*I)
704       ++I;
705     if (I == E)
706       return DT->getRoot();
707     BasicBlock *DomB = cast<BasicBlock>(*I);
708     while (++I != E) {
709       if (!*I)
710         continue;
711       BasicBlock *B = cast<BasicBlock>(*I);
712       if (DT->dominates(B, DomB))
713         continue;
714       if (!DT->dominates(DomB, B))
715         return nullptr;
716       DomB = B;
717     }
718     return DomB;
719 }
720 
721 // Find the first use in B of any value from Values. If no such use,
722 // return B->end().
723 template <typename T>
724 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
725     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
726 
727     using iterator = typename T::iterator;
728 
729     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
730       Value *V = *I;
731       // If V is used in a PHI node, the use belongs to the incoming block,
732       // not the block with the PHI node. In the incoming block, the use
733       // would be considered as being at the end of it, so it cannot
734       // influence the position of the first use (which is assumed to be
735       // at the end to start with).
736       if (isa<PHINode>(V))
737         continue;
738       if (!isa<Instruction>(V))
739         continue;
740       Instruction *In = cast<Instruction>(V);
741       if (In->getParent() != B)
742         continue;
743       BasicBlock::iterator It = In->getIterator();
744       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
745         FirstUse = It;
746     }
747     return FirstUse;
748 }
749 
750 static bool is_empty(const BasicBlock *B) {
751     return B->empty() || (&*B->begin() == B->getTerminator());
752 }
753 
754 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
755       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
756   LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
757   // Recalculate the placement for Node, assuming that the locations of
758   // its children in Loc are valid.
759   // Return nullptr if there is no valid placement for Node (for example, it
760   // uses an index value that is not available at the location required
761   // to dominate all children, etc.).
762 
763   // Find the nearest common dominator for:
764   // - all users, if the node is used, and
765   // - all children.
766   ValueVect Bs;
767   if (Node->Flags & GepNode::Used) {
768     // Append all blocks with uses of the original values to the
769     // block vector Bs.
770     NodeToUsesMap::iterator UF = Uses.find(Node);
771     assert(UF != Uses.end() && "Used node with no use information");
772     UseSet &Us = UF->second;
773     for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
774       Use *U = *I;
775       User *R = U->getUser();
776       if (!isa<Instruction>(R))
777         continue;
778       BasicBlock *PB = isa<PHINode>(R)
779           ? cast<PHINode>(R)->getIncomingBlock(*U)
780           : cast<Instruction>(R)->getParent();
781       Bs.push_back(PB);
782     }
783   }
784   // Append the location of each child.
785   NodeChildrenMap::iterator CF = NCM.find(Node);
786   if (CF != NCM.end()) {
787     NodeVect &Cs = CF->second;
788     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
789       GepNode *CN = *I;
790       NodeToValueMap::iterator LF = Loc.find(CN);
791       // If the child is only used in GEP instructions (i.e. is not used in
792       // non-GEP instructions), the nearest dominator computed for it may
793       // have been null. In such case it won't have a location available.
794       if (LF == Loc.end())
795         continue;
796       Bs.push_back(LF->second);
797     }
798   }
799 
800   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
801   if (!DomB)
802     return nullptr;
803   // Check if the index used by Node dominates the computed dominator.
804   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
805   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
806     return nullptr;
807 
808   // Avoid putting nodes into empty blocks.
809   while (is_empty(DomB)) {
810     DomTreeNode *N = (*DT)[DomB]->getIDom();
811     if (!N)
812       break;
813     DomB = N->getBlock();
814   }
815 
816   // Otherwise, DomB is fine. Update the location map.
817   Loc[Node] = DomB;
818   return DomB;
819 }
820 
821 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
822       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
823   LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
824   // Recalculate the placement of Node, after recursively recalculating the
825   // placements of all its children.
826   NodeChildrenMap::iterator CF = NCM.find(Node);
827   if (CF != NCM.end()) {
828     NodeVect &Cs = CF->second;
829     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
830       recalculatePlacementRec(*I, NCM, Loc);
831   }
832   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
833   LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
834   return LB;
835 }
836 
837 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
838   if (isa<Constant>(Val) || isa<Argument>(Val))
839     return true;
840   Instruction *In = dyn_cast<Instruction>(Val);
841   if (!In)
842     return false;
843   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
844   return DT->properlyDominates(DefB, HdrB);
845 }
846 
847 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
848   if (Node->Flags & GepNode::Root)
849     if (!isInvariantIn(Node->BaseVal, L))
850       return false;
851   return isInvariantIn(Node->Idx, L);
852 }
853 
854 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
855   BasicBlock *HB = L->getHeader();
856   BasicBlock *LB = L->getLoopLatch();
857   // B must post-dominate the loop header or dominate the loop latch.
858   if (PDT->dominates(B, HB))
859     return true;
860   if (LB && DT->dominates(B, LB))
861     return true;
862   return false;
863 }
864 
865 static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
866   if (BasicBlock *PH = L->getLoopPreheader())
867     return PH;
868   if (!OptSpeculate)
869     return nullptr;
870   DomTreeNode *DN = DT->getNode(L->getHeader());
871   if (!DN)
872     return nullptr;
873   return DN->getIDom()->getBlock();
874 }
875 
876 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
877       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
878   // Find the "topmost" location for Node: it must be dominated by both,
879   // its parent (or the BaseVal, if it's a root node), and by the index
880   // value.
881   ValueVect Bs;
882   if (Node->Flags & GepNode::Root) {
883     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
884       Bs.push_back(PIn->getParent());
885   } else {
886     Bs.push_back(Loc[Node->Parent]);
887   }
888   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
889     Bs.push_back(IIn->getParent());
890   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
891 
892   // Traverse the loop nest upwards until we find a loop in which Node
893   // is no longer invariant, or until we get to the upper limit of Node's
894   // placement. The traversal will also stop when a suitable "preheader"
895   // cannot be found for a given loop. The "preheader" may actually be
896   // a regular block outside of the loop (i.e. not guarded), in which case
897   // the Node will be speculated.
898   // For nodes that are not in the main path of the containing loop (i.e.
899   // are not executed in each iteration), do not move them out of the loop.
900   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
901   if (LocB) {
902     Loop *Lp = LI->getLoopFor(LocB);
903     while (Lp) {
904       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
905         break;
906       BasicBlock *NewLoc = preheader(DT, Lp);
907       if (!NewLoc || !DT->dominates(TopB, NewLoc))
908         break;
909       Lp = Lp->getParentLoop();
910       LocB = NewLoc;
911     }
912   }
913   Loc[Node] = LocB;
914 
915   // Recursively compute the locations of all children nodes.
916   NodeChildrenMap::iterator CF = NCM.find(Node);
917   if (CF != NCM.end()) {
918     NodeVect &Cs = CF->second;
919     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
920       adjustForInvariance(*I, NCM, Loc);
921   }
922   return LocB;
923 }
924 
925 namespace {
926 
927   struct LocationAsBlock {
928     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
929 
930     const NodeToValueMap &Map;
931   };
932 
933   raw_ostream &operator<< (raw_ostream &OS,
934                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
935   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
936     for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
937          I != E; ++I) {
938       OS << I->first << " -> ";
939       BasicBlock *B = cast<BasicBlock>(I->second);
940       OS << B->getName() << '(' << B << ')';
941       OS << '\n';
942     }
943     return OS;
944   }
945 
946   inline bool is_constant(GepNode *N) {
947     return isa<ConstantInt>(N->Idx);
948   }
949 
950 } // end anonymous namespace
951 
952 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
953       NodeToValueMap &Loc) {
954   User *R = U->getUser();
955   LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
956                     << '\n');
957   BasicBlock *PB = cast<Instruction>(R)->getParent();
958 
959   GepNode *N = Node;
960   GepNode *C = nullptr, *NewNode = nullptr;
961   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
962     // XXX if (single-use) dont-replicate;
963     GepNode *NewN = new (*Mem) GepNode(N);
964     Nodes.push_back(NewN);
965     Loc[NewN] = PB;
966 
967     if (N == Node)
968       NewNode = NewN;
969     NewN->Flags &= ~GepNode::Used;
970     if (C)
971       C->Parent = NewN;
972     C = NewN;
973     N = N->Parent;
974   }
975   if (!NewNode)
976     return;
977 
978   // Move over all uses that share the same user as U from Node to NewNode.
979   NodeToUsesMap::iterator UF = Uses.find(Node);
980   assert(UF != Uses.end());
981   UseSet &Us = UF->second;
982   UseSet NewUs;
983   for (Use *U : Us) {
984     if (U->getUser() == R)
985       NewUs.insert(U);
986   }
987   for (Use *U : NewUs)
988     Us.remove(U); // erase takes an iterator.
989 
990   if (Us.empty()) {
991     Node->Flags &= ~GepNode::Used;
992     Uses.erase(UF);
993   }
994 
995   // Should at least have U in NewUs.
996   NewNode->Flags |= GepNode::Used;
997   LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
998   assert(!NewUs.empty());
999   Uses[NewNode] = NewUs;
1000 }
1001 
1002 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
1003       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
1004   // First approximation: extract all chains.
1005   NodeSet Ns;
1006   nodes_for_root(Node, NCM, Ns);
1007 
1008   LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1009   // Collect all used nodes together with the uses from loads and stores,
1010   // where the GEP node could be folded into the load/store instruction.
1011   NodeToUsesMap FNs; // Foldable nodes.
1012   for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1013     GepNode *N = *I;
1014     if (!(N->Flags & GepNode::Used))
1015       continue;
1016     NodeToUsesMap::iterator UF = Uses.find(N);
1017     assert(UF != Uses.end());
1018     UseSet &Us = UF->second;
1019     // Loads/stores that use the node N.
1020     UseSet LSs;
1021     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1022       Use *U = *J;
1023       User *R = U->getUser();
1024       // We're interested in uses that provide the address. It can happen
1025       // that the value may also be provided via GEP, but we won't handle
1026       // those cases here for now.
1027       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1028         unsigned PtrX = LoadInst::getPointerOperandIndex();
1029         if (&Ld->getOperandUse(PtrX) == U)
1030           LSs.insert(U);
1031       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1032         unsigned PtrX = StoreInst::getPointerOperandIndex();
1033         if (&St->getOperandUse(PtrX) == U)
1034           LSs.insert(U);
1035       }
1036     }
1037     // Even if the total use count is 1, separating the chain may still be
1038     // beneficial, since the constant chain may be longer than the GEP alone
1039     // would be (e.g. if the parent node has a constant index and also has
1040     // other children).
1041     if (!LSs.empty())
1042       FNs.insert(std::make_pair(N, LSs));
1043   }
1044 
1045   LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1046 
1047   for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1048     GepNode *N = I->first;
1049     UseSet &Us = I->second;
1050     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1051       separateChainForNode(N, *J, Loc);
1052   }
1053 }
1054 
1055 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1056   // Compute the inverse of the Node.Parent links. Also, collect the set
1057   // of root nodes.
1058   NodeChildrenMap NCM;
1059   NodeVect Roots;
1060   invert_find_roots(Nodes, NCM, Roots);
1061 
1062   // Compute the initial placement determined by the users' locations, and
1063   // the locations of the child nodes.
1064   for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1065     recalculatePlacementRec(*I, NCM, Loc);
1066 
1067   LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1068 
1069   if (OptEnableInv) {
1070     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1071       adjustForInvariance(*I, NCM, Loc);
1072 
1073     LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1074                       << LocationAsBlock(Loc));
1075   }
1076   if (OptEnableConst) {
1077     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1078       separateConstantChains(*I, NCM, Loc);
1079   }
1080   LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1081 
1082   // At the moment, there is no further refinement of the initial placement.
1083   // Such a refinement could include splitting the nodes if they are placed
1084   // too far from some of its users.
1085 
1086   LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1087 }
1088 
1089 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1090       BasicBlock *LocB) {
1091   LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1092                     << " for nodes:\n"
1093                     << NA);
1094   unsigned Num = NA.size();
1095   GepNode *RN = NA[0];
1096   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1097 
1098   GetElementPtrInst *NewInst = nullptr;
1099   Value *Input = RN->BaseVal;
1100   Value **IdxList = new Value*[Num+1];
1101   unsigned nax = 0;
1102   do {
1103     unsigned IdxC = 0;
1104     // If the type of the input of the first node is not a pointer,
1105     // we need to add an artificial i32 0 to the indices (because the
1106     // actual input in the IR will be a pointer).
1107     if (!NA[nax]->PTy->isPointerTy()) {
1108       Type *Int32Ty = Type::getInt32Ty(*Ctx);
1109       IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1110     }
1111 
1112     // Keep adding indices from NA until we have to stop and generate
1113     // an "intermediate" GEP.
1114     while (++nax <= Num) {
1115       GepNode *N = NA[nax-1];
1116       IdxList[IdxC++] = N->Idx;
1117       if (nax < Num) {
1118         // We have to stop, if the expected type of the output of this node
1119         // is not the same as the input type of the next node.
1120         Type *NextTy = next_type(N->PTy, N->Idx);
1121         if (NextTy != NA[nax]->PTy)
1122           break;
1123       }
1124     }
1125     ArrayRef<Value*> A(IdxList, IdxC);
1126     Type *InpTy = Input->getType();
1127     Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1128     NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1129     NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1130     LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1131     Input = NewInst;
1132   } while (nax <= Num);
1133 
1134   delete[] IdxList;
1135   return NewInst;
1136 }
1137 
1138 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1139       NodeChildrenMap &NCM) {
1140   NodeVect Work;
1141   Work.push_back(Node);
1142 
1143   while (!Work.empty()) {
1144     NodeVect::iterator First = Work.begin();
1145     GepNode *N = *First;
1146     Work.erase(First);
1147     if (N->Flags & GepNode::Used) {
1148       NodeToUsesMap::iterator UF = Uses.find(N);
1149       assert(UF != Uses.end() && "No use information for used node");
1150       UseSet &Us = UF->second;
1151       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1152         Values.push_back((*I)->getUser());
1153     }
1154     NodeChildrenMap::iterator CF = NCM.find(N);
1155     if (CF != NCM.end()) {
1156       NodeVect &Cs = CF->second;
1157       Work.insert(Work.end(), Cs.begin(), Cs.end());
1158     }
1159   }
1160 }
1161 
1162 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1163   LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1164   NodeChildrenMap NCM;
1165   NodeVect Roots;
1166   // Compute the inversion again, since computing placement could alter
1167   // "parent" relation between nodes.
1168   invert_find_roots(Nodes, NCM, Roots);
1169 
1170   while (!Roots.empty()) {
1171     NodeVect::iterator First = Roots.begin();
1172     GepNode *Root = *First, *Last = *First;
1173     Roots.erase(First);
1174 
1175     NodeVect NA;  // Nodes to assemble.
1176     // Append to NA all child nodes up to (and including) the first child
1177     // that:
1178     // (1) has more than 1 child, or
1179     // (2) is used, or
1180     // (3) has a child located in a different block.
1181     bool LastUsed = false;
1182     unsigned LastCN = 0;
1183     // The location may be null if the computation failed (it can legitimately
1184     // happen for nodes created from dead GEPs).
1185     Value *LocV = Loc[Last];
1186     if (!LocV)
1187       continue;
1188     BasicBlock *LastB = cast<BasicBlock>(LocV);
1189     do {
1190       NA.push_back(Last);
1191       LastUsed = (Last->Flags & GepNode::Used);
1192       if (LastUsed)
1193         break;
1194       NodeChildrenMap::iterator CF = NCM.find(Last);
1195       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1196       if (LastCN != 1)
1197         break;
1198       GepNode *Child = CF->second.front();
1199       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1200       if (ChildB != nullptr && LastB != ChildB)
1201         break;
1202       Last = Child;
1203     } while (true);
1204 
1205     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1206     if (LastUsed || LastCN > 0) {
1207       ValueVect Urs;
1208       getAllUsersForNode(Root, Urs, NCM);
1209       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1210       if (FirstUse != LastB->end())
1211         InsertAt = FirstUse;
1212     }
1213 
1214     // Generate a new instruction for NA.
1215     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1216 
1217     // Convert all the children of Last node into roots, and append them
1218     // to the Roots list.
1219     if (LastCN > 0) {
1220       NodeVect &Cs = NCM[Last];
1221       for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1222         GepNode *CN = *I;
1223         CN->Flags &= ~GepNode::Internal;
1224         CN->Flags |= GepNode::Root;
1225         CN->BaseVal = NewInst;
1226         Roots.push_back(CN);
1227       }
1228     }
1229 
1230     // Lastly, if the Last node was used, replace all uses with the new GEP.
1231     // The uses reference the original GEP values.
1232     if (LastUsed) {
1233       NodeToUsesMap::iterator UF = Uses.find(Last);
1234       assert(UF != Uses.end() && "No use information found");
1235       UseSet &Us = UF->second;
1236       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1237         Use *U = *I;
1238         U->set(NewInst);
1239       }
1240     }
1241   }
1242 }
1243 
1244 void HexagonCommonGEP::removeDeadCode() {
1245   ValueVect BO;
1246   BO.push_back(&Fn->front());
1247 
1248   for (unsigned i = 0; i < BO.size(); ++i) {
1249     BasicBlock *B = cast<BasicBlock>(BO[i]);
1250     for (auto DTN : children<DomTreeNode*>(DT->getNode(B)))
1251       BO.push_back(DTN->getBlock());
1252   }
1253 
1254   for (unsigned i = BO.size(); i > 0; --i) {
1255     BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1256     BasicBlock::InstListType &IL = B->getInstList();
1257 
1258     using reverse_iterator = BasicBlock::InstListType::reverse_iterator;
1259 
1260     ValueVect Ins;
1261     for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1262       Ins.push_back(&*I);
1263     for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1264       Instruction *In = cast<Instruction>(*I);
1265       if (isInstructionTriviallyDead(In))
1266         In->eraseFromParent();
1267     }
1268   }
1269 }
1270 
1271 bool HexagonCommonGEP::runOnFunction(Function &F) {
1272   if (skipFunction(F))
1273     return false;
1274 
1275   // For now bail out on C++ exception handling.
1276   for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1277     for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1278       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1279         return false;
1280 
1281   Fn = &F;
1282   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1283   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1284   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1285   Ctx = &F.getContext();
1286 
1287   Nodes.clear();
1288   Uses.clear();
1289   NodeOrder.clear();
1290 
1291   SpecificBumpPtrAllocator<GepNode> Allocator;
1292   Mem = &Allocator;
1293 
1294   collect();
1295   common();
1296 
1297   NodeToValueMap Loc;
1298   computeNodePlacement(Loc);
1299   materialize(Loc);
1300   removeDeadCode();
1301 
1302 #ifdef EXPENSIVE_CHECKS
1303   // Run this only when expensive checks are enabled.
1304   verifyFunction(F);
1305 #endif
1306   return true;
1307 }
1308 
1309 namespace llvm {
1310 
1311   FunctionPass *createHexagonCommonGEP() {
1312     return new HexagonCommonGEP();
1313   }
1314 
1315 } // end namespace llvm
1316