xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- HexagonCommonGEP.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/ADT/FoldingSet.h"
11 #include "llvm/ADT/GraphTraits.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/User.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <iterator>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #define DEBUG_TYPE "commgep"
51 
52 using namespace llvm;
53 
54 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
55   cl::Hidden, cl::ZeroOrMore);
56 
57 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
58   cl::ZeroOrMore);
59 
60 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
61   cl::Hidden, cl::ZeroOrMore);
62 
63 namespace llvm {
64 
65   void initializeHexagonCommonGEPPass(PassRegistry&);
66 
67 } // end namespace llvm
68 
69 namespace {
70 
71   struct GepNode;
72   using NodeSet = std::set<GepNode *>;
73   using NodeToValueMap = std::map<GepNode *, Value *>;
74   using NodeVect = std::vector<GepNode *>;
75   using NodeChildrenMap = std::map<GepNode *, NodeVect>;
76   using UseSet = SetVector<Use *>;
77   using NodeToUsesMap = std::map<GepNode *, UseSet>;
78 
79   // Numbering map for gep nodes. Used to keep track of ordering for
80   // gep nodes.
81   struct NodeOrdering {
82     NodeOrdering() = default;
83 
84     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
85     void clear() { Map.clear(); }
86 
87     bool operator()(const GepNode *N1, const GepNode *N2) const {
88       auto F1 = Map.find(N1), F2 = Map.find(N2);
89       assert(F1 != Map.end() && F2 != Map.end());
90       return F1->second < F2->second;
91     }
92 
93   private:
94     std::map<const GepNode *, unsigned> Map;
95     unsigned LastNum = 0;
96   };
97 
98   class HexagonCommonGEP : public FunctionPass {
99   public:
100     static char ID;
101 
102     HexagonCommonGEP() : FunctionPass(ID) {
103       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
104     }
105 
106     bool runOnFunction(Function &F) override;
107     StringRef getPassName() const override { return "Hexagon Common GEP"; }
108 
109     void getAnalysisUsage(AnalysisUsage &AU) const override {
110       AU.addRequired<DominatorTreeWrapperPass>();
111       AU.addPreserved<DominatorTreeWrapperPass>();
112       AU.addRequired<PostDominatorTreeWrapperPass>();
113       AU.addPreserved<PostDominatorTreeWrapperPass>();
114       AU.addRequired<LoopInfoWrapperPass>();
115       AU.addPreserved<LoopInfoWrapperPass>();
116       FunctionPass::getAnalysisUsage(AU);
117     }
118 
119   private:
120     using ValueToNodeMap = std::map<Value *, GepNode *>;
121     using ValueVect = std::vector<Value *>;
122     using NodeToValuesMap = std::map<GepNode *, ValueVect>;
123 
124     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
125     bool isHandledGepForm(GetElementPtrInst *GepI);
126     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
127     void collect();
128     void common();
129 
130     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
131                                      NodeToValueMap &Loc);
132     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
133                                         NodeToValueMap &Loc);
134     bool isInvariantIn(Value *Val, Loop *L);
135     bool isInvariantIn(GepNode *Node, Loop *L);
136     bool isInMainPath(BasicBlock *B, Loop *L);
137     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
138                                     NodeToValueMap &Loc);
139     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
140     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
141                                 NodeToValueMap &Loc);
142     void computeNodePlacement(NodeToValueMap &Loc);
143 
144     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
145                         BasicBlock *LocB);
146     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
147                             NodeChildrenMap &NCM);
148     void materialize(NodeToValueMap &Loc);
149 
150     void removeDeadCode();
151 
152     NodeVect Nodes;
153     NodeToUsesMap Uses;
154     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
155     SpecificBumpPtrAllocator<GepNode> *Mem;
156     LLVMContext *Ctx;
157     LoopInfo *LI;
158     DominatorTree *DT;
159     PostDominatorTree *PDT;
160     Function *Fn;
161   };
162 
163 } // end anonymous namespace
164 
165 char HexagonCommonGEP::ID = 0;
166 
167 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
168       false, false)
169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
172 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
173       false, false)
174 
175 namespace {
176 
177   struct GepNode {
178     enum {
179       None      = 0,
180       Root      = 0x01,
181       Internal  = 0x02,
182       Used      = 0x04,
183       InBounds  = 0x08,
184       Pointer   = 0x10,   // See note below.
185     };
186     // Note: GEP indices generally traverse nested types, and so a GepNode
187     // (representing a single index) can be associated with some composite
188     // type. The exception is the GEP input, which is a pointer, and not
189     // a composite type (at least not in the sense of having sub-types).
190     // Also, the corresponding index plays a different role as well: it is
191     // simply added to the input pointer. Since pointer types are becoming
192     // opaque (i.e. are no longer going to include the pointee type), the
193     // two pieces of information (1) the fact that it's a pointer, and
194     // (2) the pointee type, need to be stored separately. The pointee type
195     // will be stored in the PTy member, while the fact that the node
196     // operates on a pointer will be reflected by the flag "Pointer".
197 
198     uint32_t Flags = 0;
199     union {
200       GepNode *Parent;
201       Value *BaseVal;
202     };
203     Value *Idx = nullptr;
204     Type *PTy = nullptr;    // Type indexed by this node. For pointer nodes
205                             // this is the "pointee" type, and indexing a
206                             // pointer does not change the type.
207 
208     GepNode() : Parent(nullptr) {}
209     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
210       if (Flags & Root)
211         BaseVal = N->BaseVal;
212       else
213         Parent = N->Parent;
214     }
215 
216     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
217   };
218 
219   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
220     OS << "{ {";
221     bool Comma = false;
222     if (GN.Flags & GepNode::Root) {
223       OS << "root";
224       Comma = true;
225     }
226     if (GN.Flags & GepNode::Internal) {
227       if (Comma)
228         OS << ',';
229       OS << "internal";
230       Comma = true;
231     }
232     if (GN.Flags & GepNode::Used) {
233       if (Comma)
234         OS << ',';
235       OS << "used";
236     }
237     if (GN.Flags & GepNode::InBounds) {
238       if (Comma)
239         OS << ',';
240       OS << "inbounds";
241     }
242     if (GN.Flags & GepNode::Pointer) {
243       if (Comma)
244         OS << ',';
245       OS << "pointer";
246     }
247     OS << "} ";
248     if (GN.Flags & GepNode::Root)
249       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
250     else
251       OS << "Parent:" << GN.Parent;
252 
253     OS << " Idx:";
254     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
255       OS << CI->getValue().getSExtValue();
256     else if (GN.Idx->hasName())
257       OS << GN.Idx->getName();
258     else
259       OS << "<anon> =" << *GN.Idx;
260 
261     OS << " PTy:";
262     if (GN.PTy->isStructTy()) {
263       StructType *STy = cast<StructType>(GN.PTy);
264       if (!STy->isLiteral())
265         OS << GN.PTy->getStructName();
266       else
267         OS << "<anon-struct>:" << *STy;
268     }
269     else
270       OS << *GN.PTy;
271     OS << " }";
272     return OS;
273   }
274 
275   template <typename NodeContainer>
276   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
277     using const_iterator = typename NodeContainer::const_iterator;
278 
279     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
280       OS << *I << ' ' << **I << '\n';
281   }
282 
283   raw_ostream &operator<< (raw_ostream &OS,
284                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
285   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
286     dump_node_container(OS, S);
287     return OS;
288   }
289 
290   raw_ostream &operator<< (raw_ostream &OS,
291                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
292   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
293     for (const auto &I : M) {
294       const UseSet &Us = I.second;
295       OS << I.first << " -> #" << Us.size() << '{';
296       for (const Use *U : Us) {
297         User *R = U->getUser();
298         if (R->hasName())
299           OS << ' ' << R->getName();
300         else
301           OS << " <?>(" << *R << ')';
302       }
303       OS << " }\n";
304     }
305     return OS;
306   }
307 
308   struct in_set {
309     in_set(const NodeSet &S) : NS(S) {}
310 
311     bool operator() (GepNode *N) const {
312       return NS.find(N) != NS.end();
313     }
314 
315   private:
316     const NodeSet &NS;
317   };
318 
319 } // end anonymous namespace
320 
321 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
322   return A.Allocate();
323 }
324 
325 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
326       ValueVect &Order) {
327   // Compute block ordering for a typical DT-based traversal of the flow
328   // graph: "before visiting a block, all of its dominators must have been
329   // visited".
330 
331   Order.push_back(Root);
332   for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
333     getBlockTraversalOrder(DTN->getBlock(), Order);
334 }
335 
336 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
337   // No vector GEPs.
338   if (!GepI->getType()->isPointerTy())
339     return false;
340   // No GEPs without any indices.  (Is this possible?)
341   if (GepI->idx_begin() == GepI->idx_end())
342     return false;
343   return true;
344 }
345 
346 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
347       ValueToNodeMap &NM) {
348   LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
349   GepNode *N = new (*Mem) GepNode;
350   Value *PtrOp = GepI->getPointerOperand();
351   uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
352   ValueToNodeMap::iterator F = NM.find(PtrOp);
353   if (F == NM.end()) {
354     N->BaseVal = PtrOp;
355     N->Flags |= GepNode::Root | InBounds;
356   } else {
357     // If PtrOp was a GEP instruction, it must have already been processed.
358     // The ValueToNodeMap entry for it is the last gep node in the generated
359     // chain. Link to it here.
360     N->Parent = F->second;
361   }
362   N->PTy = GepI->getSourceElementType();
363   N->Flags |= GepNode::Pointer;
364   N->Idx = *GepI->idx_begin();
365 
366   // Collect the list of users of this GEP instruction. Will add it to the
367   // last node created for it.
368   UseSet Us;
369   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
370        UI != UE; ++UI) {
371     // Check if this gep is used by anything other than other geps that
372     // we will process.
373     if (isa<GetElementPtrInst>(*UI)) {
374       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
375       if (isHandledGepForm(UserG))
376         continue;
377     }
378     Us.insert(&UI.getUse());
379   }
380   Nodes.push_back(N);
381   NodeOrder.insert(N);
382 
383   // Skip the first index operand, since it was already handled above. This
384   // dereferences the pointer operand.
385   GepNode *PN = N;
386   Type *PtrTy = GepI->getSourceElementType();
387   for (Use &U : llvm::drop_begin(GepI->indices())) {
388     Value *Op = U;
389     GepNode *Nx = new (*Mem) GepNode;
390     Nx->Parent = PN;  // Link Nx to the previous node.
391     Nx->Flags |= GepNode::Internal | InBounds;
392     Nx->PTy = PtrTy;
393     Nx->Idx = Op;
394     Nodes.push_back(Nx);
395     NodeOrder.insert(Nx);
396     PN = Nx;
397 
398     PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op);
399   }
400 
401   // After last node has been created, update the use information.
402   if (!Us.empty()) {
403     PN->Flags |= GepNode::Used;
404     Uses[PN].insert(Us.begin(), Us.end());
405   }
406 
407   // Link the last node with the originating GEP instruction. This is to
408   // help with linking chained GEP instructions.
409   NM.insert(std::make_pair(GepI, PN));
410 }
411 
412 void HexagonCommonGEP::collect() {
413   // Establish depth-first traversal order of the dominator tree.
414   ValueVect BO;
415   getBlockTraversalOrder(&Fn->front(), BO);
416 
417   // The creation of gep nodes requires DT-traversal. When processing a GEP
418   // instruction that uses another GEP instruction as the base pointer, the
419   // gep node for the base pointer should already exist.
420   ValueToNodeMap NM;
421   for (Value *I : BO) {
422     BasicBlock *B = cast<BasicBlock>(I);
423     for (Instruction &J : *B)
424       if (auto *GepI = dyn_cast<GetElementPtrInst>(&J))
425         if (isHandledGepForm(GepI))
426           processGepInst(GepI, NM);
427   }
428 
429   LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
430 }
431 
432 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
433                               NodeVect &Roots) {
434   for (GepNode *N : Nodes) {
435     if (N->Flags & GepNode::Root) {
436       Roots.push_back(N);
437       continue;
438     }
439     GepNode *PN = N->Parent;
440     NCM[PN].push_back(N);
441   }
442 }
443 
444 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
445                            NodeSet &Nodes) {
446     NodeVect Work;
447     Work.push_back(Root);
448     Nodes.insert(Root);
449 
450     while (!Work.empty()) {
451       NodeVect::iterator First = Work.begin();
452       GepNode *N = *First;
453       Work.erase(First);
454       NodeChildrenMap::iterator CF = NCM.find(N);
455       if (CF != NCM.end()) {
456         llvm::append_range(Work, CF->second);
457         Nodes.insert(CF->second.begin(), CF->second.end());
458       }
459     }
460 }
461 
462 namespace {
463 
464   using NodeSymRel = std::set<NodeSet>;
465   using NodePair = std::pair<GepNode *, GepNode *>;
466   using NodePairSet = std::set<NodePair>;
467 
468 } // end anonymous namespace
469 
470 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
471   for (const NodeSet &S : Rel)
472     if (S.count(N))
473       return &S;
474   return nullptr;
475 }
476 
477   // Create an ordered pair of GepNode pointers. The pair will be used in
478   // determining equality. The only purpose of the ordering is to eliminate
479   // duplication due to the commutativity of equality/non-equality.
480 static NodePair node_pair(GepNode *N1, GepNode *N2) {
481   uintptr_t P1 = reinterpret_cast<uintptr_t>(N1);
482   uintptr_t P2 = reinterpret_cast<uintptr_t>(N2);
483   if (P1 <= P2)
484     return std::make_pair(N1, N2);
485   return std::make_pair(N2, N1);
486 }
487 
488 static unsigned node_hash(GepNode *N) {
489     // Include everything except flags and parent.
490     FoldingSetNodeID ID;
491     ID.AddPointer(N->Idx);
492     ID.AddPointer(N->PTy);
493     return ID.ComputeHash();
494 }
495 
496 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
497                     NodePairSet &Ne) {
498     // Don't cache the result for nodes with different hashes. The hash
499     // comparison is fast enough.
500     if (node_hash(N1) != node_hash(N2))
501       return false;
502 
503     NodePair NP = node_pair(N1, N2);
504     NodePairSet::iterator FEq = Eq.find(NP);
505     if (FEq != Eq.end())
506       return true;
507     NodePairSet::iterator FNe = Ne.find(NP);
508     if (FNe != Ne.end())
509       return false;
510     // Not previously compared.
511     bool Root1 = N1->Flags & GepNode::Root;
512     uint32_t CmpFlags = GepNode::Root | GepNode::Pointer;
513     bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags);
514     NodePair P = node_pair(N1, N2);
515     // If the root/pointer flags have different values, the nodes are
516     // different.
517     // If both nodes are root nodes, but their base pointers differ,
518     // they are different.
519     if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) {
520       Ne.insert(P);
521       return false;
522     }
523     // Here the root/pointer flags are identical, and for root nodes the
524     // base pointers are equal, so the root nodes are equal.
525     // For non-root nodes, compare their parent nodes.
526     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
527       Eq.insert(P);
528       return true;
529     }
530     return false;
531 }
532 
533 void HexagonCommonGEP::common() {
534   // The essence of this commoning is finding gep nodes that are equal.
535   // To do this we need to compare all pairs of nodes. To save time,
536   // first, partition the set of all nodes into sets of potentially equal
537   // nodes, and then compare pairs from within each partition.
538   using NodeSetMap = std::map<unsigned, NodeSet>;
539   NodeSetMap MaybeEq;
540 
541   for (GepNode *N : Nodes) {
542     unsigned H = node_hash(N);
543     MaybeEq[H].insert(N);
544   }
545 
546   // Compute the equivalence relation for the gep nodes.  Use two caches,
547   // one for equality and the other for non-equality.
548   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
549   NodePairSet Eq, Ne;  // Caches.
550   for (auto &I : MaybeEq) {
551     NodeSet &S = I.second;
552     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
553       GepNode *N = *NI;
554       // If node already has a class, then the class must have been created
555       // in a prior iteration of this loop. Since equality is transitive,
556       // nothing more will be added to that class, so skip it.
557       if (node_class(N, EqRel))
558         continue;
559 
560       // Create a new class candidate now.
561       NodeSet C;
562       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
563         if (node_eq(N, *NJ, Eq, Ne))
564           C.insert(*NJ);
565       // If Tmp is empty, N would be the only element in it. Don't bother
566       // creating a class for it then.
567       if (!C.empty()) {
568         C.insert(N);  // Finalize the set before adding it to the relation.
569         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
570         (void)Ins;
571         assert(Ins.second && "Cannot add a class");
572       }
573     }
574   }
575 
576   LLVM_DEBUG({
577     dbgs() << "Gep node equality:\n";
578     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
579       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
580 
581     dbgs() << "Gep equivalence classes:\n";
582     for (const NodeSet &S : EqRel) {
583       dbgs() << '{';
584       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
585         if (J != S.begin())
586           dbgs() << ',';
587         dbgs() << ' ' << *J;
588       }
589       dbgs() << " }\n";
590     }
591   });
592 
593   // Create a projection from a NodeSet to the minimal element in it.
594   using ProjMap = std::map<const NodeSet *, GepNode *>;
595   ProjMap PM;
596   for (const NodeSet &S : EqRel) {
597     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
598     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
599     (void)Ins;
600     assert(Ins.second && "Cannot add minimal element");
601 
602     // Update the min element's flags, and user list.
603     uint32_t Flags = 0;
604     UseSet &MinUs = Uses[Min];
605     for (GepNode *N : S) {
606       uint32_t NF = N->Flags;
607       // If N is used, append all original values of N to the list of
608       // original values of Min.
609       if (NF & GepNode::Used)
610         MinUs.insert(Uses[N].begin(), Uses[N].end());
611       Flags |= NF;
612     }
613     if (MinUs.empty())
614       Uses.erase(Min);
615 
616     // The collected flags should include all the flags from the min element.
617     assert((Min->Flags & Flags) == Min->Flags);
618     Min->Flags = Flags;
619   }
620 
621   // Commoning: for each non-root gep node, replace "Parent" with the
622   // selected (minimum) node from the corresponding equivalence class.
623   // If a given parent does not have an equivalence class, leave it
624   // unchanged (it means that it's the only element in its class).
625   for (GepNode *N : Nodes) {
626     if (N->Flags & GepNode::Root)
627       continue;
628     const NodeSet *PC = node_class(N->Parent, EqRel);
629     if (!PC)
630       continue;
631     ProjMap::iterator F = PM.find(PC);
632     if (F == PM.end())
633       continue;
634     // Found a replacement, use it.
635     GepNode *Rep = F->second;
636     N->Parent = Rep;
637   }
638 
639   LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
640 
641   // Finally, erase the nodes that are no longer used.
642   NodeSet Erase;
643   for (GepNode *N : Nodes) {
644     const NodeSet *PC = node_class(N, EqRel);
645     if (!PC)
646       continue;
647     ProjMap::iterator F = PM.find(PC);
648     if (F == PM.end())
649       continue;
650     if (N == F->second)
651       continue;
652     // Node for removal.
653     Erase.insert(N);
654   }
655   erase_if(Nodes, in_set(Erase));
656 
657   LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
658 }
659 
660 template <typename T>
661 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
662   LLVM_DEBUG({
663     dbgs() << "NCD of {";
664     for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
665          ++I) {
666       if (!*I)
667         continue;
668       BasicBlock *B = cast<BasicBlock>(*I);
669       dbgs() << ' ' << B->getName();
670     }
671     dbgs() << " }\n";
672   });
673 
674   // Allow null basic blocks in Blocks.  In such cases, return nullptr.
675   typename T::iterator I = Blocks.begin(), E = Blocks.end();
676   if (I == E || !*I)
677     return nullptr;
678   BasicBlock *Dom = cast<BasicBlock>(*I);
679   while (++I != E) {
680     BasicBlock *B = cast_or_null<BasicBlock>(*I);
681     Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
682     if (!Dom)
683       return nullptr;
684     }
685     LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
686     return Dom;
687 }
688 
689 template <typename T>
690 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
691     // If two blocks, A and B, dominate a block C, then A dominates B,
692     // or B dominates A.
693     typename T::iterator I = Blocks.begin(), E = Blocks.end();
694     // Find the first non-null block.
695     while (I != E && !*I)
696       ++I;
697     if (I == E)
698       return DT->getRoot();
699     BasicBlock *DomB = cast<BasicBlock>(*I);
700     while (++I != E) {
701       if (!*I)
702         continue;
703       BasicBlock *B = cast<BasicBlock>(*I);
704       if (DT->dominates(B, DomB))
705         continue;
706       if (!DT->dominates(DomB, B))
707         return nullptr;
708       DomB = B;
709     }
710     return DomB;
711 }
712 
713 // Find the first use in B of any value from Values. If no such use,
714 // return B->end().
715 template <typename T>
716 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
717     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
718 
719     using iterator = typename T::iterator;
720 
721     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
722       Value *V = *I;
723       // If V is used in a PHI node, the use belongs to the incoming block,
724       // not the block with the PHI node. In the incoming block, the use
725       // would be considered as being at the end of it, so it cannot
726       // influence the position of the first use (which is assumed to be
727       // at the end to start with).
728       if (isa<PHINode>(V))
729         continue;
730       if (!isa<Instruction>(V))
731         continue;
732       Instruction *In = cast<Instruction>(V);
733       if (In->getParent() != B)
734         continue;
735       BasicBlock::iterator It = In->getIterator();
736       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
737         FirstUse = It;
738     }
739     return FirstUse;
740 }
741 
742 static bool is_empty(const BasicBlock *B) {
743     return B->empty() || (&*B->begin() == B->getTerminator());
744 }
745 
746 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
747       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
748   LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
749   // Recalculate the placement for Node, assuming that the locations of
750   // its children in Loc are valid.
751   // Return nullptr if there is no valid placement for Node (for example, it
752   // uses an index value that is not available at the location required
753   // to dominate all children, etc.).
754 
755   // Find the nearest common dominator for:
756   // - all users, if the node is used, and
757   // - all children.
758   ValueVect Bs;
759   if (Node->Flags & GepNode::Used) {
760     // Append all blocks with uses of the original values to the
761     // block vector Bs.
762     NodeToUsesMap::iterator UF = Uses.find(Node);
763     assert(UF != Uses.end() && "Used node with no use information");
764     UseSet &Us = UF->second;
765     for (Use *U : Us) {
766       User *R = U->getUser();
767       if (!isa<Instruction>(R))
768         continue;
769       BasicBlock *PB = isa<PHINode>(R)
770           ? cast<PHINode>(R)->getIncomingBlock(*U)
771           : cast<Instruction>(R)->getParent();
772       Bs.push_back(PB);
773     }
774   }
775   // Append the location of each child.
776   NodeChildrenMap::iterator CF = NCM.find(Node);
777   if (CF != NCM.end()) {
778     NodeVect &Cs = CF->second;
779     for (GepNode *CN : Cs) {
780       NodeToValueMap::iterator LF = Loc.find(CN);
781       // If the child is only used in GEP instructions (i.e. is not used in
782       // non-GEP instructions), the nearest dominator computed for it may
783       // have been null. In such case it won't have a location available.
784       if (LF == Loc.end())
785         continue;
786       Bs.push_back(LF->second);
787     }
788   }
789 
790   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
791   if (!DomB)
792     return nullptr;
793   // Check if the index used by Node dominates the computed dominator.
794   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
795   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
796     return nullptr;
797 
798   // Avoid putting nodes into empty blocks.
799   while (is_empty(DomB)) {
800     DomTreeNode *N = (*DT)[DomB]->getIDom();
801     if (!N)
802       break;
803     DomB = N->getBlock();
804   }
805 
806   // Otherwise, DomB is fine. Update the location map.
807   Loc[Node] = DomB;
808   return DomB;
809 }
810 
811 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
812       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
813   LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
814   // Recalculate the placement of Node, after recursively recalculating the
815   // placements of all its children.
816   NodeChildrenMap::iterator CF = NCM.find(Node);
817   if (CF != NCM.end()) {
818     NodeVect &Cs = CF->second;
819     for (GepNode *C : Cs)
820       recalculatePlacementRec(C, NCM, Loc);
821   }
822   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
823   LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
824   return LB;
825 }
826 
827 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
828   if (isa<Constant>(Val) || isa<Argument>(Val))
829     return true;
830   Instruction *In = dyn_cast<Instruction>(Val);
831   if (!In)
832     return false;
833   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
834   return DT->properlyDominates(DefB, HdrB);
835 }
836 
837 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
838   if (Node->Flags & GepNode::Root)
839     if (!isInvariantIn(Node->BaseVal, L))
840       return false;
841   return isInvariantIn(Node->Idx, L);
842 }
843 
844 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
845   BasicBlock *HB = L->getHeader();
846   BasicBlock *LB = L->getLoopLatch();
847   // B must post-dominate the loop header or dominate the loop latch.
848   if (PDT->dominates(B, HB))
849     return true;
850   if (LB && DT->dominates(B, LB))
851     return true;
852   return false;
853 }
854 
855 static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
856   if (BasicBlock *PH = L->getLoopPreheader())
857     return PH;
858   if (!OptSpeculate)
859     return nullptr;
860   DomTreeNode *DN = DT->getNode(L->getHeader());
861   if (!DN)
862     return nullptr;
863   return DN->getIDom()->getBlock();
864 }
865 
866 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
867       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
868   // Find the "topmost" location for Node: it must be dominated by both,
869   // its parent (or the BaseVal, if it's a root node), and by the index
870   // value.
871   ValueVect Bs;
872   if (Node->Flags & GepNode::Root) {
873     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
874       Bs.push_back(PIn->getParent());
875   } else {
876     Bs.push_back(Loc[Node->Parent]);
877   }
878   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
879     Bs.push_back(IIn->getParent());
880   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
881 
882   // Traverse the loop nest upwards until we find a loop in which Node
883   // is no longer invariant, or until we get to the upper limit of Node's
884   // placement. The traversal will also stop when a suitable "preheader"
885   // cannot be found for a given loop. The "preheader" may actually be
886   // a regular block outside of the loop (i.e. not guarded), in which case
887   // the Node will be speculated.
888   // For nodes that are not in the main path of the containing loop (i.e.
889   // are not executed in each iteration), do not move them out of the loop.
890   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
891   if (LocB) {
892     Loop *Lp = LI->getLoopFor(LocB);
893     while (Lp) {
894       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
895         break;
896       BasicBlock *NewLoc = preheader(DT, Lp);
897       if (!NewLoc || !DT->dominates(TopB, NewLoc))
898         break;
899       Lp = Lp->getParentLoop();
900       LocB = NewLoc;
901     }
902   }
903   Loc[Node] = LocB;
904 
905   // Recursively compute the locations of all children nodes.
906   NodeChildrenMap::iterator CF = NCM.find(Node);
907   if (CF != NCM.end()) {
908     NodeVect &Cs = CF->second;
909     for (GepNode *C : Cs)
910       adjustForInvariance(C, NCM, Loc);
911   }
912   return LocB;
913 }
914 
915 namespace {
916 
917   struct LocationAsBlock {
918     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
919 
920     const NodeToValueMap &Map;
921   };
922 
923   raw_ostream &operator<< (raw_ostream &OS,
924                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
925   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
926     for (const auto &I : Loc.Map) {
927       OS << I.first << " -> ";
928       if (BasicBlock *B = cast_or_null<BasicBlock>(I.second))
929         OS << B->getName() << '(' << B << ')';
930       else
931         OS << "<null-block>";
932       OS << '\n';
933     }
934     return OS;
935   }
936 
937   inline bool is_constant(GepNode *N) {
938     return isa<ConstantInt>(N->Idx);
939   }
940 
941 } // end anonymous namespace
942 
943 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
944       NodeToValueMap &Loc) {
945   User *R = U->getUser();
946   LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
947                     << '\n');
948   BasicBlock *PB = cast<Instruction>(R)->getParent();
949 
950   GepNode *N = Node;
951   GepNode *C = nullptr, *NewNode = nullptr;
952   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
953     // XXX if (single-use) dont-replicate;
954     GepNode *NewN = new (*Mem) GepNode(N);
955     Nodes.push_back(NewN);
956     Loc[NewN] = PB;
957 
958     if (N == Node)
959       NewNode = NewN;
960     NewN->Flags &= ~GepNode::Used;
961     if (C)
962       C->Parent = NewN;
963     C = NewN;
964     N = N->Parent;
965   }
966   if (!NewNode)
967     return;
968 
969   // Move over all uses that share the same user as U from Node to NewNode.
970   NodeToUsesMap::iterator UF = Uses.find(Node);
971   assert(UF != Uses.end());
972   UseSet &Us = UF->second;
973   UseSet NewUs;
974   for (Use *U : Us) {
975     if (U->getUser() == R)
976       NewUs.insert(U);
977   }
978   for (Use *U : NewUs)
979     Us.remove(U); // erase takes an iterator.
980 
981   if (Us.empty()) {
982     Node->Flags &= ~GepNode::Used;
983     Uses.erase(UF);
984   }
985 
986   // Should at least have U in NewUs.
987   NewNode->Flags |= GepNode::Used;
988   LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
989   assert(!NewUs.empty());
990   Uses[NewNode] = NewUs;
991 }
992 
993 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
994       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
995   // First approximation: extract all chains.
996   NodeSet Ns;
997   nodes_for_root(Node, NCM, Ns);
998 
999   LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1000   // Collect all used nodes together with the uses from loads and stores,
1001   // where the GEP node could be folded into the load/store instruction.
1002   NodeToUsesMap FNs; // Foldable nodes.
1003   for (GepNode *N : Ns) {
1004     if (!(N->Flags & GepNode::Used))
1005       continue;
1006     NodeToUsesMap::iterator UF = Uses.find(N);
1007     assert(UF != Uses.end());
1008     UseSet &Us = UF->second;
1009     // Loads/stores that use the node N.
1010     UseSet LSs;
1011     for (Use *U : Us) {
1012       User *R = U->getUser();
1013       // We're interested in uses that provide the address. It can happen
1014       // that the value may also be provided via GEP, but we won't handle
1015       // those cases here for now.
1016       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1017         unsigned PtrX = LoadInst::getPointerOperandIndex();
1018         if (&Ld->getOperandUse(PtrX) == U)
1019           LSs.insert(U);
1020       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1021         unsigned PtrX = StoreInst::getPointerOperandIndex();
1022         if (&St->getOperandUse(PtrX) == U)
1023           LSs.insert(U);
1024       }
1025     }
1026     // Even if the total use count is 1, separating the chain may still be
1027     // beneficial, since the constant chain may be longer than the GEP alone
1028     // would be (e.g. if the parent node has a constant index and also has
1029     // other children).
1030     if (!LSs.empty())
1031       FNs.insert(std::make_pair(N, LSs));
1032   }
1033 
1034   LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1035 
1036   for (auto &FN : FNs) {
1037     GepNode *N = FN.first;
1038     UseSet &Us = FN.second;
1039     for (Use *U : Us)
1040       separateChainForNode(N, U, Loc);
1041   }
1042 }
1043 
1044 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1045   // Compute the inverse of the Node.Parent links. Also, collect the set
1046   // of root nodes.
1047   NodeChildrenMap NCM;
1048   NodeVect Roots;
1049   invert_find_roots(Nodes, NCM, Roots);
1050 
1051   // Compute the initial placement determined by the users' locations, and
1052   // the locations of the child nodes.
1053   for (GepNode *Root : Roots)
1054     recalculatePlacementRec(Root, NCM, Loc);
1055 
1056   LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1057 
1058   if (OptEnableInv) {
1059     for (GepNode *Root : Roots)
1060       adjustForInvariance(Root, NCM, Loc);
1061 
1062     LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1063                       << LocationAsBlock(Loc));
1064   }
1065   if (OptEnableConst) {
1066     for (GepNode *Root : Roots)
1067       separateConstantChains(Root, NCM, Loc);
1068   }
1069   LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1070 
1071   // At the moment, there is no further refinement of the initial placement.
1072   // Such a refinement could include splitting the nodes if they are placed
1073   // too far from some of its users.
1074 
1075   LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1076 }
1077 
1078 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1079       BasicBlock *LocB) {
1080   LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1081                     << " for nodes:\n"
1082                     << NA);
1083   unsigned Num = NA.size();
1084   GepNode *RN = NA[0];
1085   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1086 
1087   GetElementPtrInst *NewInst = nullptr;
1088   Value *Input = RN->BaseVal;
1089   Type *InpTy = RN->PTy;
1090 
1091   unsigned Idx = 0;
1092   do {
1093     SmallVector<Value*, 4> IdxList;
1094     // If the type of the input of the first node is not a pointer,
1095     // we need to add an artificial i32 0 to the indices (because the
1096     // actual input in the IR will be a pointer).
1097     if (!(NA[Idx]->Flags & GepNode::Pointer)) {
1098       Type *Int32Ty = Type::getInt32Ty(*Ctx);
1099       IdxList.push_back(ConstantInt::get(Int32Ty, 0));
1100     }
1101 
1102     // Keep adding indices from NA until we have to stop and generate
1103     // an "intermediate" GEP.
1104     while (++Idx <= Num) {
1105       GepNode *N = NA[Idx-1];
1106       IdxList.push_back(N->Idx);
1107       if (Idx < Num) {
1108         // We have to stop if we reach a pointer.
1109         if (NA[Idx]->Flags & GepNode::Pointer)
1110           break;
1111       }
1112     }
1113     NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", &*At);
1114     NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1115     LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1116     if (Idx < Num) {
1117       Input = NewInst;
1118       InpTy = NA[Idx]->PTy;
1119     }
1120   } while (Idx <= Num);
1121 
1122   return NewInst;
1123 }
1124 
1125 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1126       NodeChildrenMap &NCM) {
1127   NodeVect Work;
1128   Work.push_back(Node);
1129 
1130   while (!Work.empty()) {
1131     NodeVect::iterator First = Work.begin();
1132     GepNode *N = *First;
1133     Work.erase(First);
1134     if (N->Flags & GepNode::Used) {
1135       NodeToUsesMap::iterator UF = Uses.find(N);
1136       assert(UF != Uses.end() && "No use information for used node");
1137       UseSet &Us = UF->second;
1138       for (const auto &U : Us)
1139         Values.push_back(U->getUser());
1140     }
1141     NodeChildrenMap::iterator CF = NCM.find(N);
1142     if (CF != NCM.end()) {
1143       NodeVect &Cs = CF->second;
1144       llvm::append_range(Work, Cs);
1145     }
1146   }
1147 }
1148 
1149 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1150   LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1151   NodeChildrenMap NCM;
1152   NodeVect Roots;
1153   // Compute the inversion again, since computing placement could alter
1154   // "parent" relation between nodes.
1155   invert_find_roots(Nodes, NCM, Roots);
1156 
1157   while (!Roots.empty()) {
1158     NodeVect::iterator First = Roots.begin();
1159     GepNode *Root = *First, *Last = *First;
1160     Roots.erase(First);
1161 
1162     NodeVect NA;  // Nodes to assemble.
1163     // Append to NA all child nodes up to (and including) the first child
1164     // that:
1165     // (1) has more than 1 child, or
1166     // (2) is used, or
1167     // (3) has a child located in a different block.
1168     bool LastUsed = false;
1169     unsigned LastCN = 0;
1170     // The location may be null if the computation failed (it can legitimately
1171     // happen for nodes created from dead GEPs).
1172     Value *LocV = Loc[Last];
1173     if (!LocV)
1174       continue;
1175     BasicBlock *LastB = cast<BasicBlock>(LocV);
1176     do {
1177       NA.push_back(Last);
1178       LastUsed = (Last->Flags & GepNode::Used);
1179       if (LastUsed)
1180         break;
1181       NodeChildrenMap::iterator CF = NCM.find(Last);
1182       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1183       if (LastCN != 1)
1184         break;
1185       GepNode *Child = CF->second.front();
1186       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1187       if (ChildB != nullptr && LastB != ChildB)
1188         break;
1189       Last = Child;
1190     } while (true);
1191 
1192     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1193     if (LastUsed || LastCN > 0) {
1194       ValueVect Urs;
1195       getAllUsersForNode(Root, Urs, NCM);
1196       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1197       if (FirstUse != LastB->end())
1198         InsertAt = FirstUse;
1199     }
1200 
1201     // Generate a new instruction for NA.
1202     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1203 
1204     // Convert all the children of Last node into roots, and append them
1205     // to the Roots list.
1206     if (LastCN > 0) {
1207       NodeVect &Cs = NCM[Last];
1208       for (GepNode *CN : Cs) {
1209         CN->Flags &= ~GepNode::Internal;
1210         CN->Flags |= GepNode::Root;
1211         CN->BaseVal = NewInst;
1212         Roots.push_back(CN);
1213       }
1214     }
1215 
1216     // Lastly, if the Last node was used, replace all uses with the new GEP.
1217     // The uses reference the original GEP values.
1218     if (LastUsed) {
1219       NodeToUsesMap::iterator UF = Uses.find(Last);
1220       assert(UF != Uses.end() && "No use information found");
1221       UseSet &Us = UF->second;
1222       for (Use *U : Us)
1223         U->set(NewInst);
1224     }
1225   }
1226 }
1227 
1228 void HexagonCommonGEP::removeDeadCode() {
1229   ValueVect BO;
1230   BO.push_back(&Fn->front());
1231 
1232   for (unsigned i = 0; i < BO.size(); ++i) {
1233     BasicBlock *B = cast<BasicBlock>(BO[i]);
1234     for (auto DTN : children<DomTreeNode*>(DT->getNode(B)))
1235       BO.push_back(DTN->getBlock());
1236   }
1237 
1238   for (Value *V : llvm::reverse(BO)) {
1239     BasicBlock *B = cast<BasicBlock>(V);
1240     ValueVect Ins;
1241     for (Instruction &I : llvm::reverse(*B))
1242       Ins.push_back(&I);
1243     for (Value *I : Ins) {
1244       Instruction *In = cast<Instruction>(I);
1245       if (isInstructionTriviallyDead(In))
1246         In->eraseFromParent();
1247     }
1248   }
1249 }
1250 
1251 bool HexagonCommonGEP::runOnFunction(Function &F) {
1252   if (skipFunction(F))
1253     return false;
1254 
1255   // For now bail out on C++ exception handling.
1256   for (const BasicBlock &BB : F)
1257     for (const Instruction &I : BB)
1258       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1259         return false;
1260 
1261   Fn = &F;
1262   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1263   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1264   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1265   Ctx = &F.getContext();
1266 
1267   Nodes.clear();
1268   Uses.clear();
1269   NodeOrder.clear();
1270 
1271   SpecificBumpPtrAllocator<GepNode> Allocator;
1272   Mem = &Allocator;
1273 
1274   collect();
1275   common();
1276 
1277   NodeToValueMap Loc;
1278   computeNodePlacement(Loc);
1279   materialize(Loc);
1280   removeDeadCode();
1281 
1282 #ifdef EXPENSIVE_CHECKS
1283   // Run this only when expensive checks are enabled.
1284   if (verifyFunction(F, &dbgs()))
1285     report_fatal_error("Broken function");
1286 #endif
1287   return true;
1288 }
1289 
1290 namespace llvm {
1291 
1292   FunctionPass *createHexagonCommonGEP() {
1293     return new HexagonCommonGEP();
1294   }
1295 
1296 } // end namespace llvm
1297