1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/PostDominators.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/User.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <cstdint> 44 #include <iterator> 45 #include <map> 46 #include <set> 47 #include <utility> 48 #include <vector> 49 50 #define DEBUG_TYPE "commgep" 51 52 using namespace llvm; 53 54 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 55 cl::Hidden, cl::ZeroOrMore); 56 57 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 58 cl::ZeroOrMore); 59 60 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 61 cl::Hidden, cl::ZeroOrMore); 62 63 namespace llvm { 64 65 void initializeHexagonCommonGEPPass(PassRegistry&); 66 67 } // end namespace llvm 68 69 namespace { 70 71 struct GepNode; 72 using NodeSet = std::set<GepNode *>; 73 using NodeToValueMap = std::map<GepNode *, Value *>; 74 using NodeVect = std::vector<GepNode *>; 75 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 76 using UseSet = SetVector<Use *>; 77 using NodeToUsesMap = std::map<GepNode *, UseSet>; 78 79 // Numbering map for gep nodes. Used to keep track of ordering for 80 // gep nodes. 81 struct NodeOrdering { 82 NodeOrdering() = default; 83 84 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 85 void clear() { Map.clear(); } 86 87 bool operator()(const GepNode *N1, const GepNode *N2) const { 88 auto F1 = Map.find(N1), F2 = Map.find(N2); 89 assert(F1 != Map.end() && F2 != Map.end()); 90 return F1->second < F2->second; 91 } 92 93 private: 94 std::map<const GepNode *, unsigned> Map; 95 unsigned LastNum = 0; 96 }; 97 98 class HexagonCommonGEP : public FunctionPass { 99 public: 100 static char ID; 101 102 HexagonCommonGEP() : FunctionPass(ID) { 103 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnFunction(Function &F) override; 107 StringRef getPassName() const override { return "Hexagon Common GEP"; } 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addPreserved<DominatorTreeWrapperPass>(); 112 AU.addRequired<PostDominatorTreeWrapperPass>(); 113 AU.addPreserved<PostDominatorTreeWrapperPass>(); 114 AU.addRequired<LoopInfoWrapperPass>(); 115 AU.addPreserved<LoopInfoWrapperPass>(); 116 FunctionPass::getAnalysisUsage(AU); 117 } 118 119 private: 120 using ValueToNodeMap = std::map<Value *, GepNode *>; 121 using ValueVect = std::vector<Value *>; 122 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 123 124 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 125 bool isHandledGepForm(GetElementPtrInst *GepI); 126 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 127 void collect(); 128 void common(); 129 130 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 131 NodeToValueMap &Loc); 132 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 133 NodeToValueMap &Loc); 134 bool isInvariantIn(Value *Val, Loop *L); 135 bool isInvariantIn(GepNode *Node, Loop *L); 136 bool isInMainPath(BasicBlock *B, Loop *L); 137 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 138 NodeToValueMap &Loc); 139 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 140 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 141 NodeToValueMap &Loc); 142 void computeNodePlacement(NodeToValueMap &Loc); 143 144 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 145 BasicBlock *LocB); 146 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 147 NodeChildrenMap &NCM); 148 void materialize(NodeToValueMap &Loc); 149 150 void removeDeadCode(); 151 152 NodeVect Nodes; 153 NodeToUsesMap Uses; 154 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 155 SpecificBumpPtrAllocator<GepNode> *Mem; 156 LLVMContext *Ctx; 157 LoopInfo *LI; 158 DominatorTree *DT; 159 PostDominatorTree *PDT; 160 Function *Fn; 161 }; 162 163 } // end anonymous namespace 164 165 char HexagonCommonGEP::ID = 0; 166 167 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 168 false, false) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 172 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 173 false, false) 174 175 namespace { 176 177 struct GepNode { 178 enum { 179 None = 0, 180 Root = 0x01, 181 Internal = 0x02, 182 Used = 0x04, 183 InBounds = 0x08, 184 Pointer = 0x10, // See note below. 185 }; 186 // Note: GEP indices generally traverse nested types, and so a GepNode 187 // (representing a single index) can be associated with some composite 188 // type. The exception is the GEP input, which is a pointer, and not 189 // a composite type (at least not in the sense of having sub-types). 190 // Also, the corresponding index plays a different role as well: it is 191 // simply added to the input pointer. Since pointer types are becoming 192 // opaque (i.e. are no longer going to include the pointee type), the 193 // two pieces of information (1) the fact that it's a pointer, and 194 // (2) the pointee type, need to be stored separately. The pointee type 195 // will be stored in the PTy member, while the fact that the node 196 // operates on a pointer will be reflected by the flag "Pointer". 197 198 uint32_t Flags = 0; 199 union { 200 GepNode *Parent; 201 Value *BaseVal; 202 }; 203 Value *Idx = nullptr; 204 Type *PTy = nullptr; // Type indexed by this node. For pointer nodes 205 // this is the "pointee" type, and indexing a 206 // pointer does not change the type. 207 208 GepNode() : Parent(nullptr) {} 209 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 210 if (Flags & Root) 211 BaseVal = N->BaseVal; 212 else 213 Parent = N->Parent; 214 } 215 216 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 217 }; 218 219 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 220 OS << "{ {"; 221 bool Comma = false; 222 if (GN.Flags & GepNode::Root) { 223 OS << "root"; 224 Comma = true; 225 } 226 if (GN.Flags & GepNode::Internal) { 227 if (Comma) 228 OS << ','; 229 OS << "internal"; 230 Comma = true; 231 } 232 if (GN.Flags & GepNode::Used) { 233 if (Comma) 234 OS << ','; 235 OS << "used"; 236 } 237 if (GN.Flags & GepNode::InBounds) { 238 if (Comma) 239 OS << ','; 240 OS << "inbounds"; 241 } 242 if (GN.Flags & GepNode::Pointer) { 243 if (Comma) 244 OS << ','; 245 OS << "pointer"; 246 } 247 OS << "} "; 248 if (GN.Flags & GepNode::Root) 249 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 250 else 251 OS << "Parent:" << GN.Parent; 252 253 OS << " Idx:"; 254 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 255 OS << CI->getValue().getSExtValue(); 256 else if (GN.Idx->hasName()) 257 OS << GN.Idx->getName(); 258 else 259 OS << "<anon> =" << *GN.Idx; 260 261 OS << " PTy:"; 262 if (GN.PTy->isStructTy()) { 263 StructType *STy = cast<StructType>(GN.PTy); 264 if (!STy->isLiteral()) 265 OS << GN.PTy->getStructName(); 266 else 267 OS << "<anon-struct>:" << *STy; 268 } 269 else 270 OS << *GN.PTy; 271 OS << " }"; 272 return OS; 273 } 274 275 template <typename NodeContainer> 276 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 277 using const_iterator = typename NodeContainer::const_iterator; 278 279 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 280 OS << *I << ' ' << **I << '\n'; 281 } 282 283 raw_ostream &operator<< (raw_ostream &OS, 284 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 285 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 286 dump_node_container(OS, S); 287 return OS; 288 } 289 290 raw_ostream &operator<< (raw_ostream &OS, 291 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 292 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 293 using const_iterator = NodeToUsesMap::const_iterator; 294 295 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 296 const UseSet &Us = I->second; 297 OS << I->first << " -> #" << Us.size() << '{'; 298 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 299 User *R = (*J)->getUser(); 300 if (R->hasName()) 301 OS << ' ' << R->getName(); 302 else 303 OS << " <?>(" << *R << ')'; 304 } 305 OS << " }\n"; 306 } 307 return OS; 308 } 309 310 struct in_set { 311 in_set(const NodeSet &S) : NS(S) {} 312 313 bool operator() (GepNode *N) const { 314 return NS.find(N) != NS.end(); 315 } 316 317 private: 318 const NodeSet &NS; 319 }; 320 321 } // end anonymous namespace 322 323 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 324 return A.Allocate(); 325 } 326 327 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 328 ValueVect &Order) { 329 // Compute block ordering for a typical DT-based traversal of the flow 330 // graph: "before visiting a block, all of its dominators must have been 331 // visited". 332 333 Order.push_back(Root); 334 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 335 getBlockTraversalOrder(DTN->getBlock(), Order); 336 } 337 338 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 339 // No vector GEPs. 340 if (!GepI->getType()->isPointerTy()) 341 return false; 342 // No GEPs without any indices. (Is this possible?) 343 if (GepI->idx_begin() == GepI->idx_end()) 344 return false; 345 return true; 346 } 347 348 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 349 ValueToNodeMap &NM) { 350 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 351 GepNode *N = new (*Mem) GepNode; 352 Value *PtrOp = GepI->getPointerOperand(); 353 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 354 ValueToNodeMap::iterator F = NM.find(PtrOp); 355 if (F == NM.end()) { 356 N->BaseVal = PtrOp; 357 N->Flags |= GepNode::Root | InBounds; 358 } else { 359 // If PtrOp was a GEP instruction, it must have already been processed. 360 // The ValueToNodeMap entry for it is the last gep node in the generated 361 // chain. Link to it here. 362 N->Parent = F->second; 363 } 364 N->PTy = GepI->getSourceElementType(); 365 N->Flags |= GepNode::Pointer; 366 N->Idx = *GepI->idx_begin(); 367 368 // Collect the list of users of this GEP instruction. Will add it to the 369 // last node created for it. 370 UseSet Us; 371 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 372 UI != UE; ++UI) { 373 // Check if this gep is used by anything other than other geps that 374 // we will process. 375 if (isa<GetElementPtrInst>(*UI)) { 376 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 377 if (isHandledGepForm(UserG)) 378 continue; 379 } 380 Us.insert(&UI.getUse()); 381 } 382 Nodes.push_back(N); 383 NodeOrder.insert(N); 384 385 // Skip the first index operand, since it was already handled above. This 386 // dereferences the pointer operand. 387 GepNode *PN = N; 388 Type *PtrTy = GepI->getSourceElementType(); 389 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); 390 OI != OE; ++OI) { 391 Value *Op = *OI; 392 GepNode *Nx = new (*Mem) GepNode; 393 Nx->Parent = PN; // Link Nx to the previous node. 394 Nx->Flags |= GepNode::Internal | InBounds; 395 Nx->PTy = PtrTy; 396 Nx->Idx = Op; 397 Nodes.push_back(Nx); 398 NodeOrder.insert(Nx); 399 PN = Nx; 400 401 PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op); 402 } 403 404 // After last node has been created, update the use information. 405 if (!Us.empty()) { 406 PN->Flags |= GepNode::Used; 407 Uses[PN].insert(Us.begin(), Us.end()); 408 } 409 410 // Link the last node with the originating GEP instruction. This is to 411 // help with linking chained GEP instructions. 412 NM.insert(std::make_pair(GepI, PN)); 413 } 414 415 void HexagonCommonGEP::collect() { 416 // Establish depth-first traversal order of the dominator tree. 417 ValueVect BO; 418 getBlockTraversalOrder(&Fn->front(), BO); 419 420 // The creation of gep nodes requires DT-traversal. When processing a GEP 421 // instruction that uses another GEP instruction as the base pointer, the 422 // gep node for the base pointer should already exist. 423 ValueToNodeMap NM; 424 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { 425 BasicBlock *B = cast<BasicBlock>(*I); 426 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { 427 if (!isa<GetElementPtrInst>(J)) 428 continue; 429 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); 430 if (isHandledGepForm(GepI)) 431 processGepInst(GepI, NM); 432 } 433 } 434 435 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 436 } 437 438 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 439 NodeVect &Roots) { 440 using const_iterator = NodeVect::const_iterator; 441 442 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 443 GepNode *N = *I; 444 if (N->Flags & GepNode::Root) { 445 Roots.push_back(N); 446 continue; 447 } 448 GepNode *PN = N->Parent; 449 NCM[PN].push_back(N); 450 } 451 } 452 453 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 454 NodeSet &Nodes) { 455 NodeVect Work; 456 Work.push_back(Root); 457 Nodes.insert(Root); 458 459 while (!Work.empty()) { 460 NodeVect::iterator First = Work.begin(); 461 GepNode *N = *First; 462 Work.erase(First); 463 NodeChildrenMap::iterator CF = NCM.find(N); 464 if (CF != NCM.end()) { 465 llvm::append_range(Work, CF->second); 466 Nodes.insert(CF->second.begin(), CF->second.end()); 467 } 468 } 469 } 470 471 namespace { 472 473 using NodeSymRel = std::set<NodeSet>; 474 using NodePair = std::pair<GepNode *, GepNode *>; 475 using NodePairSet = std::set<NodePair>; 476 477 } // end anonymous namespace 478 479 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 480 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) 481 if (I->count(N)) 482 return &*I; 483 return nullptr; 484 } 485 486 // Create an ordered pair of GepNode pointers. The pair will be used in 487 // determining equality. The only purpose of the ordering is to eliminate 488 // duplication due to the commutativity of equality/non-equality. 489 static NodePair node_pair(GepNode *N1, GepNode *N2) { 490 uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); 491 uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); 492 if (P1 <= P2) 493 return std::make_pair(N1, N2); 494 return std::make_pair(N2, N1); 495 } 496 497 static unsigned node_hash(GepNode *N) { 498 // Include everything except flags and parent. 499 FoldingSetNodeID ID; 500 ID.AddPointer(N->Idx); 501 ID.AddPointer(N->PTy); 502 return ID.ComputeHash(); 503 } 504 505 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 506 NodePairSet &Ne) { 507 // Don't cache the result for nodes with different hashes. The hash 508 // comparison is fast enough. 509 if (node_hash(N1) != node_hash(N2)) 510 return false; 511 512 NodePair NP = node_pair(N1, N2); 513 NodePairSet::iterator FEq = Eq.find(NP); 514 if (FEq != Eq.end()) 515 return true; 516 NodePairSet::iterator FNe = Ne.find(NP); 517 if (FNe != Ne.end()) 518 return false; 519 // Not previously compared. 520 bool Root1 = N1->Flags & GepNode::Root; 521 uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; 522 bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); 523 NodePair P = node_pair(N1, N2); 524 // If the root/pointer flags have different values, the nodes are 525 // different. 526 // If both nodes are root nodes, but their base pointers differ, 527 // they are different. 528 if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { 529 Ne.insert(P); 530 return false; 531 } 532 // Here the root/pointer flags are identical, and for root nodes the 533 // base pointers are equal, so the root nodes are equal. 534 // For non-root nodes, compare their parent nodes. 535 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 536 Eq.insert(P); 537 return true; 538 } 539 return false; 540 } 541 542 void HexagonCommonGEP::common() { 543 // The essence of this commoning is finding gep nodes that are equal. 544 // To do this we need to compare all pairs of nodes. To save time, 545 // first, partition the set of all nodes into sets of potentially equal 546 // nodes, and then compare pairs from within each partition. 547 using NodeSetMap = std::map<unsigned, NodeSet>; 548 NodeSetMap MaybeEq; 549 550 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 551 GepNode *N = *I; 552 unsigned H = node_hash(N); 553 MaybeEq[H].insert(N); 554 } 555 556 // Compute the equivalence relation for the gep nodes. Use two caches, 557 // one for equality and the other for non-equality. 558 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 559 NodePairSet Eq, Ne; // Caches. 560 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); 561 I != E; ++I) { 562 NodeSet &S = I->second; 563 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 564 GepNode *N = *NI; 565 // If node already has a class, then the class must have been created 566 // in a prior iteration of this loop. Since equality is transitive, 567 // nothing more will be added to that class, so skip it. 568 if (node_class(N, EqRel)) 569 continue; 570 571 // Create a new class candidate now. 572 NodeSet C; 573 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 574 if (node_eq(N, *NJ, Eq, Ne)) 575 C.insert(*NJ); 576 // If Tmp is empty, N would be the only element in it. Don't bother 577 // creating a class for it then. 578 if (!C.empty()) { 579 C.insert(N); // Finalize the set before adding it to the relation. 580 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 581 (void)Ins; 582 assert(Ins.second && "Cannot add a class"); 583 } 584 } 585 } 586 587 LLVM_DEBUG({ 588 dbgs() << "Gep node equality:\n"; 589 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 590 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 591 592 dbgs() << "Gep equivalence classes:\n"; 593 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 594 dbgs() << '{'; 595 const NodeSet &S = *I; 596 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 597 if (J != S.begin()) 598 dbgs() << ','; 599 dbgs() << ' ' << *J; 600 } 601 dbgs() << " }\n"; 602 } 603 }); 604 605 // Create a projection from a NodeSet to the minimal element in it. 606 using ProjMap = std::map<const NodeSet *, GepNode *>; 607 ProjMap PM; 608 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 609 const NodeSet &S = *I; 610 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 611 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 612 (void)Ins; 613 assert(Ins.second && "Cannot add minimal element"); 614 615 // Update the min element's flags, and user list. 616 uint32_t Flags = 0; 617 UseSet &MinUs = Uses[Min]; 618 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { 619 GepNode *N = *J; 620 uint32_t NF = N->Flags; 621 // If N is used, append all original values of N to the list of 622 // original values of Min. 623 if (NF & GepNode::Used) 624 MinUs.insert(Uses[N].begin(), Uses[N].end()); 625 Flags |= NF; 626 } 627 if (MinUs.empty()) 628 Uses.erase(Min); 629 630 // The collected flags should include all the flags from the min element. 631 assert((Min->Flags & Flags) == Min->Flags); 632 Min->Flags = Flags; 633 } 634 635 // Commoning: for each non-root gep node, replace "Parent" with the 636 // selected (minimum) node from the corresponding equivalence class. 637 // If a given parent does not have an equivalence class, leave it 638 // unchanged (it means that it's the only element in its class). 639 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 640 GepNode *N = *I; 641 if (N->Flags & GepNode::Root) 642 continue; 643 const NodeSet *PC = node_class(N->Parent, EqRel); 644 if (!PC) 645 continue; 646 ProjMap::iterator F = PM.find(PC); 647 if (F == PM.end()) 648 continue; 649 // Found a replacement, use it. 650 GepNode *Rep = F->second; 651 N->Parent = Rep; 652 } 653 654 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 655 656 // Finally, erase the nodes that are no longer used. 657 NodeSet Erase; 658 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 659 GepNode *N = *I; 660 const NodeSet *PC = node_class(N, EqRel); 661 if (!PC) 662 continue; 663 ProjMap::iterator F = PM.find(PC); 664 if (F == PM.end()) 665 continue; 666 if (N == F->second) 667 continue; 668 // Node for removal. 669 Erase.insert(*I); 670 } 671 erase_if(Nodes, in_set(Erase)); 672 673 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 674 } 675 676 template <typename T> 677 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 678 LLVM_DEBUG({ 679 dbgs() << "NCD of {"; 680 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 681 ++I) { 682 if (!*I) 683 continue; 684 BasicBlock *B = cast<BasicBlock>(*I); 685 dbgs() << ' ' << B->getName(); 686 } 687 dbgs() << " }\n"; 688 }); 689 690 // Allow null basic blocks in Blocks. In such cases, return nullptr. 691 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 692 if (I == E || !*I) 693 return nullptr; 694 BasicBlock *Dom = cast<BasicBlock>(*I); 695 while (++I != E) { 696 BasicBlock *B = cast_or_null<BasicBlock>(*I); 697 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 698 if (!Dom) 699 return nullptr; 700 } 701 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 702 return Dom; 703 } 704 705 template <typename T> 706 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 707 // If two blocks, A and B, dominate a block C, then A dominates B, 708 // or B dominates A. 709 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 710 // Find the first non-null block. 711 while (I != E && !*I) 712 ++I; 713 if (I == E) 714 return DT->getRoot(); 715 BasicBlock *DomB = cast<BasicBlock>(*I); 716 while (++I != E) { 717 if (!*I) 718 continue; 719 BasicBlock *B = cast<BasicBlock>(*I); 720 if (DT->dominates(B, DomB)) 721 continue; 722 if (!DT->dominates(DomB, B)) 723 return nullptr; 724 DomB = B; 725 } 726 return DomB; 727 } 728 729 // Find the first use in B of any value from Values. If no such use, 730 // return B->end(). 731 template <typename T> 732 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 733 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 734 735 using iterator = typename T::iterator; 736 737 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 738 Value *V = *I; 739 // If V is used in a PHI node, the use belongs to the incoming block, 740 // not the block with the PHI node. In the incoming block, the use 741 // would be considered as being at the end of it, so it cannot 742 // influence the position of the first use (which is assumed to be 743 // at the end to start with). 744 if (isa<PHINode>(V)) 745 continue; 746 if (!isa<Instruction>(V)) 747 continue; 748 Instruction *In = cast<Instruction>(V); 749 if (In->getParent() != B) 750 continue; 751 BasicBlock::iterator It = In->getIterator(); 752 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 753 FirstUse = It; 754 } 755 return FirstUse; 756 } 757 758 static bool is_empty(const BasicBlock *B) { 759 return B->empty() || (&*B->begin() == B->getTerminator()); 760 } 761 762 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 763 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 764 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 765 // Recalculate the placement for Node, assuming that the locations of 766 // its children in Loc are valid. 767 // Return nullptr if there is no valid placement for Node (for example, it 768 // uses an index value that is not available at the location required 769 // to dominate all children, etc.). 770 771 // Find the nearest common dominator for: 772 // - all users, if the node is used, and 773 // - all children. 774 ValueVect Bs; 775 if (Node->Flags & GepNode::Used) { 776 // Append all blocks with uses of the original values to the 777 // block vector Bs. 778 NodeToUsesMap::iterator UF = Uses.find(Node); 779 assert(UF != Uses.end() && "Used node with no use information"); 780 UseSet &Us = UF->second; 781 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 782 Use *U = *I; 783 User *R = U->getUser(); 784 if (!isa<Instruction>(R)) 785 continue; 786 BasicBlock *PB = isa<PHINode>(R) 787 ? cast<PHINode>(R)->getIncomingBlock(*U) 788 : cast<Instruction>(R)->getParent(); 789 Bs.push_back(PB); 790 } 791 } 792 // Append the location of each child. 793 NodeChildrenMap::iterator CF = NCM.find(Node); 794 if (CF != NCM.end()) { 795 NodeVect &Cs = CF->second; 796 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 797 GepNode *CN = *I; 798 NodeToValueMap::iterator LF = Loc.find(CN); 799 // If the child is only used in GEP instructions (i.e. is not used in 800 // non-GEP instructions), the nearest dominator computed for it may 801 // have been null. In such case it won't have a location available. 802 if (LF == Loc.end()) 803 continue; 804 Bs.push_back(LF->second); 805 } 806 } 807 808 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 809 if (!DomB) 810 return nullptr; 811 // Check if the index used by Node dominates the computed dominator. 812 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 813 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 814 return nullptr; 815 816 // Avoid putting nodes into empty blocks. 817 while (is_empty(DomB)) { 818 DomTreeNode *N = (*DT)[DomB]->getIDom(); 819 if (!N) 820 break; 821 DomB = N->getBlock(); 822 } 823 824 // Otherwise, DomB is fine. Update the location map. 825 Loc[Node] = DomB; 826 return DomB; 827 } 828 829 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 830 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 831 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 832 // Recalculate the placement of Node, after recursively recalculating the 833 // placements of all its children. 834 NodeChildrenMap::iterator CF = NCM.find(Node); 835 if (CF != NCM.end()) { 836 NodeVect &Cs = CF->second; 837 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 838 recalculatePlacementRec(*I, NCM, Loc); 839 } 840 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 841 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 842 return LB; 843 } 844 845 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 846 if (isa<Constant>(Val) || isa<Argument>(Val)) 847 return true; 848 Instruction *In = dyn_cast<Instruction>(Val); 849 if (!In) 850 return false; 851 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 852 return DT->properlyDominates(DefB, HdrB); 853 } 854 855 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 856 if (Node->Flags & GepNode::Root) 857 if (!isInvariantIn(Node->BaseVal, L)) 858 return false; 859 return isInvariantIn(Node->Idx, L); 860 } 861 862 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 863 BasicBlock *HB = L->getHeader(); 864 BasicBlock *LB = L->getLoopLatch(); 865 // B must post-dominate the loop header or dominate the loop latch. 866 if (PDT->dominates(B, HB)) 867 return true; 868 if (LB && DT->dominates(B, LB)) 869 return true; 870 return false; 871 } 872 873 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 874 if (BasicBlock *PH = L->getLoopPreheader()) 875 return PH; 876 if (!OptSpeculate) 877 return nullptr; 878 DomTreeNode *DN = DT->getNode(L->getHeader()); 879 if (!DN) 880 return nullptr; 881 return DN->getIDom()->getBlock(); 882 } 883 884 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 885 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 886 // Find the "topmost" location for Node: it must be dominated by both, 887 // its parent (or the BaseVal, if it's a root node), and by the index 888 // value. 889 ValueVect Bs; 890 if (Node->Flags & GepNode::Root) { 891 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 892 Bs.push_back(PIn->getParent()); 893 } else { 894 Bs.push_back(Loc[Node->Parent]); 895 } 896 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 897 Bs.push_back(IIn->getParent()); 898 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 899 900 // Traverse the loop nest upwards until we find a loop in which Node 901 // is no longer invariant, or until we get to the upper limit of Node's 902 // placement. The traversal will also stop when a suitable "preheader" 903 // cannot be found for a given loop. The "preheader" may actually be 904 // a regular block outside of the loop (i.e. not guarded), in which case 905 // the Node will be speculated. 906 // For nodes that are not in the main path of the containing loop (i.e. 907 // are not executed in each iteration), do not move them out of the loop. 908 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 909 if (LocB) { 910 Loop *Lp = LI->getLoopFor(LocB); 911 while (Lp) { 912 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 913 break; 914 BasicBlock *NewLoc = preheader(DT, Lp); 915 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 916 break; 917 Lp = Lp->getParentLoop(); 918 LocB = NewLoc; 919 } 920 } 921 Loc[Node] = LocB; 922 923 // Recursively compute the locations of all children nodes. 924 NodeChildrenMap::iterator CF = NCM.find(Node); 925 if (CF != NCM.end()) { 926 NodeVect &Cs = CF->second; 927 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 928 adjustForInvariance(*I, NCM, Loc); 929 } 930 return LocB; 931 } 932 933 namespace { 934 935 struct LocationAsBlock { 936 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 937 938 const NodeToValueMap ⤅ 939 }; 940 941 raw_ostream &operator<< (raw_ostream &OS, 942 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 943 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 944 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); 945 I != E; ++I) { 946 OS << I->first << " -> "; 947 if (BasicBlock *B = cast_or_null<BasicBlock>(I->second)) 948 OS << B->getName() << '(' << B << ')'; 949 else 950 OS << "<null-block>"; 951 OS << '\n'; 952 } 953 return OS; 954 } 955 956 inline bool is_constant(GepNode *N) { 957 return isa<ConstantInt>(N->Idx); 958 } 959 960 } // end anonymous namespace 961 962 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 963 NodeToValueMap &Loc) { 964 User *R = U->getUser(); 965 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 966 << '\n'); 967 BasicBlock *PB = cast<Instruction>(R)->getParent(); 968 969 GepNode *N = Node; 970 GepNode *C = nullptr, *NewNode = nullptr; 971 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 972 // XXX if (single-use) dont-replicate; 973 GepNode *NewN = new (*Mem) GepNode(N); 974 Nodes.push_back(NewN); 975 Loc[NewN] = PB; 976 977 if (N == Node) 978 NewNode = NewN; 979 NewN->Flags &= ~GepNode::Used; 980 if (C) 981 C->Parent = NewN; 982 C = NewN; 983 N = N->Parent; 984 } 985 if (!NewNode) 986 return; 987 988 // Move over all uses that share the same user as U from Node to NewNode. 989 NodeToUsesMap::iterator UF = Uses.find(Node); 990 assert(UF != Uses.end()); 991 UseSet &Us = UF->second; 992 UseSet NewUs; 993 for (Use *U : Us) { 994 if (U->getUser() == R) 995 NewUs.insert(U); 996 } 997 for (Use *U : NewUs) 998 Us.remove(U); // erase takes an iterator. 999 1000 if (Us.empty()) { 1001 Node->Flags &= ~GepNode::Used; 1002 Uses.erase(UF); 1003 } 1004 1005 // Should at least have U in NewUs. 1006 NewNode->Flags |= GepNode::Used; 1007 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 1008 assert(!NewUs.empty()); 1009 Uses[NewNode] = NewUs; 1010 } 1011 1012 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 1013 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 1014 // First approximation: extract all chains. 1015 NodeSet Ns; 1016 nodes_for_root(Node, NCM, Ns); 1017 1018 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1019 // Collect all used nodes together with the uses from loads and stores, 1020 // where the GEP node could be folded into the load/store instruction. 1021 NodeToUsesMap FNs; // Foldable nodes. 1022 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { 1023 GepNode *N = *I; 1024 if (!(N->Flags & GepNode::Used)) 1025 continue; 1026 NodeToUsesMap::iterator UF = Uses.find(N); 1027 assert(UF != Uses.end()); 1028 UseSet &Us = UF->second; 1029 // Loads/stores that use the node N. 1030 UseSet LSs; 1031 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 1032 Use *U = *J; 1033 User *R = U->getUser(); 1034 // We're interested in uses that provide the address. It can happen 1035 // that the value may also be provided via GEP, but we won't handle 1036 // those cases here for now. 1037 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1038 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1039 if (&Ld->getOperandUse(PtrX) == U) 1040 LSs.insert(U); 1041 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1042 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1043 if (&St->getOperandUse(PtrX) == U) 1044 LSs.insert(U); 1045 } 1046 } 1047 // Even if the total use count is 1, separating the chain may still be 1048 // beneficial, since the constant chain may be longer than the GEP alone 1049 // would be (e.g. if the parent node has a constant index and also has 1050 // other children). 1051 if (!LSs.empty()) 1052 FNs.insert(std::make_pair(N, LSs)); 1053 } 1054 1055 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1056 1057 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { 1058 GepNode *N = I->first; 1059 UseSet &Us = I->second; 1060 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) 1061 separateChainForNode(N, *J, Loc); 1062 } 1063 } 1064 1065 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1066 // Compute the inverse of the Node.Parent links. Also, collect the set 1067 // of root nodes. 1068 NodeChildrenMap NCM; 1069 NodeVect Roots; 1070 invert_find_roots(Nodes, NCM, Roots); 1071 1072 // Compute the initial placement determined by the users' locations, and 1073 // the locations of the child nodes. 1074 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1075 recalculatePlacementRec(*I, NCM, Loc); 1076 1077 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1078 1079 if (OptEnableInv) { 1080 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1081 adjustForInvariance(*I, NCM, Loc); 1082 1083 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1084 << LocationAsBlock(Loc)); 1085 } 1086 if (OptEnableConst) { 1087 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1088 separateConstantChains(*I, NCM, Loc); 1089 } 1090 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1091 1092 // At the moment, there is no further refinement of the initial placement. 1093 // Such a refinement could include splitting the nodes if they are placed 1094 // too far from some of its users. 1095 1096 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1097 } 1098 1099 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1100 BasicBlock *LocB) { 1101 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1102 << " for nodes:\n" 1103 << NA); 1104 unsigned Num = NA.size(); 1105 GepNode *RN = NA[0]; 1106 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1107 1108 GetElementPtrInst *NewInst = nullptr; 1109 Value *Input = RN->BaseVal; 1110 Type *InpTy = RN->PTy; 1111 1112 unsigned Idx = 0; 1113 do { 1114 SmallVector<Value*, 4> IdxList; 1115 // If the type of the input of the first node is not a pointer, 1116 // we need to add an artificial i32 0 to the indices (because the 1117 // actual input in the IR will be a pointer). 1118 if (!(NA[Idx]->Flags & GepNode::Pointer)) { 1119 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1120 IdxList.push_back(ConstantInt::get(Int32Ty, 0)); 1121 } 1122 1123 // Keep adding indices from NA until we have to stop and generate 1124 // an "intermediate" GEP. 1125 while (++Idx <= Num) { 1126 GepNode *N = NA[Idx-1]; 1127 IdxList.push_back(N->Idx); 1128 if (Idx < Num) { 1129 // We have to stop if we reach a pointer. 1130 if (NA[Idx]->Flags & GepNode::Pointer) 1131 break; 1132 } 1133 } 1134 NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", &*At); 1135 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1136 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1137 if (Idx < Num) { 1138 Input = NewInst; 1139 InpTy = NA[Idx]->PTy; 1140 } 1141 } while (Idx <= Num); 1142 1143 return NewInst; 1144 } 1145 1146 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1147 NodeChildrenMap &NCM) { 1148 NodeVect Work; 1149 Work.push_back(Node); 1150 1151 while (!Work.empty()) { 1152 NodeVect::iterator First = Work.begin(); 1153 GepNode *N = *First; 1154 Work.erase(First); 1155 if (N->Flags & GepNode::Used) { 1156 NodeToUsesMap::iterator UF = Uses.find(N); 1157 assert(UF != Uses.end() && "No use information for used node"); 1158 UseSet &Us = UF->second; 1159 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) 1160 Values.push_back((*I)->getUser()); 1161 } 1162 NodeChildrenMap::iterator CF = NCM.find(N); 1163 if (CF != NCM.end()) { 1164 NodeVect &Cs = CF->second; 1165 llvm::append_range(Work, Cs); 1166 } 1167 } 1168 } 1169 1170 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1171 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1172 NodeChildrenMap NCM; 1173 NodeVect Roots; 1174 // Compute the inversion again, since computing placement could alter 1175 // "parent" relation between nodes. 1176 invert_find_roots(Nodes, NCM, Roots); 1177 1178 while (!Roots.empty()) { 1179 NodeVect::iterator First = Roots.begin(); 1180 GepNode *Root = *First, *Last = *First; 1181 Roots.erase(First); 1182 1183 NodeVect NA; // Nodes to assemble. 1184 // Append to NA all child nodes up to (and including) the first child 1185 // that: 1186 // (1) has more than 1 child, or 1187 // (2) is used, or 1188 // (3) has a child located in a different block. 1189 bool LastUsed = false; 1190 unsigned LastCN = 0; 1191 // The location may be null if the computation failed (it can legitimately 1192 // happen for nodes created from dead GEPs). 1193 Value *LocV = Loc[Last]; 1194 if (!LocV) 1195 continue; 1196 BasicBlock *LastB = cast<BasicBlock>(LocV); 1197 do { 1198 NA.push_back(Last); 1199 LastUsed = (Last->Flags & GepNode::Used); 1200 if (LastUsed) 1201 break; 1202 NodeChildrenMap::iterator CF = NCM.find(Last); 1203 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1204 if (LastCN != 1) 1205 break; 1206 GepNode *Child = CF->second.front(); 1207 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1208 if (ChildB != nullptr && LastB != ChildB) 1209 break; 1210 Last = Child; 1211 } while (true); 1212 1213 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1214 if (LastUsed || LastCN > 0) { 1215 ValueVect Urs; 1216 getAllUsersForNode(Root, Urs, NCM); 1217 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1218 if (FirstUse != LastB->end()) 1219 InsertAt = FirstUse; 1220 } 1221 1222 // Generate a new instruction for NA. 1223 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1224 1225 // Convert all the children of Last node into roots, and append them 1226 // to the Roots list. 1227 if (LastCN > 0) { 1228 NodeVect &Cs = NCM[Last]; 1229 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 1230 GepNode *CN = *I; 1231 CN->Flags &= ~GepNode::Internal; 1232 CN->Flags |= GepNode::Root; 1233 CN->BaseVal = NewInst; 1234 Roots.push_back(CN); 1235 } 1236 } 1237 1238 // Lastly, if the Last node was used, replace all uses with the new GEP. 1239 // The uses reference the original GEP values. 1240 if (LastUsed) { 1241 NodeToUsesMap::iterator UF = Uses.find(Last); 1242 assert(UF != Uses.end() && "No use information found"); 1243 UseSet &Us = UF->second; 1244 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 1245 Use *U = *I; 1246 U->set(NewInst); 1247 } 1248 } 1249 } 1250 } 1251 1252 void HexagonCommonGEP::removeDeadCode() { 1253 ValueVect BO; 1254 BO.push_back(&Fn->front()); 1255 1256 for (unsigned i = 0; i < BO.size(); ++i) { 1257 BasicBlock *B = cast<BasicBlock>(BO[i]); 1258 for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) 1259 BO.push_back(DTN->getBlock()); 1260 } 1261 1262 for (unsigned i = BO.size(); i > 0; --i) { 1263 BasicBlock *B = cast<BasicBlock>(BO[i-1]); 1264 BasicBlock::InstListType &IL = B->getInstList(); 1265 1266 using reverse_iterator = BasicBlock::InstListType::reverse_iterator; 1267 1268 ValueVect Ins; 1269 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) 1270 Ins.push_back(&*I); 1271 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { 1272 Instruction *In = cast<Instruction>(*I); 1273 if (isInstructionTriviallyDead(In)) 1274 In->eraseFromParent(); 1275 } 1276 } 1277 } 1278 1279 bool HexagonCommonGEP::runOnFunction(Function &F) { 1280 if (skipFunction(F)) 1281 return false; 1282 1283 // For now bail out on C++ exception handling. 1284 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) 1285 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) 1286 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1287 return false; 1288 1289 Fn = &F; 1290 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1291 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1292 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1293 Ctx = &F.getContext(); 1294 1295 Nodes.clear(); 1296 Uses.clear(); 1297 NodeOrder.clear(); 1298 1299 SpecificBumpPtrAllocator<GepNode> Allocator; 1300 Mem = &Allocator; 1301 1302 collect(); 1303 common(); 1304 1305 NodeToValueMap Loc; 1306 computeNodePlacement(Loc); 1307 materialize(Loc); 1308 removeDeadCode(); 1309 1310 #ifdef EXPENSIVE_CHECKS 1311 // Run this only when expensive checks are enabled. 1312 if (verifyFunction(F, &dbgs())) 1313 report_fatal_error("Broken function"); 1314 #endif 1315 return true; 1316 } 1317 1318 namespace llvm { 1319 1320 FunctionPass *createHexagonCommonGEP() { 1321 return new HexagonCommonGEP(); 1322 } 1323 1324 } // end namespace llvm 1325