1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/PostDominators.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/User.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <cstdint> 44 #include <iterator> 45 #include <map> 46 #include <set> 47 #include <utility> 48 #include <vector> 49 50 #define DEBUG_TYPE "commgep" 51 52 using namespace llvm; 53 54 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 55 cl::Hidden, cl::ZeroOrMore); 56 57 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 58 cl::ZeroOrMore); 59 60 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 61 cl::Hidden, cl::ZeroOrMore); 62 63 namespace llvm { 64 65 void initializeHexagonCommonGEPPass(PassRegistry&); 66 67 } // end namespace llvm 68 69 namespace { 70 71 struct GepNode; 72 using NodeSet = std::set<GepNode *>; 73 using NodeToValueMap = std::map<GepNode *, Value *>; 74 using NodeVect = std::vector<GepNode *>; 75 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 76 using UseSet = SetVector<Use *>; 77 using NodeToUsesMap = std::map<GepNode *, UseSet>; 78 79 // Numbering map for gep nodes. Used to keep track of ordering for 80 // gep nodes. 81 struct NodeOrdering { 82 NodeOrdering() = default; 83 84 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 85 void clear() { Map.clear(); } 86 87 bool operator()(const GepNode *N1, const GepNode *N2) const { 88 auto F1 = Map.find(N1), F2 = Map.find(N2); 89 assert(F1 != Map.end() && F2 != Map.end()); 90 return F1->second < F2->second; 91 } 92 93 private: 94 std::map<const GepNode *, unsigned> Map; 95 unsigned LastNum = 0; 96 }; 97 98 class HexagonCommonGEP : public FunctionPass { 99 public: 100 static char ID; 101 102 HexagonCommonGEP() : FunctionPass(ID) { 103 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnFunction(Function &F) override; 107 StringRef getPassName() const override { return "Hexagon Common GEP"; } 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addPreserved<DominatorTreeWrapperPass>(); 112 AU.addRequired<PostDominatorTreeWrapperPass>(); 113 AU.addPreserved<PostDominatorTreeWrapperPass>(); 114 AU.addRequired<LoopInfoWrapperPass>(); 115 AU.addPreserved<LoopInfoWrapperPass>(); 116 FunctionPass::getAnalysisUsage(AU); 117 } 118 119 private: 120 using ValueToNodeMap = std::map<Value *, GepNode *>; 121 using ValueVect = std::vector<Value *>; 122 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 123 124 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 125 bool isHandledGepForm(GetElementPtrInst *GepI); 126 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 127 void collect(); 128 void common(); 129 130 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 131 NodeToValueMap &Loc); 132 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 133 NodeToValueMap &Loc); 134 bool isInvariantIn(Value *Val, Loop *L); 135 bool isInvariantIn(GepNode *Node, Loop *L); 136 bool isInMainPath(BasicBlock *B, Loop *L); 137 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 138 NodeToValueMap &Loc); 139 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 140 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 141 NodeToValueMap &Loc); 142 void computeNodePlacement(NodeToValueMap &Loc); 143 144 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 145 BasicBlock *LocB); 146 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 147 NodeChildrenMap &NCM); 148 void materialize(NodeToValueMap &Loc); 149 150 void removeDeadCode(); 151 152 NodeVect Nodes; 153 NodeToUsesMap Uses; 154 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 155 SpecificBumpPtrAllocator<GepNode> *Mem; 156 LLVMContext *Ctx; 157 LoopInfo *LI; 158 DominatorTree *DT; 159 PostDominatorTree *PDT; 160 Function *Fn; 161 }; 162 163 } // end anonymous namespace 164 165 char HexagonCommonGEP::ID = 0; 166 167 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 168 false, false) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 172 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 173 false, false) 174 175 namespace { 176 177 struct GepNode { 178 enum { 179 None = 0, 180 Root = 0x01, 181 Internal = 0x02, 182 Used = 0x04, 183 InBounds = 0x08, 184 Pointer = 0x10, // See note below. 185 }; 186 // Note: GEP indices generally traverse nested types, and so a GepNode 187 // (representing a single index) can be associated with some composite 188 // type. The exception is the GEP input, which is a pointer, and not 189 // a composite type (at least not in the sense of having sub-types). 190 // Also, the corresponding index plays a different role as well: it is 191 // simply added to the input pointer. Since pointer types are becoming 192 // opaque (i.e. are no longer going to include the pointee type), the 193 // two pieces of information (1) the fact that it's a pointer, and 194 // (2) the pointee type, need to be stored separately. The pointee type 195 // will be stored in the PTy member, while the fact that the node 196 // operates on a pointer will be reflected by the flag "Pointer". 197 198 uint32_t Flags = 0; 199 union { 200 GepNode *Parent; 201 Value *BaseVal; 202 }; 203 Value *Idx = nullptr; 204 Type *PTy = nullptr; // Type indexed by this node. For pointer nodes 205 // this is the "pointee" type, and indexing a 206 // pointer does not change the type. 207 208 GepNode() : Parent(nullptr) {} 209 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 210 if (Flags & Root) 211 BaseVal = N->BaseVal; 212 else 213 Parent = N->Parent; 214 } 215 216 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 217 }; 218 219 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 220 OS << "{ {"; 221 bool Comma = false; 222 if (GN.Flags & GepNode::Root) { 223 OS << "root"; 224 Comma = true; 225 } 226 if (GN.Flags & GepNode::Internal) { 227 if (Comma) 228 OS << ','; 229 OS << "internal"; 230 Comma = true; 231 } 232 if (GN.Flags & GepNode::Used) { 233 if (Comma) 234 OS << ','; 235 OS << "used"; 236 } 237 if (GN.Flags & GepNode::InBounds) { 238 if (Comma) 239 OS << ','; 240 OS << "inbounds"; 241 } 242 if (GN.Flags & GepNode::Pointer) { 243 if (Comma) 244 OS << ','; 245 OS << "pointer"; 246 } 247 OS << "} "; 248 if (GN.Flags & GepNode::Root) 249 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 250 else 251 OS << "Parent:" << GN.Parent; 252 253 OS << " Idx:"; 254 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 255 OS << CI->getValue().getSExtValue(); 256 else if (GN.Idx->hasName()) 257 OS << GN.Idx->getName(); 258 else 259 OS << "<anon> =" << *GN.Idx; 260 261 OS << " PTy:"; 262 if (GN.PTy->isStructTy()) { 263 StructType *STy = cast<StructType>(GN.PTy); 264 if (!STy->isLiteral()) 265 OS << GN.PTy->getStructName(); 266 else 267 OS << "<anon-struct>:" << *STy; 268 } 269 else 270 OS << *GN.PTy; 271 OS << " }"; 272 return OS; 273 } 274 275 template <typename NodeContainer> 276 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 277 using const_iterator = typename NodeContainer::const_iterator; 278 279 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 280 OS << *I << ' ' << **I << '\n'; 281 } 282 283 raw_ostream &operator<< (raw_ostream &OS, 284 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 285 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 286 dump_node_container(OS, S); 287 return OS; 288 } 289 290 raw_ostream &operator<< (raw_ostream &OS, 291 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 292 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 293 using const_iterator = NodeToUsesMap::const_iterator; 294 295 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 296 const UseSet &Us = I->second; 297 OS << I->first << " -> #" << Us.size() << '{'; 298 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 299 User *R = (*J)->getUser(); 300 if (R->hasName()) 301 OS << ' ' << R->getName(); 302 else 303 OS << " <?>(" << *R << ')'; 304 } 305 OS << " }\n"; 306 } 307 return OS; 308 } 309 310 struct in_set { 311 in_set(const NodeSet &S) : NS(S) {} 312 313 bool operator() (GepNode *N) const { 314 return NS.find(N) != NS.end(); 315 } 316 317 private: 318 const NodeSet &NS; 319 }; 320 321 } // end anonymous namespace 322 323 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 324 return A.Allocate(); 325 } 326 327 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 328 ValueVect &Order) { 329 // Compute block ordering for a typical DT-based traversal of the flow 330 // graph: "before visiting a block, all of its dominators must have been 331 // visited". 332 333 Order.push_back(Root); 334 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 335 getBlockTraversalOrder(DTN->getBlock(), Order); 336 } 337 338 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 339 // No vector GEPs. 340 if (!GepI->getType()->isPointerTy()) 341 return false; 342 // No GEPs without any indices. (Is this possible?) 343 if (GepI->idx_begin() == GepI->idx_end()) 344 return false; 345 return true; 346 } 347 348 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 349 ValueToNodeMap &NM) { 350 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 351 GepNode *N = new (*Mem) GepNode; 352 Value *PtrOp = GepI->getPointerOperand(); 353 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 354 ValueToNodeMap::iterator F = NM.find(PtrOp); 355 if (F == NM.end()) { 356 N->BaseVal = PtrOp; 357 N->Flags |= GepNode::Root | InBounds; 358 } else { 359 // If PtrOp was a GEP instruction, it must have already been processed. 360 // The ValueToNodeMap entry for it is the last gep node in the generated 361 // chain. Link to it here. 362 N->Parent = F->second; 363 } 364 N->PTy = GepI->getSourceElementType(); 365 N->Flags |= GepNode::Pointer; 366 N->Idx = *GepI->idx_begin(); 367 368 // Collect the list of users of this GEP instruction. Will add it to the 369 // last node created for it. 370 UseSet Us; 371 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 372 UI != UE; ++UI) { 373 // Check if this gep is used by anything other than other geps that 374 // we will process. 375 if (isa<GetElementPtrInst>(*UI)) { 376 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 377 if (isHandledGepForm(UserG)) 378 continue; 379 } 380 Us.insert(&UI.getUse()); 381 } 382 Nodes.push_back(N); 383 NodeOrder.insert(N); 384 385 // Skip the first index operand, since it was already handled above. This 386 // dereferences the pointer operand. 387 GepNode *PN = N; 388 Type *PtrTy = GepI->getSourceElementType(); 389 for (Use &U : llvm::drop_begin(GepI->indices())) { 390 Value *Op = U; 391 GepNode *Nx = new (*Mem) GepNode; 392 Nx->Parent = PN; // Link Nx to the previous node. 393 Nx->Flags |= GepNode::Internal | InBounds; 394 Nx->PTy = PtrTy; 395 Nx->Idx = Op; 396 Nodes.push_back(Nx); 397 NodeOrder.insert(Nx); 398 PN = Nx; 399 400 PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op); 401 } 402 403 // After last node has been created, update the use information. 404 if (!Us.empty()) { 405 PN->Flags |= GepNode::Used; 406 Uses[PN].insert(Us.begin(), Us.end()); 407 } 408 409 // Link the last node with the originating GEP instruction. This is to 410 // help with linking chained GEP instructions. 411 NM.insert(std::make_pair(GepI, PN)); 412 } 413 414 void HexagonCommonGEP::collect() { 415 // Establish depth-first traversal order of the dominator tree. 416 ValueVect BO; 417 getBlockTraversalOrder(&Fn->front(), BO); 418 419 // The creation of gep nodes requires DT-traversal. When processing a GEP 420 // instruction that uses another GEP instruction as the base pointer, the 421 // gep node for the base pointer should already exist. 422 ValueToNodeMap NM; 423 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { 424 BasicBlock *B = cast<BasicBlock>(*I); 425 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { 426 if (!isa<GetElementPtrInst>(J)) 427 continue; 428 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); 429 if (isHandledGepForm(GepI)) 430 processGepInst(GepI, NM); 431 } 432 } 433 434 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 435 } 436 437 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 438 NodeVect &Roots) { 439 using const_iterator = NodeVect::const_iterator; 440 441 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 442 GepNode *N = *I; 443 if (N->Flags & GepNode::Root) { 444 Roots.push_back(N); 445 continue; 446 } 447 GepNode *PN = N->Parent; 448 NCM[PN].push_back(N); 449 } 450 } 451 452 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 453 NodeSet &Nodes) { 454 NodeVect Work; 455 Work.push_back(Root); 456 Nodes.insert(Root); 457 458 while (!Work.empty()) { 459 NodeVect::iterator First = Work.begin(); 460 GepNode *N = *First; 461 Work.erase(First); 462 NodeChildrenMap::iterator CF = NCM.find(N); 463 if (CF != NCM.end()) { 464 llvm::append_range(Work, CF->second); 465 Nodes.insert(CF->second.begin(), CF->second.end()); 466 } 467 } 468 } 469 470 namespace { 471 472 using NodeSymRel = std::set<NodeSet>; 473 using NodePair = std::pair<GepNode *, GepNode *>; 474 using NodePairSet = std::set<NodePair>; 475 476 } // end anonymous namespace 477 478 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 479 for (const NodeSet &S : Rel) 480 if (S.count(N)) 481 return &S; 482 return nullptr; 483 } 484 485 // Create an ordered pair of GepNode pointers. The pair will be used in 486 // determining equality. The only purpose of the ordering is to eliminate 487 // duplication due to the commutativity of equality/non-equality. 488 static NodePair node_pair(GepNode *N1, GepNode *N2) { 489 uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); 490 uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); 491 if (P1 <= P2) 492 return std::make_pair(N1, N2); 493 return std::make_pair(N2, N1); 494 } 495 496 static unsigned node_hash(GepNode *N) { 497 // Include everything except flags and parent. 498 FoldingSetNodeID ID; 499 ID.AddPointer(N->Idx); 500 ID.AddPointer(N->PTy); 501 return ID.ComputeHash(); 502 } 503 504 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 505 NodePairSet &Ne) { 506 // Don't cache the result for nodes with different hashes. The hash 507 // comparison is fast enough. 508 if (node_hash(N1) != node_hash(N2)) 509 return false; 510 511 NodePair NP = node_pair(N1, N2); 512 NodePairSet::iterator FEq = Eq.find(NP); 513 if (FEq != Eq.end()) 514 return true; 515 NodePairSet::iterator FNe = Ne.find(NP); 516 if (FNe != Ne.end()) 517 return false; 518 // Not previously compared. 519 bool Root1 = N1->Flags & GepNode::Root; 520 uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; 521 bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); 522 NodePair P = node_pair(N1, N2); 523 // If the root/pointer flags have different values, the nodes are 524 // different. 525 // If both nodes are root nodes, but their base pointers differ, 526 // they are different. 527 if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { 528 Ne.insert(P); 529 return false; 530 } 531 // Here the root/pointer flags are identical, and for root nodes the 532 // base pointers are equal, so the root nodes are equal. 533 // For non-root nodes, compare their parent nodes. 534 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 535 Eq.insert(P); 536 return true; 537 } 538 return false; 539 } 540 541 void HexagonCommonGEP::common() { 542 // The essence of this commoning is finding gep nodes that are equal. 543 // To do this we need to compare all pairs of nodes. To save time, 544 // first, partition the set of all nodes into sets of potentially equal 545 // nodes, and then compare pairs from within each partition. 546 using NodeSetMap = std::map<unsigned, NodeSet>; 547 NodeSetMap MaybeEq; 548 549 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 550 GepNode *N = *I; 551 unsigned H = node_hash(N); 552 MaybeEq[H].insert(N); 553 } 554 555 // Compute the equivalence relation for the gep nodes. Use two caches, 556 // one for equality and the other for non-equality. 557 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 558 NodePairSet Eq, Ne; // Caches. 559 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); 560 I != E; ++I) { 561 NodeSet &S = I->second; 562 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 563 GepNode *N = *NI; 564 // If node already has a class, then the class must have been created 565 // in a prior iteration of this loop. Since equality is transitive, 566 // nothing more will be added to that class, so skip it. 567 if (node_class(N, EqRel)) 568 continue; 569 570 // Create a new class candidate now. 571 NodeSet C; 572 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 573 if (node_eq(N, *NJ, Eq, Ne)) 574 C.insert(*NJ); 575 // If Tmp is empty, N would be the only element in it. Don't bother 576 // creating a class for it then. 577 if (!C.empty()) { 578 C.insert(N); // Finalize the set before adding it to the relation. 579 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 580 (void)Ins; 581 assert(Ins.second && "Cannot add a class"); 582 } 583 } 584 } 585 586 LLVM_DEBUG({ 587 dbgs() << "Gep node equality:\n"; 588 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 589 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 590 591 dbgs() << "Gep equivalence classes:\n"; 592 for (const NodeSet &S : EqRel) { 593 dbgs() << '{'; 594 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 595 if (J != S.begin()) 596 dbgs() << ','; 597 dbgs() << ' ' << *J; 598 } 599 dbgs() << " }\n"; 600 } 601 }); 602 603 // Create a projection from a NodeSet to the minimal element in it. 604 using ProjMap = std::map<const NodeSet *, GepNode *>; 605 ProjMap PM; 606 for (const NodeSet &S : EqRel) { 607 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 608 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 609 (void)Ins; 610 assert(Ins.second && "Cannot add minimal element"); 611 612 // Update the min element's flags, and user list. 613 uint32_t Flags = 0; 614 UseSet &MinUs = Uses[Min]; 615 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { 616 GepNode *N = *J; 617 uint32_t NF = N->Flags; 618 // If N is used, append all original values of N to the list of 619 // original values of Min. 620 if (NF & GepNode::Used) 621 MinUs.insert(Uses[N].begin(), Uses[N].end()); 622 Flags |= NF; 623 } 624 if (MinUs.empty()) 625 Uses.erase(Min); 626 627 // The collected flags should include all the flags from the min element. 628 assert((Min->Flags & Flags) == Min->Flags); 629 Min->Flags = Flags; 630 } 631 632 // Commoning: for each non-root gep node, replace "Parent" with the 633 // selected (minimum) node from the corresponding equivalence class. 634 // If a given parent does not have an equivalence class, leave it 635 // unchanged (it means that it's the only element in its class). 636 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 637 GepNode *N = *I; 638 if (N->Flags & GepNode::Root) 639 continue; 640 const NodeSet *PC = node_class(N->Parent, EqRel); 641 if (!PC) 642 continue; 643 ProjMap::iterator F = PM.find(PC); 644 if (F == PM.end()) 645 continue; 646 // Found a replacement, use it. 647 GepNode *Rep = F->second; 648 N->Parent = Rep; 649 } 650 651 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 652 653 // Finally, erase the nodes that are no longer used. 654 NodeSet Erase; 655 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 656 GepNode *N = *I; 657 const NodeSet *PC = node_class(N, EqRel); 658 if (!PC) 659 continue; 660 ProjMap::iterator F = PM.find(PC); 661 if (F == PM.end()) 662 continue; 663 if (N == F->second) 664 continue; 665 // Node for removal. 666 Erase.insert(*I); 667 } 668 erase_if(Nodes, in_set(Erase)); 669 670 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 671 } 672 673 template <typename T> 674 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 675 LLVM_DEBUG({ 676 dbgs() << "NCD of {"; 677 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 678 ++I) { 679 if (!*I) 680 continue; 681 BasicBlock *B = cast<BasicBlock>(*I); 682 dbgs() << ' ' << B->getName(); 683 } 684 dbgs() << " }\n"; 685 }); 686 687 // Allow null basic blocks in Blocks. In such cases, return nullptr. 688 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 689 if (I == E || !*I) 690 return nullptr; 691 BasicBlock *Dom = cast<BasicBlock>(*I); 692 while (++I != E) { 693 BasicBlock *B = cast_or_null<BasicBlock>(*I); 694 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 695 if (!Dom) 696 return nullptr; 697 } 698 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 699 return Dom; 700 } 701 702 template <typename T> 703 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 704 // If two blocks, A and B, dominate a block C, then A dominates B, 705 // or B dominates A. 706 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 707 // Find the first non-null block. 708 while (I != E && !*I) 709 ++I; 710 if (I == E) 711 return DT->getRoot(); 712 BasicBlock *DomB = cast<BasicBlock>(*I); 713 while (++I != E) { 714 if (!*I) 715 continue; 716 BasicBlock *B = cast<BasicBlock>(*I); 717 if (DT->dominates(B, DomB)) 718 continue; 719 if (!DT->dominates(DomB, B)) 720 return nullptr; 721 DomB = B; 722 } 723 return DomB; 724 } 725 726 // Find the first use in B of any value from Values. If no such use, 727 // return B->end(). 728 template <typename T> 729 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 730 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 731 732 using iterator = typename T::iterator; 733 734 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 735 Value *V = *I; 736 // If V is used in a PHI node, the use belongs to the incoming block, 737 // not the block with the PHI node. In the incoming block, the use 738 // would be considered as being at the end of it, so it cannot 739 // influence the position of the first use (which is assumed to be 740 // at the end to start with). 741 if (isa<PHINode>(V)) 742 continue; 743 if (!isa<Instruction>(V)) 744 continue; 745 Instruction *In = cast<Instruction>(V); 746 if (In->getParent() != B) 747 continue; 748 BasicBlock::iterator It = In->getIterator(); 749 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 750 FirstUse = It; 751 } 752 return FirstUse; 753 } 754 755 static bool is_empty(const BasicBlock *B) { 756 return B->empty() || (&*B->begin() == B->getTerminator()); 757 } 758 759 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 760 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 761 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 762 // Recalculate the placement for Node, assuming that the locations of 763 // its children in Loc are valid. 764 // Return nullptr if there is no valid placement for Node (for example, it 765 // uses an index value that is not available at the location required 766 // to dominate all children, etc.). 767 768 // Find the nearest common dominator for: 769 // - all users, if the node is used, and 770 // - all children. 771 ValueVect Bs; 772 if (Node->Flags & GepNode::Used) { 773 // Append all blocks with uses of the original values to the 774 // block vector Bs. 775 NodeToUsesMap::iterator UF = Uses.find(Node); 776 assert(UF != Uses.end() && "Used node with no use information"); 777 UseSet &Us = UF->second; 778 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 779 Use *U = *I; 780 User *R = U->getUser(); 781 if (!isa<Instruction>(R)) 782 continue; 783 BasicBlock *PB = isa<PHINode>(R) 784 ? cast<PHINode>(R)->getIncomingBlock(*U) 785 : cast<Instruction>(R)->getParent(); 786 Bs.push_back(PB); 787 } 788 } 789 // Append the location of each child. 790 NodeChildrenMap::iterator CF = NCM.find(Node); 791 if (CF != NCM.end()) { 792 NodeVect &Cs = CF->second; 793 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 794 GepNode *CN = *I; 795 NodeToValueMap::iterator LF = Loc.find(CN); 796 // If the child is only used in GEP instructions (i.e. is not used in 797 // non-GEP instructions), the nearest dominator computed for it may 798 // have been null. In such case it won't have a location available. 799 if (LF == Loc.end()) 800 continue; 801 Bs.push_back(LF->second); 802 } 803 } 804 805 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 806 if (!DomB) 807 return nullptr; 808 // Check if the index used by Node dominates the computed dominator. 809 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 810 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 811 return nullptr; 812 813 // Avoid putting nodes into empty blocks. 814 while (is_empty(DomB)) { 815 DomTreeNode *N = (*DT)[DomB]->getIDom(); 816 if (!N) 817 break; 818 DomB = N->getBlock(); 819 } 820 821 // Otherwise, DomB is fine. Update the location map. 822 Loc[Node] = DomB; 823 return DomB; 824 } 825 826 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 827 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 828 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 829 // Recalculate the placement of Node, after recursively recalculating the 830 // placements of all its children. 831 NodeChildrenMap::iterator CF = NCM.find(Node); 832 if (CF != NCM.end()) { 833 NodeVect &Cs = CF->second; 834 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 835 recalculatePlacementRec(*I, NCM, Loc); 836 } 837 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 838 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 839 return LB; 840 } 841 842 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 843 if (isa<Constant>(Val) || isa<Argument>(Val)) 844 return true; 845 Instruction *In = dyn_cast<Instruction>(Val); 846 if (!In) 847 return false; 848 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 849 return DT->properlyDominates(DefB, HdrB); 850 } 851 852 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 853 if (Node->Flags & GepNode::Root) 854 if (!isInvariantIn(Node->BaseVal, L)) 855 return false; 856 return isInvariantIn(Node->Idx, L); 857 } 858 859 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 860 BasicBlock *HB = L->getHeader(); 861 BasicBlock *LB = L->getLoopLatch(); 862 // B must post-dominate the loop header or dominate the loop latch. 863 if (PDT->dominates(B, HB)) 864 return true; 865 if (LB && DT->dominates(B, LB)) 866 return true; 867 return false; 868 } 869 870 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 871 if (BasicBlock *PH = L->getLoopPreheader()) 872 return PH; 873 if (!OptSpeculate) 874 return nullptr; 875 DomTreeNode *DN = DT->getNode(L->getHeader()); 876 if (!DN) 877 return nullptr; 878 return DN->getIDom()->getBlock(); 879 } 880 881 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 882 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 883 // Find the "topmost" location for Node: it must be dominated by both, 884 // its parent (or the BaseVal, if it's a root node), and by the index 885 // value. 886 ValueVect Bs; 887 if (Node->Flags & GepNode::Root) { 888 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 889 Bs.push_back(PIn->getParent()); 890 } else { 891 Bs.push_back(Loc[Node->Parent]); 892 } 893 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 894 Bs.push_back(IIn->getParent()); 895 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 896 897 // Traverse the loop nest upwards until we find a loop in which Node 898 // is no longer invariant, or until we get to the upper limit of Node's 899 // placement. The traversal will also stop when a suitable "preheader" 900 // cannot be found for a given loop. The "preheader" may actually be 901 // a regular block outside of the loop (i.e. not guarded), in which case 902 // the Node will be speculated. 903 // For nodes that are not in the main path of the containing loop (i.e. 904 // are not executed in each iteration), do not move them out of the loop. 905 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 906 if (LocB) { 907 Loop *Lp = LI->getLoopFor(LocB); 908 while (Lp) { 909 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 910 break; 911 BasicBlock *NewLoc = preheader(DT, Lp); 912 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 913 break; 914 Lp = Lp->getParentLoop(); 915 LocB = NewLoc; 916 } 917 } 918 Loc[Node] = LocB; 919 920 // Recursively compute the locations of all children nodes. 921 NodeChildrenMap::iterator CF = NCM.find(Node); 922 if (CF != NCM.end()) { 923 NodeVect &Cs = CF->second; 924 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 925 adjustForInvariance(*I, NCM, Loc); 926 } 927 return LocB; 928 } 929 930 namespace { 931 932 struct LocationAsBlock { 933 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 934 935 const NodeToValueMap ⤅ 936 }; 937 938 raw_ostream &operator<< (raw_ostream &OS, 939 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 940 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 941 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); 942 I != E; ++I) { 943 OS << I->first << " -> "; 944 if (BasicBlock *B = cast_or_null<BasicBlock>(I->second)) 945 OS << B->getName() << '(' << B << ')'; 946 else 947 OS << "<null-block>"; 948 OS << '\n'; 949 } 950 return OS; 951 } 952 953 inline bool is_constant(GepNode *N) { 954 return isa<ConstantInt>(N->Idx); 955 } 956 957 } // end anonymous namespace 958 959 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 960 NodeToValueMap &Loc) { 961 User *R = U->getUser(); 962 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 963 << '\n'); 964 BasicBlock *PB = cast<Instruction>(R)->getParent(); 965 966 GepNode *N = Node; 967 GepNode *C = nullptr, *NewNode = nullptr; 968 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 969 // XXX if (single-use) dont-replicate; 970 GepNode *NewN = new (*Mem) GepNode(N); 971 Nodes.push_back(NewN); 972 Loc[NewN] = PB; 973 974 if (N == Node) 975 NewNode = NewN; 976 NewN->Flags &= ~GepNode::Used; 977 if (C) 978 C->Parent = NewN; 979 C = NewN; 980 N = N->Parent; 981 } 982 if (!NewNode) 983 return; 984 985 // Move over all uses that share the same user as U from Node to NewNode. 986 NodeToUsesMap::iterator UF = Uses.find(Node); 987 assert(UF != Uses.end()); 988 UseSet &Us = UF->second; 989 UseSet NewUs; 990 for (Use *U : Us) { 991 if (U->getUser() == R) 992 NewUs.insert(U); 993 } 994 for (Use *U : NewUs) 995 Us.remove(U); // erase takes an iterator. 996 997 if (Us.empty()) { 998 Node->Flags &= ~GepNode::Used; 999 Uses.erase(UF); 1000 } 1001 1002 // Should at least have U in NewUs. 1003 NewNode->Flags |= GepNode::Used; 1004 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 1005 assert(!NewUs.empty()); 1006 Uses[NewNode] = NewUs; 1007 } 1008 1009 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 1010 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 1011 // First approximation: extract all chains. 1012 NodeSet Ns; 1013 nodes_for_root(Node, NCM, Ns); 1014 1015 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1016 // Collect all used nodes together with the uses from loads and stores, 1017 // where the GEP node could be folded into the load/store instruction. 1018 NodeToUsesMap FNs; // Foldable nodes. 1019 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { 1020 GepNode *N = *I; 1021 if (!(N->Flags & GepNode::Used)) 1022 continue; 1023 NodeToUsesMap::iterator UF = Uses.find(N); 1024 assert(UF != Uses.end()); 1025 UseSet &Us = UF->second; 1026 // Loads/stores that use the node N. 1027 UseSet LSs; 1028 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 1029 Use *U = *J; 1030 User *R = U->getUser(); 1031 // We're interested in uses that provide the address. It can happen 1032 // that the value may also be provided via GEP, but we won't handle 1033 // those cases here for now. 1034 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1035 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1036 if (&Ld->getOperandUse(PtrX) == U) 1037 LSs.insert(U); 1038 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1039 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1040 if (&St->getOperandUse(PtrX) == U) 1041 LSs.insert(U); 1042 } 1043 } 1044 // Even if the total use count is 1, separating the chain may still be 1045 // beneficial, since the constant chain may be longer than the GEP alone 1046 // would be (e.g. if the parent node has a constant index and also has 1047 // other children). 1048 if (!LSs.empty()) 1049 FNs.insert(std::make_pair(N, LSs)); 1050 } 1051 1052 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1053 1054 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { 1055 GepNode *N = I->first; 1056 UseSet &Us = I->second; 1057 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) 1058 separateChainForNode(N, *J, Loc); 1059 } 1060 } 1061 1062 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1063 // Compute the inverse of the Node.Parent links. Also, collect the set 1064 // of root nodes. 1065 NodeChildrenMap NCM; 1066 NodeVect Roots; 1067 invert_find_roots(Nodes, NCM, Roots); 1068 1069 // Compute the initial placement determined by the users' locations, and 1070 // the locations of the child nodes. 1071 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1072 recalculatePlacementRec(*I, NCM, Loc); 1073 1074 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1075 1076 if (OptEnableInv) { 1077 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1078 adjustForInvariance(*I, NCM, Loc); 1079 1080 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1081 << LocationAsBlock(Loc)); 1082 } 1083 if (OptEnableConst) { 1084 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1085 separateConstantChains(*I, NCM, Loc); 1086 } 1087 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1088 1089 // At the moment, there is no further refinement of the initial placement. 1090 // Such a refinement could include splitting the nodes if they are placed 1091 // too far from some of its users. 1092 1093 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1094 } 1095 1096 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1097 BasicBlock *LocB) { 1098 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1099 << " for nodes:\n" 1100 << NA); 1101 unsigned Num = NA.size(); 1102 GepNode *RN = NA[0]; 1103 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1104 1105 GetElementPtrInst *NewInst = nullptr; 1106 Value *Input = RN->BaseVal; 1107 Type *InpTy = RN->PTy; 1108 1109 unsigned Idx = 0; 1110 do { 1111 SmallVector<Value*, 4> IdxList; 1112 // If the type of the input of the first node is not a pointer, 1113 // we need to add an artificial i32 0 to the indices (because the 1114 // actual input in the IR will be a pointer). 1115 if (!(NA[Idx]->Flags & GepNode::Pointer)) { 1116 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1117 IdxList.push_back(ConstantInt::get(Int32Ty, 0)); 1118 } 1119 1120 // Keep adding indices from NA until we have to stop and generate 1121 // an "intermediate" GEP. 1122 while (++Idx <= Num) { 1123 GepNode *N = NA[Idx-1]; 1124 IdxList.push_back(N->Idx); 1125 if (Idx < Num) { 1126 // We have to stop if we reach a pointer. 1127 if (NA[Idx]->Flags & GepNode::Pointer) 1128 break; 1129 } 1130 } 1131 NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", &*At); 1132 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1133 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1134 if (Idx < Num) { 1135 Input = NewInst; 1136 InpTy = NA[Idx]->PTy; 1137 } 1138 } while (Idx <= Num); 1139 1140 return NewInst; 1141 } 1142 1143 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1144 NodeChildrenMap &NCM) { 1145 NodeVect Work; 1146 Work.push_back(Node); 1147 1148 while (!Work.empty()) { 1149 NodeVect::iterator First = Work.begin(); 1150 GepNode *N = *First; 1151 Work.erase(First); 1152 if (N->Flags & GepNode::Used) { 1153 NodeToUsesMap::iterator UF = Uses.find(N); 1154 assert(UF != Uses.end() && "No use information for used node"); 1155 UseSet &Us = UF->second; 1156 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) 1157 Values.push_back((*I)->getUser()); 1158 } 1159 NodeChildrenMap::iterator CF = NCM.find(N); 1160 if (CF != NCM.end()) { 1161 NodeVect &Cs = CF->second; 1162 llvm::append_range(Work, Cs); 1163 } 1164 } 1165 } 1166 1167 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1168 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1169 NodeChildrenMap NCM; 1170 NodeVect Roots; 1171 // Compute the inversion again, since computing placement could alter 1172 // "parent" relation between nodes. 1173 invert_find_roots(Nodes, NCM, Roots); 1174 1175 while (!Roots.empty()) { 1176 NodeVect::iterator First = Roots.begin(); 1177 GepNode *Root = *First, *Last = *First; 1178 Roots.erase(First); 1179 1180 NodeVect NA; // Nodes to assemble. 1181 // Append to NA all child nodes up to (and including) the first child 1182 // that: 1183 // (1) has more than 1 child, or 1184 // (2) is used, or 1185 // (3) has a child located in a different block. 1186 bool LastUsed = false; 1187 unsigned LastCN = 0; 1188 // The location may be null if the computation failed (it can legitimately 1189 // happen for nodes created from dead GEPs). 1190 Value *LocV = Loc[Last]; 1191 if (!LocV) 1192 continue; 1193 BasicBlock *LastB = cast<BasicBlock>(LocV); 1194 do { 1195 NA.push_back(Last); 1196 LastUsed = (Last->Flags & GepNode::Used); 1197 if (LastUsed) 1198 break; 1199 NodeChildrenMap::iterator CF = NCM.find(Last); 1200 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1201 if (LastCN != 1) 1202 break; 1203 GepNode *Child = CF->second.front(); 1204 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1205 if (ChildB != nullptr && LastB != ChildB) 1206 break; 1207 Last = Child; 1208 } while (true); 1209 1210 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1211 if (LastUsed || LastCN > 0) { 1212 ValueVect Urs; 1213 getAllUsersForNode(Root, Urs, NCM); 1214 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1215 if (FirstUse != LastB->end()) 1216 InsertAt = FirstUse; 1217 } 1218 1219 // Generate a new instruction for NA. 1220 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1221 1222 // Convert all the children of Last node into roots, and append them 1223 // to the Roots list. 1224 if (LastCN > 0) { 1225 NodeVect &Cs = NCM[Last]; 1226 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 1227 GepNode *CN = *I; 1228 CN->Flags &= ~GepNode::Internal; 1229 CN->Flags |= GepNode::Root; 1230 CN->BaseVal = NewInst; 1231 Roots.push_back(CN); 1232 } 1233 } 1234 1235 // Lastly, if the Last node was used, replace all uses with the new GEP. 1236 // The uses reference the original GEP values. 1237 if (LastUsed) { 1238 NodeToUsesMap::iterator UF = Uses.find(Last); 1239 assert(UF != Uses.end() && "No use information found"); 1240 UseSet &Us = UF->second; 1241 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 1242 Use *U = *I; 1243 U->set(NewInst); 1244 } 1245 } 1246 } 1247 } 1248 1249 void HexagonCommonGEP::removeDeadCode() { 1250 ValueVect BO; 1251 BO.push_back(&Fn->front()); 1252 1253 for (unsigned i = 0; i < BO.size(); ++i) { 1254 BasicBlock *B = cast<BasicBlock>(BO[i]); 1255 for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) 1256 BO.push_back(DTN->getBlock()); 1257 } 1258 1259 for (Value *V : llvm::reverse(BO)) { 1260 BasicBlock *B = cast<BasicBlock>(V); 1261 ValueVect Ins; 1262 for (Instruction &I : llvm::reverse(*B)) 1263 Ins.push_back(&I); 1264 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { 1265 Instruction *In = cast<Instruction>(*I); 1266 if (isInstructionTriviallyDead(In)) 1267 In->eraseFromParent(); 1268 } 1269 } 1270 } 1271 1272 bool HexagonCommonGEP::runOnFunction(Function &F) { 1273 if (skipFunction(F)) 1274 return false; 1275 1276 // For now bail out on C++ exception handling. 1277 for (const BasicBlock &BB : F) 1278 for (const Instruction &I : BB) 1279 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1280 return false; 1281 1282 Fn = &F; 1283 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1284 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1285 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1286 Ctx = &F.getContext(); 1287 1288 Nodes.clear(); 1289 Uses.clear(); 1290 NodeOrder.clear(); 1291 1292 SpecificBumpPtrAllocator<GepNode> Allocator; 1293 Mem = &Allocator; 1294 1295 collect(); 1296 common(); 1297 1298 NodeToValueMap Loc; 1299 computeNodePlacement(Loc); 1300 materialize(Loc); 1301 removeDeadCode(); 1302 1303 #ifdef EXPENSIVE_CHECKS 1304 // Run this only when expensive checks are enabled. 1305 if (verifyFunction(F, &dbgs())) 1306 report_fatal_error("Broken function"); 1307 #endif 1308 return true; 1309 } 1310 1311 namespace llvm { 1312 1313 FunctionPass *createHexagonCommonGEP() { 1314 return new HexagonCommonGEP(); 1315 } 1316 1317 } // end namespace llvm 1318