xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- HexagonBlockRanges.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonBlockRanges.h"
10 #include "HexagonInstrInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstdint>
26 #include <iterator>
27 #include <map>
28 #include <utility>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "hbr"
33 
34 bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const {
35   // If A contains start(), or "this" contains A.start(), then overlap.
36   IndexType S = start(), E = end(), AS = A.start(), AE = A.end();
37   if (AS == S)
38     return true;
39   bool SbAE = (S < AE) || (S == AE && A.TiedEnd);  // S-before-AE.
40   bool ASbE = (AS < E) || (AS == E && TiedEnd);    // AS-before-E.
41   if ((AS < S && SbAE) || (S < AS && ASbE))
42     return true;
43   // Otherwise no overlap.
44   return false;
45 }
46 
47 bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const {
48   if (start() <= A.start()) {
49     // Treat "None" in the range end as equal to the range start.
50     IndexType E = (end() != IndexType::None) ? end() : start();
51     IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start();
52     if (AE <= E)
53       return true;
54   }
55   return false;
56 }
57 
58 void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) {
59   // Allow merging adjacent ranges.
60   assert(end() == A.start() || overlaps(A));
61   IndexType AS = A.start(), AE = A.end();
62   if (AS < start() || start() == IndexType::None)
63     setStart(AS);
64   if (end() < AE || end() == IndexType::None) {
65     setEnd(AE);
66     TiedEnd = A.TiedEnd;
67   } else {
68     if (end() == AE)
69       TiedEnd |= A.TiedEnd;
70   }
71   if (A.Fixed)
72     Fixed = true;
73 }
74 
75 void HexagonBlockRanges::RangeList::include(const RangeList &RL) {
76   for (const auto &R : RL)
77     if (!is_contained(*this, R))
78       push_back(R);
79 }
80 
81 // Merge all overlapping ranges in the list, so that all that remains
82 // is a list of disjoint ranges.
83 void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) {
84   if (empty())
85     return;
86 
87   llvm::sort(*this);
88   iterator Iter = begin();
89 
90   while (Iter != end()-1) {
91     iterator Next = std::next(Iter);
92     // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start.
93     // This allows merging dead ranges, but is not valid for live ranges.
94     bool Merge = MergeAdjacent && (Iter->end() == Next->start());
95     if (Merge || Iter->overlaps(*Next)) {
96       Iter->merge(*Next);
97       erase(Next);
98       continue;
99     }
100     ++Iter;
101   }
102 }
103 
104 // Compute a range A-B and add it to the list.
105 void HexagonBlockRanges::RangeList::addsub(const IndexRange &A,
106       const IndexRange &B) {
107   // Exclusion of non-overlapping ranges makes some checks simpler
108   // later in this function.
109   if (!A.overlaps(B)) {
110     // A - B = A.
111     add(A);
112     return;
113   }
114 
115   IndexType AS = A.start(), AE = A.end();
116   IndexType BS = B.start(), BE = B.end();
117 
118   // If AE is None, then A is included in B, since A and B overlap.
119   // The result of subtraction if empty, so just return.
120   if (AE == IndexType::None)
121     return;
122 
123   if (AS < BS) {
124     // A starts before B.
125     // AE cannot be None since A and B overlap.
126     assert(AE != IndexType::None);
127     // Add the part of A that extends on the "less" side of B.
128     add(AS, BS, A.Fixed, false);
129   }
130 
131   if (BE < AE) {
132     // BE cannot be Exit here.
133     if (BE == IndexType::None)
134       add(BS, AE, A.Fixed, false);
135     else
136       add(BE, AE, A.Fixed, false);
137   }
138 }
139 
140 // Subtract a given range from each element in the list.
141 void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) {
142   // Cannot assume that the list is unionized (i.e. contains only non-
143   // overlapping ranges.
144   RangeList T;
145   for (iterator Next, I = begin(); I != end(); I = Next) {
146     IndexRange &Rg = *I;
147     if (Rg.overlaps(Range)) {
148       T.addsub(Rg, Range);
149       Next = this->erase(I);
150     } else {
151       Next = std::next(I);
152     }
153   }
154   include(T);
155 }
156 
157 HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B)
158     : Block(B) {
159   IndexType Idx = IndexType::First;
160   First = Idx;
161   for (auto &In : B) {
162     if (In.isDebugInstr())
163       continue;
164     assert(getIndex(&In) == IndexType::None && "Instruction already in map");
165     Map.insert(std::make_pair(Idx, &In));
166     ++Idx;
167   }
168   Last = B.empty() ? IndexType::None : unsigned(Idx)-1;
169 }
170 
171 MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const {
172   auto F = Map.find(Idx);
173   return (F != Map.end()) ? F->second : nullptr;
174 }
175 
176 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex(
177       MachineInstr *MI) const {
178   for (const auto &I : Map)
179     if (I.second == MI)
180       return I.first;
181   return IndexType::None;
182 }
183 
184 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex(
185       IndexType Idx) const {
186   assert (Idx != IndexType::None);
187   if (Idx == IndexType::Entry)
188     return IndexType::None;
189   if (Idx == IndexType::Exit)
190     return Last;
191   if (Idx == First)
192     return IndexType::Entry;
193   return unsigned(Idx)-1;
194 }
195 
196 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex(
197       IndexType Idx) const {
198   assert (Idx != IndexType::None);
199   if (Idx == IndexType::Entry)
200     return IndexType::First;
201   if (Idx == IndexType::Exit || Idx == Last)
202     return IndexType::None;
203   return unsigned(Idx)+1;
204 }
205 
206 void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI,
207       MachineInstr *NewMI) {
208   for (auto &I : Map) {
209     if (I.second != OldMI)
210       continue;
211     if (NewMI != nullptr)
212       I.second = NewMI;
213     else
214       Map.erase(I.first);
215     break;
216   }
217 }
218 
219 HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf)
220   : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()),
221     TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()),
222     Reserved(TRI.getReservedRegs(mf)) {
223   // Consider all non-allocatable registers as reserved.
224   for (const TargetRegisterClass *RC : TRI.regclasses()) {
225     if (RC->isAllocatable())
226       continue;
227     for (unsigned R : *RC)
228       Reserved[R] = true;
229   }
230 }
231 
232 HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns(
233       const MachineBasicBlock &B, const MachineRegisterInfo &MRI,
234       const TargetRegisterInfo &TRI) {
235   RegisterSet LiveIns;
236   RegisterSet Tmp;
237 
238   for (auto I : B.liveins()) {
239     MCSubRegIndexIterator S(I.PhysReg, &TRI);
240     if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) {
241       Tmp.insert({I.PhysReg, 0});
242       continue;
243     }
244     for (; S.isValid(); ++S) {
245       unsigned SI = S.getSubRegIndex();
246       if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SI)).any())
247         Tmp.insert({S.getSubReg(), 0});
248     }
249   }
250 
251   for (auto R : Tmp) {
252     if (!Reserved[R.Reg])
253       LiveIns.insert(R);
254     for (auto S : expandToSubRegs(R, MRI, TRI))
255       if (!Reserved[S.Reg])
256         LiveIns.insert(S);
257   }
258   return LiveIns;
259 }
260 
261 HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs(
262       RegisterRef R, const MachineRegisterInfo &MRI,
263       const TargetRegisterInfo &TRI) {
264   RegisterSet SRs;
265 
266   if (R.Sub != 0) {
267     SRs.insert(R);
268     return SRs;
269   }
270 
271   if (R.Reg.isPhysical()) {
272     if (TRI.subregs(R.Reg).empty())
273       SRs.insert({R.Reg, 0});
274     for (MCPhysReg I : TRI.subregs(R.Reg))
275       SRs.insert({I, 0});
276   } else {
277     assert(R.Reg.isVirtual());
278     auto &RC = *MRI.getRegClass(R.Reg);
279     unsigned PReg = *RC.begin();
280     MCSubRegIndexIterator I(PReg, &TRI);
281     if (!I.isValid())
282       SRs.insert({R.Reg, 0});
283     for (; I.isValid(); ++I)
284       SRs.insert({R.Reg, I.getSubRegIndex()});
285   }
286   return SRs;
287 }
288 
289 void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap,
290       RegToRangeMap &LiveMap) {
291   std::map<RegisterRef,IndexType> LastDef, LastUse;
292   RegisterSet LiveOnEntry;
293   MachineBasicBlock &B = IndexMap.getBlock();
294   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
295 
296   for (auto R : getLiveIns(B, MRI, TRI))
297     LiveOnEntry.insert(R);
298 
299   for (auto R : LiveOnEntry)
300     LastDef[R] = IndexType::Entry;
301 
302   auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void {
303     auto LD = LastDef[R], LU = LastUse[R];
304     if (LD == IndexType::None)
305       LD = IndexType::Entry;
306     if (LU == IndexType::None)
307       LU = IndexType::Exit;
308     LiveMap[R].add(LD, LU, false, false);
309     LastUse[R] = LastDef[R] = IndexType::None;
310   };
311 
312   RegisterSet Defs, Clobbers;
313 
314   for (auto &In : B) {
315     if (In.isDebugInstr())
316       continue;
317     IndexType Index = IndexMap.getIndex(&In);
318     // Process uses first.
319     for (auto &Op : In.operands()) {
320       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
321         continue;
322       RegisterRef R = { Op.getReg(), Op.getSubReg() };
323       if (R.Reg.isPhysical() && Reserved[R.Reg])
324         continue;
325       bool IsKill = Op.isKill();
326       for (auto S : expandToSubRegs(R, MRI, TRI)) {
327         LastUse[S] = Index;
328         if (IsKill)
329           closeRange(S);
330       }
331     }
332     // Process defs and clobbers.
333     Defs.clear();
334     Clobbers.clear();
335     for (auto &Op : In.operands()) {
336       if (!Op.isReg() || !Op.isDef() || Op.isUndef())
337         continue;
338       RegisterRef R = { Op.getReg(), Op.getSubReg() };
339       for (auto S : expandToSubRegs(R, MRI, TRI)) {
340         if (S.Reg.isPhysical() && Reserved[S.Reg])
341           continue;
342         if (Op.isDead())
343           Clobbers.insert(S);
344         else
345           Defs.insert(S);
346       }
347     }
348 
349     for (auto &Op : In.operands()) {
350       if (!Op.isRegMask())
351         continue;
352       const uint32_t *BM = Op.getRegMask();
353       for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) {
354         // Skip registers that have subregisters. A register is preserved
355         // iff its bit is set in the regmask, so if R1:0 was preserved, both
356         // R1 and R0 would also be present.
357         if (!TRI.subregs(PR).empty())
358           continue;
359         if (Reserved[PR])
360           continue;
361         if (BM[PR/32] & (1u << (PR%32)))
362           continue;
363         RegisterRef R = { PR, 0 };
364         if (!Defs.count(R))
365           Clobbers.insert(R);
366       }
367     }
368     // Defs and clobbers can overlap, e.g.
369     // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1
370     for (RegisterRef R : Defs)
371       Clobbers.erase(R);
372 
373     // Update maps for defs.
374     for (RegisterRef S : Defs) {
375       // Defs should already be expanded into subregs.
376       assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty());
377       if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
378         closeRange(S);
379       LastDef[S] = Index;
380     }
381     // Update maps for clobbers.
382     for (RegisterRef S : Clobbers) {
383       // Clobbers should already be expanded into subregs.
384       assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty());
385       if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
386         closeRange(S);
387       // Create a single-instruction range.
388       LastDef[S] = LastUse[S] = Index;
389       closeRange(S);
390     }
391   }
392 
393   // Collect live-on-exit.
394   RegisterSet LiveOnExit;
395   for (auto *SB : B.successors())
396     for (auto R : getLiveIns(*SB, MRI, TRI))
397       LiveOnExit.insert(R);
398 
399   for (auto R : LiveOnExit)
400     LastUse[R] = IndexType::Exit;
401 
402   // Process remaining registers.
403   RegisterSet Left;
404   for (auto &I : LastUse)
405     if (I.second != IndexType::None)
406       Left.insert(I.first);
407   for (auto &I : LastDef)
408     if (I.second != IndexType::None)
409       Left.insert(I.first);
410   for (auto R : Left)
411     closeRange(R);
412 
413   // Finalize the live ranges.
414   for (auto &P : LiveMap)
415     P.second.unionize();
416 }
417 
418 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap(
419       InstrIndexMap &IndexMap) {
420   RegToRangeMap LiveMap;
421   LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n');
422   computeInitialLiveRanges(IndexMap, LiveMap);
423   LLVM_DEBUG(dbgs() << __func__ << ": live map\n"
424                     << PrintRangeMap(LiveMap, TRI) << '\n');
425   return LiveMap;
426 }
427 
428 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap(
429       InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) {
430   RegToRangeMap DeadMap;
431 
432   auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void {
433     auto F = LiveMap.find(R);
434     if (F == LiveMap.end() || F->second.empty()) {
435       DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false);
436       return;
437     }
438 
439     RangeList &RL = F->second;
440     RangeList::iterator A = RL.begin(), Z = RL.end()-1;
441 
442     // Try to create the initial range.
443     if (A->start() != IndexType::Entry) {
444       IndexType DE = IndexMap.getPrevIndex(A->start());
445       if (DE != IndexType::Entry)
446         DeadMap[R].add(IndexType::Entry, DE, false, false);
447     }
448 
449     while (A != Z) {
450       // Creating a dead range that follows A.  Pay attention to empty
451       // ranges (i.e. those ending with "None").
452       IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end();
453       IndexType DS = IndexMap.getNextIndex(AE);
454       ++A;
455       IndexType DE = IndexMap.getPrevIndex(A->start());
456       if (DS < DE)
457         DeadMap[R].add(DS, DE, false, false);
458     }
459 
460     // Try to create the final range.
461     if (Z->end() != IndexType::Exit) {
462       IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end();
463       IndexType DS = IndexMap.getNextIndex(ZE);
464       if (DS < IndexType::Exit)
465         DeadMap[R].add(DS, IndexType::Exit, false, false);
466     }
467   };
468 
469   MachineFunction &MF = *IndexMap.getBlock().getParent();
470   auto &MRI = MF.getRegInfo();
471   unsigned NumRegs = TRI.getNumRegs();
472   BitVector Visited(NumRegs);
473   for (unsigned R = 1; R < NumRegs; ++R) {
474     for (auto S : expandToSubRegs({R,0}, MRI, TRI)) {
475       if (Reserved[S.Reg] || Visited[S.Reg])
476         continue;
477       addDeadRanges(S);
478       Visited[S.Reg] = true;
479     }
480   }
481   for (auto &P : LiveMap)
482     if (P.first.Reg.isVirtual())
483       addDeadRanges(P.first);
484 
485   LLVM_DEBUG(dbgs() << __func__ << ": dead map\n"
486                     << PrintRangeMap(DeadMap, TRI) << '\n');
487   return DeadMap;
488 }
489 
490 raw_ostream &llvm::operator<<(raw_ostream &OS,
491                               HexagonBlockRanges::IndexType Idx) {
492   if (Idx == HexagonBlockRanges::IndexType::None)
493     return OS << '-';
494   if (Idx == HexagonBlockRanges::IndexType::Entry)
495     return OS << 'n';
496   if (Idx == HexagonBlockRanges::IndexType::Exit)
497     return OS << 'x';
498   return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1;
499 }
500 
501 // A mapping to translate between instructions and their indices.
502 raw_ostream &llvm::operator<<(raw_ostream &OS,
503                               const HexagonBlockRanges::IndexRange &IR) {
504   OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']');
505   if (IR.Fixed)
506     OS << '!';
507   return OS;
508 }
509 
510 raw_ostream &llvm::operator<<(raw_ostream &OS,
511                               const HexagonBlockRanges::RangeList &RL) {
512   for (const auto &R : RL)
513     OS << R << " ";
514   return OS;
515 }
516 
517 raw_ostream &llvm::operator<<(raw_ostream &OS,
518                               const HexagonBlockRanges::InstrIndexMap &M) {
519   for (auto &In : M.Block) {
520     HexagonBlockRanges::IndexType Idx = M.getIndex(&In);
521     OS << Idx << (Idx == M.Last ? ". " : "  ") << In;
522   }
523   return OS;
524 }
525 
526 raw_ostream &llvm::operator<<(raw_ostream &OS,
527                               const HexagonBlockRanges::PrintRangeMap &P) {
528   for (const auto &I : P.Map) {
529     const HexagonBlockRanges::RangeList &RL = I.second;
530     OS << printReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n";
531   }
532   return OS;
533 }
534