1 //===- HexagonBitTracker.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonBitTracker.h" 10 #include "Hexagon.h" 11 #include "HexagonInstrInfo.h" 12 #include "HexagonRegisterInfo.h" 13 #include "HexagonSubtarget.h" 14 #include "llvm/CodeGen/MachineFrameInfo.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/TargetRegisterInfo.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Type.h" 24 #include "llvm/Support/Compiler.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstdlib> 33 #include <utility> 34 #include <vector> 35 36 using namespace llvm; 37 38 using BT = BitTracker; 39 40 HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri, 41 MachineRegisterInfo &mri, 42 const HexagonInstrInfo &tii, 43 MachineFunction &mf) 44 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) { 45 // Populate the VRX map (VR to extension-type). 46 // Go over all the formal parameters of the function. If a given parameter 47 // P is sign- or zero-extended, locate the virtual register holding that 48 // parameter and create an entry in the VRX map indicating the type of ex- 49 // tension (and the source type). 50 // This is a bit complicated to do accurately, since the memory layout in- 51 // formation is necessary to precisely determine whether an aggregate para- 52 // meter will be passed in a register or in memory. What is given in MRI 53 // is the association between the physical register that is live-in (i.e. 54 // holds an argument), and the virtual register that this value will be 55 // copied into. This, by itself, is not sufficient to map back the virtual 56 // register to a formal parameter from Function (since consecutive live-ins 57 // from MRI may not correspond to consecutive formal parameters from Func- 58 // tion). To avoid the complications with in-memory arguments, only consi- 59 // der the initial sequence of formal parameters that are known to be 60 // passed via registers. 61 unsigned InVirtReg, InPhysReg = 0; 62 63 for (const Argument &Arg : MF.getFunction().args()) { 64 Type *ATy = Arg.getType(); 65 unsigned Width = 0; 66 if (ATy->isIntegerTy()) 67 Width = ATy->getIntegerBitWidth(); 68 else if (ATy->isPointerTy()) 69 Width = 32; 70 // If pointer size is not set through target data, it will default to 71 // Module::AnyPointerSize. 72 if (Width == 0 || Width > 64) 73 break; 74 if (Arg.hasAttribute(Attribute::ByVal)) 75 continue; 76 InPhysReg = getNextPhysReg(InPhysReg, Width); 77 if (!InPhysReg) 78 break; 79 InVirtReg = getVirtRegFor(InPhysReg); 80 if (!InVirtReg) 81 continue; 82 if (Arg.hasAttribute(Attribute::SExt)) 83 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width))); 84 else if (Arg.hasAttribute(Attribute::ZExt)) 85 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width))); 86 } 87 } 88 89 BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const { 90 if (Sub == 0) 91 return MachineEvaluator::mask(Reg, 0); 92 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 93 unsigned ID = RC.getID(); 94 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub)); 95 const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI); 96 bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo)); 97 switch (ID) { 98 case Hexagon::DoubleRegsRegClassID: 99 case Hexagon::HvxWRRegClassID: 100 case Hexagon::HvxVQRRegClassID: 101 return IsSubLo ? BT::BitMask(0, RW-1) 102 : BT::BitMask(RW, 2*RW-1); 103 default: 104 break; 105 } 106 #ifndef NDEBUG 107 dbgs() << printReg(Reg, &TRI, Sub) << " in reg class " 108 << TRI.getRegClassName(&RC) << '\n'; 109 #endif 110 llvm_unreachable("Unexpected register/subregister"); 111 } 112 113 uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const { 114 using namespace Hexagon; 115 const auto &HST = MF.getSubtarget<HexagonSubtarget>(); 116 if (HST.useHVXOps()) { 117 for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass, 118 HvxVQRRegClass}) 119 if (RC.contains(Reg)) 120 return TRI.getRegSizeInBits(RC); 121 } 122 // Default treatment for other physical registers. 123 if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg)) 124 return TRI.getRegSizeInBits(*RC); 125 126 llvm_unreachable( 127 (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str()); 128 } 129 130 const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex( 131 const TargetRegisterClass &RC, unsigned Idx) const { 132 if (Idx == 0) 133 return RC; 134 135 #ifndef NDEBUG 136 const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI); 137 bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo)); 138 bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi)); 139 assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg"); 140 #endif 141 142 switch (RC.getID()) { 143 case Hexagon::DoubleRegsRegClassID: 144 return Hexagon::IntRegsRegClass; 145 case Hexagon::HvxWRRegClassID: 146 return Hexagon::HvxVRRegClass; 147 case Hexagon::HvxVQRRegClassID: 148 return Hexagon::HvxWRRegClass; 149 default: 150 break; 151 } 152 #ifndef NDEBUG 153 dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n'; 154 #endif 155 llvm_unreachable("Unimplemented combination of reg class/subreg idx"); 156 } 157 158 namespace { 159 160 class RegisterRefs { 161 std::vector<BT::RegisterRef> Vector; 162 163 public: 164 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) { 165 for (unsigned i = 0, n = Vector.size(); i < n; ++i) { 166 const MachineOperand &MO = MI.getOperand(i); 167 if (MO.isReg()) 168 Vector[i] = BT::RegisterRef(MO); 169 // For indices that don't correspond to registers, the entry will 170 // remain constructed via the default constructor. 171 } 172 } 173 174 size_t size() const { return Vector.size(); } 175 176 const BT::RegisterRef &operator[](unsigned n) const { 177 // The main purpose of this operator is to assert with bad argument. 178 assert(n < Vector.size()); 179 return Vector[n]; 180 } 181 }; 182 183 } // end anonymous namespace 184 185 bool HexagonEvaluator::evaluate(const MachineInstr &MI, 186 const CellMapType &Inputs, 187 CellMapType &Outputs) const { 188 using namespace Hexagon; 189 190 unsigned NumDefs = 0; 191 192 // Sanity verification: there should not be any defs with subregisters. 193 for (const MachineOperand &MO : MI.operands()) { 194 if (!MO.isReg() || !MO.isDef()) 195 continue; 196 NumDefs++; 197 assert(MO.getSubReg() == 0); 198 } 199 200 if (NumDefs == 0) 201 return false; 202 203 unsigned Opc = MI.getOpcode(); 204 205 if (MI.mayLoad()) { 206 switch (Opc) { 207 // These instructions may be marked as mayLoad, but they are generating 208 // immediate values, so skip them. 209 case CONST32: 210 case CONST64: 211 break; 212 default: 213 return evaluateLoad(MI, Inputs, Outputs); 214 } 215 } 216 217 // Check COPY instructions that copy formal parameters into virtual 218 // registers. Such parameters can be sign- or zero-extended at the 219 // call site, and we should take advantage of this knowledge. The MRI 220 // keeps a list of pairs of live-in physical and virtual registers, 221 // which provides information about which virtual registers will hold 222 // the argument values. The function will still contain instructions 223 // defining those virtual registers, and in practice those are COPY 224 // instructions from a physical to a virtual register. In such cases, 225 // applying the argument extension to the virtual register can be seen 226 // as simply mirroring the extension that had already been applied to 227 // the physical register at the call site. If the defining instruction 228 // was not a COPY, it would not be clear how to mirror that extension 229 // on the callee's side. For that reason, only check COPY instructions 230 // for potential extensions. 231 if (MI.isCopy()) { 232 if (evaluateFormalCopy(MI, Inputs, Outputs)) 233 return true; 234 } 235 236 // Beyond this point, if any operand is a global, skip that instruction. 237 // The reason is that certain instructions that can take an immediate 238 // operand can also have a global symbol in that operand. To avoid 239 // checking what kind of operand a given instruction has individually 240 // for each instruction, do it here. Global symbols as operands gene- 241 // rally do not provide any useful information. 242 for (const MachineOperand &MO : MI.operands()) { 243 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() || 244 MO.isCPI()) 245 return false; 246 } 247 248 RegisterRefs Reg(MI); 249 #define op(i) MI.getOperand(i) 250 #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs)) 251 #define im(i) MI.getOperand(i).getImm() 252 253 // If the instruction has no register operands, skip it. 254 if (Reg.size() == 0) 255 return false; 256 257 // Record result for register in operand 0. 258 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs) 259 -> bool { 260 putCell(Reg[0], Val, Outputs); 261 return true; 262 }; 263 // Get the cell corresponding to the N-th operand. 264 auto cop = [this, &Reg, &MI, &Inputs](unsigned N, 265 uint16_t W) -> BT::RegisterCell { 266 const MachineOperand &Op = MI.getOperand(N); 267 if (Op.isImm()) 268 return eIMM(Op.getImm(), W); 269 if (!Op.isReg()) 270 return RegisterCell::self(0, W); 271 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch"); 272 return rc(N); 273 }; 274 // Extract RW low bits of the cell. 275 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW) 276 -> BT::RegisterCell { 277 assert(RW <= RC.width()); 278 return eXTR(RC, 0, RW); 279 }; 280 // Extract RW high bits of the cell. 281 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW) 282 -> BT::RegisterCell { 283 uint16_t W = RC.width(); 284 assert(RW <= W); 285 return eXTR(RC, W-RW, W); 286 }; 287 // Extract N-th halfword (counting from the least significant position). 288 auto half = [this] (const BT::RegisterCell &RC, unsigned N) 289 -> BT::RegisterCell { 290 assert(N*16+16 <= RC.width()); 291 return eXTR(RC, N*16, N*16+16); 292 }; 293 // Shuffle bits (pick even/odd from cells and merge into result). 294 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt, 295 uint16_t BW, bool Odd) -> BT::RegisterCell { 296 uint16_t I = Odd, Ws = Rs.width(); 297 assert(Ws == Rt.width()); 298 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW)); 299 I += 2; 300 while (I*BW < Ws) { 301 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW)); 302 I += 2; 303 } 304 return RC; 305 }; 306 307 // The bitwidth of the 0th operand. In most (if not all) of the 308 // instructions below, the 0th operand is the defined register. 309 // Pre-compute the bitwidth here, because it is needed in many cases 310 // cases below. 311 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0; 312 313 // Register id of the 0th operand. It can be 0. 314 unsigned Reg0 = Reg[0].Reg; 315 316 switch (Opc) { 317 // Transfer immediate: 318 319 case A2_tfrsi: 320 case A2_tfrpi: 321 case CONST32: 322 case CONST64: 323 return rr0(eIMM(im(1), W0), Outputs); 324 case PS_false: 325 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs); 326 case PS_true: 327 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs); 328 case PS_fi: { 329 int FI = op(1).getIndex(); 330 int Off = op(2).getImm(); 331 unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off); 332 unsigned L = countTrailingZeros(A); 333 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); 334 RC.fill(0, L, BT::BitValue::Zero); 335 return rr0(RC, Outputs); 336 } 337 338 // Transfer register: 339 340 case A2_tfr: 341 case A2_tfrp: 342 case C2_pxfer_map: 343 return rr0(rc(1), Outputs); 344 case C2_tfrpr: { 345 uint16_t RW = W0; 346 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); 347 assert(PW <= RW); 348 RegisterCell PC = eXTR(rc(1), 0, PW); 349 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1)); 350 RC.fill(PW, RW, BT::BitValue::Zero); 351 return rr0(RC, Outputs); 352 } 353 case C2_tfrrp: { 354 uint16_t RW = W0; 355 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); 356 RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW); 357 RC.fill(PW, RW, BT::BitValue::Zero); 358 return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs); 359 } 360 361 // Arithmetic: 362 363 case A2_abs: 364 case A2_absp: 365 // TODO 366 break; 367 368 case A2_addsp: { 369 uint16_t W1 = getRegBitWidth(Reg[1]); 370 assert(W0 == 64 && W1 == 32); 371 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1)); 372 RegisterCell RC = eADD(eSXT(CW, W1), rc(2)); 373 return rr0(RC, Outputs); 374 } 375 case A2_add: 376 case A2_addp: 377 return rr0(eADD(rc(1), rc(2)), Outputs); 378 case A2_addi: 379 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs); 380 case S4_addi_asl_ri: { 381 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3))); 382 return rr0(RC, Outputs); 383 } 384 case S4_addi_lsr_ri: { 385 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3))); 386 return rr0(RC, Outputs); 387 } 388 case S4_addaddi: { 389 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); 390 return rr0(RC, Outputs); 391 } 392 case M4_mpyri_addi: { 393 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); 394 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); 395 return rr0(RC, Outputs); 396 } 397 case M4_mpyrr_addi: { 398 RegisterCell M = eMLS(rc(2), rc(3)); 399 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); 400 return rr0(RC, Outputs); 401 } 402 case M4_mpyri_addr_u2: { 403 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3)); 404 RegisterCell RC = eADD(rc(1), lo(M, W0)); 405 return rr0(RC, Outputs); 406 } 407 case M4_mpyri_addr: { 408 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); 409 RegisterCell RC = eADD(rc(1), lo(M, W0)); 410 return rr0(RC, Outputs); 411 } 412 case M4_mpyrr_addr: { 413 RegisterCell M = eMLS(rc(2), rc(3)); 414 RegisterCell RC = eADD(rc(1), lo(M, W0)); 415 return rr0(RC, Outputs); 416 } 417 case S4_subaddi: { 418 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3))); 419 return rr0(RC, Outputs); 420 } 421 case M2_accii: { 422 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); 423 return rr0(RC, Outputs); 424 } 425 case M2_acci: { 426 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3))); 427 return rr0(RC, Outputs); 428 } 429 case M2_subacc: { 430 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3))); 431 return rr0(RC, Outputs); 432 } 433 case S2_addasl_rrri: { 434 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3))); 435 return rr0(RC, Outputs); 436 } 437 case C4_addipc: { 438 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0); 439 RPC.fill(0, 2, BT::BitValue::Zero); 440 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs); 441 } 442 case A2_sub: 443 case A2_subp: 444 return rr0(eSUB(rc(1), rc(2)), Outputs); 445 case A2_subri: 446 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs); 447 case S4_subi_asl_ri: { 448 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3))); 449 return rr0(RC, Outputs); 450 } 451 case S4_subi_lsr_ri: { 452 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3))); 453 return rr0(RC, Outputs); 454 } 455 case M2_naccii: { 456 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0))); 457 return rr0(RC, Outputs); 458 } 459 case M2_nacci: { 460 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3))); 461 return rr0(RC, Outputs); 462 } 463 // 32-bit negation is done by "Rd = A2_subri 0, Rs" 464 case A2_negp: 465 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs); 466 467 case M2_mpy_up: { 468 RegisterCell M = eMLS(rc(1), rc(2)); 469 return rr0(hi(M, W0), Outputs); 470 } 471 case M2_dpmpyss_s0: 472 return rr0(eMLS(rc(1), rc(2)), Outputs); 473 case M2_dpmpyss_acc_s0: 474 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs); 475 case M2_dpmpyss_nac_s0: 476 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs); 477 case M2_mpyi: { 478 RegisterCell M = eMLS(rc(1), rc(2)); 479 return rr0(lo(M, W0), Outputs); 480 } 481 case M2_macsip: { 482 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); 483 RegisterCell RC = eADD(rc(1), lo(M, W0)); 484 return rr0(RC, Outputs); 485 } 486 case M2_macsin: { 487 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); 488 RegisterCell RC = eSUB(rc(1), lo(M, W0)); 489 return rr0(RC, Outputs); 490 } 491 case M2_maci: { 492 RegisterCell M = eMLS(rc(2), rc(3)); 493 RegisterCell RC = eADD(rc(1), lo(M, W0)); 494 return rr0(RC, Outputs); 495 } 496 case M2_mpysmi: { 497 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); 498 return rr0(lo(M, 32), Outputs); 499 } 500 case M2_mpysin: { 501 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0)); 502 return rr0(lo(M, 32), Outputs); 503 } 504 case M2_mpysip: { 505 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); 506 return rr0(lo(M, 32), Outputs); 507 } 508 case M2_mpyu_up: { 509 RegisterCell M = eMLU(rc(1), rc(2)); 510 return rr0(hi(M, W0), Outputs); 511 } 512 case M2_dpmpyuu_s0: 513 return rr0(eMLU(rc(1), rc(2)), Outputs); 514 case M2_dpmpyuu_acc_s0: 515 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs); 516 case M2_dpmpyuu_nac_s0: 517 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs); 518 //case M2_mpysu_up: 519 520 // Logical/bitwise: 521 522 case A2_andir: 523 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs); 524 case A2_and: 525 case A2_andp: 526 return rr0(eAND(rc(1), rc(2)), Outputs); 527 case A4_andn: 528 case A4_andnp: 529 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); 530 case S4_andi_asl_ri: { 531 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3))); 532 return rr0(RC, Outputs); 533 } 534 case S4_andi_lsr_ri: { 535 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3))); 536 return rr0(RC, Outputs); 537 } 538 case M4_and_and: 539 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); 540 case M4_and_andn: 541 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); 542 case M4_and_or: 543 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); 544 case M4_and_xor: 545 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs); 546 case A2_orir: 547 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs); 548 case A2_or: 549 case A2_orp: 550 return rr0(eORL(rc(1), rc(2)), Outputs); 551 case A4_orn: 552 case A4_ornp: 553 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); 554 case S4_ori_asl_ri: { 555 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3))); 556 return rr0(RC, Outputs); 557 } 558 case S4_ori_lsr_ri: { 559 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3))); 560 return rr0(RC, Outputs); 561 } 562 case M4_or_and: 563 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); 564 case M4_or_andn: 565 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); 566 case S4_or_andi: 567 case S4_or_andix: { 568 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0))); 569 return rr0(RC, Outputs); 570 } 571 case S4_or_ori: { 572 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0))); 573 return rr0(RC, Outputs); 574 } 575 case M4_or_or: 576 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); 577 case M4_or_xor: 578 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs); 579 case A2_xor: 580 case A2_xorp: 581 return rr0(eXOR(rc(1), rc(2)), Outputs); 582 case M4_xor_and: 583 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs); 584 case M4_xor_andn: 585 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); 586 case M4_xor_or: 587 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs); 588 case M4_xor_xacc: 589 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs); 590 case A2_not: 591 case A2_notp: 592 return rr0(eNOT(rc(1)), Outputs); 593 594 case S2_asl_i_r: 595 case S2_asl_i_p: 596 return rr0(eASL(rc(1), im(2)), Outputs); 597 case A2_aslh: 598 return rr0(eASL(rc(1), 16), Outputs); 599 case S2_asl_i_r_acc: 600 case S2_asl_i_p_acc: 601 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs); 602 case S2_asl_i_r_nac: 603 case S2_asl_i_p_nac: 604 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs); 605 case S2_asl_i_r_and: 606 case S2_asl_i_p_and: 607 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs); 608 case S2_asl_i_r_or: 609 case S2_asl_i_p_or: 610 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs); 611 case S2_asl_i_r_xacc: 612 case S2_asl_i_p_xacc: 613 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs); 614 case S2_asl_i_vh: 615 case S2_asl_i_vw: 616 // TODO 617 break; 618 619 case S2_asr_i_r: 620 case S2_asr_i_p: 621 return rr0(eASR(rc(1), im(2)), Outputs); 622 case A2_asrh: 623 return rr0(eASR(rc(1), 16), Outputs); 624 case S2_asr_i_r_acc: 625 case S2_asr_i_p_acc: 626 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs); 627 case S2_asr_i_r_nac: 628 case S2_asr_i_p_nac: 629 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs); 630 case S2_asr_i_r_and: 631 case S2_asr_i_p_and: 632 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs); 633 case S2_asr_i_r_or: 634 case S2_asr_i_p_or: 635 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs); 636 case S2_asr_i_r_rnd: { 637 // The input is first sign-extended to 64 bits, then the output 638 // is truncated back to 32 bits. 639 assert(W0 == 32); 640 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); 641 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1); 642 return rr0(eXTR(RC, 0, W0), Outputs); 643 } 644 case S2_asr_i_r_rnd_goodsyntax: { 645 int64_t S = im(2); 646 if (S == 0) 647 return rr0(rc(1), Outputs); 648 // Result: S2_asr_i_r_rnd Rs, u5-1 649 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); 650 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1); 651 return rr0(eXTR(RC, 0, W0), Outputs); 652 } 653 case S2_asr_r_vh: 654 case S2_asr_i_vw: 655 case S2_asr_i_svw_trun: 656 // TODO 657 break; 658 659 case S2_lsr_i_r: 660 case S2_lsr_i_p: 661 return rr0(eLSR(rc(1), im(2)), Outputs); 662 case S2_lsr_i_r_acc: 663 case S2_lsr_i_p_acc: 664 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs); 665 case S2_lsr_i_r_nac: 666 case S2_lsr_i_p_nac: 667 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs); 668 case S2_lsr_i_r_and: 669 case S2_lsr_i_p_and: 670 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs); 671 case S2_lsr_i_r_or: 672 case S2_lsr_i_p_or: 673 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs); 674 case S2_lsr_i_r_xacc: 675 case S2_lsr_i_p_xacc: 676 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs); 677 678 case S2_clrbit_i: { 679 RegisterCell RC = rc(1); 680 RC[im(2)] = BT::BitValue::Zero; 681 return rr0(RC, Outputs); 682 } 683 case S2_setbit_i: { 684 RegisterCell RC = rc(1); 685 RC[im(2)] = BT::BitValue::One; 686 return rr0(RC, Outputs); 687 } 688 case S2_togglebit_i: { 689 RegisterCell RC = rc(1); 690 uint16_t BX = im(2); 691 RC[BX] = RC[BX].is(0) ? BT::BitValue::One 692 : RC[BX].is(1) ? BT::BitValue::Zero 693 : BT::BitValue::self(); 694 return rr0(RC, Outputs); 695 } 696 697 case A4_bitspliti: { 698 uint16_t W1 = getRegBitWidth(Reg[1]); 699 uint16_t BX = im(2); 700 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx] 701 const BT::BitValue Zero = BT::BitValue::Zero; 702 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero) 703 .fill(W1+(W1-BX), W0, Zero); 704 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1); 705 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1); 706 return rr0(RC, Outputs); 707 } 708 case S4_extract: 709 case S4_extractp: 710 case S2_extractu: 711 case S2_extractup: { 712 uint16_t Wd = im(2), Of = im(3); 713 assert(Wd <= W0); 714 if (Wd == 0) 715 return rr0(eIMM(0, W0), Outputs); 716 // If the width extends beyond the register size, pad the register 717 // with 0 bits. 718 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1); 719 RegisterCell Ext = eXTR(Pad, Of, Wd+Of); 720 // Ext is short, need to extend it with 0s or sign bit. 721 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1)); 722 if (Opc == S2_extractu || Opc == S2_extractup) 723 return rr0(eZXT(RC, Wd), Outputs); 724 return rr0(eSXT(RC, Wd), Outputs); 725 } 726 case S2_insert: 727 case S2_insertp: { 728 uint16_t Wd = im(3), Of = im(4); 729 assert(Wd < W0 && Of < W0); 730 // If Wd+Of exceeds W0, the inserted bits are truncated. 731 if (Wd+Of > W0) 732 Wd = W0-Of; 733 if (Wd == 0) 734 return rr0(rc(1), Outputs); 735 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs); 736 } 737 738 // Bit permutations: 739 740 case A2_combineii: 741 case A4_combineii: 742 case A4_combineir: 743 case A4_combineri: 744 case A2_combinew: 745 case V6_vcombine: 746 assert(W0 % 2 == 0); 747 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs); 748 case A2_combine_ll: 749 case A2_combine_lh: 750 case A2_combine_hl: 751 case A2_combine_hh: { 752 assert(W0 == 32); 753 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); 754 // Low half in the output is 0 for _ll and _hl, 1 otherwise: 755 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl); 756 // High half in the output is 0 for _ll and _lh, 1 otherwise: 757 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh); 758 RegisterCell R1 = rc(1); 759 RegisterCell R2 = rc(2); 760 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH)); 761 return rr0(RC, Outputs); 762 } 763 case S2_packhl: { 764 assert(W0 == 64); 765 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); 766 RegisterCell R1 = rc(1); 767 RegisterCell R2 = rc(2); 768 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1)) 769 .cat(half(R1, 1)); 770 return rr0(RC, Outputs); 771 } 772 case S2_shuffeb: { 773 RegisterCell RC = shuffle(rc(1), rc(2), 8, false); 774 return rr0(RC, Outputs); 775 } 776 case S2_shuffeh: { 777 RegisterCell RC = shuffle(rc(1), rc(2), 16, false); 778 return rr0(RC, Outputs); 779 } 780 case S2_shuffob: { 781 RegisterCell RC = shuffle(rc(1), rc(2), 8, true); 782 return rr0(RC, Outputs); 783 } 784 case S2_shuffoh: { 785 RegisterCell RC = shuffle(rc(1), rc(2), 16, true); 786 return rr0(RC, Outputs); 787 } 788 case C2_mask: { 789 uint16_t WR = W0; 790 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]); 791 assert(WR == 64 && WP == 8); 792 RegisterCell R1 = rc(1); 793 RegisterCell RC(WR); 794 for (uint16_t i = 0; i < WP; ++i) { 795 const BT::BitValue &V = R1[i]; 796 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self(); 797 RC.fill(i*8, i*8+8, F); 798 } 799 return rr0(RC, Outputs); 800 } 801 802 // Mux: 803 804 case C2_muxii: 805 case C2_muxir: 806 case C2_muxri: 807 case C2_mux: { 808 BT::BitValue PC0 = rc(1)[0]; 809 RegisterCell R2 = cop(2, W0); 810 RegisterCell R3 = cop(3, W0); 811 if (PC0.is(0) || PC0.is(1)) 812 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs); 813 R2.meet(R3, Reg[0].Reg); 814 return rr0(R2, Outputs); 815 } 816 case C2_vmux: 817 // TODO 818 break; 819 820 // Sign- and zero-extension: 821 822 case A2_sxtb: 823 return rr0(eSXT(rc(1), 8), Outputs); 824 case A2_sxth: 825 return rr0(eSXT(rc(1), 16), Outputs); 826 case A2_sxtw: { 827 uint16_t W1 = getRegBitWidth(Reg[1]); 828 assert(W0 == 64 && W1 == 32); 829 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1); 830 return rr0(RC, Outputs); 831 } 832 case A2_zxtb: 833 return rr0(eZXT(rc(1), 8), Outputs); 834 case A2_zxth: 835 return rr0(eZXT(rc(1), 16), Outputs); 836 837 // Saturations 838 839 case A2_satb: 840 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs); 841 case A2_sath: 842 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs); 843 case A2_satub: 844 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs); 845 case A2_satuh: 846 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs); 847 848 // Bit count: 849 850 case S2_cl0: 851 case S2_cl0p: 852 // Always produce a 32-bit result. 853 return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs); 854 case S2_cl1: 855 case S2_cl1p: 856 return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs); 857 case S2_clb: 858 case S2_clbp: { 859 uint16_t W1 = getRegBitWidth(Reg[1]); 860 RegisterCell R1 = rc(1); 861 BT::BitValue TV = R1[W1-1]; 862 if (TV.is(0) || TV.is(1)) 863 return rr0(eCLB(R1, TV, 32), Outputs); 864 break; 865 } 866 case S2_ct0: 867 case S2_ct0p: 868 return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs); 869 case S2_ct1: 870 case S2_ct1p: 871 return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs); 872 case S5_popcountp: 873 // TODO 874 break; 875 876 case C2_all8: { 877 RegisterCell P1 = rc(1); 878 bool Has0 = false, All1 = true; 879 for (uint16_t i = 0; i < 8/*XXX*/; ++i) { 880 if (!P1[i].is(1)) 881 All1 = false; 882 if (!P1[i].is(0)) 883 continue; 884 Has0 = true; 885 break; 886 } 887 if (!Has0 && !All1) 888 break; 889 RegisterCell RC(W0); 890 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero)); 891 return rr0(RC, Outputs); 892 } 893 case C2_any8: { 894 RegisterCell P1 = rc(1); 895 bool Has1 = false, All0 = true; 896 for (uint16_t i = 0; i < 8/*XXX*/; ++i) { 897 if (!P1[i].is(0)) 898 All0 = false; 899 if (!P1[i].is(1)) 900 continue; 901 Has1 = true; 902 break; 903 } 904 if (!Has1 && !All0) 905 break; 906 RegisterCell RC(W0); 907 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero)); 908 return rr0(RC, Outputs); 909 } 910 case C2_and: 911 return rr0(eAND(rc(1), rc(2)), Outputs); 912 case C2_andn: 913 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); 914 case C2_not: 915 return rr0(eNOT(rc(1)), Outputs); 916 case C2_or: 917 return rr0(eORL(rc(1), rc(2)), Outputs); 918 case C2_orn: 919 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); 920 case C2_xor: 921 return rr0(eXOR(rc(1), rc(2)), Outputs); 922 case C4_and_and: 923 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); 924 case C4_and_andn: 925 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); 926 case C4_and_or: 927 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); 928 case C4_and_orn: 929 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); 930 case C4_or_and: 931 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); 932 case C4_or_andn: 933 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); 934 case C4_or_or: 935 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); 936 case C4_or_orn: 937 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); 938 case C2_bitsclr: 939 case C2_bitsclri: 940 case C2_bitsset: 941 case C4_nbitsclr: 942 case C4_nbitsclri: 943 case C4_nbitsset: 944 // TODO 945 break; 946 case S2_tstbit_i: 947 case S4_ntstbit_i: { 948 BT::BitValue V = rc(1)[im(2)]; 949 if (V.is(0) || V.is(1)) { 950 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0. 951 bool TV = (Opc == S2_tstbit_i); 952 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero; 953 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs); 954 } 955 break; 956 } 957 958 default: 959 // For instructions that define a single predicate registers, store 960 // the low 8 bits of the register only. 961 if (unsigned DefR = getUniqueDefVReg(MI)) { 962 if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) { 963 BT::RegisterRef PD(DefR, 0); 964 uint16_t RW = getRegBitWidth(PD); 965 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); 966 RegisterCell RC = RegisterCell::self(DefR, RW); 967 RC.fill(PW, RW, BT::BitValue::Zero); 968 putCell(PD, RC, Outputs); 969 return true; 970 } 971 } 972 return MachineEvaluator::evaluate(MI, Inputs, Outputs); 973 } 974 #undef im 975 #undef rc 976 #undef op 977 return false; 978 } 979 980 bool HexagonEvaluator::evaluate(const MachineInstr &BI, 981 const CellMapType &Inputs, 982 BranchTargetList &Targets, 983 bool &FallsThru) const { 984 // We need to evaluate one branch at a time. TII::analyzeBranch checks 985 // all the branches in a basic block at once, so we cannot use it. 986 unsigned Opc = BI.getOpcode(); 987 bool SimpleBranch = false; 988 bool Negated = false; 989 switch (Opc) { 990 case Hexagon::J2_jumpf: 991 case Hexagon::J2_jumpfpt: 992 case Hexagon::J2_jumpfnew: 993 case Hexagon::J2_jumpfnewpt: 994 Negated = true; 995 LLVM_FALLTHROUGH; 996 case Hexagon::J2_jumpt: 997 case Hexagon::J2_jumptpt: 998 case Hexagon::J2_jumptnew: 999 case Hexagon::J2_jumptnewpt: 1000 // Simple branch: if([!]Pn) jump ... 1001 // i.e. Op0 = predicate, Op1 = branch target. 1002 SimpleBranch = true; 1003 break; 1004 case Hexagon::J2_jump: 1005 Targets.insert(BI.getOperand(0).getMBB()); 1006 FallsThru = false; 1007 return true; 1008 default: 1009 // If the branch is of unknown type, assume that all successors are 1010 // executable. 1011 return false; 1012 } 1013 1014 if (!SimpleBranch) 1015 return false; 1016 1017 // BI is a conditional branch if we got here. 1018 RegisterRef PR = BI.getOperand(0); 1019 RegisterCell PC = getCell(PR, Inputs); 1020 const BT::BitValue &Test = PC[0]; 1021 1022 // If the condition is neither true nor false, then it's unknown. 1023 if (!Test.is(0) && !Test.is(1)) 1024 return false; 1025 1026 // "Test.is(!Negated)" means "branch condition is true". 1027 if (!Test.is(!Negated)) { 1028 // Condition known to be false. 1029 FallsThru = true; 1030 return true; 1031 } 1032 1033 Targets.insert(BI.getOperand(1).getMBB()); 1034 FallsThru = false; 1035 return true; 1036 } 1037 1038 unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const { 1039 unsigned DefReg = 0; 1040 for (const MachineOperand &Op : MI.operands()) { 1041 if (!Op.isReg() || !Op.isDef()) 1042 continue; 1043 Register R = Op.getReg(); 1044 if (!R.isVirtual()) 1045 continue; 1046 if (DefReg != 0) 1047 return 0; 1048 DefReg = R; 1049 } 1050 return DefReg; 1051 } 1052 1053 bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI, 1054 const CellMapType &Inputs, 1055 CellMapType &Outputs) const { 1056 using namespace Hexagon; 1057 1058 if (TII.isPredicated(MI)) 1059 return false; 1060 assert(MI.mayLoad() && "A load that mayn't?"); 1061 unsigned Opc = MI.getOpcode(); 1062 1063 uint16_t BitNum; 1064 bool SignEx; 1065 1066 switch (Opc) { 1067 default: 1068 return false; 1069 1070 #if 0 1071 // memb_fifo 1072 case L2_loadalignb_pbr: 1073 case L2_loadalignb_pcr: 1074 case L2_loadalignb_pi: 1075 // memh_fifo 1076 case L2_loadalignh_pbr: 1077 case L2_loadalignh_pcr: 1078 case L2_loadalignh_pi: 1079 // membh 1080 case L2_loadbsw2_pbr: 1081 case L2_loadbsw2_pci: 1082 case L2_loadbsw2_pcr: 1083 case L2_loadbsw2_pi: 1084 case L2_loadbsw4_pbr: 1085 case L2_loadbsw4_pci: 1086 case L2_loadbsw4_pcr: 1087 case L2_loadbsw4_pi: 1088 // memubh 1089 case L2_loadbzw2_pbr: 1090 case L2_loadbzw2_pci: 1091 case L2_loadbzw2_pcr: 1092 case L2_loadbzw2_pi: 1093 case L2_loadbzw4_pbr: 1094 case L2_loadbzw4_pci: 1095 case L2_loadbzw4_pcr: 1096 case L2_loadbzw4_pi: 1097 #endif 1098 1099 case L2_loadrbgp: 1100 case L2_loadrb_io: 1101 case L2_loadrb_pbr: 1102 case L2_loadrb_pci: 1103 case L2_loadrb_pcr: 1104 case L2_loadrb_pi: 1105 case PS_loadrbabs: 1106 case L4_loadrb_ap: 1107 case L4_loadrb_rr: 1108 case L4_loadrb_ur: 1109 BitNum = 8; 1110 SignEx = true; 1111 break; 1112 1113 case L2_loadrubgp: 1114 case L2_loadrub_io: 1115 case L2_loadrub_pbr: 1116 case L2_loadrub_pci: 1117 case L2_loadrub_pcr: 1118 case L2_loadrub_pi: 1119 case PS_loadrubabs: 1120 case L4_loadrub_ap: 1121 case L4_loadrub_rr: 1122 case L4_loadrub_ur: 1123 BitNum = 8; 1124 SignEx = false; 1125 break; 1126 1127 case L2_loadrhgp: 1128 case L2_loadrh_io: 1129 case L2_loadrh_pbr: 1130 case L2_loadrh_pci: 1131 case L2_loadrh_pcr: 1132 case L2_loadrh_pi: 1133 case PS_loadrhabs: 1134 case L4_loadrh_ap: 1135 case L4_loadrh_rr: 1136 case L4_loadrh_ur: 1137 BitNum = 16; 1138 SignEx = true; 1139 break; 1140 1141 case L2_loadruhgp: 1142 case L2_loadruh_io: 1143 case L2_loadruh_pbr: 1144 case L2_loadruh_pci: 1145 case L2_loadruh_pcr: 1146 case L2_loadruh_pi: 1147 case L4_loadruh_rr: 1148 case PS_loadruhabs: 1149 case L4_loadruh_ap: 1150 case L4_loadruh_ur: 1151 BitNum = 16; 1152 SignEx = false; 1153 break; 1154 1155 case L2_loadrigp: 1156 case L2_loadri_io: 1157 case L2_loadri_pbr: 1158 case L2_loadri_pci: 1159 case L2_loadri_pcr: 1160 case L2_loadri_pi: 1161 case L2_loadw_locked: 1162 case PS_loadriabs: 1163 case L4_loadri_ap: 1164 case L4_loadri_rr: 1165 case L4_loadri_ur: 1166 case LDriw_pred: 1167 BitNum = 32; 1168 SignEx = true; 1169 break; 1170 1171 case L2_loadrdgp: 1172 case L2_loadrd_io: 1173 case L2_loadrd_pbr: 1174 case L2_loadrd_pci: 1175 case L2_loadrd_pcr: 1176 case L2_loadrd_pi: 1177 case L4_loadd_locked: 1178 case PS_loadrdabs: 1179 case L4_loadrd_ap: 1180 case L4_loadrd_rr: 1181 case L4_loadrd_ur: 1182 BitNum = 64; 1183 SignEx = true; 1184 break; 1185 } 1186 1187 const MachineOperand &MD = MI.getOperand(0); 1188 assert(MD.isReg() && MD.isDef()); 1189 RegisterRef RD = MD; 1190 1191 uint16_t W = getRegBitWidth(RD); 1192 assert(W >= BitNum && BitNum > 0); 1193 RegisterCell Res(W); 1194 1195 for (uint16_t i = 0; i < BitNum; ++i) 1196 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i)); 1197 1198 if (SignEx) { 1199 const BT::BitValue &Sign = Res[BitNum-1]; 1200 for (uint16_t i = BitNum; i < W; ++i) 1201 Res[i] = BT::BitValue::ref(Sign); 1202 } else { 1203 for (uint16_t i = BitNum; i < W; ++i) 1204 Res[i] = BT::BitValue::Zero; 1205 } 1206 1207 putCell(RD, Res, Outputs); 1208 return true; 1209 } 1210 1211 bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI, 1212 const CellMapType &Inputs, 1213 CellMapType &Outputs) const { 1214 // If MI defines a formal parameter, but is not a copy (loads are handled 1215 // in evaluateLoad), then it's not clear what to do. 1216 assert(MI.isCopy()); 1217 1218 RegisterRef RD = MI.getOperand(0); 1219 RegisterRef RS = MI.getOperand(1); 1220 assert(RD.Sub == 0); 1221 if (!Register::isPhysicalRegister(RS.Reg)) 1222 return false; 1223 RegExtMap::const_iterator F = VRX.find(RD.Reg); 1224 if (F == VRX.end()) 1225 return false; 1226 1227 uint16_t EW = F->second.Width; 1228 // Store RD's cell into the map. This will associate the cell with a virtual 1229 // register, and make zero-/sign-extends possible (otherwise we would be ex- 1230 // tending "self" bit values, which will have no effect, since "self" values 1231 // cannot be references to anything). 1232 putCell(RD, getCell(RS, Inputs), Outputs); 1233 1234 RegisterCell Res; 1235 // Read RD's cell from the outputs instead of RS's cell from the inputs: 1236 if (F->second.Type == ExtType::SExt) 1237 Res = eSXT(getCell(RD, Outputs), EW); 1238 else if (F->second.Type == ExtType::ZExt) 1239 Res = eZXT(getCell(RD, Outputs), EW); 1240 1241 putCell(RD, Res, Outputs); 1242 return true; 1243 } 1244 1245 unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const { 1246 using namespace Hexagon; 1247 1248 bool Is64 = DoubleRegsRegClass.contains(PReg); 1249 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg)); 1250 1251 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 }; 1252 static const unsigned Phys64[] = { D0, D1, D2 }; 1253 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned); 1254 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned); 1255 1256 // Return the first parameter register of the required width. 1257 if (PReg == 0) 1258 return (Width <= 32) ? Phys32[0] : Phys64[0]; 1259 1260 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the 1261 // next register. 1262 unsigned Idx32 = 0, Idx64 = 0; 1263 if (!Is64) { 1264 while (Idx32 < Num32) { 1265 if (Phys32[Idx32] == PReg) 1266 break; 1267 Idx32++; 1268 } 1269 Idx64 = Idx32/2; 1270 } else { 1271 while (Idx64 < Num64) { 1272 if (Phys64[Idx64] == PReg) 1273 break; 1274 Idx64++; 1275 } 1276 Idx32 = Idx64*2+1; 1277 } 1278 1279 if (Width <= 32) 1280 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0; 1281 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0; 1282 } 1283 1284 unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const { 1285 for (std::pair<unsigned,unsigned> P : MRI.liveins()) 1286 if (P.first == PReg) 1287 return P.second; 1288 return 0; 1289 } 1290