xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- HexagonBitTracker.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonBitTracker.h"
10 #include "Hexagon.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <utility>
34 #include <vector>
35 
36 using namespace llvm;
37 
38 using BT = BitTracker;
39 
40 HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41                                    MachineRegisterInfo &mri,
42                                    const HexagonInstrInfo &tii,
43                                    MachineFunction &mf)
44     : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45   // Populate the VRX map (VR to extension-type).
46   // Go over all the formal parameters of the function. If a given parameter
47   // P is sign- or zero-extended, locate the virtual register holding that
48   // parameter and create an entry in the VRX map indicating the type of ex-
49   // tension (and the source type).
50   // This is a bit complicated to do accurately, since the memory layout in-
51   // formation is necessary to precisely determine whether an aggregate para-
52   // meter will be passed in a register or in memory. What is given in MRI
53   // is the association between the physical register that is live-in (i.e.
54   // holds an argument), and the virtual register that this value will be
55   // copied into. This, by itself, is not sufficient to map back the virtual
56   // register to a formal parameter from Function (since consecutive live-ins
57   // from MRI may not correspond to consecutive formal parameters from Func-
58   // tion). To avoid the complications with in-memory arguments, only consi-
59   // der the initial sequence of formal parameters that are known to be
60   // passed via registers.
61   unsigned InVirtReg, InPhysReg = 0;
62 
63   for (const Argument &Arg : MF.getFunction().args()) {
64     Type *ATy = Arg.getType();
65     unsigned Width = 0;
66     if (ATy->isIntegerTy())
67       Width = ATy->getIntegerBitWidth();
68     else if (ATy->isPointerTy())
69       Width = 32;
70     // If pointer size is not set through target data, it will default to
71     // Module::AnyPointerSize.
72     if (Width == 0 || Width > 64)
73       break;
74     if (Arg.hasAttribute(Attribute::ByVal))
75       continue;
76     InPhysReg = getNextPhysReg(InPhysReg, Width);
77     if (!InPhysReg)
78       break;
79     InVirtReg = getVirtRegFor(InPhysReg);
80     if (!InVirtReg)
81       continue;
82     if (Arg.hasAttribute(Attribute::SExt))
83       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84     else if (Arg.hasAttribute(Attribute::ZExt))
85       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
86   }
87 }
88 
89 BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {
90   if (Sub == 0)
91     return MachineEvaluator::mask(Reg, 0);
92   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93   unsigned ID = RC.getID();
94   uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95   const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96   bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97   switch (ID) {
98     case Hexagon::DoubleRegsRegClassID:
99     case Hexagon::HvxWRRegClassID:
100     case Hexagon::HvxVQRRegClassID:
101       return IsSubLo ? BT::BitMask(0, RW-1)
102                      : BT::BitMask(RW, 2*RW-1);
103     default:
104       break;
105   }
106 #ifndef NDEBUG
107   dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108          << TRI.getRegClassName(&RC) << '\n';
109 #endif
110   llvm_unreachable("Unexpected register/subregister");
111 }
112 
113 uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {
114   using namespace Hexagon;
115   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
116   if (HST.useHVXOps()) {
117     for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
118                      HvxVQRRegClass})
119       if (RC.contains(Reg))
120         return TRI.getRegSizeInBits(RC);
121   }
122   // Default treatment for other physical registers.
123   if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
124     return TRI.getRegSizeInBits(*RC);
125 
126   llvm_unreachable(
127       (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
128 }
129 
130 const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
131       const TargetRegisterClass &RC, unsigned Idx) const {
132   if (Idx == 0)
133     return RC;
134 
135 #ifndef NDEBUG
136   const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
137   bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
138   bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
139   assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
140 #endif
141 
142   switch (RC.getID()) {
143     case Hexagon::DoubleRegsRegClassID:
144       return Hexagon::IntRegsRegClass;
145     case Hexagon::HvxWRRegClassID:
146       return Hexagon::HvxVRRegClass;
147     case Hexagon::HvxVQRRegClassID:
148       return Hexagon::HvxWRRegClass;
149     default:
150       break;
151   }
152 #ifndef NDEBUG
153   dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
154 #endif
155   llvm_unreachable("Unimplemented combination of reg class/subreg idx");
156 }
157 
158 namespace {
159 
160 class RegisterRefs {
161   std::vector<BT::RegisterRef> Vector;
162 
163 public:
164   RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
165     for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
166       const MachineOperand &MO = MI.getOperand(i);
167       if (MO.isReg())
168         Vector[i] = BT::RegisterRef(MO);
169       // For indices that don't correspond to registers, the entry will
170       // remain constructed via the default constructor.
171     }
172   }
173 
174   size_t size() const { return Vector.size(); }
175 
176   const BT::RegisterRef &operator[](unsigned n) const {
177     // The main purpose of this operator is to assert with bad argument.
178     assert(n < Vector.size());
179     return Vector[n];
180   }
181 };
182 
183 } // end anonymous namespace
184 
185 bool HexagonEvaluator::evaluate(const MachineInstr &MI,
186                                 const CellMapType &Inputs,
187                                 CellMapType &Outputs) const {
188   using namespace Hexagon;
189 
190   unsigned NumDefs = 0;
191 
192   // Sanity verification: there should not be any defs with subregisters.
193   for (const MachineOperand &MO : MI.operands()) {
194     if (!MO.isReg() || !MO.isDef())
195       continue;
196     NumDefs++;
197     assert(MO.getSubReg() == 0);
198   }
199 
200   if (NumDefs == 0)
201     return false;
202 
203   unsigned Opc = MI.getOpcode();
204 
205   if (MI.mayLoad()) {
206     switch (Opc) {
207       // These instructions may be marked as mayLoad, but they are generating
208       // immediate values, so skip them.
209       case CONST32:
210       case CONST64:
211         break;
212       default:
213         return evaluateLoad(MI, Inputs, Outputs);
214     }
215   }
216 
217   // Check COPY instructions that copy formal parameters into virtual
218   // registers. Such parameters can be sign- or zero-extended at the
219   // call site, and we should take advantage of this knowledge. The MRI
220   // keeps a list of pairs of live-in physical and virtual registers,
221   // which provides information about which virtual registers will hold
222   // the argument values. The function will still contain instructions
223   // defining those virtual registers, and in practice those are COPY
224   // instructions from a physical to a virtual register. In such cases,
225   // applying the argument extension to the virtual register can be seen
226   // as simply mirroring the extension that had already been applied to
227   // the physical register at the call site. If the defining instruction
228   // was not a COPY, it would not be clear how to mirror that extension
229   // on the callee's side. For that reason, only check COPY instructions
230   // for potential extensions.
231   if (MI.isCopy()) {
232     if (evaluateFormalCopy(MI, Inputs, Outputs))
233       return true;
234   }
235 
236   // Beyond this point, if any operand is a global, skip that instruction.
237   // The reason is that certain instructions that can take an immediate
238   // operand can also have a global symbol in that operand. To avoid
239   // checking what kind of operand a given instruction has individually
240   // for each instruction, do it here. Global symbols as operands gene-
241   // rally do not provide any useful information.
242   for (const MachineOperand &MO : MI.operands()) {
243     if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
244         MO.isCPI())
245       return false;
246   }
247 
248   RegisterRefs Reg(MI);
249 #define op(i) MI.getOperand(i)
250 #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
251 #define im(i) MI.getOperand(i).getImm()
252 
253   // If the instruction has no register operands, skip it.
254   if (Reg.size() == 0)
255     return false;
256 
257   // Record result for register in operand 0.
258   auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
259         -> bool {
260     putCell(Reg[0], Val, Outputs);
261     return true;
262   };
263   // Get the cell corresponding to the N-th operand.
264   auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
265                                         uint16_t W) -> BT::RegisterCell {
266     const MachineOperand &Op = MI.getOperand(N);
267     if (Op.isImm())
268       return eIMM(Op.getImm(), W);
269     if (!Op.isReg())
270       return RegisterCell::self(0, W);
271     assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
272     return rc(N);
273   };
274   // Extract RW low bits of the cell.
275   auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
276         -> BT::RegisterCell {
277     assert(RW <= RC.width());
278     return eXTR(RC, 0, RW);
279   };
280   // Extract RW high bits of the cell.
281   auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
282         -> BT::RegisterCell {
283     uint16_t W = RC.width();
284     assert(RW <= W);
285     return eXTR(RC, W-RW, W);
286   };
287   // Extract N-th halfword (counting from the least significant position).
288   auto half = [this] (const BT::RegisterCell &RC, unsigned N)
289         -> BT::RegisterCell {
290     assert(N*16+16 <= RC.width());
291     return eXTR(RC, N*16, N*16+16);
292   };
293   // Shuffle bits (pick even/odd from cells and merge into result).
294   auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
295                          uint16_t BW, bool Odd) -> BT::RegisterCell {
296     uint16_t I = Odd, Ws = Rs.width();
297     assert(Ws == Rt.width());
298     RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
299     I += 2;
300     while (I*BW < Ws) {
301       RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
302       I += 2;
303     }
304     return RC;
305   };
306 
307   // The bitwidth of the 0th operand. In most (if not all) of the
308   // instructions below, the 0th operand is the defined register.
309   // Pre-compute the bitwidth here, because it is needed in many cases
310   // cases below.
311   uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
312 
313   // Register id of the 0th operand. It can be 0.
314   unsigned Reg0 = Reg[0].Reg;
315 
316   switch (Opc) {
317     // Transfer immediate:
318 
319     case A2_tfrsi:
320     case A2_tfrpi:
321     case CONST32:
322     case CONST64:
323       return rr0(eIMM(im(1), W0), Outputs);
324     case PS_false:
325       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
326     case PS_true:
327       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
328     case PS_fi: {
329       int FI = op(1).getIndex();
330       int Off = op(2).getImm();
331       unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
332       unsigned L = countTrailingZeros(A);
333       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
334       RC.fill(0, L, BT::BitValue::Zero);
335       return rr0(RC, Outputs);
336     }
337 
338     // Transfer register:
339 
340     case A2_tfr:
341     case A2_tfrp:
342     case C2_pxfer_map:
343       return rr0(rc(1), Outputs);
344     case C2_tfrpr: {
345       uint16_t RW = W0;
346       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
347       assert(PW <= RW);
348       RegisterCell PC = eXTR(rc(1), 0, PW);
349       RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
350       RC.fill(PW, RW, BT::BitValue::Zero);
351       return rr0(RC, Outputs);
352     }
353     case C2_tfrrp: {
354       uint16_t RW = W0;
355       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
356       RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
357       RC.fill(PW, RW, BT::BitValue::Zero);
358       return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
359     }
360 
361     // Arithmetic:
362 
363     case A2_abs:
364     case A2_absp:
365       // TODO
366       break;
367 
368     case A2_addsp: {
369       uint16_t W1 = getRegBitWidth(Reg[1]);
370       assert(W0 == 64 && W1 == 32);
371       RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
372       RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
373       return rr0(RC, Outputs);
374     }
375     case A2_add:
376     case A2_addp:
377       return rr0(eADD(rc(1), rc(2)), Outputs);
378     case A2_addi:
379       return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
380     case S4_addi_asl_ri: {
381       RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
382       return rr0(RC, Outputs);
383     }
384     case S4_addi_lsr_ri: {
385       RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
386       return rr0(RC, Outputs);
387     }
388     case S4_addaddi: {
389       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
390       return rr0(RC, Outputs);
391     }
392     case M4_mpyri_addi: {
393       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
394       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
395       return rr0(RC, Outputs);
396     }
397     case M4_mpyrr_addi: {
398       RegisterCell M = eMLS(rc(2), rc(3));
399       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
400       return rr0(RC, Outputs);
401     }
402     case M4_mpyri_addr_u2: {
403       RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
404       RegisterCell RC = eADD(rc(1), lo(M, W0));
405       return rr0(RC, Outputs);
406     }
407     case M4_mpyri_addr: {
408       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
409       RegisterCell RC = eADD(rc(1), lo(M, W0));
410       return rr0(RC, Outputs);
411     }
412     case M4_mpyrr_addr: {
413       RegisterCell M = eMLS(rc(2), rc(3));
414       RegisterCell RC = eADD(rc(1), lo(M, W0));
415       return rr0(RC, Outputs);
416     }
417     case S4_subaddi: {
418       RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
419       return rr0(RC, Outputs);
420     }
421     case M2_accii: {
422       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
423       return rr0(RC, Outputs);
424     }
425     case M2_acci: {
426       RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
427       return rr0(RC, Outputs);
428     }
429     case M2_subacc: {
430       RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
431       return rr0(RC, Outputs);
432     }
433     case S2_addasl_rrri: {
434       RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
435       return rr0(RC, Outputs);
436     }
437     case C4_addipc: {
438       RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
439       RPC.fill(0, 2, BT::BitValue::Zero);
440       return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
441     }
442     case A2_sub:
443     case A2_subp:
444       return rr0(eSUB(rc(1), rc(2)), Outputs);
445     case A2_subri:
446       return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
447     case S4_subi_asl_ri: {
448       RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
449       return rr0(RC, Outputs);
450     }
451     case S4_subi_lsr_ri: {
452       RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
453       return rr0(RC, Outputs);
454     }
455     case M2_naccii: {
456       RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
457       return rr0(RC, Outputs);
458     }
459     case M2_nacci: {
460       RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
461       return rr0(RC, Outputs);
462     }
463     // 32-bit negation is done by "Rd = A2_subri 0, Rs"
464     case A2_negp:
465       return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
466 
467     case M2_mpy_up: {
468       RegisterCell M = eMLS(rc(1), rc(2));
469       return rr0(hi(M, W0), Outputs);
470     }
471     case M2_dpmpyss_s0:
472       return rr0(eMLS(rc(1), rc(2)), Outputs);
473     case M2_dpmpyss_acc_s0:
474       return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
475     case M2_dpmpyss_nac_s0:
476       return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
477     case M2_mpyi: {
478       RegisterCell M = eMLS(rc(1), rc(2));
479       return rr0(lo(M, W0), Outputs);
480     }
481     case M2_macsip: {
482       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
483       RegisterCell RC = eADD(rc(1), lo(M, W0));
484       return rr0(RC, Outputs);
485     }
486     case M2_macsin: {
487       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
488       RegisterCell RC = eSUB(rc(1), lo(M, W0));
489       return rr0(RC, Outputs);
490     }
491     case M2_maci: {
492       RegisterCell M = eMLS(rc(2), rc(3));
493       RegisterCell RC = eADD(rc(1), lo(M, W0));
494       return rr0(RC, Outputs);
495     }
496     case M2_mpysmi: {
497       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
498       return rr0(lo(M, 32), Outputs);
499     }
500     case M2_mpysin: {
501       RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
502       return rr0(lo(M, 32), Outputs);
503     }
504     case M2_mpysip: {
505       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
506       return rr0(lo(M, 32), Outputs);
507     }
508     case M2_mpyu_up: {
509       RegisterCell M = eMLU(rc(1), rc(2));
510       return rr0(hi(M, W0), Outputs);
511     }
512     case M2_dpmpyuu_s0:
513       return rr0(eMLU(rc(1), rc(2)), Outputs);
514     case M2_dpmpyuu_acc_s0:
515       return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
516     case M2_dpmpyuu_nac_s0:
517       return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
518     //case M2_mpysu_up:
519 
520     // Logical/bitwise:
521 
522     case A2_andir:
523       return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
524     case A2_and:
525     case A2_andp:
526       return rr0(eAND(rc(1), rc(2)), Outputs);
527     case A4_andn:
528     case A4_andnp:
529       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
530     case S4_andi_asl_ri: {
531       RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
532       return rr0(RC, Outputs);
533     }
534     case S4_andi_lsr_ri: {
535       RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
536       return rr0(RC, Outputs);
537     }
538     case M4_and_and:
539       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
540     case M4_and_andn:
541       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
542     case M4_and_or:
543       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
544     case M4_and_xor:
545       return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
546     case A2_orir:
547       return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
548     case A2_or:
549     case A2_orp:
550       return rr0(eORL(rc(1), rc(2)), Outputs);
551     case A4_orn:
552     case A4_ornp:
553       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
554     case S4_ori_asl_ri: {
555       RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
556       return rr0(RC, Outputs);
557     }
558     case S4_ori_lsr_ri: {
559       RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
560       return rr0(RC, Outputs);
561     }
562     case M4_or_and:
563       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
564     case M4_or_andn:
565       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
566     case S4_or_andi:
567     case S4_or_andix: {
568       RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
569       return rr0(RC, Outputs);
570     }
571     case S4_or_ori: {
572       RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
573       return rr0(RC, Outputs);
574     }
575     case M4_or_or:
576       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
577     case M4_or_xor:
578       return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
579     case A2_xor:
580     case A2_xorp:
581       return rr0(eXOR(rc(1), rc(2)), Outputs);
582     case M4_xor_and:
583       return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
584     case M4_xor_andn:
585       return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
586     case M4_xor_or:
587       return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
588     case M4_xor_xacc:
589       return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
590     case A2_not:
591     case A2_notp:
592       return rr0(eNOT(rc(1)), Outputs);
593 
594     case S2_asl_i_r:
595     case S2_asl_i_p:
596       return rr0(eASL(rc(1), im(2)), Outputs);
597     case A2_aslh:
598       return rr0(eASL(rc(1), 16), Outputs);
599     case S2_asl_i_r_acc:
600     case S2_asl_i_p_acc:
601       return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
602     case S2_asl_i_r_nac:
603     case S2_asl_i_p_nac:
604       return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
605     case S2_asl_i_r_and:
606     case S2_asl_i_p_and:
607       return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
608     case S2_asl_i_r_or:
609     case S2_asl_i_p_or:
610       return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
611     case S2_asl_i_r_xacc:
612     case S2_asl_i_p_xacc:
613       return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
614     case S2_asl_i_vh:
615     case S2_asl_i_vw:
616       // TODO
617       break;
618 
619     case S2_asr_i_r:
620     case S2_asr_i_p:
621       return rr0(eASR(rc(1), im(2)), Outputs);
622     case A2_asrh:
623       return rr0(eASR(rc(1), 16), Outputs);
624     case S2_asr_i_r_acc:
625     case S2_asr_i_p_acc:
626       return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
627     case S2_asr_i_r_nac:
628     case S2_asr_i_p_nac:
629       return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
630     case S2_asr_i_r_and:
631     case S2_asr_i_p_and:
632       return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
633     case S2_asr_i_r_or:
634     case S2_asr_i_p_or:
635       return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
636     case S2_asr_i_r_rnd: {
637       // The input is first sign-extended to 64 bits, then the output
638       // is truncated back to 32 bits.
639       assert(W0 == 32);
640       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
641       RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
642       return rr0(eXTR(RC, 0, W0), Outputs);
643     }
644     case S2_asr_i_r_rnd_goodsyntax: {
645       int64_t S = im(2);
646       if (S == 0)
647         return rr0(rc(1), Outputs);
648       // Result: S2_asr_i_r_rnd Rs, u5-1
649       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
650       RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
651       return rr0(eXTR(RC, 0, W0), Outputs);
652     }
653     case S2_asr_r_vh:
654     case S2_asr_i_vw:
655     case S2_asr_i_svw_trun:
656       // TODO
657       break;
658 
659     case S2_lsr_i_r:
660     case S2_lsr_i_p:
661       return rr0(eLSR(rc(1), im(2)), Outputs);
662     case S2_lsr_i_r_acc:
663     case S2_lsr_i_p_acc:
664       return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
665     case S2_lsr_i_r_nac:
666     case S2_lsr_i_p_nac:
667       return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
668     case S2_lsr_i_r_and:
669     case S2_lsr_i_p_and:
670       return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
671     case S2_lsr_i_r_or:
672     case S2_lsr_i_p_or:
673       return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
674     case S2_lsr_i_r_xacc:
675     case S2_lsr_i_p_xacc:
676       return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
677 
678     case S2_clrbit_i: {
679       RegisterCell RC = rc(1);
680       RC[im(2)] = BT::BitValue::Zero;
681       return rr0(RC, Outputs);
682     }
683     case S2_setbit_i: {
684       RegisterCell RC = rc(1);
685       RC[im(2)] = BT::BitValue::One;
686       return rr0(RC, Outputs);
687     }
688     case S2_togglebit_i: {
689       RegisterCell RC = rc(1);
690       uint16_t BX = im(2);
691       RC[BX] = RC[BX].is(0) ? BT::BitValue::One
692                             : RC[BX].is(1) ? BT::BitValue::Zero
693                                            : BT::BitValue::self();
694       return rr0(RC, Outputs);
695     }
696 
697     case A4_bitspliti: {
698       uint16_t W1 = getRegBitWidth(Reg[1]);
699       uint16_t BX = im(2);
700       // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
701       const BT::BitValue Zero = BT::BitValue::Zero;
702       RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
703                                         .fill(W1+(W1-BX), W0, Zero);
704       RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
705       RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
706       return rr0(RC, Outputs);
707     }
708     case S4_extract:
709     case S4_extractp:
710     case S2_extractu:
711     case S2_extractup: {
712       uint16_t Wd = im(2), Of = im(3);
713       assert(Wd <= W0);
714       if (Wd == 0)
715         return rr0(eIMM(0, W0), Outputs);
716       // If the width extends beyond the register size, pad the register
717       // with 0 bits.
718       RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
719       RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
720       // Ext is short, need to extend it with 0s or sign bit.
721       RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
722       if (Opc == S2_extractu || Opc == S2_extractup)
723         return rr0(eZXT(RC, Wd), Outputs);
724       return rr0(eSXT(RC, Wd), Outputs);
725     }
726     case S2_insert:
727     case S2_insertp: {
728       uint16_t Wd = im(3), Of = im(4);
729       assert(Wd < W0 && Of < W0);
730       // If Wd+Of exceeds W0, the inserted bits are truncated.
731       if (Wd+Of > W0)
732         Wd = W0-Of;
733       if (Wd == 0)
734         return rr0(rc(1), Outputs);
735       return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
736     }
737 
738     // Bit permutations:
739 
740     case A2_combineii:
741     case A4_combineii:
742     case A4_combineir:
743     case A4_combineri:
744     case A2_combinew:
745     case V6_vcombine:
746       assert(W0 % 2 == 0);
747       return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
748     case A2_combine_ll:
749     case A2_combine_lh:
750     case A2_combine_hl:
751     case A2_combine_hh: {
752       assert(W0 == 32);
753       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
754       // Low half in the output is 0 for _ll and _hl, 1 otherwise:
755       unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
756       // High half in the output is 0 for _ll and _lh, 1 otherwise:
757       unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
758       RegisterCell R1 = rc(1);
759       RegisterCell R2 = rc(2);
760       RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
761       return rr0(RC, Outputs);
762     }
763     case S2_packhl: {
764       assert(W0 == 64);
765       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
766       RegisterCell R1 = rc(1);
767       RegisterCell R2 = rc(2);
768       RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
769                                    .cat(half(R1, 1));
770       return rr0(RC, Outputs);
771     }
772     case S2_shuffeb: {
773       RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
774       return rr0(RC, Outputs);
775     }
776     case S2_shuffeh: {
777       RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
778       return rr0(RC, Outputs);
779     }
780     case S2_shuffob: {
781       RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
782       return rr0(RC, Outputs);
783     }
784     case S2_shuffoh: {
785       RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
786       return rr0(RC, Outputs);
787     }
788     case C2_mask: {
789       uint16_t WR = W0;
790       uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
791       assert(WR == 64 && WP == 8);
792       RegisterCell R1 = rc(1);
793       RegisterCell RC(WR);
794       for (uint16_t i = 0; i < WP; ++i) {
795         const BT::BitValue &V = R1[i];
796         BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
797         RC.fill(i*8, i*8+8, F);
798       }
799       return rr0(RC, Outputs);
800     }
801 
802     // Mux:
803 
804     case C2_muxii:
805     case C2_muxir:
806     case C2_muxri:
807     case C2_mux: {
808       BT::BitValue PC0 = rc(1)[0];
809       RegisterCell R2 = cop(2, W0);
810       RegisterCell R3 = cop(3, W0);
811       if (PC0.is(0) || PC0.is(1))
812         return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
813       R2.meet(R3, Reg[0].Reg);
814       return rr0(R2, Outputs);
815     }
816     case C2_vmux:
817       // TODO
818       break;
819 
820     // Sign- and zero-extension:
821 
822     case A2_sxtb:
823       return rr0(eSXT(rc(1), 8), Outputs);
824     case A2_sxth:
825       return rr0(eSXT(rc(1), 16), Outputs);
826     case A2_sxtw: {
827       uint16_t W1 = getRegBitWidth(Reg[1]);
828       assert(W0 == 64 && W1 == 32);
829       RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
830       return rr0(RC, Outputs);
831     }
832     case A2_zxtb:
833       return rr0(eZXT(rc(1), 8), Outputs);
834     case A2_zxth:
835       return rr0(eZXT(rc(1), 16), Outputs);
836 
837     // Saturations
838 
839     case A2_satb:
840       return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
841     case A2_sath:
842       return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
843     case A2_satub:
844       return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
845     case A2_satuh:
846       return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
847 
848     // Bit count:
849 
850     case S2_cl0:
851     case S2_cl0p:
852       // Always produce a 32-bit result.
853       return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
854     case S2_cl1:
855     case S2_cl1p:
856       return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
857     case S2_clb:
858     case S2_clbp: {
859       uint16_t W1 = getRegBitWidth(Reg[1]);
860       RegisterCell R1 = rc(1);
861       BT::BitValue TV = R1[W1-1];
862       if (TV.is(0) || TV.is(1))
863         return rr0(eCLB(R1, TV, 32), Outputs);
864       break;
865     }
866     case S2_ct0:
867     case S2_ct0p:
868       return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
869     case S2_ct1:
870     case S2_ct1p:
871       return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
872     case S5_popcountp:
873       // TODO
874       break;
875 
876     case C2_all8: {
877       RegisterCell P1 = rc(1);
878       bool Has0 = false, All1 = true;
879       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
880         if (!P1[i].is(1))
881           All1 = false;
882         if (!P1[i].is(0))
883           continue;
884         Has0 = true;
885         break;
886       }
887       if (!Has0 && !All1)
888         break;
889       RegisterCell RC(W0);
890       RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
891       return rr0(RC, Outputs);
892     }
893     case C2_any8: {
894       RegisterCell P1 = rc(1);
895       bool Has1 = false, All0 = true;
896       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
897         if (!P1[i].is(0))
898           All0 = false;
899         if (!P1[i].is(1))
900           continue;
901         Has1 = true;
902         break;
903       }
904       if (!Has1 && !All0)
905         break;
906       RegisterCell RC(W0);
907       RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
908       return rr0(RC, Outputs);
909     }
910     case C2_and:
911       return rr0(eAND(rc(1), rc(2)), Outputs);
912     case C2_andn:
913       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
914     case C2_not:
915       return rr0(eNOT(rc(1)), Outputs);
916     case C2_or:
917       return rr0(eORL(rc(1), rc(2)), Outputs);
918     case C2_orn:
919       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
920     case C2_xor:
921       return rr0(eXOR(rc(1), rc(2)), Outputs);
922     case C4_and_and:
923       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
924     case C4_and_andn:
925       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
926     case C4_and_or:
927       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
928     case C4_and_orn:
929       return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
930     case C4_or_and:
931       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
932     case C4_or_andn:
933       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
934     case C4_or_or:
935       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
936     case C4_or_orn:
937       return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
938     case C2_bitsclr:
939     case C2_bitsclri:
940     case C2_bitsset:
941     case C4_nbitsclr:
942     case C4_nbitsclri:
943     case C4_nbitsset:
944       // TODO
945       break;
946     case S2_tstbit_i:
947     case S4_ntstbit_i: {
948       BT::BitValue V = rc(1)[im(2)];
949       if (V.is(0) || V.is(1)) {
950         // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
951         bool TV = (Opc == S2_tstbit_i);
952         BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
953         return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
954       }
955       break;
956     }
957 
958     default:
959       // For instructions that define a single predicate registers, store
960       // the low 8 bits of the register only.
961       if (unsigned DefR = getUniqueDefVReg(MI)) {
962         if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
963           BT::RegisterRef PD(DefR, 0);
964           uint16_t RW = getRegBitWidth(PD);
965           uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
966           RegisterCell RC = RegisterCell::self(DefR, RW);
967           RC.fill(PW, RW, BT::BitValue::Zero);
968           putCell(PD, RC, Outputs);
969           return true;
970         }
971       }
972       return MachineEvaluator::evaluate(MI, Inputs, Outputs);
973   }
974   #undef im
975   #undef rc
976   #undef op
977   return false;
978 }
979 
980 bool HexagonEvaluator::evaluate(const MachineInstr &BI,
981                                 const CellMapType &Inputs,
982                                 BranchTargetList &Targets,
983                                 bool &FallsThru) const {
984   // We need to evaluate one branch at a time. TII::analyzeBranch checks
985   // all the branches in a basic block at once, so we cannot use it.
986   unsigned Opc = BI.getOpcode();
987   bool SimpleBranch = false;
988   bool Negated = false;
989   switch (Opc) {
990     case Hexagon::J2_jumpf:
991     case Hexagon::J2_jumpfpt:
992     case Hexagon::J2_jumpfnew:
993     case Hexagon::J2_jumpfnewpt:
994       Negated = true;
995       LLVM_FALLTHROUGH;
996     case Hexagon::J2_jumpt:
997     case Hexagon::J2_jumptpt:
998     case Hexagon::J2_jumptnew:
999     case Hexagon::J2_jumptnewpt:
1000       // Simple branch:  if([!]Pn) jump ...
1001       // i.e. Op0 = predicate, Op1 = branch target.
1002       SimpleBranch = true;
1003       break;
1004     case Hexagon::J2_jump:
1005       Targets.insert(BI.getOperand(0).getMBB());
1006       FallsThru = false;
1007       return true;
1008     default:
1009       // If the branch is of unknown type, assume that all successors are
1010       // executable.
1011       return false;
1012   }
1013 
1014   if (!SimpleBranch)
1015     return false;
1016 
1017   // BI is a conditional branch if we got here.
1018   RegisterRef PR = BI.getOperand(0);
1019   RegisterCell PC = getCell(PR, Inputs);
1020   const BT::BitValue &Test = PC[0];
1021 
1022   // If the condition is neither true nor false, then it's unknown.
1023   if (!Test.is(0) && !Test.is(1))
1024     return false;
1025 
1026   // "Test.is(!Negated)" means "branch condition is true".
1027   if (!Test.is(!Negated)) {
1028     // Condition known to be false.
1029     FallsThru = true;
1030     return true;
1031   }
1032 
1033   Targets.insert(BI.getOperand(1).getMBB());
1034   FallsThru = false;
1035   return true;
1036 }
1037 
1038 unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1039   unsigned DefReg = 0;
1040   for (const MachineOperand &Op : MI.operands()) {
1041     if (!Op.isReg() || !Op.isDef())
1042       continue;
1043     Register R = Op.getReg();
1044     if (!R.isVirtual())
1045       continue;
1046     if (DefReg != 0)
1047       return 0;
1048     DefReg = R;
1049   }
1050   return DefReg;
1051 }
1052 
1053 bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1054                                     const CellMapType &Inputs,
1055                                     CellMapType &Outputs) const {
1056   using namespace Hexagon;
1057 
1058   if (TII.isPredicated(MI))
1059     return false;
1060   assert(MI.mayLoad() && "A load that mayn't?");
1061   unsigned Opc = MI.getOpcode();
1062 
1063   uint16_t BitNum;
1064   bool SignEx;
1065 
1066   switch (Opc) {
1067     default:
1068       return false;
1069 
1070 #if 0
1071     // memb_fifo
1072     case L2_loadalignb_pbr:
1073     case L2_loadalignb_pcr:
1074     case L2_loadalignb_pi:
1075     // memh_fifo
1076     case L2_loadalignh_pbr:
1077     case L2_loadalignh_pcr:
1078     case L2_loadalignh_pi:
1079     // membh
1080     case L2_loadbsw2_pbr:
1081     case L2_loadbsw2_pci:
1082     case L2_loadbsw2_pcr:
1083     case L2_loadbsw2_pi:
1084     case L2_loadbsw4_pbr:
1085     case L2_loadbsw4_pci:
1086     case L2_loadbsw4_pcr:
1087     case L2_loadbsw4_pi:
1088     // memubh
1089     case L2_loadbzw2_pbr:
1090     case L2_loadbzw2_pci:
1091     case L2_loadbzw2_pcr:
1092     case L2_loadbzw2_pi:
1093     case L2_loadbzw4_pbr:
1094     case L2_loadbzw4_pci:
1095     case L2_loadbzw4_pcr:
1096     case L2_loadbzw4_pi:
1097 #endif
1098 
1099     case L2_loadrbgp:
1100     case L2_loadrb_io:
1101     case L2_loadrb_pbr:
1102     case L2_loadrb_pci:
1103     case L2_loadrb_pcr:
1104     case L2_loadrb_pi:
1105     case PS_loadrbabs:
1106     case L4_loadrb_ap:
1107     case L4_loadrb_rr:
1108     case L4_loadrb_ur:
1109       BitNum = 8;
1110       SignEx = true;
1111       break;
1112 
1113     case L2_loadrubgp:
1114     case L2_loadrub_io:
1115     case L2_loadrub_pbr:
1116     case L2_loadrub_pci:
1117     case L2_loadrub_pcr:
1118     case L2_loadrub_pi:
1119     case PS_loadrubabs:
1120     case L4_loadrub_ap:
1121     case L4_loadrub_rr:
1122     case L4_loadrub_ur:
1123       BitNum = 8;
1124       SignEx = false;
1125       break;
1126 
1127     case L2_loadrhgp:
1128     case L2_loadrh_io:
1129     case L2_loadrh_pbr:
1130     case L2_loadrh_pci:
1131     case L2_loadrh_pcr:
1132     case L2_loadrh_pi:
1133     case PS_loadrhabs:
1134     case L4_loadrh_ap:
1135     case L4_loadrh_rr:
1136     case L4_loadrh_ur:
1137       BitNum = 16;
1138       SignEx = true;
1139       break;
1140 
1141     case L2_loadruhgp:
1142     case L2_loadruh_io:
1143     case L2_loadruh_pbr:
1144     case L2_loadruh_pci:
1145     case L2_loadruh_pcr:
1146     case L2_loadruh_pi:
1147     case L4_loadruh_rr:
1148     case PS_loadruhabs:
1149     case L4_loadruh_ap:
1150     case L4_loadruh_ur:
1151       BitNum = 16;
1152       SignEx = false;
1153       break;
1154 
1155     case L2_loadrigp:
1156     case L2_loadri_io:
1157     case L2_loadri_pbr:
1158     case L2_loadri_pci:
1159     case L2_loadri_pcr:
1160     case L2_loadri_pi:
1161     case L2_loadw_locked:
1162     case PS_loadriabs:
1163     case L4_loadri_ap:
1164     case L4_loadri_rr:
1165     case L4_loadri_ur:
1166     case LDriw_pred:
1167       BitNum = 32;
1168       SignEx = true;
1169       break;
1170 
1171     case L2_loadrdgp:
1172     case L2_loadrd_io:
1173     case L2_loadrd_pbr:
1174     case L2_loadrd_pci:
1175     case L2_loadrd_pcr:
1176     case L2_loadrd_pi:
1177     case L4_loadd_locked:
1178     case PS_loadrdabs:
1179     case L4_loadrd_ap:
1180     case L4_loadrd_rr:
1181     case L4_loadrd_ur:
1182       BitNum = 64;
1183       SignEx = true;
1184       break;
1185   }
1186 
1187   const MachineOperand &MD = MI.getOperand(0);
1188   assert(MD.isReg() && MD.isDef());
1189   RegisterRef RD = MD;
1190 
1191   uint16_t W = getRegBitWidth(RD);
1192   assert(W >= BitNum && BitNum > 0);
1193   RegisterCell Res(W);
1194 
1195   for (uint16_t i = 0; i < BitNum; ++i)
1196     Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1197 
1198   if (SignEx) {
1199     const BT::BitValue &Sign = Res[BitNum-1];
1200     for (uint16_t i = BitNum; i < W; ++i)
1201       Res[i] = BT::BitValue::ref(Sign);
1202   } else {
1203     for (uint16_t i = BitNum; i < W; ++i)
1204       Res[i] = BT::BitValue::Zero;
1205   }
1206 
1207   putCell(RD, Res, Outputs);
1208   return true;
1209 }
1210 
1211 bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1212                                           const CellMapType &Inputs,
1213                                           CellMapType &Outputs) const {
1214   // If MI defines a formal parameter, but is not a copy (loads are handled
1215   // in evaluateLoad), then it's not clear what to do.
1216   assert(MI.isCopy());
1217 
1218   RegisterRef RD = MI.getOperand(0);
1219   RegisterRef RS = MI.getOperand(1);
1220   assert(RD.Sub == 0);
1221   if (!Register::isPhysicalRegister(RS.Reg))
1222     return false;
1223   RegExtMap::const_iterator F = VRX.find(RD.Reg);
1224   if (F == VRX.end())
1225     return false;
1226 
1227   uint16_t EW = F->second.Width;
1228   // Store RD's cell into the map. This will associate the cell with a virtual
1229   // register, and make zero-/sign-extends possible (otherwise we would be ex-
1230   // tending "self" bit values, which will have no effect, since "self" values
1231   // cannot be references to anything).
1232   putCell(RD, getCell(RS, Inputs), Outputs);
1233 
1234   RegisterCell Res;
1235   // Read RD's cell from the outputs instead of RS's cell from the inputs:
1236   if (F->second.Type == ExtType::SExt)
1237     Res = eSXT(getCell(RD, Outputs), EW);
1238   else if (F->second.Type == ExtType::ZExt)
1239     Res = eZXT(getCell(RD, Outputs), EW);
1240 
1241   putCell(RD, Res, Outputs);
1242   return true;
1243 }
1244 
1245 unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1246   using namespace Hexagon;
1247 
1248   bool Is64 = DoubleRegsRegClass.contains(PReg);
1249   assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1250 
1251   static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1252   static const unsigned Phys64[] = { D0, D1, D2 };
1253   const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1254   const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1255 
1256   // Return the first parameter register of the required width.
1257   if (PReg == 0)
1258     return (Width <= 32) ? Phys32[0] : Phys64[0];
1259 
1260   // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1261   // next register.
1262   unsigned Idx32 = 0, Idx64 = 0;
1263   if (!Is64) {
1264     while (Idx32 < Num32) {
1265       if (Phys32[Idx32] == PReg)
1266         break;
1267       Idx32++;
1268     }
1269     Idx64 = Idx32/2;
1270   } else {
1271     while (Idx64 < Num64) {
1272       if (Phys64[Idx64] == PReg)
1273         break;
1274       Idx64++;
1275     }
1276     Idx32 = Idx64*2+1;
1277   }
1278 
1279   if (Width <= 32)
1280     return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1281   return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1282 }
1283 
1284 unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1285   for (std::pair<unsigned,unsigned> P : MRI.liveins())
1286     if (P.first == PReg)
1287       return P.second;
1288   return 0;
1289 }
1290