xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1*0b57cec5SDimitry Andric //===- HexagonBitTracker.cpp ----------------------------------------------===//
2*0b57cec5SDimitry Andric //
3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0b57cec5SDimitry Andric //
7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
8*0b57cec5SDimitry Andric 
9*0b57cec5SDimitry Andric #include "HexagonBitTracker.h"
10*0b57cec5SDimitry Andric #include "Hexagon.h"
11*0b57cec5SDimitry Andric #include "HexagonInstrInfo.h"
12*0b57cec5SDimitry Andric #include "HexagonRegisterInfo.h"
13*0b57cec5SDimitry Andric #include "HexagonSubtarget.h"
14*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
15*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
16*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
17*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
18*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
19*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
20*0b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
21*0b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
22*0b57cec5SDimitry Andric #include "llvm/IR/Function.h"
23*0b57cec5SDimitry Andric #include "llvm/IR/Type.h"
24*0b57cec5SDimitry Andric #include "llvm/Support/Compiler.h"
25*0b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
26*0b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
27*0b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
28*0b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
29*0b57cec5SDimitry Andric #include <cassert>
30*0b57cec5SDimitry Andric #include <cstddef>
31*0b57cec5SDimitry Andric #include <cstdint>
32*0b57cec5SDimitry Andric #include <cstdlib>
33*0b57cec5SDimitry Andric #include <utility>
34*0b57cec5SDimitry Andric #include <vector>
35*0b57cec5SDimitry Andric 
36*0b57cec5SDimitry Andric using namespace llvm;
37*0b57cec5SDimitry Andric 
38*0b57cec5SDimitry Andric using BT = BitTracker;
39*0b57cec5SDimitry Andric 
40*0b57cec5SDimitry Andric HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41*0b57cec5SDimitry Andric                                    MachineRegisterInfo &mri,
42*0b57cec5SDimitry Andric                                    const HexagonInstrInfo &tii,
43*0b57cec5SDimitry Andric                                    MachineFunction &mf)
44*0b57cec5SDimitry Andric     : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45*0b57cec5SDimitry Andric   // Populate the VRX map (VR to extension-type).
46*0b57cec5SDimitry Andric   // Go over all the formal parameters of the function. If a given parameter
47*0b57cec5SDimitry Andric   // P is sign- or zero-extended, locate the virtual register holding that
48*0b57cec5SDimitry Andric   // parameter and create an entry in the VRX map indicating the type of ex-
49*0b57cec5SDimitry Andric   // tension (and the source type).
50*0b57cec5SDimitry Andric   // This is a bit complicated to do accurately, since the memory layout in-
51*0b57cec5SDimitry Andric   // formation is necessary to precisely determine whether an aggregate para-
52*0b57cec5SDimitry Andric   // meter will be passed in a register or in memory. What is given in MRI
53*0b57cec5SDimitry Andric   // is the association between the physical register that is live-in (i.e.
54*0b57cec5SDimitry Andric   // holds an argument), and the virtual register that this value will be
55*0b57cec5SDimitry Andric   // copied into. This, by itself, is not sufficient to map back the virtual
56*0b57cec5SDimitry Andric   // register to a formal parameter from Function (since consecutive live-ins
57*0b57cec5SDimitry Andric   // from MRI may not correspond to consecutive formal parameters from Func-
58*0b57cec5SDimitry Andric   // tion). To avoid the complications with in-memory arguments, only consi-
59*0b57cec5SDimitry Andric   // der the initial sequence of formal parameters that are known to be
60*0b57cec5SDimitry Andric   // passed via registers.
61*0b57cec5SDimitry Andric   unsigned InVirtReg, InPhysReg = 0;
62*0b57cec5SDimitry Andric 
63*0b57cec5SDimitry Andric   for (const Argument &Arg : MF.getFunction().args()) {
64*0b57cec5SDimitry Andric     Type *ATy = Arg.getType();
65*0b57cec5SDimitry Andric     unsigned Width = 0;
66*0b57cec5SDimitry Andric     if (ATy->isIntegerTy())
67*0b57cec5SDimitry Andric       Width = ATy->getIntegerBitWidth();
68*0b57cec5SDimitry Andric     else if (ATy->isPointerTy())
69*0b57cec5SDimitry Andric       Width = 32;
70*0b57cec5SDimitry Andric     // If pointer size is not set through target data, it will default to
71*0b57cec5SDimitry Andric     // Module::AnyPointerSize.
72*0b57cec5SDimitry Andric     if (Width == 0 || Width > 64)
73*0b57cec5SDimitry Andric       break;
74*0b57cec5SDimitry Andric     if (Arg.hasAttribute(Attribute::ByVal))
75*0b57cec5SDimitry Andric       continue;
76*0b57cec5SDimitry Andric     InPhysReg = getNextPhysReg(InPhysReg, Width);
77*0b57cec5SDimitry Andric     if (!InPhysReg)
78*0b57cec5SDimitry Andric       break;
79*0b57cec5SDimitry Andric     InVirtReg = getVirtRegFor(InPhysReg);
80*0b57cec5SDimitry Andric     if (!InVirtReg)
81*0b57cec5SDimitry Andric       continue;
82*0b57cec5SDimitry Andric     if (Arg.hasAttribute(Attribute::SExt))
83*0b57cec5SDimitry Andric       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84*0b57cec5SDimitry Andric     else if (Arg.hasAttribute(Attribute::ZExt))
85*0b57cec5SDimitry Andric       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
86*0b57cec5SDimitry Andric   }
87*0b57cec5SDimitry Andric }
88*0b57cec5SDimitry Andric 
89*0b57cec5SDimitry Andric BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
90*0b57cec5SDimitry Andric   if (Sub == 0)
91*0b57cec5SDimitry Andric     return MachineEvaluator::mask(Reg, 0);
92*0b57cec5SDimitry Andric   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93*0b57cec5SDimitry Andric   unsigned ID = RC.getID();
94*0b57cec5SDimitry Andric   uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95*0b57cec5SDimitry Andric   const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96*0b57cec5SDimitry Andric   bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97*0b57cec5SDimitry Andric   switch (ID) {
98*0b57cec5SDimitry Andric     case Hexagon::DoubleRegsRegClassID:
99*0b57cec5SDimitry Andric     case Hexagon::HvxWRRegClassID:
100*0b57cec5SDimitry Andric     case Hexagon::HvxVQRRegClassID:
101*0b57cec5SDimitry Andric       return IsSubLo ? BT::BitMask(0, RW-1)
102*0b57cec5SDimitry Andric                      : BT::BitMask(RW, 2*RW-1);
103*0b57cec5SDimitry Andric     default:
104*0b57cec5SDimitry Andric       break;
105*0b57cec5SDimitry Andric   }
106*0b57cec5SDimitry Andric #ifndef NDEBUG
107*0b57cec5SDimitry Andric   dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108*0b57cec5SDimitry Andric          << TRI.getRegClassName(&RC) << '\n';
109*0b57cec5SDimitry Andric #endif
110*0b57cec5SDimitry Andric   llvm_unreachable("Unexpected register/subregister");
111*0b57cec5SDimitry Andric }
112*0b57cec5SDimitry Andric 
113*0b57cec5SDimitry Andric uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
114*0b57cec5SDimitry Andric   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
115*0b57cec5SDimitry Andric 
116*0b57cec5SDimitry Andric   using namespace Hexagon;
117*0b57cec5SDimitry Andric   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
118*0b57cec5SDimitry Andric   if (HST.useHVXOps()) {
119*0b57cec5SDimitry Andric     for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
120*0b57cec5SDimitry Andric                      HvxVQRRegClass})
121*0b57cec5SDimitry Andric       if (RC.contains(Reg))
122*0b57cec5SDimitry Andric         return TRI.getRegSizeInBits(RC);
123*0b57cec5SDimitry Andric   }
124*0b57cec5SDimitry Andric   // Default treatment for other physical registers.
125*0b57cec5SDimitry Andric   if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
126*0b57cec5SDimitry Andric     return TRI.getRegSizeInBits(*RC);
127*0b57cec5SDimitry Andric 
128*0b57cec5SDimitry Andric   llvm_unreachable(
129*0b57cec5SDimitry Andric       (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
130*0b57cec5SDimitry Andric }
131*0b57cec5SDimitry Andric 
132*0b57cec5SDimitry Andric const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
133*0b57cec5SDimitry Andric       const TargetRegisterClass &RC, unsigned Idx) const {
134*0b57cec5SDimitry Andric   if (Idx == 0)
135*0b57cec5SDimitry Andric     return RC;
136*0b57cec5SDimitry Andric 
137*0b57cec5SDimitry Andric #ifndef NDEBUG
138*0b57cec5SDimitry Andric   const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
139*0b57cec5SDimitry Andric   bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
140*0b57cec5SDimitry Andric   bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
141*0b57cec5SDimitry Andric   assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
142*0b57cec5SDimitry Andric #endif
143*0b57cec5SDimitry Andric 
144*0b57cec5SDimitry Andric   switch (RC.getID()) {
145*0b57cec5SDimitry Andric     case Hexagon::DoubleRegsRegClassID:
146*0b57cec5SDimitry Andric       return Hexagon::IntRegsRegClass;
147*0b57cec5SDimitry Andric     case Hexagon::HvxWRRegClassID:
148*0b57cec5SDimitry Andric       return Hexagon::HvxVRRegClass;
149*0b57cec5SDimitry Andric     case Hexagon::HvxVQRRegClassID:
150*0b57cec5SDimitry Andric       return Hexagon::HvxWRRegClass;
151*0b57cec5SDimitry Andric     default:
152*0b57cec5SDimitry Andric       break;
153*0b57cec5SDimitry Andric   }
154*0b57cec5SDimitry Andric #ifndef NDEBUG
155*0b57cec5SDimitry Andric   dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
156*0b57cec5SDimitry Andric #endif
157*0b57cec5SDimitry Andric   llvm_unreachable("Unimplemented combination of reg class/subreg idx");
158*0b57cec5SDimitry Andric }
159*0b57cec5SDimitry Andric 
160*0b57cec5SDimitry Andric namespace {
161*0b57cec5SDimitry Andric 
162*0b57cec5SDimitry Andric class RegisterRefs {
163*0b57cec5SDimitry Andric   std::vector<BT::RegisterRef> Vector;
164*0b57cec5SDimitry Andric 
165*0b57cec5SDimitry Andric public:
166*0b57cec5SDimitry Andric   RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
167*0b57cec5SDimitry Andric     for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
168*0b57cec5SDimitry Andric       const MachineOperand &MO = MI.getOperand(i);
169*0b57cec5SDimitry Andric       if (MO.isReg())
170*0b57cec5SDimitry Andric         Vector[i] = BT::RegisterRef(MO);
171*0b57cec5SDimitry Andric       // For indices that don't correspond to registers, the entry will
172*0b57cec5SDimitry Andric       // remain constructed via the default constructor.
173*0b57cec5SDimitry Andric     }
174*0b57cec5SDimitry Andric   }
175*0b57cec5SDimitry Andric 
176*0b57cec5SDimitry Andric   size_t size() const { return Vector.size(); }
177*0b57cec5SDimitry Andric 
178*0b57cec5SDimitry Andric   const BT::RegisterRef &operator[](unsigned n) const {
179*0b57cec5SDimitry Andric     // The main purpose of this operator is to assert with bad argument.
180*0b57cec5SDimitry Andric     assert(n < Vector.size());
181*0b57cec5SDimitry Andric     return Vector[n];
182*0b57cec5SDimitry Andric   }
183*0b57cec5SDimitry Andric };
184*0b57cec5SDimitry Andric 
185*0b57cec5SDimitry Andric } // end anonymous namespace
186*0b57cec5SDimitry Andric 
187*0b57cec5SDimitry Andric bool HexagonEvaluator::evaluate(const MachineInstr &MI,
188*0b57cec5SDimitry Andric                                 const CellMapType &Inputs,
189*0b57cec5SDimitry Andric                                 CellMapType &Outputs) const {
190*0b57cec5SDimitry Andric   using namespace Hexagon;
191*0b57cec5SDimitry Andric 
192*0b57cec5SDimitry Andric   unsigned NumDefs = 0;
193*0b57cec5SDimitry Andric 
194*0b57cec5SDimitry Andric   // Sanity verification: there should not be any defs with subregisters.
195*0b57cec5SDimitry Andric   for (const MachineOperand &MO : MI.operands()) {
196*0b57cec5SDimitry Andric     if (!MO.isReg() || !MO.isDef())
197*0b57cec5SDimitry Andric       continue;
198*0b57cec5SDimitry Andric     NumDefs++;
199*0b57cec5SDimitry Andric     assert(MO.getSubReg() == 0);
200*0b57cec5SDimitry Andric   }
201*0b57cec5SDimitry Andric 
202*0b57cec5SDimitry Andric   if (NumDefs == 0)
203*0b57cec5SDimitry Andric     return false;
204*0b57cec5SDimitry Andric 
205*0b57cec5SDimitry Andric   unsigned Opc = MI.getOpcode();
206*0b57cec5SDimitry Andric 
207*0b57cec5SDimitry Andric   if (MI.mayLoad()) {
208*0b57cec5SDimitry Andric     switch (Opc) {
209*0b57cec5SDimitry Andric       // These instructions may be marked as mayLoad, but they are generating
210*0b57cec5SDimitry Andric       // immediate values, so skip them.
211*0b57cec5SDimitry Andric       case CONST32:
212*0b57cec5SDimitry Andric       case CONST64:
213*0b57cec5SDimitry Andric         break;
214*0b57cec5SDimitry Andric       default:
215*0b57cec5SDimitry Andric         return evaluateLoad(MI, Inputs, Outputs);
216*0b57cec5SDimitry Andric     }
217*0b57cec5SDimitry Andric   }
218*0b57cec5SDimitry Andric 
219*0b57cec5SDimitry Andric   // Check COPY instructions that copy formal parameters into virtual
220*0b57cec5SDimitry Andric   // registers. Such parameters can be sign- or zero-extended at the
221*0b57cec5SDimitry Andric   // call site, and we should take advantage of this knowledge. The MRI
222*0b57cec5SDimitry Andric   // keeps a list of pairs of live-in physical and virtual registers,
223*0b57cec5SDimitry Andric   // which provides information about which virtual registers will hold
224*0b57cec5SDimitry Andric   // the argument values. The function will still contain instructions
225*0b57cec5SDimitry Andric   // defining those virtual registers, and in practice those are COPY
226*0b57cec5SDimitry Andric   // instructions from a physical to a virtual register. In such cases,
227*0b57cec5SDimitry Andric   // applying the argument extension to the virtual register can be seen
228*0b57cec5SDimitry Andric   // as simply mirroring the extension that had already been applied to
229*0b57cec5SDimitry Andric   // the physical register at the call site. If the defining instruction
230*0b57cec5SDimitry Andric   // was not a COPY, it would not be clear how to mirror that extension
231*0b57cec5SDimitry Andric   // on the callee's side. For that reason, only check COPY instructions
232*0b57cec5SDimitry Andric   // for potential extensions.
233*0b57cec5SDimitry Andric   if (MI.isCopy()) {
234*0b57cec5SDimitry Andric     if (evaluateFormalCopy(MI, Inputs, Outputs))
235*0b57cec5SDimitry Andric       return true;
236*0b57cec5SDimitry Andric   }
237*0b57cec5SDimitry Andric 
238*0b57cec5SDimitry Andric   // Beyond this point, if any operand is a global, skip that instruction.
239*0b57cec5SDimitry Andric   // The reason is that certain instructions that can take an immediate
240*0b57cec5SDimitry Andric   // operand can also have a global symbol in that operand. To avoid
241*0b57cec5SDimitry Andric   // checking what kind of operand a given instruction has individually
242*0b57cec5SDimitry Andric   // for each instruction, do it here. Global symbols as operands gene-
243*0b57cec5SDimitry Andric   // rally do not provide any useful information.
244*0b57cec5SDimitry Andric   for (const MachineOperand &MO : MI.operands()) {
245*0b57cec5SDimitry Andric     if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
246*0b57cec5SDimitry Andric         MO.isCPI())
247*0b57cec5SDimitry Andric       return false;
248*0b57cec5SDimitry Andric   }
249*0b57cec5SDimitry Andric 
250*0b57cec5SDimitry Andric   RegisterRefs Reg(MI);
251*0b57cec5SDimitry Andric #define op(i) MI.getOperand(i)
252*0b57cec5SDimitry Andric #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
253*0b57cec5SDimitry Andric #define im(i) MI.getOperand(i).getImm()
254*0b57cec5SDimitry Andric 
255*0b57cec5SDimitry Andric   // If the instruction has no register operands, skip it.
256*0b57cec5SDimitry Andric   if (Reg.size() == 0)
257*0b57cec5SDimitry Andric     return false;
258*0b57cec5SDimitry Andric 
259*0b57cec5SDimitry Andric   // Record result for register in operand 0.
260*0b57cec5SDimitry Andric   auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
261*0b57cec5SDimitry Andric         -> bool {
262*0b57cec5SDimitry Andric     putCell(Reg[0], Val, Outputs);
263*0b57cec5SDimitry Andric     return true;
264*0b57cec5SDimitry Andric   };
265*0b57cec5SDimitry Andric   // Get the cell corresponding to the N-th operand.
266*0b57cec5SDimitry Andric   auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
267*0b57cec5SDimitry Andric                                         uint16_t W) -> BT::RegisterCell {
268*0b57cec5SDimitry Andric     const MachineOperand &Op = MI.getOperand(N);
269*0b57cec5SDimitry Andric     if (Op.isImm())
270*0b57cec5SDimitry Andric       return eIMM(Op.getImm(), W);
271*0b57cec5SDimitry Andric     if (!Op.isReg())
272*0b57cec5SDimitry Andric       return RegisterCell::self(0, W);
273*0b57cec5SDimitry Andric     assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
274*0b57cec5SDimitry Andric     return rc(N);
275*0b57cec5SDimitry Andric   };
276*0b57cec5SDimitry Andric   // Extract RW low bits of the cell.
277*0b57cec5SDimitry Andric   auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
278*0b57cec5SDimitry Andric         -> BT::RegisterCell {
279*0b57cec5SDimitry Andric     assert(RW <= RC.width());
280*0b57cec5SDimitry Andric     return eXTR(RC, 0, RW);
281*0b57cec5SDimitry Andric   };
282*0b57cec5SDimitry Andric   // Extract RW high bits of the cell.
283*0b57cec5SDimitry Andric   auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
284*0b57cec5SDimitry Andric         -> BT::RegisterCell {
285*0b57cec5SDimitry Andric     uint16_t W = RC.width();
286*0b57cec5SDimitry Andric     assert(RW <= W);
287*0b57cec5SDimitry Andric     return eXTR(RC, W-RW, W);
288*0b57cec5SDimitry Andric   };
289*0b57cec5SDimitry Andric   // Extract N-th halfword (counting from the least significant position).
290*0b57cec5SDimitry Andric   auto half = [this] (const BT::RegisterCell &RC, unsigned N)
291*0b57cec5SDimitry Andric         -> BT::RegisterCell {
292*0b57cec5SDimitry Andric     assert(N*16+16 <= RC.width());
293*0b57cec5SDimitry Andric     return eXTR(RC, N*16, N*16+16);
294*0b57cec5SDimitry Andric   };
295*0b57cec5SDimitry Andric   // Shuffle bits (pick even/odd from cells and merge into result).
296*0b57cec5SDimitry Andric   auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
297*0b57cec5SDimitry Andric                          uint16_t BW, bool Odd) -> BT::RegisterCell {
298*0b57cec5SDimitry Andric     uint16_t I = Odd, Ws = Rs.width();
299*0b57cec5SDimitry Andric     assert(Ws == Rt.width());
300*0b57cec5SDimitry Andric     RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
301*0b57cec5SDimitry Andric     I += 2;
302*0b57cec5SDimitry Andric     while (I*BW < Ws) {
303*0b57cec5SDimitry Andric       RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
304*0b57cec5SDimitry Andric       I += 2;
305*0b57cec5SDimitry Andric     }
306*0b57cec5SDimitry Andric     return RC;
307*0b57cec5SDimitry Andric   };
308*0b57cec5SDimitry Andric 
309*0b57cec5SDimitry Andric   // The bitwidth of the 0th operand. In most (if not all) of the
310*0b57cec5SDimitry Andric   // instructions below, the 0th operand is the defined register.
311*0b57cec5SDimitry Andric   // Pre-compute the bitwidth here, because it is needed in many cases
312*0b57cec5SDimitry Andric   // cases below.
313*0b57cec5SDimitry Andric   uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
314*0b57cec5SDimitry Andric 
315*0b57cec5SDimitry Andric   // Register id of the 0th operand. It can be 0.
316*0b57cec5SDimitry Andric   unsigned Reg0 = Reg[0].Reg;
317*0b57cec5SDimitry Andric 
318*0b57cec5SDimitry Andric   switch (Opc) {
319*0b57cec5SDimitry Andric     // Transfer immediate:
320*0b57cec5SDimitry Andric 
321*0b57cec5SDimitry Andric     case A2_tfrsi:
322*0b57cec5SDimitry Andric     case A2_tfrpi:
323*0b57cec5SDimitry Andric     case CONST32:
324*0b57cec5SDimitry Andric     case CONST64:
325*0b57cec5SDimitry Andric       return rr0(eIMM(im(1), W0), Outputs);
326*0b57cec5SDimitry Andric     case PS_false:
327*0b57cec5SDimitry Andric       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
328*0b57cec5SDimitry Andric     case PS_true:
329*0b57cec5SDimitry Andric       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
330*0b57cec5SDimitry Andric     case PS_fi: {
331*0b57cec5SDimitry Andric       int FI = op(1).getIndex();
332*0b57cec5SDimitry Andric       int Off = op(2).getImm();
333*0b57cec5SDimitry Andric       unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
334*0b57cec5SDimitry Andric       unsigned L = countTrailingZeros(A);
335*0b57cec5SDimitry Andric       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
336*0b57cec5SDimitry Andric       RC.fill(0, L, BT::BitValue::Zero);
337*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
338*0b57cec5SDimitry Andric     }
339*0b57cec5SDimitry Andric 
340*0b57cec5SDimitry Andric     // Transfer register:
341*0b57cec5SDimitry Andric 
342*0b57cec5SDimitry Andric     case A2_tfr:
343*0b57cec5SDimitry Andric     case A2_tfrp:
344*0b57cec5SDimitry Andric     case C2_pxfer_map:
345*0b57cec5SDimitry Andric       return rr0(rc(1), Outputs);
346*0b57cec5SDimitry Andric     case C2_tfrpr: {
347*0b57cec5SDimitry Andric       uint16_t RW = W0;
348*0b57cec5SDimitry Andric       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
349*0b57cec5SDimitry Andric       assert(PW <= RW);
350*0b57cec5SDimitry Andric       RegisterCell PC = eXTR(rc(1), 0, PW);
351*0b57cec5SDimitry Andric       RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
352*0b57cec5SDimitry Andric       RC.fill(PW, RW, BT::BitValue::Zero);
353*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
354*0b57cec5SDimitry Andric     }
355*0b57cec5SDimitry Andric     case C2_tfrrp: {
356*0b57cec5SDimitry Andric       uint16_t RW = W0;
357*0b57cec5SDimitry Andric       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
358*0b57cec5SDimitry Andric       RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
359*0b57cec5SDimitry Andric       RC.fill(PW, RW, BT::BitValue::Zero);
360*0b57cec5SDimitry Andric       return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
361*0b57cec5SDimitry Andric     }
362*0b57cec5SDimitry Andric 
363*0b57cec5SDimitry Andric     // Arithmetic:
364*0b57cec5SDimitry Andric 
365*0b57cec5SDimitry Andric     case A2_abs:
366*0b57cec5SDimitry Andric     case A2_absp:
367*0b57cec5SDimitry Andric       // TODO
368*0b57cec5SDimitry Andric       break;
369*0b57cec5SDimitry Andric 
370*0b57cec5SDimitry Andric     case A2_addsp: {
371*0b57cec5SDimitry Andric       uint16_t W1 = getRegBitWidth(Reg[1]);
372*0b57cec5SDimitry Andric       assert(W0 == 64 && W1 == 32);
373*0b57cec5SDimitry Andric       RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
374*0b57cec5SDimitry Andric       RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
375*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
376*0b57cec5SDimitry Andric     }
377*0b57cec5SDimitry Andric     case A2_add:
378*0b57cec5SDimitry Andric     case A2_addp:
379*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), rc(2)), Outputs);
380*0b57cec5SDimitry Andric     case A2_addi:
381*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
382*0b57cec5SDimitry Andric     case S4_addi_asl_ri: {
383*0b57cec5SDimitry Andric       RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
384*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
385*0b57cec5SDimitry Andric     }
386*0b57cec5SDimitry Andric     case S4_addi_lsr_ri: {
387*0b57cec5SDimitry Andric       RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
388*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
389*0b57cec5SDimitry Andric     }
390*0b57cec5SDimitry Andric     case S4_addaddi: {
391*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
392*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
393*0b57cec5SDimitry Andric     }
394*0b57cec5SDimitry Andric     case M4_mpyri_addi: {
395*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
396*0b57cec5SDimitry Andric       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
397*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
398*0b57cec5SDimitry Andric     }
399*0b57cec5SDimitry Andric     case M4_mpyrr_addi: {
400*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), rc(3));
401*0b57cec5SDimitry Andric       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
402*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
403*0b57cec5SDimitry Andric     }
404*0b57cec5SDimitry Andric     case M4_mpyri_addr_u2: {
405*0b57cec5SDimitry Andric       RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
406*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), lo(M, W0));
407*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
408*0b57cec5SDimitry Andric     }
409*0b57cec5SDimitry Andric     case M4_mpyri_addr: {
410*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
411*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), lo(M, W0));
412*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
413*0b57cec5SDimitry Andric     }
414*0b57cec5SDimitry Andric     case M4_mpyrr_addr: {
415*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), rc(3));
416*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), lo(M, W0));
417*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
418*0b57cec5SDimitry Andric     }
419*0b57cec5SDimitry Andric     case S4_subaddi: {
420*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
421*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
422*0b57cec5SDimitry Andric     }
423*0b57cec5SDimitry Andric     case M2_accii: {
424*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
425*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
426*0b57cec5SDimitry Andric     }
427*0b57cec5SDimitry Andric     case M2_acci: {
428*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
429*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
430*0b57cec5SDimitry Andric     }
431*0b57cec5SDimitry Andric     case M2_subacc: {
432*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
433*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
434*0b57cec5SDimitry Andric     }
435*0b57cec5SDimitry Andric     case S2_addasl_rrri: {
436*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
437*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
438*0b57cec5SDimitry Andric     }
439*0b57cec5SDimitry Andric     case C4_addipc: {
440*0b57cec5SDimitry Andric       RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
441*0b57cec5SDimitry Andric       RPC.fill(0, 2, BT::BitValue::Zero);
442*0b57cec5SDimitry Andric       return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
443*0b57cec5SDimitry Andric     }
444*0b57cec5SDimitry Andric     case A2_sub:
445*0b57cec5SDimitry Andric     case A2_subp:
446*0b57cec5SDimitry Andric       return rr0(eSUB(rc(1), rc(2)), Outputs);
447*0b57cec5SDimitry Andric     case A2_subri:
448*0b57cec5SDimitry Andric       return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
449*0b57cec5SDimitry Andric     case S4_subi_asl_ri: {
450*0b57cec5SDimitry Andric       RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
451*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
452*0b57cec5SDimitry Andric     }
453*0b57cec5SDimitry Andric     case S4_subi_lsr_ri: {
454*0b57cec5SDimitry Andric       RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
455*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
456*0b57cec5SDimitry Andric     }
457*0b57cec5SDimitry Andric     case M2_naccii: {
458*0b57cec5SDimitry Andric       RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
459*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
460*0b57cec5SDimitry Andric     }
461*0b57cec5SDimitry Andric     case M2_nacci: {
462*0b57cec5SDimitry Andric       RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
463*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
464*0b57cec5SDimitry Andric     }
465*0b57cec5SDimitry Andric     // 32-bit negation is done by "Rd = A2_subri 0, Rs"
466*0b57cec5SDimitry Andric     case A2_negp:
467*0b57cec5SDimitry Andric       return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
468*0b57cec5SDimitry Andric 
469*0b57cec5SDimitry Andric     case M2_mpy_up: {
470*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(1), rc(2));
471*0b57cec5SDimitry Andric       return rr0(hi(M, W0), Outputs);
472*0b57cec5SDimitry Andric     }
473*0b57cec5SDimitry Andric     case M2_dpmpyss_s0:
474*0b57cec5SDimitry Andric       return rr0(eMLS(rc(1), rc(2)), Outputs);
475*0b57cec5SDimitry Andric     case M2_dpmpyss_acc_s0:
476*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
477*0b57cec5SDimitry Andric     case M2_dpmpyss_nac_s0:
478*0b57cec5SDimitry Andric       return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
479*0b57cec5SDimitry Andric     case M2_mpyi: {
480*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(1), rc(2));
481*0b57cec5SDimitry Andric       return rr0(lo(M, W0), Outputs);
482*0b57cec5SDimitry Andric     }
483*0b57cec5SDimitry Andric     case M2_macsip: {
484*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
485*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), lo(M, W0));
486*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
487*0b57cec5SDimitry Andric     }
488*0b57cec5SDimitry Andric     case M2_macsin: {
489*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
490*0b57cec5SDimitry Andric       RegisterCell RC = eSUB(rc(1), lo(M, W0));
491*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
492*0b57cec5SDimitry Andric     }
493*0b57cec5SDimitry Andric     case M2_maci: {
494*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(2), rc(3));
495*0b57cec5SDimitry Andric       RegisterCell RC = eADD(rc(1), lo(M, W0));
496*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
497*0b57cec5SDimitry Andric     }
498*0b57cec5SDimitry Andric     case M2_mpysmi: {
499*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
500*0b57cec5SDimitry Andric       return rr0(lo(M, 32), Outputs);
501*0b57cec5SDimitry Andric     }
502*0b57cec5SDimitry Andric     case M2_mpysin: {
503*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
504*0b57cec5SDimitry Andric       return rr0(lo(M, 32), Outputs);
505*0b57cec5SDimitry Andric     }
506*0b57cec5SDimitry Andric     case M2_mpysip: {
507*0b57cec5SDimitry Andric       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
508*0b57cec5SDimitry Andric       return rr0(lo(M, 32), Outputs);
509*0b57cec5SDimitry Andric     }
510*0b57cec5SDimitry Andric     case M2_mpyu_up: {
511*0b57cec5SDimitry Andric       RegisterCell M = eMLU(rc(1), rc(2));
512*0b57cec5SDimitry Andric       return rr0(hi(M, W0), Outputs);
513*0b57cec5SDimitry Andric     }
514*0b57cec5SDimitry Andric     case M2_dpmpyuu_s0:
515*0b57cec5SDimitry Andric       return rr0(eMLU(rc(1), rc(2)), Outputs);
516*0b57cec5SDimitry Andric     case M2_dpmpyuu_acc_s0:
517*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
518*0b57cec5SDimitry Andric     case M2_dpmpyuu_nac_s0:
519*0b57cec5SDimitry Andric       return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
520*0b57cec5SDimitry Andric     //case M2_mpysu_up:
521*0b57cec5SDimitry Andric 
522*0b57cec5SDimitry Andric     // Logical/bitwise:
523*0b57cec5SDimitry Andric 
524*0b57cec5SDimitry Andric     case A2_andir:
525*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
526*0b57cec5SDimitry Andric     case A2_and:
527*0b57cec5SDimitry Andric     case A2_andp:
528*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), rc(2)), Outputs);
529*0b57cec5SDimitry Andric     case A4_andn:
530*0b57cec5SDimitry Andric     case A4_andnp:
531*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
532*0b57cec5SDimitry Andric     case S4_andi_asl_ri: {
533*0b57cec5SDimitry Andric       RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
534*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
535*0b57cec5SDimitry Andric     }
536*0b57cec5SDimitry Andric     case S4_andi_lsr_ri: {
537*0b57cec5SDimitry Andric       RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
538*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
539*0b57cec5SDimitry Andric     }
540*0b57cec5SDimitry Andric     case M4_and_and:
541*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
542*0b57cec5SDimitry Andric     case M4_and_andn:
543*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
544*0b57cec5SDimitry Andric     case M4_and_or:
545*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
546*0b57cec5SDimitry Andric     case M4_and_xor:
547*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
548*0b57cec5SDimitry Andric     case A2_orir:
549*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
550*0b57cec5SDimitry Andric     case A2_or:
551*0b57cec5SDimitry Andric     case A2_orp:
552*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), rc(2)), Outputs);
553*0b57cec5SDimitry Andric     case A4_orn:
554*0b57cec5SDimitry Andric     case A4_ornp:
555*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
556*0b57cec5SDimitry Andric     case S4_ori_asl_ri: {
557*0b57cec5SDimitry Andric       RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
558*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
559*0b57cec5SDimitry Andric     }
560*0b57cec5SDimitry Andric     case S4_ori_lsr_ri: {
561*0b57cec5SDimitry Andric       RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
562*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
563*0b57cec5SDimitry Andric     }
564*0b57cec5SDimitry Andric     case M4_or_and:
565*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
566*0b57cec5SDimitry Andric     case M4_or_andn:
567*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
568*0b57cec5SDimitry Andric     case S4_or_andi:
569*0b57cec5SDimitry Andric     case S4_or_andix: {
570*0b57cec5SDimitry Andric       RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
571*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
572*0b57cec5SDimitry Andric     }
573*0b57cec5SDimitry Andric     case S4_or_ori: {
574*0b57cec5SDimitry Andric       RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
575*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
576*0b57cec5SDimitry Andric     }
577*0b57cec5SDimitry Andric     case M4_or_or:
578*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
579*0b57cec5SDimitry Andric     case M4_or_xor:
580*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
581*0b57cec5SDimitry Andric     case A2_xor:
582*0b57cec5SDimitry Andric     case A2_xorp:
583*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), rc(2)), Outputs);
584*0b57cec5SDimitry Andric     case M4_xor_and:
585*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
586*0b57cec5SDimitry Andric     case M4_xor_andn:
587*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
588*0b57cec5SDimitry Andric     case M4_xor_or:
589*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
590*0b57cec5SDimitry Andric     case M4_xor_xacc:
591*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
592*0b57cec5SDimitry Andric     case A2_not:
593*0b57cec5SDimitry Andric     case A2_notp:
594*0b57cec5SDimitry Andric       return rr0(eNOT(rc(1)), Outputs);
595*0b57cec5SDimitry Andric 
596*0b57cec5SDimitry Andric     case S2_asl_i_r:
597*0b57cec5SDimitry Andric     case S2_asl_i_p:
598*0b57cec5SDimitry Andric       return rr0(eASL(rc(1), im(2)), Outputs);
599*0b57cec5SDimitry Andric     case A2_aslh:
600*0b57cec5SDimitry Andric       return rr0(eASL(rc(1), 16), Outputs);
601*0b57cec5SDimitry Andric     case S2_asl_i_r_acc:
602*0b57cec5SDimitry Andric     case S2_asl_i_p_acc:
603*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
604*0b57cec5SDimitry Andric     case S2_asl_i_r_nac:
605*0b57cec5SDimitry Andric     case S2_asl_i_p_nac:
606*0b57cec5SDimitry Andric       return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
607*0b57cec5SDimitry Andric     case S2_asl_i_r_and:
608*0b57cec5SDimitry Andric     case S2_asl_i_p_and:
609*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
610*0b57cec5SDimitry Andric     case S2_asl_i_r_or:
611*0b57cec5SDimitry Andric     case S2_asl_i_p_or:
612*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
613*0b57cec5SDimitry Andric     case S2_asl_i_r_xacc:
614*0b57cec5SDimitry Andric     case S2_asl_i_p_xacc:
615*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
616*0b57cec5SDimitry Andric     case S2_asl_i_vh:
617*0b57cec5SDimitry Andric     case S2_asl_i_vw:
618*0b57cec5SDimitry Andric       // TODO
619*0b57cec5SDimitry Andric       break;
620*0b57cec5SDimitry Andric 
621*0b57cec5SDimitry Andric     case S2_asr_i_r:
622*0b57cec5SDimitry Andric     case S2_asr_i_p:
623*0b57cec5SDimitry Andric       return rr0(eASR(rc(1), im(2)), Outputs);
624*0b57cec5SDimitry Andric     case A2_asrh:
625*0b57cec5SDimitry Andric       return rr0(eASR(rc(1), 16), Outputs);
626*0b57cec5SDimitry Andric     case S2_asr_i_r_acc:
627*0b57cec5SDimitry Andric     case S2_asr_i_p_acc:
628*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
629*0b57cec5SDimitry Andric     case S2_asr_i_r_nac:
630*0b57cec5SDimitry Andric     case S2_asr_i_p_nac:
631*0b57cec5SDimitry Andric       return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
632*0b57cec5SDimitry Andric     case S2_asr_i_r_and:
633*0b57cec5SDimitry Andric     case S2_asr_i_p_and:
634*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
635*0b57cec5SDimitry Andric     case S2_asr_i_r_or:
636*0b57cec5SDimitry Andric     case S2_asr_i_p_or:
637*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
638*0b57cec5SDimitry Andric     case S2_asr_i_r_rnd: {
639*0b57cec5SDimitry Andric       // The input is first sign-extended to 64 bits, then the output
640*0b57cec5SDimitry Andric       // is truncated back to 32 bits.
641*0b57cec5SDimitry Andric       assert(W0 == 32);
642*0b57cec5SDimitry Andric       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
643*0b57cec5SDimitry Andric       RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
644*0b57cec5SDimitry Andric       return rr0(eXTR(RC, 0, W0), Outputs);
645*0b57cec5SDimitry Andric     }
646*0b57cec5SDimitry Andric     case S2_asr_i_r_rnd_goodsyntax: {
647*0b57cec5SDimitry Andric       int64_t S = im(2);
648*0b57cec5SDimitry Andric       if (S == 0)
649*0b57cec5SDimitry Andric         return rr0(rc(1), Outputs);
650*0b57cec5SDimitry Andric       // Result: S2_asr_i_r_rnd Rs, u5-1
651*0b57cec5SDimitry Andric       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
652*0b57cec5SDimitry Andric       RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
653*0b57cec5SDimitry Andric       return rr0(eXTR(RC, 0, W0), Outputs);
654*0b57cec5SDimitry Andric     }
655*0b57cec5SDimitry Andric     case S2_asr_r_vh:
656*0b57cec5SDimitry Andric     case S2_asr_i_vw:
657*0b57cec5SDimitry Andric     case S2_asr_i_svw_trun:
658*0b57cec5SDimitry Andric       // TODO
659*0b57cec5SDimitry Andric       break;
660*0b57cec5SDimitry Andric 
661*0b57cec5SDimitry Andric     case S2_lsr_i_r:
662*0b57cec5SDimitry Andric     case S2_lsr_i_p:
663*0b57cec5SDimitry Andric       return rr0(eLSR(rc(1), im(2)), Outputs);
664*0b57cec5SDimitry Andric     case S2_lsr_i_r_acc:
665*0b57cec5SDimitry Andric     case S2_lsr_i_p_acc:
666*0b57cec5SDimitry Andric       return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
667*0b57cec5SDimitry Andric     case S2_lsr_i_r_nac:
668*0b57cec5SDimitry Andric     case S2_lsr_i_p_nac:
669*0b57cec5SDimitry Andric       return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
670*0b57cec5SDimitry Andric     case S2_lsr_i_r_and:
671*0b57cec5SDimitry Andric     case S2_lsr_i_p_and:
672*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
673*0b57cec5SDimitry Andric     case S2_lsr_i_r_or:
674*0b57cec5SDimitry Andric     case S2_lsr_i_p_or:
675*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
676*0b57cec5SDimitry Andric     case S2_lsr_i_r_xacc:
677*0b57cec5SDimitry Andric     case S2_lsr_i_p_xacc:
678*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
679*0b57cec5SDimitry Andric 
680*0b57cec5SDimitry Andric     case S2_clrbit_i: {
681*0b57cec5SDimitry Andric       RegisterCell RC = rc(1);
682*0b57cec5SDimitry Andric       RC[im(2)] = BT::BitValue::Zero;
683*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
684*0b57cec5SDimitry Andric     }
685*0b57cec5SDimitry Andric     case S2_setbit_i: {
686*0b57cec5SDimitry Andric       RegisterCell RC = rc(1);
687*0b57cec5SDimitry Andric       RC[im(2)] = BT::BitValue::One;
688*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
689*0b57cec5SDimitry Andric     }
690*0b57cec5SDimitry Andric     case S2_togglebit_i: {
691*0b57cec5SDimitry Andric       RegisterCell RC = rc(1);
692*0b57cec5SDimitry Andric       uint16_t BX = im(2);
693*0b57cec5SDimitry Andric       RC[BX] = RC[BX].is(0) ? BT::BitValue::One
694*0b57cec5SDimitry Andric                             : RC[BX].is(1) ? BT::BitValue::Zero
695*0b57cec5SDimitry Andric                                            : BT::BitValue::self();
696*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
697*0b57cec5SDimitry Andric     }
698*0b57cec5SDimitry Andric 
699*0b57cec5SDimitry Andric     case A4_bitspliti: {
700*0b57cec5SDimitry Andric       uint16_t W1 = getRegBitWidth(Reg[1]);
701*0b57cec5SDimitry Andric       uint16_t BX = im(2);
702*0b57cec5SDimitry Andric       // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
703*0b57cec5SDimitry Andric       const BT::BitValue Zero = BT::BitValue::Zero;
704*0b57cec5SDimitry Andric       RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
705*0b57cec5SDimitry Andric                                         .fill(W1+(W1-BX), W0, Zero);
706*0b57cec5SDimitry Andric       RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
707*0b57cec5SDimitry Andric       RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
708*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
709*0b57cec5SDimitry Andric     }
710*0b57cec5SDimitry Andric     case S4_extract:
711*0b57cec5SDimitry Andric     case S4_extractp:
712*0b57cec5SDimitry Andric     case S2_extractu:
713*0b57cec5SDimitry Andric     case S2_extractup: {
714*0b57cec5SDimitry Andric       uint16_t Wd = im(2), Of = im(3);
715*0b57cec5SDimitry Andric       assert(Wd <= W0);
716*0b57cec5SDimitry Andric       if (Wd == 0)
717*0b57cec5SDimitry Andric         return rr0(eIMM(0, W0), Outputs);
718*0b57cec5SDimitry Andric       // If the width extends beyond the register size, pad the register
719*0b57cec5SDimitry Andric       // with 0 bits.
720*0b57cec5SDimitry Andric       RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
721*0b57cec5SDimitry Andric       RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
722*0b57cec5SDimitry Andric       // Ext is short, need to extend it with 0s or sign bit.
723*0b57cec5SDimitry Andric       RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
724*0b57cec5SDimitry Andric       if (Opc == S2_extractu || Opc == S2_extractup)
725*0b57cec5SDimitry Andric         return rr0(eZXT(RC, Wd), Outputs);
726*0b57cec5SDimitry Andric       return rr0(eSXT(RC, Wd), Outputs);
727*0b57cec5SDimitry Andric     }
728*0b57cec5SDimitry Andric     case S2_insert:
729*0b57cec5SDimitry Andric     case S2_insertp: {
730*0b57cec5SDimitry Andric       uint16_t Wd = im(3), Of = im(4);
731*0b57cec5SDimitry Andric       assert(Wd < W0 && Of < W0);
732*0b57cec5SDimitry Andric       // If Wd+Of exceeds W0, the inserted bits are truncated.
733*0b57cec5SDimitry Andric       if (Wd+Of > W0)
734*0b57cec5SDimitry Andric         Wd = W0-Of;
735*0b57cec5SDimitry Andric       if (Wd == 0)
736*0b57cec5SDimitry Andric         return rr0(rc(1), Outputs);
737*0b57cec5SDimitry Andric       return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
738*0b57cec5SDimitry Andric     }
739*0b57cec5SDimitry Andric 
740*0b57cec5SDimitry Andric     // Bit permutations:
741*0b57cec5SDimitry Andric 
742*0b57cec5SDimitry Andric     case A2_combineii:
743*0b57cec5SDimitry Andric     case A4_combineii:
744*0b57cec5SDimitry Andric     case A4_combineir:
745*0b57cec5SDimitry Andric     case A4_combineri:
746*0b57cec5SDimitry Andric     case A2_combinew:
747*0b57cec5SDimitry Andric     case V6_vcombine:
748*0b57cec5SDimitry Andric       assert(W0 % 2 == 0);
749*0b57cec5SDimitry Andric       return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
750*0b57cec5SDimitry Andric     case A2_combine_ll:
751*0b57cec5SDimitry Andric     case A2_combine_lh:
752*0b57cec5SDimitry Andric     case A2_combine_hl:
753*0b57cec5SDimitry Andric     case A2_combine_hh: {
754*0b57cec5SDimitry Andric       assert(W0 == 32);
755*0b57cec5SDimitry Andric       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
756*0b57cec5SDimitry Andric       // Low half in the output is 0 for _ll and _hl, 1 otherwise:
757*0b57cec5SDimitry Andric       unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
758*0b57cec5SDimitry Andric       // High half in the output is 0 for _ll and _lh, 1 otherwise:
759*0b57cec5SDimitry Andric       unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
760*0b57cec5SDimitry Andric       RegisterCell R1 = rc(1);
761*0b57cec5SDimitry Andric       RegisterCell R2 = rc(2);
762*0b57cec5SDimitry Andric       RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
763*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
764*0b57cec5SDimitry Andric     }
765*0b57cec5SDimitry Andric     case S2_packhl: {
766*0b57cec5SDimitry Andric       assert(W0 == 64);
767*0b57cec5SDimitry Andric       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
768*0b57cec5SDimitry Andric       RegisterCell R1 = rc(1);
769*0b57cec5SDimitry Andric       RegisterCell R2 = rc(2);
770*0b57cec5SDimitry Andric       RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
771*0b57cec5SDimitry Andric                                    .cat(half(R1, 1));
772*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
773*0b57cec5SDimitry Andric     }
774*0b57cec5SDimitry Andric     case S2_shuffeb: {
775*0b57cec5SDimitry Andric       RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
776*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
777*0b57cec5SDimitry Andric     }
778*0b57cec5SDimitry Andric     case S2_shuffeh: {
779*0b57cec5SDimitry Andric       RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
780*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
781*0b57cec5SDimitry Andric     }
782*0b57cec5SDimitry Andric     case S2_shuffob: {
783*0b57cec5SDimitry Andric       RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
784*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
785*0b57cec5SDimitry Andric     }
786*0b57cec5SDimitry Andric     case S2_shuffoh: {
787*0b57cec5SDimitry Andric       RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
788*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
789*0b57cec5SDimitry Andric     }
790*0b57cec5SDimitry Andric     case C2_mask: {
791*0b57cec5SDimitry Andric       uint16_t WR = W0;
792*0b57cec5SDimitry Andric       uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
793*0b57cec5SDimitry Andric       assert(WR == 64 && WP == 8);
794*0b57cec5SDimitry Andric       RegisterCell R1 = rc(1);
795*0b57cec5SDimitry Andric       RegisterCell RC(WR);
796*0b57cec5SDimitry Andric       for (uint16_t i = 0; i < WP; ++i) {
797*0b57cec5SDimitry Andric         const BT::BitValue &V = R1[i];
798*0b57cec5SDimitry Andric         BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
799*0b57cec5SDimitry Andric         RC.fill(i*8, i*8+8, F);
800*0b57cec5SDimitry Andric       }
801*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
802*0b57cec5SDimitry Andric     }
803*0b57cec5SDimitry Andric 
804*0b57cec5SDimitry Andric     // Mux:
805*0b57cec5SDimitry Andric 
806*0b57cec5SDimitry Andric     case C2_muxii:
807*0b57cec5SDimitry Andric     case C2_muxir:
808*0b57cec5SDimitry Andric     case C2_muxri:
809*0b57cec5SDimitry Andric     case C2_mux: {
810*0b57cec5SDimitry Andric       BT::BitValue PC0 = rc(1)[0];
811*0b57cec5SDimitry Andric       RegisterCell R2 = cop(2, W0);
812*0b57cec5SDimitry Andric       RegisterCell R3 = cop(3, W0);
813*0b57cec5SDimitry Andric       if (PC0.is(0) || PC0.is(1))
814*0b57cec5SDimitry Andric         return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
815*0b57cec5SDimitry Andric       R2.meet(R3, Reg[0].Reg);
816*0b57cec5SDimitry Andric       return rr0(R2, Outputs);
817*0b57cec5SDimitry Andric     }
818*0b57cec5SDimitry Andric     case C2_vmux:
819*0b57cec5SDimitry Andric       // TODO
820*0b57cec5SDimitry Andric       break;
821*0b57cec5SDimitry Andric 
822*0b57cec5SDimitry Andric     // Sign- and zero-extension:
823*0b57cec5SDimitry Andric 
824*0b57cec5SDimitry Andric     case A2_sxtb:
825*0b57cec5SDimitry Andric       return rr0(eSXT(rc(1), 8), Outputs);
826*0b57cec5SDimitry Andric     case A2_sxth:
827*0b57cec5SDimitry Andric       return rr0(eSXT(rc(1), 16), Outputs);
828*0b57cec5SDimitry Andric     case A2_sxtw: {
829*0b57cec5SDimitry Andric       uint16_t W1 = getRegBitWidth(Reg[1]);
830*0b57cec5SDimitry Andric       assert(W0 == 64 && W1 == 32);
831*0b57cec5SDimitry Andric       RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
832*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
833*0b57cec5SDimitry Andric     }
834*0b57cec5SDimitry Andric     case A2_zxtb:
835*0b57cec5SDimitry Andric       return rr0(eZXT(rc(1), 8), Outputs);
836*0b57cec5SDimitry Andric     case A2_zxth:
837*0b57cec5SDimitry Andric       return rr0(eZXT(rc(1), 16), Outputs);
838*0b57cec5SDimitry Andric 
839*0b57cec5SDimitry Andric     // Saturations
840*0b57cec5SDimitry Andric 
841*0b57cec5SDimitry Andric     case A2_satb:
842*0b57cec5SDimitry Andric       return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
843*0b57cec5SDimitry Andric     case A2_sath:
844*0b57cec5SDimitry Andric       return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
845*0b57cec5SDimitry Andric     case A2_satub:
846*0b57cec5SDimitry Andric       return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
847*0b57cec5SDimitry Andric     case A2_satuh:
848*0b57cec5SDimitry Andric       return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
849*0b57cec5SDimitry Andric 
850*0b57cec5SDimitry Andric     // Bit count:
851*0b57cec5SDimitry Andric 
852*0b57cec5SDimitry Andric     case S2_cl0:
853*0b57cec5SDimitry Andric     case S2_cl0p:
854*0b57cec5SDimitry Andric       // Always produce a 32-bit result.
855*0b57cec5SDimitry Andric       return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
856*0b57cec5SDimitry Andric     case S2_cl1:
857*0b57cec5SDimitry Andric     case S2_cl1p:
858*0b57cec5SDimitry Andric       return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
859*0b57cec5SDimitry Andric     case S2_clb:
860*0b57cec5SDimitry Andric     case S2_clbp: {
861*0b57cec5SDimitry Andric       uint16_t W1 = getRegBitWidth(Reg[1]);
862*0b57cec5SDimitry Andric       RegisterCell R1 = rc(1);
863*0b57cec5SDimitry Andric       BT::BitValue TV = R1[W1-1];
864*0b57cec5SDimitry Andric       if (TV.is(0) || TV.is(1))
865*0b57cec5SDimitry Andric         return rr0(eCLB(R1, TV, 32), Outputs);
866*0b57cec5SDimitry Andric       break;
867*0b57cec5SDimitry Andric     }
868*0b57cec5SDimitry Andric     case S2_ct0:
869*0b57cec5SDimitry Andric     case S2_ct0p:
870*0b57cec5SDimitry Andric       return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
871*0b57cec5SDimitry Andric     case S2_ct1:
872*0b57cec5SDimitry Andric     case S2_ct1p:
873*0b57cec5SDimitry Andric       return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
874*0b57cec5SDimitry Andric     case S5_popcountp:
875*0b57cec5SDimitry Andric       // TODO
876*0b57cec5SDimitry Andric       break;
877*0b57cec5SDimitry Andric 
878*0b57cec5SDimitry Andric     case C2_all8: {
879*0b57cec5SDimitry Andric       RegisterCell P1 = rc(1);
880*0b57cec5SDimitry Andric       bool Has0 = false, All1 = true;
881*0b57cec5SDimitry Andric       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
882*0b57cec5SDimitry Andric         if (!P1[i].is(1))
883*0b57cec5SDimitry Andric           All1 = false;
884*0b57cec5SDimitry Andric         if (!P1[i].is(0))
885*0b57cec5SDimitry Andric           continue;
886*0b57cec5SDimitry Andric         Has0 = true;
887*0b57cec5SDimitry Andric         break;
888*0b57cec5SDimitry Andric       }
889*0b57cec5SDimitry Andric       if (!Has0 && !All1)
890*0b57cec5SDimitry Andric         break;
891*0b57cec5SDimitry Andric       RegisterCell RC(W0);
892*0b57cec5SDimitry Andric       RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
893*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
894*0b57cec5SDimitry Andric     }
895*0b57cec5SDimitry Andric     case C2_any8: {
896*0b57cec5SDimitry Andric       RegisterCell P1 = rc(1);
897*0b57cec5SDimitry Andric       bool Has1 = false, All0 = true;
898*0b57cec5SDimitry Andric       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
899*0b57cec5SDimitry Andric         if (!P1[i].is(0))
900*0b57cec5SDimitry Andric           All0 = false;
901*0b57cec5SDimitry Andric         if (!P1[i].is(1))
902*0b57cec5SDimitry Andric           continue;
903*0b57cec5SDimitry Andric         Has1 = true;
904*0b57cec5SDimitry Andric         break;
905*0b57cec5SDimitry Andric       }
906*0b57cec5SDimitry Andric       if (!Has1 && !All0)
907*0b57cec5SDimitry Andric         break;
908*0b57cec5SDimitry Andric       RegisterCell RC(W0);
909*0b57cec5SDimitry Andric       RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
910*0b57cec5SDimitry Andric       return rr0(RC, Outputs);
911*0b57cec5SDimitry Andric     }
912*0b57cec5SDimitry Andric     case C2_and:
913*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), rc(2)), Outputs);
914*0b57cec5SDimitry Andric     case C2_andn:
915*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
916*0b57cec5SDimitry Andric     case C2_not:
917*0b57cec5SDimitry Andric       return rr0(eNOT(rc(1)), Outputs);
918*0b57cec5SDimitry Andric     case C2_or:
919*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), rc(2)), Outputs);
920*0b57cec5SDimitry Andric     case C2_orn:
921*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
922*0b57cec5SDimitry Andric     case C2_xor:
923*0b57cec5SDimitry Andric       return rr0(eXOR(rc(1), rc(2)), Outputs);
924*0b57cec5SDimitry Andric     case C4_and_and:
925*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
926*0b57cec5SDimitry Andric     case C4_and_andn:
927*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
928*0b57cec5SDimitry Andric     case C4_and_or:
929*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
930*0b57cec5SDimitry Andric     case C4_and_orn:
931*0b57cec5SDimitry Andric       return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
932*0b57cec5SDimitry Andric     case C4_or_and:
933*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
934*0b57cec5SDimitry Andric     case C4_or_andn:
935*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
936*0b57cec5SDimitry Andric     case C4_or_or:
937*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
938*0b57cec5SDimitry Andric     case C4_or_orn:
939*0b57cec5SDimitry Andric       return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
940*0b57cec5SDimitry Andric     case C2_bitsclr:
941*0b57cec5SDimitry Andric     case C2_bitsclri:
942*0b57cec5SDimitry Andric     case C2_bitsset:
943*0b57cec5SDimitry Andric     case C4_nbitsclr:
944*0b57cec5SDimitry Andric     case C4_nbitsclri:
945*0b57cec5SDimitry Andric     case C4_nbitsset:
946*0b57cec5SDimitry Andric       // TODO
947*0b57cec5SDimitry Andric       break;
948*0b57cec5SDimitry Andric     case S2_tstbit_i:
949*0b57cec5SDimitry Andric     case S4_ntstbit_i: {
950*0b57cec5SDimitry Andric       BT::BitValue V = rc(1)[im(2)];
951*0b57cec5SDimitry Andric       if (V.is(0) || V.is(1)) {
952*0b57cec5SDimitry Andric         // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
953*0b57cec5SDimitry Andric         bool TV = (Opc == S2_tstbit_i);
954*0b57cec5SDimitry Andric         BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
955*0b57cec5SDimitry Andric         return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
956*0b57cec5SDimitry Andric       }
957*0b57cec5SDimitry Andric       break;
958*0b57cec5SDimitry Andric     }
959*0b57cec5SDimitry Andric 
960*0b57cec5SDimitry Andric     default:
961*0b57cec5SDimitry Andric       // For instructions that define a single predicate registers, store
962*0b57cec5SDimitry Andric       // the low 8 bits of the register only.
963*0b57cec5SDimitry Andric       if (unsigned DefR = getUniqueDefVReg(MI)) {
964*0b57cec5SDimitry Andric         if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
965*0b57cec5SDimitry Andric           BT::RegisterRef PD(DefR, 0);
966*0b57cec5SDimitry Andric           uint16_t RW = getRegBitWidth(PD);
967*0b57cec5SDimitry Andric           uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
968*0b57cec5SDimitry Andric           RegisterCell RC = RegisterCell::self(DefR, RW);
969*0b57cec5SDimitry Andric           RC.fill(PW, RW, BT::BitValue::Zero);
970*0b57cec5SDimitry Andric           putCell(PD, RC, Outputs);
971*0b57cec5SDimitry Andric           return true;
972*0b57cec5SDimitry Andric         }
973*0b57cec5SDimitry Andric       }
974*0b57cec5SDimitry Andric       return MachineEvaluator::evaluate(MI, Inputs, Outputs);
975*0b57cec5SDimitry Andric   }
976*0b57cec5SDimitry Andric   #undef im
977*0b57cec5SDimitry Andric   #undef rc
978*0b57cec5SDimitry Andric   #undef op
979*0b57cec5SDimitry Andric   return false;
980*0b57cec5SDimitry Andric }
981*0b57cec5SDimitry Andric 
982*0b57cec5SDimitry Andric bool HexagonEvaluator::evaluate(const MachineInstr &BI,
983*0b57cec5SDimitry Andric                                 const CellMapType &Inputs,
984*0b57cec5SDimitry Andric                                 BranchTargetList &Targets,
985*0b57cec5SDimitry Andric                                 bool &FallsThru) const {
986*0b57cec5SDimitry Andric   // We need to evaluate one branch at a time. TII::analyzeBranch checks
987*0b57cec5SDimitry Andric   // all the branches in a basic block at once, so we cannot use it.
988*0b57cec5SDimitry Andric   unsigned Opc = BI.getOpcode();
989*0b57cec5SDimitry Andric   bool SimpleBranch = false;
990*0b57cec5SDimitry Andric   bool Negated = false;
991*0b57cec5SDimitry Andric   switch (Opc) {
992*0b57cec5SDimitry Andric     case Hexagon::J2_jumpf:
993*0b57cec5SDimitry Andric     case Hexagon::J2_jumpfpt:
994*0b57cec5SDimitry Andric     case Hexagon::J2_jumpfnew:
995*0b57cec5SDimitry Andric     case Hexagon::J2_jumpfnewpt:
996*0b57cec5SDimitry Andric       Negated = true;
997*0b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
998*0b57cec5SDimitry Andric     case Hexagon::J2_jumpt:
999*0b57cec5SDimitry Andric     case Hexagon::J2_jumptpt:
1000*0b57cec5SDimitry Andric     case Hexagon::J2_jumptnew:
1001*0b57cec5SDimitry Andric     case Hexagon::J2_jumptnewpt:
1002*0b57cec5SDimitry Andric       // Simple branch:  if([!]Pn) jump ...
1003*0b57cec5SDimitry Andric       // i.e. Op0 = predicate, Op1 = branch target.
1004*0b57cec5SDimitry Andric       SimpleBranch = true;
1005*0b57cec5SDimitry Andric       break;
1006*0b57cec5SDimitry Andric     case Hexagon::J2_jump:
1007*0b57cec5SDimitry Andric       Targets.insert(BI.getOperand(0).getMBB());
1008*0b57cec5SDimitry Andric       FallsThru = false;
1009*0b57cec5SDimitry Andric       return true;
1010*0b57cec5SDimitry Andric     default:
1011*0b57cec5SDimitry Andric       // If the branch is of unknown type, assume that all successors are
1012*0b57cec5SDimitry Andric       // executable.
1013*0b57cec5SDimitry Andric       return false;
1014*0b57cec5SDimitry Andric   }
1015*0b57cec5SDimitry Andric 
1016*0b57cec5SDimitry Andric   if (!SimpleBranch)
1017*0b57cec5SDimitry Andric     return false;
1018*0b57cec5SDimitry Andric 
1019*0b57cec5SDimitry Andric   // BI is a conditional branch if we got here.
1020*0b57cec5SDimitry Andric   RegisterRef PR = BI.getOperand(0);
1021*0b57cec5SDimitry Andric   RegisterCell PC = getCell(PR, Inputs);
1022*0b57cec5SDimitry Andric   const BT::BitValue &Test = PC[0];
1023*0b57cec5SDimitry Andric 
1024*0b57cec5SDimitry Andric   // If the condition is neither true nor false, then it's unknown.
1025*0b57cec5SDimitry Andric   if (!Test.is(0) && !Test.is(1))
1026*0b57cec5SDimitry Andric     return false;
1027*0b57cec5SDimitry Andric 
1028*0b57cec5SDimitry Andric   // "Test.is(!Negated)" means "branch condition is true".
1029*0b57cec5SDimitry Andric   if (!Test.is(!Negated)) {
1030*0b57cec5SDimitry Andric     // Condition known to be false.
1031*0b57cec5SDimitry Andric     FallsThru = true;
1032*0b57cec5SDimitry Andric     return true;
1033*0b57cec5SDimitry Andric   }
1034*0b57cec5SDimitry Andric 
1035*0b57cec5SDimitry Andric   Targets.insert(BI.getOperand(1).getMBB());
1036*0b57cec5SDimitry Andric   FallsThru = false;
1037*0b57cec5SDimitry Andric   return true;
1038*0b57cec5SDimitry Andric }
1039*0b57cec5SDimitry Andric 
1040*0b57cec5SDimitry Andric unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1041*0b57cec5SDimitry Andric   unsigned DefReg = 0;
1042*0b57cec5SDimitry Andric   for (const MachineOperand &Op : MI.operands()) {
1043*0b57cec5SDimitry Andric     if (!Op.isReg() || !Op.isDef())
1044*0b57cec5SDimitry Andric       continue;
1045*0b57cec5SDimitry Andric     unsigned R = Op.getReg();
1046*0b57cec5SDimitry Andric     if (!TargetRegisterInfo::isVirtualRegister(R))
1047*0b57cec5SDimitry Andric       continue;
1048*0b57cec5SDimitry Andric     if (DefReg != 0)
1049*0b57cec5SDimitry Andric       return 0;
1050*0b57cec5SDimitry Andric     DefReg = R;
1051*0b57cec5SDimitry Andric   }
1052*0b57cec5SDimitry Andric   return DefReg;
1053*0b57cec5SDimitry Andric }
1054*0b57cec5SDimitry Andric 
1055*0b57cec5SDimitry Andric bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1056*0b57cec5SDimitry Andric                                     const CellMapType &Inputs,
1057*0b57cec5SDimitry Andric                                     CellMapType &Outputs) const {
1058*0b57cec5SDimitry Andric   using namespace Hexagon;
1059*0b57cec5SDimitry Andric 
1060*0b57cec5SDimitry Andric   if (TII.isPredicated(MI))
1061*0b57cec5SDimitry Andric     return false;
1062*0b57cec5SDimitry Andric   assert(MI.mayLoad() && "A load that mayn't?");
1063*0b57cec5SDimitry Andric   unsigned Opc = MI.getOpcode();
1064*0b57cec5SDimitry Andric 
1065*0b57cec5SDimitry Andric   uint16_t BitNum;
1066*0b57cec5SDimitry Andric   bool SignEx;
1067*0b57cec5SDimitry Andric 
1068*0b57cec5SDimitry Andric   switch (Opc) {
1069*0b57cec5SDimitry Andric     default:
1070*0b57cec5SDimitry Andric       return false;
1071*0b57cec5SDimitry Andric 
1072*0b57cec5SDimitry Andric #if 0
1073*0b57cec5SDimitry Andric     // memb_fifo
1074*0b57cec5SDimitry Andric     case L2_loadalignb_pbr:
1075*0b57cec5SDimitry Andric     case L2_loadalignb_pcr:
1076*0b57cec5SDimitry Andric     case L2_loadalignb_pi:
1077*0b57cec5SDimitry Andric     // memh_fifo
1078*0b57cec5SDimitry Andric     case L2_loadalignh_pbr:
1079*0b57cec5SDimitry Andric     case L2_loadalignh_pcr:
1080*0b57cec5SDimitry Andric     case L2_loadalignh_pi:
1081*0b57cec5SDimitry Andric     // membh
1082*0b57cec5SDimitry Andric     case L2_loadbsw2_pbr:
1083*0b57cec5SDimitry Andric     case L2_loadbsw2_pci:
1084*0b57cec5SDimitry Andric     case L2_loadbsw2_pcr:
1085*0b57cec5SDimitry Andric     case L2_loadbsw2_pi:
1086*0b57cec5SDimitry Andric     case L2_loadbsw4_pbr:
1087*0b57cec5SDimitry Andric     case L2_loadbsw4_pci:
1088*0b57cec5SDimitry Andric     case L2_loadbsw4_pcr:
1089*0b57cec5SDimitry Andric     case L2_loadbsw4_pi:
1090*0b57cec5SDimitry Andric     // memubh
1091*0b57cec5SDimitry Andric     case L2_loadbzw2_pbr:
1092*0b57cec5SDimitry Andric     case L2_loadbzw2_pci:
1093*0b57cec5SDimitry Andric     case L2_loadbzw2_pcr:
1094*0b57cec5SDimitry Andric     case L2_loadbzw2_pi:
1095*0b57cec5SDimitry Andric     case L2_loadbzw4_pbr:
1096*0b57cec5SDimitry Andric     case L2_loadbzw4_pci:
1097*0b57cec5SDimitry Andric     case L2_loadbzw4_pcr:
1098*0b57cec5SDimitry Andric     case L2_loadbzw4_pi:
1099*0b57cec5SDimitry Andric #endif
1100*0b57cec5SDimitry Andric 
1101*0b57cec5SDimitry Andric     case L2_loadrbgp:
1102*0b57cec5SDimitry Andric     case L2_loadrb_io:
1103*0b57cec5SDimitry Andric     case L2_loadrb_pbr:
1104*0b57cec5SDimitry Andric     case L2_loadrb_pci:
1105*0b57cec5SDimitry Andric     case L2_loadrb_pcr:
1106*0b57cec5SDimitry Andric     case L2_loadrb_pi:
1107*0b57cec5SDimitry Andric     case PS_loadrbabs:
1108*0b57cec5SDimitry Andric     case L4_loadrb_ap:
1109*0b57cec5SDimitry Andric     case L4_loadrb_rr:
1110*0b57cec5SDimitry Andric     case L4_loadrb_ur:
1111*0b57cec5SDimitry Andric       BitNum = 8;
1112*0b57cec5SDimitry Andric       SignEx = true;
1113*0b57cec5SDimitry Andric       break;
1114*0b57cec5SDimitry Andric 
1115*0b57cec5SDimitry Andric     case L2_loadrubgp:
1116*0b57cec5SDimitry Andric     case L2_loadrub_io:
1117*0b57cec5SDimitry Andric     case L2_loadrub_pbr:
1118*0b57cec5SDimitry Andric     case L2_loadrub_pci:
1119*0b57cec5SDimitry Andric     case L2_loadrub_pcr:
1120*0b57cec5SDimitry Andric     case L2_loadrub_pi:
1121*0b57cec5SDimitry Andric     case PS_loadrubabs:
1122*0b57cec5SDimitry Andric     case L4_loadrub_ap:
1123*0b57cec5SDimitry Andric     case L4_loadrub_rr:
1124*0b57cec5SDimitry Andric     case L4_loadrub_ur:
1125*0b57cec5SDimitry Andric       BitNum = 8;
1126*0b57cec5SDimitry Andric       SignEx = false;
1127*0b57cec5SDimitry Andric       break;
1128*0b57cec5SDimitry Andric 
1129*0b57cec5SDimitry Andric     case L2_loadrhgp:
1130*0b57cec5SDimitry Andric     case L2_loadrh_io:
1131*0b57cec5SDimitry Andric     case L2_loadrh_pbr:
1132*0b57cec5SDimitry Andric     case L2_loadrh_pci:
1133*0b57cec5SDimitry Andric     case L2_loadrh_pcr:
1134*0b57cec5SDimitry Andric     case L2_loadrh_pi:
1135*0b57cec5SDimitry Andric     case PS_loadrhabs:
1136*0b57cec5SDimitry Andric     case L4_loadrh_ap:
1137*0b57cec5SDimitry Andric     case L4_loadrh_rr:
1138*0b57cec5SDimitry Andric     case L4_loadrh_ur:
1139*0b57cec5SDimitry Andric       BitNum = 16;
1140*0b57cec5SDimitry Andric       SignEx = true;
1141*0b57cec5SDimitry Andric       break;
1142*0b57cec5SDimitry Andric 
1143*0b57cec5SDimitry Andric     case L2_loadruhgp:
1144*0b57cec5SDimitry Andric     case L2_loadruh_io:
1145*0b57cec5SDimitry Andric     case L2_loadruh_pbr:
1146*0b57cec5SDimitry Andric     case L2_loadruh_pci:
1147*0b57cec5SDimitry Andric     case L2_loadruh_pcr:
1148*0b57cec5SDimitry Andric     case L2_loadruh_pi:
1149*0b57cec5SDimitry Andric     case L4_loadruh_rr:
1150*0b57cec5SDimitry Andric     case PS_loadruhabs:
1151*0b57cec5SDimitry Andric     case L4_loadruh_ap:
1152*0b57cec5SDimitry Andric     case L4_loadruh_ur:
1153*0b57cec5SDimitry Andric       BitNum = 16;
1154*0b57cec5SDimitry Andric       SignEx = false;
1155*0b57cec5SDimitry Andric       break;
1156*0b57cec5SDimitry Andric 
1157*0b57cec5SDimitry Andric     case L2_loadrigp:
1158*0b57cec5SDimitry Andric     case L2_loadri_io:
1159*0b57cec5SDimitry Andric     case L2_loadri_pbr:
1160*0b57cec5SDimitry Andric     case L2_loadri_pci:
1161*0b57cec5SDimitry Andric     case L2_loadri_pcr:
1162*0b57cec5SDimitry Andric     case L2_loadri_pi:
1163*0b57cec5SDimitry Andric     case L2_loadw_locked:
1164*0b57cec5SDimitry Andric     case PS_loadriabs:
1165*0b57cec5SDimitry Andric     case L4_loadri_ap:
1166*0b57cec5SDimitry Andric     case L4_loadri_rr:
1167*0b57cec5SDimitry Andric     case L4_loadri_ur:
1168*0b57cec5SDimitry Andric     case LDriw_pred:
1169*0b57cec5SDimitry Andric       BitNum = 32;
1170*0b57cec5SDimitry Andric       SignEx = true;
1171*0b57cec5SDimitry Andric       break;
1172*0b57cec5SDimitry Andric 
1173*0b57cec5SDimitry Andric     case L2_loadrdgp:
1174*0b57cec5SDimitry Andric     case L2_loadrd_io:
1175*0b57cec5SDimitry Andric     case L2_loadrd_pbr:
1176*0b57cec5SDimitry Andric     case L2_loadrd_pci:
1177*0b57cec5SDimitry Andric     case L2_loadrd_pcr:
1178*0b57cec5SDimitry Andric     case L2_loadrd_pi:
1179*0b57cec5SDimitry Andric     case L4_loadd_locked:
1180*0b57cec5SDimitry Andric     case PS_loadrdabs:
1181*0b57cec5SDimitry Andric     case L4_loadrd_ap:
1182*0b57cec5SDimitry Andric     case L4_loadrd_rr:
1183*0b57cec5SDimitry Andric     case L4_loadrd_ur:
1184*0b57cec5SDimitry Andric       BitNum = 64;
1185*0b57cec5SDimitry Andric       SignEx = true;
1186*0b57cec5SDimitry Andric       break;
1187*0b57cec5SDimitry Andric   }
1188*0b57cec5SDimitry Andric 
1189*0b57cec5SDimitry Andric   const MachineOperand &MD = MI.getOperand(0);
1190*0b57cec5SDimitry Andric   assert(MD.isReg() && MD.isDef());
1191*0b57cec5SDimitry Andric   RegisterRef RD = MD;
1192*0b57cec5SDimitry Andric 
1193*0b57cec5SDimitry Andric   uint16_t W = getRegBitWidth(RD);
1194*0b57cec5SDimitry Andric   assert(W >= BitNum && BitNum > 0);
1195*0b57cec5SDimitry Andric   RegisterCell Res(W);
1196*0b57cec5SDimitry Andric 
1197*0b57cec5SDimitry Andric   for (uint16_t i = 0; i < BitNum; ++i)
1198*0b57cec5SDimitry Andric     Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1199*0b57cec5SDimitry Andric 
1200*0b57cec5SDimitry Andric   if (SignEx) {
1201*0b57cec5SDimitry Andric     const BT::BitValue &Sign = Res[BitNum-1];
1202*0b57cec5SDimitry Andric     for (uint16_t i = BitNum; i < W; ++i)
1203*0b57cec5SDimitry Andric       Res[i] = BT::BitValue::ref(Sign);
1204*0b57cec5SDimitry Andric   } else {
1205*0b57cec5SDimitry Andric     for (uint16_t i = BitNum; i < W; ++i)
1206*0b57cec5SDimitry Andric       Res[i] = BT::BitValue::Zero;
1207*0b57cec5SDimitry Andric   }
1208*0b57cec5SDimitry Andric 
1209*0b57cec5SDimitry Andric   putCell(RD, Res, Outputs);
1210*0b57cec5SDimitry Andric   return true;
1211*0b57cec5SDimitry Andric }
1212*0b57cec5SDimitry Andric 
1213*0b57cec5SDimitry Andric bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1214*0b57cec5SDimitry Andric                                           const CellMapType &Inputs,
1215*0b57cec5SDimitry Andric                                           CellMapType &Outputs) const {
1216*0b57cec5SDimitry Andric   // If MI defines a formal parameter, but is not a copy (loads are handled
1217*0b57cec5SDimitry Andric   // in evaluateLoad), then it's not clear what to do.
1218*0b57cec5SDimitry Andric   assert(MI.isCopy());
1219*0b57cec5SDimitry Andric 
1220*0b57cec5SDimitry Andric   RegisterRef RD = MI.getOperand(0);
1221*0b57cec5SDimitry Andric   RegisterRef RS = MI.getOperand(1);
1222*0b57cec5SDimitry Andric   assert(RD.Sub == 0);
1223*0b57cec5SDimitry Andric   if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1224*0b57cec5SDimitry Andric     return false;
1225*0b57cec5SDimitry Andric   RegExtMap::const_iterator F = VRX.find(RD.Reg);
1226*0b57cec5SDimitry Andric   if (F == VRX.end())
1227*0b57cec5SDimitry Andric     return false;
1228*0b57cec5SDimitry Andric 
1229*0b57cec5SDimitry Andric   uint16_t EW = F->second.Width;
1230*0b57cec5SDimitry Andric   // Store RD's cell into the map. This will associate the cell with a virtual
1231*0b57cec5SDimitry Andric   // register, and make zero-/sign-extends possible (otherwise we would be ex-
1232*0b57cec5SDimitry Andric   // tending "self" bit values, which will have no effect, since "self" values
1233*0b57cec5SDimitry Andric   // cannot be references to anything).
1234*0b57cec5SDimitry Andric   putCell(RD, getCell(RS, Inputs), Outputs);
1235*0b57cec5SDimitry Andric 
1236*0b57cec5SDimitry Andric   RegisterCell Res;
1237*0b57cec5SDimitry Andric   // Read RD's cell from the outputs instead of RS's cell from the inputs:
1238*0b57cec5SDimitry Andric   if (F->second.Type == ExtType::SExt)
1239*0b57cec5SDimitry Andric     Res = eSXT(getCell(RD, Outputs), EW);
1240*0b57cec5SDimitry Andric   else if (F->second.Type == ExtType::ZExt)
1241*0b57cec5SDimitry Andric     Res = eZXT(getCell(RD, Outputs), EW);
1242*0b57cec5SDimitry Andric 
1243*0b57cec5SDimitry Andric   putCell(RD, Res, Outputs);
1244*0b57cec5SDimitry Andric   return true;
1245*0b57cec5SDimitry Andric }
1246*0b57cec5SDimitry Andric 
1247*0b57cec5SDimitry Andric unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1248*0b57cec5SDimitry Andric   using namespace Hexagon;
1249*0b57cec5SDimitry Andric 
1250*0b57cec5SDimitry Andric   bool Is64 = DoubleRegsRegClass.contains(PReg);
1251*0b57cec5SDimitry Andric   assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1252*0b57cec5SDimitry Andric 
1253*0b57cec5SDimitry Andric   static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1254*0b57cec5SDimitry Andric   static const unsigned Phys64[] = { D0, D1, D2 };
1255*0b57cec5SDimitry Andric   const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1256*0b57cec5SDimitry Andric   const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1257*0b57cec5SDimitry Andric 
1258*0b57cec5SDimitry Andric   // Return the first parameter register of the required width.
1259*0b57cec5SDimitry Andric   if (PReg == 0)
1260*0b57cec5SDimitry Andric     return (Width <= 32) ? Phys32[0] : Phys64[0];
1261*0b57cec5SDimitry Andric 
1262*0b57cec5SDimitry Andric   // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1263*0b57cec5SDimitry Andric   // next register.
1264*0b57cec5SDimitry Andric   unsigned Idx32 = 0, Idx64 = 0;
1265*0b57cec5SDimitry Andric   if (!Is64) {
1266*0b57cec5SDimitry Andric     while (Idx32 < Num32) {
1267*0b57cec5SDimitry Andric       if (Phys32[Idx32] == PReg)
1268*0b57cec5SDimitry Andric         break;
1269*0b57cec5SDimitry Andric       Idx32++;
1270*0b57cec5SDimitry Andric     }
1271*0b57cec5SDimitry Andric     Idx64 = Idx32/2;
1272*0b57cec5SDimitry Andric   } else {
1273*0b57cec5SDimitry Andric     while (Idx64 < Num64) {
1274*0b57cec5SDimitry Andric       if (Phys64[Idx64] == PReg)
1275*0b57cec5SDimitry Andric         break;
1276*0b57cec5SDimitry Andric       Idx64++;
1277*0b57cec5SDimitry Andric     }
1278*0b57cec5SDimitry Andric     Idx32 = Idx64*2+1;
1279*0b57cec5SDimitry Andric   }
1280*0b57cec5SDimitry Andric 
1281*0b57cec5SDimitry Andric   if (Width <= 32)
1282*0b57cec5SDimitry Andric     return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1283*0b57cec5SDimitry Andric   return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1284*0b57cec5SDimitry Andric }
1285*0b57cec5SDimitry Andric 
1286*0b57cec5SDimitry Andric unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1287*0b57cec5SDimitry Andric   for (std::pair<unsigned,unsigned> P : MRI.liveins())
1288*0b57cec5SDimitry Andric     if (P.first == PReg)
1289*0b57cec5SDimitry Andric       return P.second;
1290*0b57cec5SDimitry Andric   return 0;
1291*0b57cec5SDimitry Andric }
1292