xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp (revision a3c35da61bb201168575f1d18f4ca3e96937d35c)
1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <limits>
43 #include <utility>
44 #include <vector>
45 
46 #define DEBUG_TYPE "hexbit"
47 
48 using namespace llvm;
49 
50 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
51   cl::init(true), cl::desc("Preserve subregisters in tied operands"));
52 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
53   cl::init(true), cl::desc("Generate extract instructions"));
54 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
55   cl::init(true), cl::desc("Generate bitsplit instructions"));
56 
57 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
58   cl::init(std::numeric_limits<unsigned>::max()));
59 static unsigned CountExtract = 0;
60 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
61   cl::init(std::numeric_limits<unsigned>::max()));
62 static unsigned CountBitSplit = 0;
63 
64 namespace llvm {
65 
66   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
67   FunctionPass *createHexagonBitSimplify();
68 
69 } // end namespace llvm
70 
71 namespace {
72 
73   // Set of virtual registers, based on BitVector.
74   struct RegisterSet : private BitVector {
75     RegisterSet() = default;
76     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
77     RegisterSet(const RegisterSet &RS) = default;
78 
79     using BitVector::clear;
80     using BitVector::count;
81 
82     unsigned find_first() const {
83       int First = BitVector::find_first();
84       if (First < 0)
85         return 0;
86       return x2v(First);
87     }
88 
89     unsigned find_next(unsigned Prev) const {
90       int Next = BitVector::find_next(v2x(Prev));
91       if (Next < 0)
92         return 0;
93       return x2v(Next);
94     }
95 
96     RegisterSet &insert(unsigned R) {
97       unsigned Idx = v2x(R);
98       ensure(Idx);
99       return static_cast<RegisterSet&>(BitVector::set(Idx));
100     }
101     RegisterSet &remove(unsigned R) {
102       unsigned Idx = v2x(R);
103       if (Idx >= size())
104         return *this;
105       return static_cast<RegisterSet&>(BitVector::reset(Idx));
106     }
107 
108     RegisterSet &insert(const RegisterSet &Rs) {
109       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
110     }
111     RegisterSet &remove(const RegisterSet &Rs) {
112       return static_cast<RegisterSet&>(BitVector::reset(Rs));
113     }
114 
115     reference operator[](unsigned R) {
116       unsigned Idx = v2x(R);
117       ensure(Idx);
118       return BitVector::operator[](Idx);
119     }
120     bool operator[](unsigned R) const {
121       unsigned Idx = v2x(R);
122       assert(Idx < size());
123       return BitVector::operator[](Idx);
124     }
125     bool has(unsigned R) const {
126       unsigned Idx = v2x(R);
127       if (Idx >= size())
128         return false;
129       return BitVector::test(Idx);
130     }
131 
132     bool empty() const {
133       return !BitVector::any();
134     }
135     bool includes(const RegisterSet &Rs) const {
136       // A.BitVector::test(B)  <=>  A-B != {}
137       return !Rs.BitVector::test(*this);
138     }
139     bool intersects(const RegisterSet &Rs) const {
140       return BitVector::anyCommon(Rs);
141     }
142 
143   private:
144     void ensure(unsigned Idx) {
145       if (size() <= Idx)
146         resize(std::max(Idx+1, 32U));
147     }
148 
149     static inline unsigned v2x(unsigned v) {
150       return TargetRegisterInfo::virtReg2Index(v);
151     }
152 
153     static inline unsigned x2v(unsigned x) {
154       return TargetRegisterInfo::index2VirtReg(x);
155     }
156   };
157 
158   struct PrintRegSet {
159     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
160       : RS(S), TRI(RI) {}
161 
162     friend raw_ostream &operator<< (raw_ostream &OS,
163           const PrintRegSet &P);
164 
165   private:
166     const RegisterSet &RS;
167     const TargetRegisterInfo *TRI;
168   };
169 
170   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
171     LLVM_ATTRIBUTE_UNUSED;
172   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
173     OS << '{';
174     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
175       OS << ' ' << printReg(R, P.TRI);
176     OS << " }";
177     return OS;
178   }
179 
180   class Transformation;
181 
182   class HexagonBitSimplify : public MachineFunctionPass {
183   public:
184     static char ID;
185 
186     HexagonBitSimplify() : MachineFunctionPass(ID) {}
187 
188     StringRef getPassName() const override {
189       return "Hexagon bit simplification";
190     }
191 
192     void getAnalysisUsage(AnalysisUsage &AU) const override {
193       AU.addRequired<MachineDominatorTree>();
194       AU.addPreserved<MachineDominatorTree>();
195       MachineFunctionPass::getAnalysisUsage(AU);
196     }
197 
198     bool runOnMachineFunction(MachineFunction &MF) override;
199 
200     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
201     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
202     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
203         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
204     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
205         uint16_t W);
206     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
207         uint16_t W, uint64_t &U);
208     static bool replaceReg(unsigned OldR, unsigned NewR,
209         MachineRegisterInfo &MRI);
210     static bool getSubregMask(const BitTracker::RegisterRef &RR,
211         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
212     static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
213         unsigned NewSR, MachineRegisterInfo &MRI);
214     static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
215         unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
216     static bool parseRegSequence(const MachineInstr &I,
217         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
218         const MachineRegisterInfo &MRI);
219 
220     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
221         uint16_t Begin);
222     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
223         uint16_t Begin, const HexagonInstrInfo &HII);
224 
225     static const TargetRegisterClass *getFinalVRegClass(
226         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
227     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
228         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
229 
230   private:
231     MachineDominatorTree *MDT = nullptr;
232 
233     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
234     static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
235         unsigned NewSub = Hexagon::NoSubRegister);
236   };
237 
238   using HBS = HexagonBitSimplify;
239 
240   // The purpose of this class is to provide a common facility to traverse
241   // the function top-down or bottom-up via the dominator tree, and keep
242   // track of the available registers.
243   class Transformation {
244   public:
245     bool TopDown;
246 
247     Transformation(bool TD) : TopDown(TD) {}
248     virtual ~Transformation() = default;
249 
250     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
251   };
252 
253 } // end anonymous namespace
254 
255 char HexagonBitSimplify::ID = 0;
256 
257 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
258       "Hexagon bit simplification", false, false)
259 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
260 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
261       "Hexagon bit simplification", false, false)
262 
263 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
264       RegisterSet &AVs) {
265   bool Changed = false;
266 
267   if (T.TopDown)
268     Changed = T.processBlock(B, AVs);
269 
270   RegisterSet Defs;
271   for (auto &I : B)
272     getInstrDefs(I, Defs);
273   RegisterSet NewAVs = AVs;
274   NewAVs.insert(Defs);
275 
276   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
277     Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
278 
279   if (!T.TopDown)
280     Changed |= T.processBlock(B, AVs);
281 
282   return Changed;
283 }
284 
285 //
286 // Utility functions:
287 //
288 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
289       RegisterSet &Defs) {
290   for (auto &Op : MI.operands()) {
291     if (!Op.isReg() || !Op.isDef())
292       continue;
293     unsigned R = Op.getReg();
294     if (!TargetRegisterInfo::isVirtualRegister(R))
295       continue;
296     Defs.insert(R);
297   }
298 }
299 
300 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
301       RegisterSet &Uses) {
302   for (auto &Op : MI.operands()) {
303     if (!Op.isReg() || !Op.isUse())
304       continue;
305     unsigned R = Op.getReg();
306     if (!TargetRegisterInfo::isVirtualRegister(R))
307       continue;
308     Uses.insert(R);
309   }
310 }
311 
312 // Check if all the bits in range [B, E) in both cells are equal.
313 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
314       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
315       uint16_t W) {
316   for (uint16_t i = 0; i < W; ++i) {
317     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
318     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
319       return false;
320     // Same for RC2[i].
321     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
322       return false;
323     if (RC1[B1+i] != RC2[B2+i])
324       return false;
325   }
326   return true;
327 }
328 
329 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
330       uint16_t B, uint16_t W) {
331   assert(B < RC.width() && B+W <= RC.width());
332   for (uint16_t i = B; i < B+W; ++i)
333     if (!RC[i].is(0))
334       return false;
335   return true;
336 }
337 
338 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
339         uint16_t B, uint16_t W, uint64_t &U) {
340   assert(B < RC.width() && B+W <= RC.width());
341   int64_t T = 0;
342   for (uint16_t i = B+W; i > B; --i) {
343     const BitTracker::BitValue &BV = RC[i-1];
344     T <<= 1;
345     if (BV.is(1))
346       T |= 1;
347     else if (!BV.is(0))
348       return false;
349   }
350   U = T;
351   return true;
352 }
353 
354 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
355       MachineRegisterInfo &MRI) {
356   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
357       !TargetRegisterInfo::isVirtualRegister(NewR))
358     return false;
359   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
360   decltype(End) NextI;
361   for (auto I = Begin; I != End; I = NextI) {
362     NextI = std::next(I);
363     I->setReg(NewR);
364   }
365   return Begin != End;
366 }
367 
368 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
369       unsigned NewSR, MachineRegisterInfo &MRI) {
370   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
371       !TargetRegisterInfo::isVirtualRegister(NewR))
372     return false;
373   if (hasTiedUse(OldR, MRI, NewSR))
374     return false;
375   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
376   decltype(End) NextI;
377   for (auto I = Begin; I != End; I = NextI) {
378     NextI = std::next(I);
379     I->setReg(NewR);
380     I->setSubReg(NewSR);
381   }
382   return Begin != End;
383 }
384 
385 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
386       unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
387   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
388       !TargetRegisterInfo::isVirtualRegister(NewR))
389     return false;
390   if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
391     return false;
392   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
393   decltype(End) NextI;
394   for (auto I = Begin; I != End; I = NextI) {
395     NextI = std::next(I);
396     if (I->getSubReg() != OldSR)
397       continue;
398     I->setReg(NewR);
399     I->setSubReg(NewSR);
400   }
401   return Begin != End;
402 }
403 
404 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
405 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
406 // if this succeeded, otherwise return false.
407 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
408       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
409   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
410   if (RR.Sub == 0) {
411     Begin = 0;
412     Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
413     return true;
414   }
415 
416   Begin = 0;
417 
418   switch (RC->getID()) {
419     case Hexagon::DoubleRegsRegClassID:
420     case Hexagon::HvxWRRegClassID:
421       Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
422       if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
423         Begin = Width;
424       break;
425     default:
426       return false;
427   }
428   return true;
429 }
430 
431 
432 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
433 // subregister.
434 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
435       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
436       const MachineRegisterInfo &MRI) {
437   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
438   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
439   auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
440   auto &HRI = static_cast<const HexagonRegisterInfo&>(
441                   *MRI.getTargetRegisterInfo());
442   unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
443   unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
444   assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
445   if (Sub1 == SubLo && Sub2 == SubHi) {
446     SL = I.getOperand(1);
447     SH = I.getOperand(3);
448     return true;
449   }
450   if (Sub1 == SubHi && Sub2 == SubLo) {
451     SH = I.getOperand(1);
452     SL = I.getOperand(3);
453     return true;
454   }
455   return false;
456 }
457 
458 // All stores (except 64-bit stores) take a 32-bit register as the source
459 // of the value to be stored. If the instruction stores into a location
460 // that is shorter than 32 bits, some bits of the source register are not
461 // used. For each store instruction, calculate the set of used bits in
462 // the source register, and set appropriate bits in Bits. Return true if
463 // the bits are calculated, false otherwise.
464 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
465       uint16_t Begin) {
466   using namespace Hexagon;
467 
468   switch (Opc) {
469     // Store byte
470     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
471     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
472     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
473     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
474     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
475     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
476     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
477     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
478     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
479     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
480     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
481     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
482     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
483     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
484     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
485     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
486     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
487     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
488     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
489     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
490     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
491     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
492     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
493     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
494     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
495     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
496     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
497     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
498     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
499     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
500     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
501     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
502     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
503     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
504     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
505     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
506     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
507     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
508     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
509     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
510     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
511     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
512     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
513     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
514     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
515     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
516     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
517     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
518     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
519     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
520     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
521     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
522       Bits.set(Begin, Begin+8);
523       return true;
524 
525     // Store low half
526     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
527     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
528     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
529     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
530     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
531     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
532     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
533     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
534     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
535     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
536     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
537     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
538     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
539     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
540     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
541     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
542     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
543     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
544     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
545     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
546     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
547     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
548     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
549     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
550     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
551     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
552     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
553     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
554     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
555     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
556     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
557     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
558     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
559     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
560     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
561     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
562     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
563     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
564     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
565     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
566     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
567     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
568     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
569     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
570     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
571     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
572     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
573     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
574     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
575     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
576     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
577     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
578       Bits.set(Begin, Begin+16);
579       return true;
580 
581     // Store high half
582     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
583     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
584     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
585     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
586     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
587     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
588     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
589     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
590     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
591     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
592     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
593     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
594     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
595     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
596     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
597     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
598     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
599     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
600     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
601     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
602     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
603     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
604     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
605     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
606     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
607     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
608       Bits.set(Begin+16, Begin+32);
609       return true;
610   }
611 
612   return false;
613 }
614 
615 // For an instruction with opcode Opc, calculate the set of bits that it
616 // uses in a register in operand OpN. This only calculates the set of used
617 // bits for cases where it does not depend on any operands (as is the case
618 // in shifts, for example). For concrete instructions from a program, the
619 // operand may be a subregister of a larger register, while Bits would
620 // correspond to the larger register in its entirety. Because of that,
621 // the parameter Begin can be used to indicate which bit of Bits should be
622 // considered the LSB of the operand.
623 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
624       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
625   using namespace Hexagon;
626 
627   const MCInstrDesc &D = HII.get(Opc);
628   if (D.mayStore()) {
629     if (OpN == D.getNumOperands()-1)
630       return getUsedBitsInStore(Opc, Bits, Begin);
631     return false;
632   }
633 
634   switch (Opc) {
635     // One register source. Used bits: R1[0-7].
636     case A2_sxtb:
637     case A2_zxtb:
638     case A4_cmpbeqi:
639     case A4_cmpbgti:
640     case A4_cmpbgtui:
641       if (OpN == 1) {
642         Bits.set(Begin, Begin+8);
643         return true;
644       }
645       break;
646 
647     // One register source. Used bits: R1[0-15].
648     case A2_aslh:
649     case A2_sxth:
650     case A2_zxth:
651     case A4_cmpheqi:
652     case A4_cmphgti:
653     case A4_cmphgtui:
654       if (OpN == 1) {
655         Bits.set(Begin, Begin+16);
656         return true;
657       }
658       break;
659 
660     // One register source. Used bits: R1[16-31].
661     case A2_asrh:
662       if (OpN == 1) {
663         Bits.set(Begin+16, Begin+32);
664         return true;
665       }
666       break;
667 
668     // Two register sources. Used bits: R1[0-7], R2[0-7].
669     case A4_cmpbeq:
670     case A4_cmpbgt:
671     case A4_cmpbgtu:
672       if (OpN == 1) {
673         Bits.set(Begin, Begin+8);
674         return true;
675       }
676       break;
677 
678     // Two register sources. Used bits: R1[0-15], R2[0-15].
679     case A4_cmpheq:
680     case A4_cmphgt:
681     case A4_cmphgtu:
682     case A2_addh_h16_ll:
683     case A2_addh_h16_sat_ll:
684     case A2_addh_l16_ll:
685     case A2_addh_l16_sat_ll:
686     case A2_combine_ll:
687     case A2_subh_h16_ll:
688     case A2_subh_h16_sat_ll:
689     case A2_subh_l16_ll:
690     case A2_subh_l16_sat_ll:
691     case M2_mpy_acc_ll_s0:
692     case M2_mpy_acc_ll_s1:
693     case M2_mpy_acc_sat_ll_s0:
694     case M2_mpy_acc_sat_ll_s1:
695     case M2_mpy_ll_s0:
696     case M2_mpy_ll_s1:
697     case M2_mpy_nac_ll_s0:
698     case M2_mpy_nac_ll_s1:
699     case M2_mpy_nac_sat_ll_s0:
700     case M2_mpy_nac_sat_ll_s1:
701     case M2_mpy_rnd_ll_s0:
702     case M2_mpy_rnd_ll_s1:
703     case M2_mpy_sat_ll_s0:
704     case M2_mpy_sat_ll_s1:
705     case M2_mpy_sat_rnd_ll_s0:
706     case M2_mpy_sat_rnd_ll_s1:
707     case M2_mpyd_acc_ll_s0:
708     case M2_mpyd_acc_ll_s1:
709     case M2_mpyd_ll_s0:
710     case M2_mpyd_ll_s1:
711     case M2_mpyd_nac_ll_s0:
712     case M2_mpyd_nac_ll_s1:
713     case M2_mpyd_rnd_ll_s0:
714     case M2_mpyd_rnd_ll_s1:
715     case M2_mpyu_acc_ll_s0:
716     case M2_mpyu_acc_ll_s1:
717     case M2_mpyu_ll_s0:
718     case M2_mpyu_ll_s1:
719     case M2_mpyu_nac_ll_s0:
720     case M2_mpyu_nac_ll_s1:
721     case M2_mpyud_acc_ll_s0:
722     case M2_mpyud_acc_ll_s1:
723     case M2_mpyud_ll_s0:
724     case M2_mpyud_ll_s1:
725     case M2_mpyud_nac_ll_s0:
726     case M2_mpyud_nac_ll_s1:
727       if (OpN == 1 || OpN == 2) {
728         Bits.set(Begin, Begin+16);
729         return true;
730       }
731       break;
732 
733     // Two register sources. Used bits: R1[0-15], R2[16-31].
734     case A2_addh_h16_lh:
735     case A2_addh_h16_sat_lh:
736     case A2_combine_lh:
737     case A2_subh_h16_lh:
738     case A2_subh_h16_sat_lh:
739     case M2_mpy_acc_lh_s0:
740     case M2_mpy_acc_lh_s1:
741     case M2_mpy_acc_sat_lh_s0:
742     case M2_mpy_acc_sat_lh_s1:
743     case M2_mpy_lh_s0:
744     case M2_mpy_lh_s1:
745     case M2_mpy_nac_lh_s0:
746     case M2_mpy_nac_lh_s1:
747     case M2_mpy_nac_sat_lh_s0:
748     case M2_mpy_nac_sat_lh_s1:
749     case M2_mpy_rnd_lh_s0:
750     case M2_mpy_rnd_lh_s1:
751     case M2_mpy_sat_lh_s0:
752     case M2_mpy_sat_lh_s1:
753     case M2_mpy_sat_rnd_lh_s0:
754     case M2_mpy_sat_rnd_lh_s1:
755     case M2_mpyd_acc_lh_s0:
756     case M2_mpyd_acc_lh_s1:
757     case M2_mpyd_lh_s0:
758     case M2_mpyd_lh_s1:
759     case M2_mpyd_nac_lh_s0:
760     case M2_mpyd_nac_lh_s1:
761     case M2_mpyd_rnd_lh_s0:
762     case M2_mpyd_rnd_lh_s1:
763     case M2_mpyu_acc_lh_s0:
764     case M2_mpyu_acc_lh_s1:
765     case M2_mpyu_lh_s0:
766     case M2_mpyu_lh_s1:
767     case M2_mpyu_nac_lh_s0:
768     case M2_mpyu_nac_lh_s1:
769     case M2_mpyud_acc_lh_s0:
770     case M2_mpyud_acc_lh_s1:
771     case M2_mpyud_lh_s0:
772     case M2_mpyud_lh_s1:
773     case M2_mpyud_nac_lh_s0:
774     case M2_mpyud_nac_lh_s1:
775     // These four are actually LH.
776     case A2_addh_l16_hl:
777     case A2_addh_l16_sat_hl:
778     case A2_subh_l16_hl:
779     case A2_subh_l16_sat_hl:
780       if (OpN == 1) {
781         Bits.set(Begin, Begin+16);
782         return true;
783       }
784       if (OpN == 2) {
785         Bits.set(Begin+16, Begin+32);
786         return true;
787       }
788       break;
789 
790     // Two register sources, used bits: R1[16-31], R2[0-15].
791     case A2_addh_h16_hl:
792     case A2_addh_h16_sat_hl:
793     case A2_combine_hl:
794     case A2_subh_h16_hl:
795     case A2_subh_h16_sat_hl:
796     case M2_mpy_acc_hl_s0:
797     case M2_mpy_acc_hl_s1:
798     case M2_mpy_acc_sat_hl_s0:
799     case M2_mpy_acc_sat_hl_s1:
800     case M2_mpy_hl_s0:
801     case M2_mpy_hl_s1:
802     case M2_mpy_nac_hl_s0:
803     case M2_mpy_nac_hl_s1:
804     case M2_mpy_nac_sat_hl_s0:
805     case M2_mpy_nac_sat_hl_s1:
806     case M2_mpy_rnd_hl_s0:
807     case M2_mpy_rnd_hl_s1:
808     case M2_mpy_sat_hl_s0:
809     case M2_mpy_sat_hl_s1:
810     case M2_mpy_sat_rnd_hl_s0:
811     case M2_mpy_sat_rnd_hl_s1:
812     case M2_mpyd_acc_hl_s0:
813     case M2_mpyd_acc_hl_s1:
814     case M2_mpyd_hl_s0:
815     case M2_mpyd_hl_s1:
816     case M2_mpyd_nac_hl_s0:
817     case M2_mpyd_nac_hl_s1:
818     case M2_mpyd_rnd_hl_s0:
819     case M2_mpyd_rnd_hl_s1:
820     case M2_mpyu_acc_hl_s0:
821     case M2_mpyu_acc_hl_s1:
822     case M2_mpyu_hl_s0:
823     case M2_mpyu_hl_s1:
824     case M2_mpyu_nac_hl_s0:
825     case M2_mpyu_nac_hl_s1:
826     case M2_mpyud_acc_hl_s0:
827     case M2_mpyud_acc_hl_s1:
828     case M2_mpyud_hl_s0:
829     case M2_mpyud_hl_s1:
830     case M2_mpyud_nac_hl_s0:
831     case M2_mpyud_nac_hl_s1:
832       if (OpN == 1) {
833         Bits.set(Begin+16, Begin+32);
834         return true;
835       }
836       if (OpN == 2) {
837         Bits.set(Begin, Begin+16);
838         return true;
839       }
840       break;
841 
842     // Two register sources, used bits: R1[16-31], R2[16-31].
843     case A2_addh_h16_hh:
844     case A2_addh_h16_sat_hh:
845     case A2_combine_hh:
846     case A2_subh_h16_hh:
847     case A2_subh_h16_sat_hh:
848     case M2_mpy_acc_hh_s0:
849     case M2_mpy_acc_hh_s1:
850     case M2_mpy_acc_sat_hh_s0:
851     case M2_mpy_acc_sat_hh_s1:
852     case M2_mpy_hh_s0:
853     case M2_mpy_hh_s1:
854     case M2_mpy_nac_hh_s0:
855     case M2_mpy_nac_hh_s1:
856     case M2_mpy_nac_sat_hh_s0:
857     case M2_mpy_nac_sat_hh_s1:
858     case M2_mpy_rnd_hh_s0:
859     case M2_mpy_rnd_hh_s1:
860     case M2_mpy_sat_hh_s0:
861     case M2_mpy_sat_hh_s1:
862     case M2_mpy_sat_rnd_hh_s0:
863     case M2_mpy_sat_rnd_hh_s1:
864     case M2_mpyd_acc_hh_s0:
865     case M2_mpyd_acc_hh_s1:
866     case M2_mpyd_hh_s0:
867     case M2_mpyd_hh_s1:
868     case M2_mpyd_nac_hh_s0:
869     case M2_mpyd_nac_hh_s1:
870     case M2_mpyd_rnd_hh_s0:
871     case M2_mpyd_rnd_hh_s1:
872     case M2_mpyu_acc_hh_s0:
873     case M2_mpyu_acc_hh_s1:
874     case M2_mpyu_hh_s0:
875     case M2_mpyu_hh_s1:
876     case M2_mpyu_nac_hh_s0:
877     case M2_mpyu_nac_hh_s1:
878     case M2_mpyud_acc_hh_s0:
879     case M2_mpyud_acc_hh_s1:
880     case M2_mpyud_hh_s0:
881     case M2_mpyud_hh_s1:
882     case M2_mpyud_nac_hh_s0:
883     case M2_mpyud_nac_hh_s1:
884       if (OpN == 1 || OpN == 2) {
885         Bits.set(Begin+16, Begin+32);
886         return true;
887       }
888       break;
889   }
890 
891   return false;
892 }
893 
894 // Calculate the register class that matches Reg:Sub. For example, if
895 // %1 is a double register, then %1:isub_hi would match the "int"
896 // register class.
897 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
898       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
899   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
900     return nullptr;
901   auto *RC = MRI.getRegClass(RR.Reg);
902   if (RR.Sub == 0)
903     return RC;
904   auto &HRI = static_cast<const HexagonRegisterInfo&>(
905                   *MRI.getTargetRegisterInfo());
906 
907   auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
908     (void)HRI;
909     assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
910            Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
911   };
912 
913   switch (RC->getID()) {
914     case Hexagon::DoubleRegsRegClassID:
915       VerifySR(RC, RR.Sub);
916       return &Hexagon::IntRegsRegClass;
917     case Hexagon::HvxWRRegClassID:
918       VerifySR(RC, RR.Sub);
919       return &Hexagon::HvxVRRegClass;
920   }
921   return nullptr;
922 }
923 
924 // Check if RD could be replaced with RS at any possible use of RD.
925 // For example a predicate register cannot be replaced with a integer
926 // register, but a 64-bit register with a subregister can be replaced
927 // with a 32-bit register.
928 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
929       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
930   if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
931       !TargetRegisterInfo::isVirtualRegister(RS.Reg))
932     return false;
933   // Return false if one (or both) classes are nullptr.
934   auto *DRC = getFinalVRegClass(RD, MRI);
935   if (!DRC)
936     return false;
937 
938   return DRC == getFinalVRegClass(RS, MRI);
939 }
940 
941 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
942       unsigned NewSub) {
943   if (!PreserveTiedOps)
944     return false;
945   return llvm::any_of(MRI.use_operands(Reg),
946                       [NewSub] (const MachineOperand &Op) -> bool {
947                         return Op.getSubReg() != NewSub && Op.isTied();
948                       });
949 }
950 
951 namespace {
952 
953   class DeadCodeElimination {
954   public:
955     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
956       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
957         MDT(mdt), MRI(mf.getRegInfo()) {}
958 
959     bool run() {
960       return runOnNode(MDT.getRootNode());
961     }
962 
963   private:
964     bool isDead(unsigned R) const;
965     bool runOnNode(MachineDomTreeNode *N);
966 
967     MachineFunction &MF;
968     const HexagonInstrInfo &HII;
969     MachineDominatorTree &MDT;
970     MachineRegisterInfo &MRI;
971   };
972 
973 } // end anonymous namespace
974 
975 bool DeadCodeElimination::isDead(unsigned R) const {
976   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
977     MachineInstr *UseI = I->getParent();
978     if (UseI->isDebugValue())
979       continue;
980     if (UseI->isPHI()) {
981       assert(!UseI->getOperand(0).getSubReg());
982       unsigned DR = UseI->getOperand(0).getReg();
983       if (DR == R)
984         continue;
985     }
986     return false;
987   }
988   return true;
989 }
990 
991 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
992   bool Changed = false;
993 
994   for (auto *DTN : children<MachineDomTreeNode*>(N))
995     Changed |= runOnNode(DTN);
996 
997   MachineBasicBlock *B = N->getBlock();
998   std::vector<MachineInstr*> Instrs;
999   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1000     Instrs.push_back(&*I);
1001 
1002   for (auto MI : Instrs) {
1003     unsigned Opc = MI->getOpcode();
1004     // Do not touch lifetime markers. This is why the target-independent DCE
1005     // cannot be used.
1006     if (Opc == TargetOpcode::LIFETIME_START ||
1007         Opc == TargetOpcode::LIFETIME_END)
1008       continue;
1009     bool Store = false;
1010     if (MI->isInlineAsm())
1011       continue;
1012     // Delete PHIs if possible.
1013     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1014       continue;
1015 
1016     bool AllDead = true;
1017     SmallVector<unsigned,2> Regs;
1018     for (auto &Op : MI->operands()) {
1019       if (!Op.isReg() || !Op.isDef())
1020         continue;
1021       unsigned R = Op.getReg();
1022       if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
1023         AllDead = false;
1024         break;
1025       }
1026       Regs.push_back(R);
1027     }
1028     if (!AllDead)
1029       continue;
1030 
1031     B->erase(MI);
1032     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1033       MRI.markUsesInDebugValueAsUndef(Regs[i]);
1034     Changed = true;
1035   }
1036 
1037   return Changed;
1038 }
1039 
1040 namespace {
1041 
1042 // Eliminate redundant instructions
1043 //
1044 // This transformation will identify instructions where the output register
1045 // is the same as one of its input registers. This only works on instructions
1046 // that define a single register (unlike post-increment loads, for example).
1047 // The equality check is actually more detailed: the code calculates which
1048 // bits of the output are used, and only compares these bits with the input
1049 // registers.
1050 // If the output matches an input, the instruction is replaced with COPY.
1051 // The copies will be removed by another transformation.
1052   class RedundantInstrElimination : public Transformation {
1053   public:
1054     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1055           const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1056         : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1057 
1058     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1059 
1060   private:
1061     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1062           unsigned &LostB, unsigned &LostE);
1063     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1064           unsigned &LostB, unsigned &LostE);
1065     bool computeUsedBits(unsigned Reg, BitVector &Bits);
1066     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1067           uint16_t Begin);
1068     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1069 
1070     const HexagonInstrInfo &HII;
1071     const HexagonRegisterInfo &HRI;
1072     MachineRegisterInfo &MRI;
1073     BitTracker &BT;
1074   };
1075 
1076 } // end anonymous namespace
1077 
1078 // Check if the instruction is a lossy shift left, where the input being
1079 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1080 // of bit indices that are lost.
1081 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1082       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1083   using namespace Hexagon;
1084 
1085   unsigned Opc = MI.getOpcode();
1086   unsigned ImN, RegN, Width;
1087   switch (Opc) {
1088     case S2_asl_i_p:
1089       ImN = 2;
1090       RegN = 1;
1091       Width = 64;
1092       break;
1093     case S2_asl_i_p_acc:
1094     case S2_asl_i_p_and:
1095     case S2_asl_i_p_nac:
1096     case S2_asl_i_p_or:
1097     case S2_asl_i_p_xacc:
1098       ImN = 3;
1099       RegN = 2;
1100       Width = 64;
1101       break;
1102     case S2_asl_i_r:
1103       ImN = 2;
1104       RegN = 1;
1105       Width = 32;
1106       break;
1107     case S2_addasl_rrri:
1108     case S4_andi_asl_ri:
1109     case S4_ori_asl_ri:
1110     case S4_addi_asl_ri:
1111     case S4_subi_asl_ri:
1112     case S2_asl_i_r_acc:
1113     case S2_asl_i_r_and:
1114     case S2_asl_i_r_nac:
1115     case S2_asl_i_r_or:
1116     case S2_asl_i_r_sat:
1117     case S2_asl_i_r_xacc:
1118       ImN = 3;
1119       RegN = 2;
1120       Width = 32;
1121       break;
1122     default:
1123       return false;
1124   }
1125 
1126   if (RegN != OpN)
1127     return false;
1128 
1129   assert(MI.getOperand(ImN).isImm());
1130   unsigned S = MI.getOperand(ImN).getImm();
1131   if (S == 0)
1132     return false;
1133   LostB = Width-S;
1134   LostE = Width;
1135   return true;
1136 }
1137 
1138 // Check if the instruction is a lossy shift right, where the input being
1139 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1140 // of bit indices that are lost.
1141 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1142       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1143   using namespace Hexagon;
1144 
1145   unsigned Opc = MI.getOpcode();
1146   unsigned ImN, RegN;
1147   switch (Opc) {
1148     case S2_asr_i_p:
1149     case S2_lsr_i_p:
1150       ImN = 2;
1151       RegN = 1;
1152       break;
1153     case S2_asr_i_p_acc:
1154     case S2_asr_i_p_and:
1155     case S2_asr_i_p_nac:
1156     case S2_asr_i_p_or:
1157     case S2_lsr_i_p_acc:
1158     case S2_lsr_i_p_and:
1159     case S2_lsr_i_p_nac:
1160     case S2_lsr_i_p_or:
1161     case S2_lsr_i_p_xacc:
1162       ImN = 3;
1163       RegN = 2;
1164       break;
1165     case S2_asr_i_r:
1166     case S2_lsr_i_r:
1167       ImN = 2;
1168       RegN = 1;
1169       break;
1170     case S4_andi_lsr_ri:
1171     case S4_ori_lsr_ri:
1172     case S4_addi_lsr_ri:
1173     case S4_subi_lsr_ri:
1174     case S2_asr_i_r_acc:
1175     case S2_asr_i_r_and:
1176     case S2_asr_i_r_nac:
1177     case S2_asr_i_r_or:
1178     case S2_lsr_i_r_acc:
1179     case S2_lsr_i_r_and:
1180     case S2_lsr_i_r_nac:
1181     case S2_lsr_i_r_or:
1182     case S2_lsr_i_r_xacc:
1183       ImN = 3;
1184       RegN = 2;
1185       break;
1186 
1187     default:
1188       return false;
1189   }
1190 
1191   if (RegN != OpN)
1192     return false;
1193 
1194   assert(MI.getOperand(ImN).isImm());
1195   unsigned S = MI.getOperand(ImN).getImm();
1196   LostB = 0;
1197   LostE = S;
1198   return true;
1199 }
1200 
1201 // Calculate the bit vector that corresponds to the used bits of register Reg.
1202 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1203 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1204 // wise, it returns true and sets the corresponding bits in Bits.
1205 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1206   BitVector Used(Bits.size());
1207   RegisterSet Visited;
1208   std::vector<unsigned> Pending;
1209   Pending.push_back(Reg);
1210 
1211   for (unsigned i = 0; i < Pending.size(); ++i) {
1212     unsigned R = Pending[i];
1213     if (Visited.has(R))
1214       continue;
1215     Visited.insert(R);
1216     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1217       BitTracker::RegisterRef UR = *I;
1218       unsigned B, W;
1219       if (!HBS::getSubregMask(UR, B, W, MRI))
1220         return false;
1221       MachineInstr &UseI = *I->getParent();
1222       if (UseI.isPHI() || UseI.isCopy()) {
1223         unsigned DefR = UseI.getOperand(0).getReg();
1224         if (!TargetRegisterInfo::isVirtualRegister(DefR))
1225           return false;
1226         Pending.push_back(DefR);
1227       } else {
1228         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1229           return false;
1230       }
1231     }
1232   }
1233   Bits |= Used;
1234   return true;
1235 }
1236 
1237 // Calculate the bits used by instruction MI in a register in operand OpN.
1238 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1239 // used bits in Bits. This function does not reset any bits in Bits, so
1240 // subsequent calls over different instructions will result in the union
1241 // of the used bits in all these instructions.
1242 // The register in question may be used with a sub-register, whereas Bits
1243 // holds the bits for the entire register. To keep track of that, the
1244 // argument Begin indicates where in Bits is the lowest-significant bit
1245 // of the register used in operand OpN. For example, in instruction:
1246 //   %1 = S2_lsr_i_r %2:isub_hi, 10
1247 // the operand 1 is a 32-bit register, which happens to be a subregister
1248 // of the 64-bit register %2, and that subregister starts at position 32.
1249 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1250 // of %2:isub_hi.
1251 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1252       unsigned OpN, BitVector &Bits, uint16_t Begin) {
1253   unsigned Opc = MI.getOpcode();
1254   BitVector T(Bits.size());
1255   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1256   // Even if we don't have bits yet, we could still provide some information
1257   // if the instruction is a lossy shift: the lost bits will be marked as
1258   // not used.
1259   unsigned LB, LE;
1260   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1261     assert(MI.getOperand(OpN).isReg());
1262     BitTracker::RegisterRef RR = MI.getOperand(OpN);
1263     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1264     uint16_t Width = HRI.getRegSizeInBits(*RC);
1265 
1266     if (!GotBits)
1267       T.set(Begin, Begin+Width);
1268     assert(LB <= LE && LB < Width && LE <= Width);
1269     T.reset(Begin+LB, Begin+LE);
1270     GotBits = true;
1271   }
1272   if (GotBits)
1273     Bits |= T;
1274   return GotBits;
1275 }
1276 
1277 // Calculates the used bits in RD ("defined register"), and checks if these
1278 // bits in RS ("used register") and RD are identical.
1279 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1280       BitTracker::RegisterRef RS) {
1281   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1282   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1283 
1284   unsigned DB, DW;
1285   if (!HBS::getSubregMask(RD, DB, DW, MRI))
1286     return false;
1287   unsigned SB, SW;
1288   if (!HBS::getSubregMask(RS, SB, SW, MRI))
1289     return false;
1290   if (SW != DW)
1291     return false;
1292 
1293   BitVector Used(DC.width());
1294   if (!computeUsedBits(RD.Reg, Used))
1295     return false;
1296 
1297   for (unsigned i = 0; i != DW; ++i)
1298     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1299       return false;
1300   return true;
1301 }
1302 
1303 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1304       const RegisterSet&) {
1305   if (!BT.reached(&B))
1306     return false;
1307   bool Changed = false;
1308 
1309   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1310     NextI = std::next(I);
1311     MachineInstr *MI = &*I;
1312 
1313     if (MI->getOpcode() == TargetOpcode::COPY)
1314       continue;
1315     if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1316       continue;
1317     unsigned NumD = MI->getDesc().getNumDefs();
1318     if (NumD != 1)
1319       continue;
1320 
1321     BitTracker::RegisterRef RD = MI->getOperand(0);
1322     if (!BT.has(RD.Reg))
1323       continue;
1324     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1325     auto At = MachineBasicBlock::iterator(MI);
1326 
1327     // Find a source operand that is equal to the result.
1328     for (auto &Op : MI->uses()) {
1329       if (!Op.isReg())
1330         continue;
1331       BitTracker::RegisterRef RS = Op;
1332       if (!BT.has(RS.Reg))
1333         continue;
1334       if (!HBS::isTransparentCopy(RD, RS, MRI))
1335         continue;
1336 
1337       unsigned BN, BW;
1338       if (!HBS::getSubregMask(RS, BN, BW, MRI))
1339         continue;
1340 
1341       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1342       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1343         continue;
1344 
1345       // If found, replace the instruction with a COPY.
1346       const DebugLoc &DL = MI->getDebugLoc();
1347       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1348       unsigned NewR = MRI.createVirtualRegister(FRC);
1349       MachineInstr *CopyI =
1350           BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1351             .addReg(RS.Reg, 0, RS.Sub);
1352       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1353       // This pass can create copies between registers that don't have the
1354       // exact same values. Updating the tracker has to involve updating
1355       // all dependent cells. Example:
1356       //   %1  = inst %2     ; %1 != %2, but used bits are equal
1357       //
1358       //   %3  = copy %2     ; <- inserted
1359       //   ... = %3          ; <- replaced from %2
1360       // Indirectly, we can create a "copy" between %1 and %2 even
1361       // though their exact values do not match.
1362       BT.visit(*CopyI);
1363       Changed = true;
1364       break;
1365     }
1366   }
1367 
1368   return Changed;
1369 }
1370 
1371 namespace {
1372 
1373 // Recognize instructions that produce constant values known at compile-time.
1374 // Replace them with register definitions that load these constants directly.
1375   class ConstGeneration : public Transformation {
1376   public:
1377     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1378         MachineRegisterInfo &mri)
1379       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1380 
1381     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1382     static bool isTfrConst(const MachineInstr &MI);
1383 
1384   private:
1385     unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1386         MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1387 
1388     const HexagonInstrInfo &HII;
1389     MachineRegisterInfo &MRI;
1390     BitTracker &BT;
1391   };
1392 
1393 } // end anonymous namespace
1394 
1395 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1396   unsigned Opc = MI.getOpcode();
1397   switch (Opc) {
1398     case Hexagon::A2_combineii:
1399     case Hexagon::A4_combineii:
1400     case Hexagon::A2_tfrsi:
1401     case Hexagon::A2_tfrpi:
1402     case Hexagon::PS_true:
1403     case Hexagon::PS_false:
1404     case Hexagon::CONST32:
1405     case Hexagon::CONST64:
1406       return true;
1407   }
1408   return false;
1409 }
1410 
1411 // Generate a transfer-immediate instruction that is appropriate for the
1412 // register class and the actual value being transferred.
1413 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1414       MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1415   unsigned Reg = MRI.createVirtualRegister(RC);
1416   if (RC == &Hexagon::IntRegsRegClass) {
1417     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1418         .addImm(int32_t(C));
1419     return Reg;
1420   }
1421 
1422   if (RC == &Hexagon::DoubleRegsRegClass) {
1423     if (isInt<8>(C)) {
1424       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1425           .addImm(C);
1426       return Reg;
1427     }
1428 
1429     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1430     if (isInt<8>(Lo) || isInt<8>(Hi)) {
1431       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1432                                   : Hexagon::A4_combineii;
1433       BuildMI(B, At, DL, HII.get(Opc), Reg)
1434           .addImm(int32_t(Hi))
1435           .addImm(int32_t(Lo));
1436       return Reg;
1437     }
1438 
1439     BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1440         .addImm(C);
1441     return Reg;
1442   }
1443 
1444   if (RC == &Hexagon::PredRegsRegClass) {
1445     unsigned Opc;
1446     if (C == 0)
1447       Opc = Hexagon::PS_false;
1448     else if ((C & 0xFF) == 0xFF)
1449       Opc = Hexagon::PS_true;
1450     else
1451       return 0;
1452     BuildMI(B, At, DL, HII.get(Opc), Reg);
1453     return Reg;
1454   }
1455 
1456   return 0;
1457 }
1458 
1459 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1460   if (!BT.reached(&B))
1461     return false;
1462   bool Changed = false;
1463   RegisterSet Defs;
1464 
1465   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1466     if (isTfrConst(*I))
1467       continue;
1468     Defs.clear();
1469     HBS::getInstrDefs(*I, Defs);
1470     if (Defs.count() != 1)
1471       continue;
1472     unsigned DR = Defs.find_first();
1473     if (!TargetRegisterInfo::isVirtualRegister(DR))
1474       continue;
1475     uint64_t U;
1476     const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1477     if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1478       int64_t C = U;
1479       DebugLoc DL = I->getDebugLoc();
1480       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1481       unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1482       if (ImmReg) {
1483         HBS::replaceReg(DR, ImmReg, MRI);
1484         BT.put(ImmReg, DRC);
1485         Changed = true;
1486       }
1487     }
1488   }
1489   return Changed;
1490 }
1491 
1492 namespace {
1493 
1494 // Identify pairs of available registers which hold identical values.
1495 // In such cases, only one of them needs to be calculated, the other one
1496 // will be defined as a copy of the first.
1497   class CopyGeneration : public Transformation {
1498   public:
1499     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1500         const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1501       : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1502 
1503     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1504 
1505   private:
1506     bool findMatch(const BitTracker::RegisterRef &Inp,
1507         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1508 
1509     const HexagonInstrInfo &HII;
1510     const HexagonRegisterInfo &HRI;
1511     MachineRegisterInfo &MRI;
1512     BitTracker &BT;
1513     RegisterSet Forbidden;
1514   };
1515 
1516 // Eliminate register copies RD = RS, by replacing the uses of RD with
1517 // with uses of RS.
1518   class CopyPropagation : public Transformation {
1519   public:
1520     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1521         : Transformation(false), HRI(hri), MRI(mri) {}
1522 
1523     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1524 
1525     static bool isCopyReg(unsigned Opc, bool NoConv);
1526 
1527   private:
1528     bool propagateRegCopy(MachineInstr &MI);
1529 
1530     const HexagonRegisterInfo &HRI;
1531     MachineRegisterInfo &MRI;
1532   };
1533 
1534 } // end anonymous namespace
1535 
1536 /// Check if there is a register in AVs that is identical to Inp. If so,
1537 /// set Out to the found register. The output may be a pair Reg:Sub.
1538 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1539       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1540   if (!BT.has(Inp.Reg))
1541     return false;
1542   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1543   auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1544   unsigned B, W;
1545   if (!HBS::getSubregMask(Inp, B, W, MRI))
1546     return false;
1547 
1548   for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1549     if (!BT.has(R) || Forbidden[R])
1550       continue;
1551     const BitTracker::RegisterCell &RC = BT.lookup(R);
1552     unsigned RW = RC.width();
1553     if (W == RW) {
1554       if (FRC != MRI.getRegClass(R))
1555         continue;
1556       if (!HBS::isTransparentCopy(R, Inp, MRI))
1557         continue;
1558       if (!HBS::isEqual(InpRC, B, RC, 0, W))
1559         continue;
1560       Out.Reg = R;
1561       Out.Sub = 0;
1562       return true;
1563     }
1564     // Check if there is a super-register, whose part (with a subregister)
1565     // is equal to the input.
1566     // Only do double registers for now.
1567     if (W*2 != RW)
1568       continue;
1569     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1570       continue;
1571 
1572     if (HBS::isEqual(InpRC, B, RC, 0, W))
1573       Out.Sub = Hexagon::isub_lo;
1574     else if (HBS::isEqual(InpRC, B, RC, W, W))
1575       Out.Sub = Hexagon::isub_hi;
1576     else
1577       continue;
1578     Out.Reg = R;
1579     if (HBS::isTransparentCopy(Out, Inp, MRI))
1580       return true;
1581   }
1582   return false;
1583 }
1584 
1585 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1586       const RegisterSet &AVs) {
1587   if (!BT.reached(&B))
1588     return false;
1589   RegisterSet AVB(AVs);
1590   bool Changed = false;
1591   RegisterSet Defs;
1592 
1593   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1594        ++I, AVB.insert(Defs)) {
1595     NextI = std::next(I);
1596     Defs.clear();
1597     HBS::getInstrDefs(*I, Defs);
1598 
1599     unsigned Opc = I->getOpcode();
1600     if (CopyPropagation::isCopyReg(Opc, false) ||
1601         ConstGeneration::isTfrConst(*I))
1602       continue;
1603 
1604     DebugLoc DL = I->getDebugLoc();
1605     auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1606 
1607     for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1608       BitTracker::RegisterRef MR;
1609       auto *FRC = HBS::getFinalVRegClass(R, MRI);
1610 
1611       if (findMatch(R, MR, AVB)) {
1612         unsigned NewR = MRI.createVirtualRegister(FRC);
1613         BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1614           .addReg(MR.Reg, 0, MR.Sub);
1615         BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1616         HBS::replaceReg(R, NewR, MRI);
1617         Forbidden.insert(R);
1618         continue;
1619       }
1620 
1621       if (FRC == &Hexagon::DoubleRegsRegClass ||
1622           FRC == &Hexagon::HvxWRRegClass) {
1623         // Try to generate REG_SEQUENCE.
1624         unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1625         unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1626         BitTracker::RegisterRef TL = { R, SubLo };
1627         BitTracker::RegisterRef TH = { R, SubHi };
1628         BitTracker::RegisterRef ML, MH;
1629         if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1630           auto *FRC = HBS::getFinalVRegClass(R, MRI);
1631           unsigned NewR = MRI.createVirtualRegister(FRC);
1632           BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1633             .addReg(ML.Reg, 0, ML.Sub)
1634             .addImm(SubLo)
1635             .addReg(MH.Reg, 0, MH.Sub)
1636             .addImm(SubHi);
1637           BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1638           HBS::replaceReg(R, NewR, MRI);
1639           Forbidden.insert(R);
1640         }
1641       }
1642     }
1643   }
1644 
1645   return Changed;
1646 }
1647 
1648 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1649   switch (Opc) {
1650     case TargetOpcode::COPY:
1651     case TargetOpcode::REG_SEQUENCE:
1652     case Hexagon::A4_combineir:
1653     case Hexagon::A4_combineri:
1654       return true;
1655     case Hexagon::A2_tfr:
1656     case Hexagon::A2_tfrp:
1657     case Hexagon::A2_combinew:
1658     case Hexagon::V6_vcombine:
1659       return NoConv;
1660     default:
1661       break;
1662   }
1663   return false;
1664 }
1665 
1666 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1667   bool Changed = false;
1668   unsigned Opc = MI.getOpcode();
1669   BitTracker::RegisterRef RD = MI.getOperand(0);
1670   assert(MI.getOperand(0).getSubReg() == 0);
1671 
1672   switch (Opc) {
1673     case TargetOpcode::COPY:
1674     case Hexagon::A2_tfr:
1675     case Hexagon::A2_tfrp: {
1676       BitTracker::RegisterRef RS = MI.getOperand(1);
1677       if (!HBS::isTransparentCopy(RD, RS, MRI))
1678         break;
1679       if (RS.Sub != 0)
1680         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1681       else
1682         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1683       break;
1684     }
1685     case TargetOpcode::REG_SEQUENCE: {
1686       BitTracker::RegisterRef SL, SH;
1687       if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1688         const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1689         unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1690         unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1691         Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1692         Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1693       }
1694       break;
1695     }
1696     case Hexagon::A2_combinew:
1697     case Hexagon::V6_vcombine: {
1698       const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1699       unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1700       unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1701       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1702       Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1703       Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1704       break;
1705     }
1706     case Hexagon::A4_combineir:
1707     case Hexagon::A4_combineri: {
1708       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1709       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1710                                                     : Hexagon::isub_hi;
1711       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1712       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1713       break;
1714     }
1715   }
1716   return Changed;
1717 }
1718 
1719 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1720   std::vector<MachineInstr*> Instrs;
1721   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1722     Instrs.push_back(&*I);
1723 
1724   bool Changed = false;
1725   for (auto I : Instrs) {
1726     unsigned Opc = I->getOpcode();
1727     if (!CopyPropagation::isCopyReg(Opc, true))
1728       continue;
1729     Changed |= propagateRegCopy(*I);
1730   }
1731 
1732   return Changed;
1733 }
1734 
1735 namespace {
1736 
1737 // Recognize patterns that can be simplified and replace them with the
1738 // simpler forms.
1739 // This is by no means complete
1740   class BitSimplification : public Transformation {
1741   public:
1742     BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1743         const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1744         MachineRegisterInfo &mri, MachineFunction &mf)
1745       : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1746         MF(mf), BT(bt) {}
1747 
1748     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1749 
1750   private:
1751     struct RegHalf : public BitTracker::RegisterRef {
1752       bool Low;  // Low/High halfword.
1753     };
1754 
1755     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1756           unsigned B, RegHalf &RH);
1757     bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1758 
1759     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1760           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1761     unsigned getCombineOpcode(bool HLow, bool LLow);
1762 
1763     bool genStoreUpperHalf(MachineInstr *MI);
1764     bool genStoreImmediate(MachineInstr *MI);
1765     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1766           const BitTracker::RegisterCell &RC);
1767     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1768           const BitTracker::RegisterCell &RC);
1769     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1770           const BitTracker::RegisterCell &RC);
1771     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1772           const BitTracker::RegisterCell &RC);
1773     bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1774           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1775     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1776           const BitTracker::RegisterCell &RC);
1777     bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1778           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1779     bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1780 
1781     // Cache of created instructions to avoid creating duplicates.
1782     // XXX Currently only used by genBitSplit.
1783     std::vector<MachineInstr*> NewMIs;
1784 
1785     const MachineDominatorTree &MDT;
1786     const HexagonInstrInfo &HII;
1787     const HexagonRegisterInfo &HRI;
1788     MachineRegisterInfo &MRI;
1789     MachineFunction &MF;
1790     BitTracker &BT;
1791   };
1792 
1793 } // end anonymous namespace
1794 
1795 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1796 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1797 // set the information about the found register in RH.
1798 bool BitSimplification::matchHalf(unsigned SelfR,
1799       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1800   // XXX This could be searching in the set of available registers, in case
1801   // the match is not exact.
1802 
1803   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1804   // register and all the bits B..B+15 match between RC and the register.
1805   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1806   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1807   bool Low = false;
1808   unsigned I = B;
1809   while (I < B+16 && RC[I].num())
1810     I++;
1811   if (I == B+16)
1812     return false;
1813 
1814   unsigned Reg = RC[I].RefI.Reg;
1815   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1816   if (P < I-B)
1817     return false;
1818   unsigned Pos = P - (I-B);
1819 
1820   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1821     return false;
1822   if (!TargetRegisterInfo::isVirtualRegister(Reg))
1823     return false;
1824   if (!BT.has(Reg))
1825     return false;
1826 
1827   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1828   if (Pos+16 > SC.width())
1829     return false;
1830 
1831   for (unsigned i = 0; i < 16; ++i) {
1832     const BitTracker::BitValue &RV = RC[i+B];
1833     if (RV.Type == BitTracker::BitValue::Ref) {
1834       if (RV.RefI.Reg != Reg)
1835         return false;
1836       if (RV.RefI.Pos != i+Pos)
1837         return false;
1838       continue;
1839     }
1840     if (RC[i+B] != SC[i+Pos])
1841       return false;
1842   }
1843 
1844   unsigned Sub = 0;
1845   switch (Pos) {
1846     case 0:
1847       Sub = Hexagon::isub_lo;
1848       Low = true;
1849       break;
1850     case 16:
1851       Sub = Hexagon::isub_lo;
1852       Low = false;
1853       break;
1854     case 32:
1855       Sub = Hexagon::isub_hi;
1856       Low = true;
1857       break;
1858     case 48:
1859       Sub = Hexagon::isub_hi;
1860       Low = false;
1861       break;
1862     default:
1863       return false;
1864   }
1865 
1866   RH.Reg = Reg;
1867   RH.Sub = Sub;
1868   RH.Low = Low;
1869   // If the subregister is not valid with the register, set it to 0.
1870   if (!HBS::getFinalVRegClass(RH, MRI))
1871     RH.Sub = 0;
1872 
1873   return true;
1874 }
1875 
1876 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1877       unsigned OpNum) {
1878   auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1879   auto *RRC = HBS::getFinalVRegClass(R, MRI);
1880   return OpRC->hasSubClassEq(RRC);
1881 }
1882 
1883 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1884 // set the inputs Rs and Rt.
1885 bool BitSimplification::matchPackhl(unsigned SelfR,
1886       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1887       BitTracker::RegisterRef &Rt) {
1888   RegHalf L1, H1, L2, H2;
1889 
1890   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1891     return false;
1892   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1893     return false;
1894 
1895   // Rs = H1.L1, Rt = H2.L2
1896   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1897     return false;
1898   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1899     return false;
1900 
1901   Rs = H1;
1902   Rt = H2;
1903   return true;
1904 }
1905 
1906 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1907   return HLow ? LLow ? Hexagon::A2_combine_ll
1908                      : Hexagon::A2_combine_lh
1909               : LLow ? Hexagon::A2_combine_hl
1910                      : Hexagon::A2_combine_hh;
1911 }
1912 
1913 // If MI stores the upper halfword of a register (potentially obtained via
1914 // shifts or extracts), replace it with a storerf instruction. This could
1915 // cause the "extraction" code to become dead.
1916 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1917   unsigned Opc = MI->getOpcode();
1918   if (Opc != Hexagon::S2_storerh_io)
1919     return false;
1920 
1921   MachineOperand &ValOp = MI->getOperand(2);
1922   BitTracker::RegisterRef RS = ValOp;
1923   if (!BT.has(RS.Reg))
1924     return false;
1925   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1926   RegHalf H;
1927   if (!matchHalf(0, RC, 0, H))
1928     return false;
1929   if (H.Low)
1930     return false;
1931   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1932   ValOp.setReg(H.Reg);
1933   ValOp.setSubReg(H.Sub);
1934   return true;
1935 }
1936 
1937 // If MI stores a value known at compile-time, and the value is within a range
1938 // that avoids using constant-extenders, replace it with a store-immediate.
1939 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1940   unsigned Opc = MI->getOpcode();
1941   unsigned Align = 0;
1942   switch (Opc) {
1943     case Hexagon::S2_storeri_io:
1944       Align++;
1945       LLVM_FALLTHROUGH;
1946     case Hexagon::S2_storerh_io:
1947       Align++;
1948       LLVM_FALLTHROUGH;
1949     case Hexagon::S2_storerb_io:
1950       break;
1951     default:
1952       return false;
1953   }
1954 
1955   // Avoid stores to frame-indices (due to an unknown offset).
1956   if (!MI->getOperand(0).isReg())
1957     return false;
1958   MachineOperand &OffOp = MI->getOperand(1);
1959   if (!OffOp.isImm())
1960     return false;
1961 
1962   int64_t Off = OffOp.getImm();
1963   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1964   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1965     return false;
1966   // Source register:
1967   BitTracker::RegisterRef RS = MI->getOperand(2);
1968   if (!BT.has(RS.Reg))
1969     return false;
1970   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1971   uint64_t U;
1972   if (!HBS::getConst(RC, 0, RC.width(), U))
1973     return false;
1974 
1975   // Only consider 8-bit values to avoid constant-extenders.
1976   int V;
1977   switch (Opc) {
1978     case Hexagon::S2_storerb_io:
1979       V = int8_t(U);
1980       break;
1981     case Hexagon::S2_storerh_io:
1982       V = int16_t(U);
1983       break;
1984     case Hexagon::S2_storeri_io:
1985       V = int32_t(U);
1986       break;
1987     default:
1988       // Opc is already checked above to be one of the three store instructions.
1989       // This silences a -Wuninitialized false positive on GCC 5.4.
1990       llvm_unreachable("Unexpected store opcode");
1991   }
1992   if (!isInt<8>(V))
1993     return false;
1994 
1995   MI->RemoveOperand(2);
1996   switch (Opc) {
1997     case Hexagon::S2_storerb_io:
1998       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1999       break;
2000     case Hexagon::S2_storerh_io:
2001       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2002       break;
2003     case Hexagon::S2_storeri_io:
2004       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2005       break;
2006   }
2007   MI->addOperand(MachineOperand::CreateImm(V));
2008   return true;
2009 }
2010 
2011 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2012 // last instruction in a sequence that results in something equivalent to
2013 // the pack-halfwords. The intent is to cause the entire sequence to become
2014 // dead.
2015 bool BitSimplification::genPackhl(MachineInstr *MI,
2016       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2017   unsigned Opc = MI->getOpcode();
2018   if (Opc == Hexagon::S2_packhl)
2019     return false;
2020   BitTracker::RegisterRef Rs, Rt;
2021   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2022     return false;
2023   if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2024       !validateReg(Rt, Hexagon::S2_packhl, 2))
2025     return false;
2026 
2027   MachineBasicBlock &B = *MI->getParent();
2028   unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2029   DebugLoc DL = MI->getDebugLoc();
2030   auto At = MI->isPHI() ? B.getFirstNonPHI()
2031                         : MachineBasicBlock::iterator(MI);
2032   BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2033       .addReg(Rs.Reg, 0, Rs.Sub)
2034       .addReg(Rt.Reg, 0, Rt.Sub);
2035   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2036   BT.put(BitTracker::RegisterRef(NewR), RC);
2037   return true;
2038 }
2039 
2040 // If MI produces halfword of the input in the low half of the output,
2041 // replace it with zero-extend or extractu.
2042 bool BitSimplification::genExtractHalf(MachineInstr *MI,
2043       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2044   RegHalf L;
2045   // Check for halfword in low 16 bits, zeros elsewhere.
2046   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2047     return false;
2048 
2049   unsigned Opc = MI->getOpcode();
2050   MachineBasicBlock &B = *MI->getParent();
2051   DebugLoc DL = MI->getDebugLoc();
2052 
2053   // Prefer zxth, since zxth can go in any slot, while extractu only in
2054   // slots 2 and 3.
2055   unsigned NewR = 0;
2056   auto At = MI->isPHI() ? B.getFirstNonPHI()
2057                         : MachineBasicBlock::iterator(MI);
2058   if (L.Low && Opc != Hexagon::A2_zxth) {
2059     if (validateReg(L, Hexagon::A2_zxth, 1)) {
2060       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2061       BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2062           .addReg(L.Reg, 0, L.Sub);
2063     }
2064   } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2065     if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2066       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2067       BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2068           .addReg(L.Reg, 0, L.Sub)
2069           .addImm(16);
2070     }
2071   }
2072   if (NewR == 0)
2073     return false;
2074   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2075   BT.put(BitTracker::RegisterRef(NewR), RC);
2076   return true;
2077 }
2078 
2079 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2080 // combine.
2081 bool BitSimplification::genCombineHalf(MachineInstr *MI,
2082       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2083   RegHalf L, H;
2084   // Check for combine h/l
2085   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2086     return false;
2087   // Do nothing if this is just a reg copy.
2088   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2089     return false;
2090 
2091   unsigned Opc = MI->getOpcode();
2092   unsigned COpc = getCombineOpcode(H.Low, L.Low);
2093   if (COpc == Opc)
2094     return false;
2095   if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2096     return false;
2097 
2098   MachineBasicBlock &B = *MI->getParent();
2099   DebugLoc DL = MI->getDebugLoc();
2100   unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2101   auto At = MI->isPHI() ? B.getFirstNonPHI()
2102                         : MachineBasicBlock::iterator(MI);
2103   BuildMI(B, At, DL, HII.get(COpc), NewR)
2104       .addReg(H.Reg, 0, H.Sub)
2105       .addReg(L.Reg, 0, L.Sub);
2106   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2107   BT.put(BitTracker::RegisterRef(NewR), RC);
2108   return true;
2109 }
2110 
2111 // If MI resets high bits of a register and keeps the lower ones, replace it
2112 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2113 bool BitSimplification::genExtractLow(MachineInstr *MI,
2114       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2115   unsigned Opc = MI->getOpcode();
2116   switch (Opc) {
2117     case Hexagon::A2_zxtb:
2118     case Hexagon::A2_zxth:
2119     case Hexagon::S2_extractu:
2120       return false;
2121   }
2122   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2123     int32_t Imm = MI->getOperand(2).getImm();
2124     if (isInt<10>(Imm))
2125       return false;
2126   }
2127 
2128   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2129     return false;
2130   unsigned W = RC.width();
2131   while (W > 0 && RC[W-1].is(0))
2132     W--;
2133   if (W == 0 || W == RC.width())
2134     return false;
2135   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2136                   : (W == 16) ? Hexagon::A2_zxth
2137                   : (W < 10)  ? Hexagon::A2_andir
2138                   : Hexagon::S2_extractu;
2139   MachineBasicBlock &B = *MI->getParent();
2140   DebugLoc DL = MI->getDebugLoc();
2141 
2142   for (auto &Op : MI->uses()) {
2143     if (!Op.isReg())
2144       continue;
2145     BitTracker::RegisterRef RS = Op;
2146     if (!BT.has(RS.Reg))
2147       continue;
2148     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2149     unsigned BN, BW;
2150     if (!HBS::getSubregMask(RS, BN, BW, MRI))
2151       continue;
2152     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2153       continue;
2154     if (!validateReg(RS, NewOpc, 1))
2155       continue;
2156 
2157     unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2158     auto At = MI->isPHI() ? B.getFirstNonPHI()
2159                           : MachineBasicBlock::iterator(MI);
2160     auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2161                   .addReg(RS.Reg, 0, RS.Sub);
2162     if (NewOpc == Hexagon::A2_andir)
2163       MIB.addImm((1 << W) - 1);
2164     else if (NewOpc == Hexagon::S2_extractu)
2165       MIB.addImm(W).addImm(0);
2166     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2167     BT.put(BitTracker::RegisterRef(NewR), RC);
2168     return true;
2169   }
2170   return false;
2171 }
2172 
2173 bool BitSimplification::genBitSplit(MachineInstr *MI,
2174       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2175       const RegisterSet &AVs) {
2176   if (!GenBitSplit)
2177     return false;
2178   if (MaxBitSplit.getNumOccurrences()) {
2179     if (CountBitSplit >= MaxBitSplit)
2180       return false;
2181   }
2182 
2183   unsigned Opc = MI->getOpcode();
2184   switch (Opc) {
2185     case Hexagon::A4_bitsplit:
2186     case Hexagon::A4_bitspliti:
2187       return false;
2188   }
2189 
2190   unsigned W = RC.width();
2191   if (W != 32)
2192     return false;
2193 
2194   auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2195     unsigned Z = C.width();
2196     while (Z > 0 && C[Z-1].is(0))
2197       --Z;
2198     return C.width() - Z;
2199   };
2200 
2201   // Count the number of leading zeros in the target RC.
2202   unsigned Z = ctlz(RC);
2203   if (Z == 0 || Z == W)
2204     return false;
2205 
2206   // A simplistic analysis: assume the source register (the one being split)
2207   // is fully unknown, and that all its bits are self-references.
2208   const BitTracker::BitValue &B0 = RC[0];
2209   if (B0.Type != BitTracker::BitValue::Ref)
2210     return false;
2211 
2212   unsigned SrcR = B0.RefI.Reg;
2213   unsigned SrcSR = 0;
2214   unsigned Pos = B0.RefI.Pos;
2215 
2216   // All the non-zero bits should be consecutive bits from the same register.
2217   for (unsigned i = 1; i < W-Z; ++i) {
2218     const BitTracker::BitValue &V = RC[i];
2219     if (V.Type != BitTracker::BitValue::Ref)
2220       return false;
2221     if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2222       return false;
2223   }
2224 
2225   // Now, find the other bitfield among AVs.
2226   for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2227     // The number of leading zeros here should be the number of trailing
2228     // non-zeros in RC.
2229     unsigned SRC = MRI.getRegClass(S)->getID();
2230     if (SRC != Hexagon::IntRegsRegClassID &&
2231         SRC != Hexagon::DoubleRegsRegClassID)
2232       continue;
2233     if (!BT.has(S))
2234       continue;
2235     const BitTracker::RegisterCell &SC = BT.lookup(S);
2236     if (SC.width() != W || ctlz(SC) != W-Z)
2237       continue;
2238     // The Z lower bits should now match SrcR.
2239     const BitTracker::BitValue &S0 = SC[0];
2240     if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2241       continue;
2242     unsigned P = S0.RefI.Pos;
2243 
2244     if (Pos <= P && (Pos + W-Z) != P)
2245       continue;
2246     if (P < Pos && (P + Z) != Pos)
2247       continue;
2248     // The starting bitfield position must be at a subregister boundary.
2249     if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2250       continue;
2251 
2252     unsigned I;
2253     for (I = 1; I < Z; ++I) {
2254       const BitTracker::BitValue &V = SC[I];
2255       if (V.Type != BitTracker::BitValue::Ref)
2256         break;
2257       if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2258         break;
2259     }
2260     if (I != Z)
2261       continue;
2262 
2263     // Generate bitsplit where S is defined.
2264     if (MaxBitSplit.getNumOccurrences())
2265       CountBitSplit++;
2266     MachineInstr *DefS = MRI.getVRegDef(S);
2267     assert(DefS != nullptr);
2268     DebugLoc DL = DefS->getDebugLoc();
2269     MachineBasicBlock &B = *DefS->getParent();
2270     auto At = DefS->isPHI() ? B.getFirstNonPHI()
2271                             : MachineBasicBlock::iterator(DefS);
2272     if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2273       SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2274     if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2275       continue;
2276     unsigned ImmOp = Pos <= P ? W-Z : Z;
2277 
2278     // Find an existing bitsplit instruction if one already exists.
2279     unsigned NewR = 0;
2280     for (MachineInstr *In : NewMIs) {
2281       if (In->getOpcode() != Hexagon::A4_bitspliti)
2282         continue;
2283       MachineOperand &Op1 = In->getOperand(1);
2284       if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2285         continue;
2286       if (In->getOperand(2).getImm() != ImmOp)
2287         continue;
2288       // Check if the target register is available here.
2289       MachineOperand &Op0 = In->getOperand(0);
2290       MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2291       assert(DefI != nullptr);
2292       if (!MDT.dominates(DefI, &*At))
2293         continue;
2294 
2295       // Found one that can be reused.
2296       assert(Op0.getSubReg() == 0);
2297       NewR = Op0.getReg();
2298       break;
2299     }
2300     if (!NewR) {
2301       NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2302       auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2303                       .addReg(SrcR, 0, SrcSR)
2304                       .addImm(ImmOp);
2305       NewMIs.push_back(NewBS);
2306     }
2307     if (Pos <= P) {
2308       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2309       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
2310     } else {
2311       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
2312       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2313     }
2314     return true;
2315   }
2316 
2317   return false;
2318 }
2319 
2320 // Check for tstbit simplification opportunity, where the bit being checked
2321 // can be tracked back to another register. For example:
2322 //   %2 = S2_lsr_i_r  %1, 5
2323 //   %3 = S2_tstbit_i %2, 0
2324 // =>
2325 //   %3 = S2_tstbit_i %1, 5
2326 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2327       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2328   unsigned Opc = MI->getOpcode();
2329   if (Opc != Hexagon::S2_tstbit_i)
2330     return false;
2331 
2332   unsigned BN = MI->getOperand(2).getImm();
2333   BitTracker::RegisterRef RS = MI->getOperand(1);
2334   unsigned F, W;
2335   DebugLoc DL = MI->getDebugLoc();
2336   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2337     return false;
2338   MachineBasicBlock &B = *MI->getParent();
2339   auto At = MI->isPHI() ? B.getFirstNonPHI()
2340                         : MachineBasicBlock::iterator(MI);
2341 
2342   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2343   const BitTracker::BitValue &V = SC[F+BN];
2344   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2345     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2346     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2347     // a double register, need to use a subregister and adjust bit
2348     // number.
2349     unsigned P = std::numeric_limits<unsigned>::max();
2350     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2351     if (TC == &Hexagon::DoubleRegsRegClass) {
2352       P = V.RefI.Pos;
2353       RR.Sub = Hexagon::isub_lo;
2354       if (P >= 32) {
2355         P -= 32;
2356         RR.Sub = Hexagon::isub_hi;
2357       }
2358     } else if (TC == &Hexagon::IntRegsRegClass) {
2359       P = V.RefI.Pos;
2360     }
2361     if (P != std::numeric_limits<unsigned>::max()) {
2362       unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2363       BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2364           .addReg(RR.Reg, 0, RR.Sub)
2365           .addImm(P);
2366       HBS::replaceReg(RD.Reg, NewR, MRI);
2367       BT.put(NewR, RC);
2368       return true;
2369     }
2370   } else if (V.is(0) || V.is(1)) {
2371     unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2372     unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2373     BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2374     HBS::replaceReg(RD.Reg, NewR, MRI);
2375     return true;
2376   }
2377 
2378   return false;
2379 }
2380 
2381 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
2382 // some register from the AVs set. Create a new corresponding instruction
2383 // at the location of MI. The intent is to recognize situations where
2384 // a sequence of instructions performs an operation that is equivalent to
2385 // an extract operation, such as a shift left followed by a shift right.
2386 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2387       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2388       const RegisterSet &AVs) {
2389   if (!GenExtract)
2390     return false;
2391   if (MaxExtract.getNumOccurrences()) {
2392     if (CountExtract >= MaxExtract)
2393       return false;
2394     CountExtract++;
2395   }
2396 
2397   unsigned W = RC.width();
2398   unsigned RW = W;
2399   unsigned Len;
2400   bool Signed;
2401 
2402   // The code is mostly class-independent, except for the part that generates
2403   // the extract instruction, and establishes the source register (in case it
2404   // needs to use a subregister).
2405   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2406   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2407     return false;
2408   assert(RD.Sub == 0);
2409 
2410   // Observation:
2411   // If the cell has a form of 00..0xx..x with k zeros and n remaining
2412   // bits, this could be an extractu of the n bits, but it could also be
2413   // an extractu of a longer field which happens to have 0s in the top
2414   // bit positions.
2415   // The same logic applies to sign-extended fields.
2416   //
2417   // Do not check for the extended extracts, since it would expand the
2418   // search space quite a bit. The search may be expensive as it is.
2419 
2420   const BitTracker::BitValue &TopV = RC[W-1];
2421 
2422   // Eliminate candidates that have self-referential bits, since they
2423   // cannot be extracts from other registers. Also, skip registers that
2424   // have compile-time constant values.
2425   bool IsConst = true;
2426   for (unsigned I = 0; I != W; ++I) {
2427     const BitTracker::BitValue &V = RC[I];
2428     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2429       return false;
2430     IsConst = IsConst && (V.is(0) || V.is(1));
2431   }
2432   if (IsConst)
2433     return false;
2434 
2435   if (TopV.is(0) || TopV.is(1)) {
2436     bool S = TopV.is(1);
2437     for (--W; W > 0 && RC[W-1].is(S); --W)
2438       ;
2439     Len = W;
2440     Signed = S;
2441     // The sign bit must be a part of the field being extended.
2442     if (Signed)
2443       ++Len;
2444   } else {
2445     // This could still be a sign-extended extract.
2446     assert(TopV.Type == BitTracker::BitValue::Ref);
2447     if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2448       return false;
2449     for (--W; W > 0 && RC[W-1] == TopV; --W)
2450       ;
2451     // The top bits of RC are copies of TopV. One occurrence of TopV will
2452     // be a part of the field.
2453     Len = W + 1;
2454     Signed = true;
2455   }
2456 
2457   // This would be just a copy. It should be handled elsewhere.
2458   if (Len == RW)
2459     return false;
2460 
2461   LLVM_DEBUG({
2462     dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2463            << ", MI: " << *MI;
2464     dbgs() << "Cell: " << RC << '\n';
2465     dbgs() << "Expected bitfield size: " << Len << " bits, "
2466            << (Signed ? "sign" : "zero") << "-extended\n";
2467   });
2468 
2469   bool Changed = false;
2470 
2471   for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2472     if (!BT.has(R))
2473       continue;
2474     const BitTracker::RegisterCell &SC = BT.lookup(R);
2475     unsigned SW = SC.width();
2476 
2477     // The source can be longer than the destination, as long as its size is
2478     // a multiple of the size of the destination. Also, we would need to be
2479     // able to refer to the subregister in the source that would be of the
2480     // same size as the destination, but only check the sizes here.
2481     if (SW < RW || (SW % RW) != 0)
2482       continue;
2483 
2484     // The field can start at any offset in SC as long as it contains Len
2485     // bits and does not cross subregister boundary (if the source register
2486     // is longer than the destination).
2487     unsigned Off = 0;
2488     while (Off <= SW-Len) {
2489       unsigned OE = (Off+Len)/RW;
2490       if (OE != Off/RW) {
2491         // The assumption here is that if the source (R) is longer than the
2492         // destination, then the destination is a sequence of words of
2493         // size RW, and each such word in R can be accessed via a subregister.
2494         //
2495         // If the beginning and the end of the field cross the subregister
2496         // boundary, advance to the next subregister.
2497         Off = OE*RW;
2498         continue;
2499       }
2500       if (HBS::isEqual(RC, 0, SC, Off, Len))
2501         break;
2502       ++Off;
2503     }
2504 
2505     if (Off > SW-Len)
2506       continue;
2507 
2508     // Found match.
2509     unsigned ExtOpc = 0;
2510     if (Off == 0) {
2511       if (Len == 8)
2512         ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2513       else if (Len == 16)
2514         ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2515       else if (Len < 10 && !Signed)
2516         ExtOpc = Hexagon::A2_andir;
2517     }
2518     if (ExtOpc == 0) {
2519       ExtOpc =
2520           Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
2521                  : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2522     }
2523     unsigned SR = 0;
2524     // This only recognizes isub_lo and isub_hi.
2525     if (RW != SW && RW*2 != SW)
2526       continue;
2527     if (RW != SW)
2528       SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2529     Off = Off % RW;
2530 
2531     if (!validateReg({R,SR}, ExtOpc, 1))
2532       continue;
2533 
2534     // Don't generate the same instruction as the one being optimized.
2535     if (MI->getOpcode() == ExtOpc) {
2536       // All possible ExtOpc's have the source in operand(1).
2537       const MachineOperand &SrcOp = MI->getOperand(1);
2538       if (SrcOp.getReg() == R)
2539         continue;
2540     }
2541 
2542     DebugLoc DL = MI->getDebugLoc();
2543     MachineBasicBlock &B = *MI->getParent();
2544     unsigned NewR = MRI.createVirtualRegister(FRC);
2545     auto At = MI->isPHI() ? B.getFirstNonPHI()
2546                           : MachineBasicBlock::iterator(MI);
2547     auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2548                   .addReg(R, 0, SR);
2549     switch (ExtOpc) {
2550       case Hexagon::A2_sxtb:
2551       case Hexagon::A2_zxtb:
2552       case Hexagon::A2_sxth:
2553       case Hexagon::A2_zxth:
2554         break;
2555       case Hexagon::A2_andir:
2556         MIB.addImm((1u << Len) - 1);
2557         break;
2558       case Hexagon::S4_extract:
2559       case Hexagon::S2_extractu:
2560       case Hexagon::S4_extractp:
2561       case Hexagon::S2_extractup:
2562         MIB.addImm(Len)
2563            .addImm(Off);
2564         break;
2565       default:
2566         llvm_unreachable("Unexpected opcode");
2567     }
2568 
2569     HBS::replaceReg(RD.Reg, NewR, MRI);
2570     BT.put(BitTracker::RegisterRef(NewR), RC);
2571     Changed = true;
2572     break;
2573   }
2574 
2575   return Changed;
2576 }
2577 
2578 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2579       BitTracker::RegisterRef RD) {
2580   unsigned Opc = MI->getOpcode();
2581   if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2582     return false;
2583   MachineOperand &CmpOp = MI->getOperand(2);
2584   if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2585     return false;
2586 
2587   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2588   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2589     return false;
2590   assert(RD.Sub == 0);
2591 
2592   MachineBasicBlock &B = *MI->getParent();
2593   const DebugLoc &DL = MI->getDebugLoc();
2594   auto At = MI->isPHI() ? B.getFirstNonPHI()
2595                         : MachineBasicBlock::iterator(MI);
2596   bool KnownZ = true;
2597   bool KnownNZ = false;
2598 
2599   BitTracker::RegisterRef SR = MI->getOperand(1);
2600   if (!BT.has(SR.Reg))
2601     return false;
2602   const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2603   unsigned F, W;
2604   if (!HBS::getSubregMask(SR, F, W, MRI))
2605     return false;
2606 
2607   for (uint16_t I = F; I != F+W; ++I) {
2608     const BitTracker::BitValue &V = SC[I];
2609     if (!V.is(0))
2610       KnownZ = false;
2611     if (V.is(1))
2612       KnownNZ = true;
2613   }
2614 
2615   auto ReplaceWithConst = [&] (int C) {
2616     unsigned NewR = MRI.createVirtualRegister(FRC);
2617     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2618       .addImm(C);
2619     HBS::replaceReg(RD.Reg, NewR, MRI);
2620     BitTracker::RegisterCell NewRC(W);
2621     for (uint16_t I = 0; I != W; ++I) {
2622       NewRC[I] = BitTracker::BitValue(C & 1);
2623       C = unsigned(C) >> 1;
2624     }
2625     BT.put(BitTracker::RegisterRef(NewR), NewRC);
2626     return true;
2627   };
2628 
2629   auto IsNonZero = [] (const MachineOperand &Op) {
2630     if (Op.isGlobal() || Op.isBlockAddress())
2631       return true;
2632     if (Op.isImm())
2633       return Op.getImm() != 0;
2634     if (Op.isCImm())
2635       return !Op.getCImm()->isZero();
2636     if (Op.isFPImm())
2637       return !Op.getFPImm()->isZero();
2638     return false;
2639   };
2640 
2641   auto IsZero = [] (const MachineOperand &Op) {
2642     if (Op.isGlobal() || Op.isBlockAddress())
2643       return false;
2644     if (Op.isImm())
2645       return Op.getImm() == 0;
2646     if (Op.isCImm())
2647       return Op.getCImm()->isZero();
2648     if (Op.isFPImm())
2649       return Op.getFPImm()->isZero();
2650     return false;
2651   };
2652 
2653   // If the source register is known to be 0 or non-0, the comparison can
2654   // be folded to a load of a constant.
2655   if (KnownZ || KnownNZ) {
2656     assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2657     return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2658   }
2659 
2660   // Special case: if the compare comes from a C2_muxii, then we know the
2661   // two possible constants that can be the source value.
2662   MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2663   if (!InpDef)
2664     return false;
2665   if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2666     MachineOperand &Src1 = InpDef->getOperand(2);
2667     MachineOperand &Src2 = InpDef->getOperand(3);
2668     // Check if both are non-zero.
2669     bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2670     if (KnownNZ1 && KnownNZ2)
2671       return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2672     // Check if both are zero.
2673     bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2674     if (KnownZ1 && KnownZ2)
2675       return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2676 
2677     // If for both operands we know that they are either 0 or non-0,
2678     // replace the comparison with a C2_muxii, using the same predicate
2679     // register, but with operands substituted with 0/1 accordingly.
2680     if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2681       unsigned NewR = MRI.createVirtualRegister(FRC);
2682       BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2683         .addReg(InpDef->getOperand(1).getReg())
2684         .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2685         .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2686       HBS::replaceReg(RD.Reg, NewR, MRI);
2687       // Create a new cell with only the least significant bit unknown.
2688       BitTracker::RegisterCell NewRC(W);
2689       NewRC[0] = BitTracker::BitValue::self();
2690       NewRC.fill(1, W, BitTracker::BitValue::Zero);
2691       BT.put(BitTracker::RegisterRef(NewR), NewRC);
2692       return true;
2693     }
2694   }
2695 
2696   return false;
2697 }
2698 
2699 bool BitSimplification::processBlock(MachineBasicBlock &B,
2700       const RegisterSet &AVs) {
2701   if (!BT.reached(&B))
2702     return false;
2703   bool Changed = false;
2704   RegisterSet AVB = AVs;
2705   RegisterSet Defs;
2706 
2707   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2708     MachineInstr *MI = &*I;
2709     Defs.clear();
2710     HBS::getInstrDefs(*MI, Defs);
2711 
2712     unsigned Opc = MI->getOpcode();
2713     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2714       continue;
2715 
2716     if (MI->mayStore()) {
2717       bool T = genStoreUpperHalf(MI);
2718       T = T || genStoreImmediate(MI);
2719       Changed |= T;
2720       continue;
2721     }
2722 
2723     if (Defs.count() != 1)
2724       continue;
2725     const MachineOperand &Op0 = MI->getOperand(0);
2726     if (!Op0.isReg() || !Op0.isDef())
2727       continue;
2728     BitTracker::RegisterRef RD = Op0;
2729     if (!BT.has(RD.Reg))
2730       continue;
2731     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2732     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2733 
2734     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2735       bool T = genPackhl(MI, RD, RC);
2736       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2737       Changed |= T;
2738       continue;
2739     }
2740 
2741     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2742       bool T = genBitSplit(MI, RD, RC, AVB);
2743       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2744       T = T || genExtractHalf(MI, RD, RC);
2745       T = T || genCombineHalf(MI, RD, RC);
2746       T = T || genExtractLow(MI, RD, RC);
2747       T = T || simplifyRCmp0(MI, RD);
2748       Changed |= T;
2749       continue;
2750     }
2751 
2752     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2753       bool T = simplifyTstbit(MI, RD, RC);
2754       Changed |= T;
2755       continue;
2756     }
2757   }
2758   return Changed;
2759 }
2760 
2761 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2762   if (skipFunction(MF.getFunction()))
2763     return false;
2764 
2765   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2766   auto &HRI = *HST.getRegisterInfo();
2767   auto &HII = *HST.getInstrInfo();
2768 
2769   MDT = &getAnalysis<MachineDominatorTree>();
2770   MachineRegisterInfo &MRI = MF.getRegInfo();
2771   bool Changed;
2772 
2773   Changed = DeadCodeElimination(MF, *MDT).run();
2774 
2775   const HexagonEvaluator HE(HRI, MRI, HII, MF);
2776   BitTracker BT(HE, MF);
2777   LLVM_DEBUG(BT.trace(true));
2778   BT.run();
2779 
2780   MachineBasicBlock &Entry = MF.front();
2781 
2782   RegisterSet AIG;  // Available registers for IG.
2783   ConstGeneration ImmG(BT, HII, MRI);
2784   Changed |= visitBlock(Entry, ImmG, AIG);
2785 
2786   RegisterSet ARE;  // Available registers for RIE.
2787   RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2788   bool Ried = visitBlock(Entry, RIE, ARE);
2789   if (Ried) {
2790     Changed = true;
2791     BT.run();
2792   }
2793 
2794   RegisterSet ACG;  // Available registers for CG.
2795   CopyGeneration CopyG(BT, HII, HRI, MRI);
2796   Changed |= visitBlock(Entry, CopyG, ACG);
2797 
2798   RegisterSet ACP;  // Available registers for CP.
2799   CopyPropagation CopyP(HRI, MRI);
2800   Changed |= visitBlock(Entry, CopyP, ACP);
2801 
2802   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2803 
2804   BT.run();
2805   RegisterSet ABS;  // Available registers for BS.
2806   BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2807   Changed |= visitBlock(Entry, BitS, ABS);
2808 
2809   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2810 
2811   if (Changed) {
2812     for (auto &B : MF)
2813       for (auto &I : B)
2814         I.clearKillInfo();
2815     DeadCodeElimination(MF, *MDT).run();
2816   }
2817   return Changed;
2818 }
2819 
2820 // Recognize loops where the code at the end of the loop matches the code
2821 // before the entry of the loop, and the matching code is such that is can
2822 // be simplified. This pass relies on the bit simplification above and only
2823 // prepares code in a way that can be handled by the bit simplifcation.
2824 //
2825 // This is the motivating testcase (and explanation):
2826 //
2827 // {
2828 //   loop0(.LBB0_2, r1)      // %for.body.preheader
2829 //   r5:4 = memd(r0++#8)
2830 // }
2831 // {
2832 //   r3 = lsr(r4, #16)
2833 //   r7:6 = combine(r5, r5)
2834 // }
2835 // {
2836 //   r3 = insert(r5, #16, #16)
2837 //   r7:6 = vlsrw(r7:6, #16)
2838 // }
2839 // .LBB0_2:
2840 // {
2841 //   memh(r2+#4) = r5
2842 //   memh(r2+#6) = r6            # R6 is really R5.H
2843 // }
2844 // {
2845 //   r2 = add(r2, #8)
2846 //   memh(r2+#0) = r4
2847 //   memh(r2+#2) = r3            # R3 is really R4.H
2848 // }
2849 // {
2850 //   r5:4 = memd(r0++#8)
2851 // }
2852 // {                             # "Shuffling" code that sets up R3 and R6
2853 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2854 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2855 // }                             # the stores if the code was at the beginning
2856 // {                             # of the loop iteration. Since the same code
2857 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2858 //   r7:6 = vlsrw(r7:6, #16)     # there.
2859 // }:endloop0
2860 //
2861 //
2862 // The outcome:
2863 //
2864 // {
2865 //   loop0(.LBB0_2, r1)
2866 //   r5:4 = memd(r0++#8)
2867 // }
2868 // .LBB0_2:
2869 // {
2870 //   memh(r2+#4) = r5
2871 //   memh(r2+#6) = r5.h
2872 // }
2873 // {
2874 //   r2 = add(r2, #8)
2875 //   memh(r2+#0) = r4
2876 //   memh(r2+#2) = r4.h
2877 // }
2878 // {
2879 //   r5:4 = memd(r0++#8)
2880 // }:endloop0
2881 
2882 namespace llvm {
2883 
2884   FunctionPass *createHexagonLoopRescheduling();
2885   void initializeHexagonLoopReschedulingPass(PassRegistry&);
2886 
2887 } // end namespace llvm
2888 
2889 namespace {
2890 
2891   class HexagonLoopRescheduling : public MachineFunctionPass {
2892   public:
2893     static char ID;
2894 
2895     HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2896       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2897     }
2898 
2899     bool runOnMachineFunction(MachineFunction &MF) override;
2900 
2901   private:
2902     const HexagonInstrInfo *HII = nullptr;
2903     const HexagonRegisterInfo *HRI = nullptr;
2904     MachineRegisterInfo *MRI = nullptr;
2905     BitTracker *BTP = nullptr;
2906 
2907     struct LoopCand {
2908       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2909             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2910 
2911       MachineBasicBlock *LB, *PB, *EB;
2912     };
2913     using InstrList = std::vector<MachineInstr *>;
2914     struct InstrGroup {
2915       BitTracker::RegisterRef Inp, Out;
2916       InstrList Ins;
2917     };
2918     struct PhiInfo {
2919       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2920 
2921       unsigned DefR;
2922       BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2923       MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
2924     };
2925 
2926     static unsigned getDefReg(const MachineInstr *MI);
2927     bool isConst(unsigned Reg) const;
2928     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2929     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2930     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2931     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2932         unsigned &InpR2) const;
2933     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2934         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2935     bool processLoop(LoopCand &C);
2936   };
2937 
2938 } // end anonymous namespace
2939 
2940 char HexagonLoopRescheduling::ID = 0;
2941 
2942 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2943   "Hexagon Loop Rescheduling", false, false)
2944 
2945 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2946       MachineBasicBlock &B) {
2947   DefR = HexagonLoopRescheduling::getDefReg(&P);
2948   LB = &B;
2949   PB = nullptr;
2950   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2951     const MachineOperand &OpB = P.getOperand(i+1);
2952     if (OpB.getMBB() == &B) {
2953       LR = P.getOperand(i);
2954       continue;
2955     }
2956     PB = OpB.getMBB();
2957     PR = P.getOperand(i);
2958   }
2959 }
2960 
2961 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2962   RegisterSet Defs;
2963   HBS::getInstrDefs(*MI, Defs);
2964   if (Defs.count() != 1)
2965     return 0;
2966   return Defs.find_first();
2967 }
2968 
2969 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2970   if (!BTP->has(Reg))
2971     return false;
2972   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2973   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2974     const BitTracker::BitValue &V = RC[i];
2975     if (!V.is(0) && !V.is(1))
2976       return false;
2977   }
2978   return true;
2979 }
2980 
2981 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2982       unsigned DefR) const {
2983   unsigned Opc = MI->getOpcode();
2984   switch (Opc) {
2985     case TargetOpcode::COPY:
2986     case Hexagon::S2_lsr_i_r:
2987     case Hexagon::S2_asr_i_r:
2988     case Hexagon::S2_asl_i_r:
2989     case Hexagon::S2_lsr_i_p:
2990     case Hexagon::S2_asr_i_p:
2991     case Hexagon::S2_asl_i_p:
2992     case Hexagon::S2_insert:
2993     case Hexagon::A2_or:
2994     case Hexagon::A2_orp:
2995     case Hexagon::A2_and:
2996     case Hexagon::A2_andp:
2997     case Hexagon::A2_combinew:
2998     case Hexagon::A4_combineri:
2999     case Hexagon::A4_combineir:
3000     case Hexagon::A2_combineii:
3001     case Hexagon::A4_combineii:
3002     case Hexagon::A2_combine_ll:
3003     case Hexagon::A2_combine_lh:
3004     case Hexagon::A2_combine_hl:
3005     case Hexagon::A2_combine_hh:
3006       return true;
3007   }
3008   return false;
3009 }
3010 
3011 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3012       unsigned InpR) const {
3013   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3014     const MachineOperand &Op = MI->getOperand(i);
3015     if (!Op.isReg())
3016       continue;
3017     if (Op.getReg() == InpR)
3018       return i == n-1;
3019   }
3020   return false;
3021 }
3022 
3023 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3024   if (!BTP->has(OutR) || !BTP->has(InpR))
3025     return false;
3026   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3027   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3028     const BitTracker::BitValue &V = OutC[i];
3029     if (V.Type != BitTracker::BitValue::Ref)
3030       continue;
3031     if (V.RefI.Reg != InpR)
3032       return false;
3033   }
3034   return true;
3035 }
3036 
3037 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3038       unsigned OutR2, unsigned &InpR2) const {
3039   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3040     return false;
3041   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3042   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3043   unsigned W = OutC1.width();
3044   unsigned MatchR = 0;
3045   if (W != OutC2.width())
3046     return false;
3047   for (unsigned i = 0; i < W; ++i) {
3048     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3049     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3050       return false;
3051     if (V1.Type != BitTracker::BitValue::Ref)
3052       continue;
3053     if (V1.RefI.Pos != V2.RefI.Pos)
3054       return false;
3055     if (V1.RefI.Reg != InpR1)
3056       return false;
3057     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3058       return false;
3059     if (!MatchR)
3060       MatchR = V2.RefI.Reg;
3061     else if (V2.RefI.Reg != MatchR)
3062       return false;
3063   }
3064   InpR2 = MatchR;
3065   return true;
3066 }
3067 
3068 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3069       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3070       unsigned NewPredR) {
3071   DenseMap<unsigned,unsigned> RegMap;
3072 
3073   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3074   unsigned PhiR = MRI->createVirtualRegister(PhiRC);
3075   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3076     .addReg(NewPredR)
3077     .addMBB(&PB)
3078     .addReg(G.Inp.Reg)
3079     .addMBB(&LB);
3080   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3081 
3082   for (unsigned i = G.Ins.size(); i > 0; --i) {
3083     const MachineInstr *SI = G.Ins[i-1];
3084     unsigned DR = getDefReg(SI);
3085     const TargetRegisterClass *RC = MRI->getRegClass(DR);
3086     unsigned NewDR = MRI->createVirtualRegister(RC);
3087     DebugLoc DL = SI->getDebugLoc();
3088 
3089     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3090     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3091       const MachineOperand &Op = SI->getOperand(j);
3092       if (!Op.isReg()) {
3093         MIB.add(Op);
3094         continue;
3095       }
3096       if (!Op.isUse())
3097         continue;
3098       unsigned UseR = RegMap[Op.getReg()];
3099       MIB.addReg(UseR, 0, Op.getSubReg());
3100     }
3101     RegMap.insert(std::make_pair(DR, NewDR));
3102   }
3103 
3104   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3105 }
3106 
3107 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3108   LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3109                     << "\n");
3110   std::vector<PhiInfo> Phis;
3111   for (auto &I : *C.LB) {
3112     if (!I.isPHI())
3113       break;
3114     unsigned PR = getDefReg(&I);
3115     if (isConst(PR))
3116       continue;
3117     bool BadUse = false, GoodUse = false;
3118     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3119       MachineInstr *UseI = UI->getParent();
3120       if (UseI->getParent() != C.LB) {
3121         BadUse = true;
3122         break;
3123       }
3124       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3125         GoodUse = true;
3126     }
3127     if (BadUse || !GoodUse)
3128       continue;
3129 
3130     Phis.push_back(PhiInfo(I, *C.LB));
3131   }
3132 
3133   LLVM_DEBUG({
3134     dbgs() << "Phis: {";
3135     for (auto &I : Phis) {
3136       dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3137              << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3138              << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3139              << I.LB->getNumber() << ')';
3140     }
3141     dbgs() << " }\n";
3142   });
3143 
3144   if (Phis.empty())
3145     return false;
3146 
3147   bool Changed = false;
3148   InstrList ShufIns;
3149 
3150   // Go backwards in the block: for each bit shuffling instruction, check
3151   // if that instruction could potentially be moved to the front of the loop:
3152   // the output of the loop cannot be used in a non-shuffling instruction
3153   // in this loop.
3154   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3155     if (I->isTerminator())
3156       continue;
3157     if (I->isPHI())
3158       break;
3159 
3160     RegisterSet Defs;
3161     HBS::getInstrDefs(*I, Defs);
3162     if (Defs.count() != 1)
3163       continue;
3164     unsigned DefR = Defs.find_first();
3165     if (!TargetRegisterInfo::isVirtualRegister(DefR))
3166       continue;
3167     if (!isBitShuffle(&*I, DefR))
3168       continue;
3169 
3170     bool BadUse = false;
3171     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3172       MachineInstr *UseI = UI->getParent();
3173       if (UseI->getParent() == C.LB) {
3174         if (UseI->isPHI()) {
3175           // If the use is in a phi node in this loop, then it should be
3176           // the value corresponding to the back edge.
3177           unsigned Idx = UI.getOperandNo();
3178           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3179             BadUse = true;
3180         } else {
3181           auto F = find(ShufIns, UseI);
3182           if (F == ShufIns.end())
3183             BadUse = true;
3184         }
3185       } else {
3186         // There is a use outside of the loop, but there is no epilog block
3187         // suitable for a copy-out.
3188         if (C.EB == nullptr)
3189           BadUse = true;
3190       }
3191       if (BadUse)
3192         break;
3193     }
3194 
3195     if (BadUse)
3196       continue;
3197     ShufIns.push_back(&*I);
3198   }
3199 
3200   // Partition the list of shuffling instructions into instruction groups,
3201   // where each group has to be moved as a whole (i.e. a group is a chain of
3202   // dependent instructions). A group produces a single live output register,
3203   // which is meant to be the input of the loop phi node (although this is
3204   // not checked here yet). It also uses a single register as its input,
3205   // which is some value produced in the loop body. After moving the group
3206   // to the beginning of the loop, that input register would need to be
3207   // the loop-carried register (through a phi node) instead of the (currently
3208   // loop-carried) output register.
3209   using InstrGroupList = std::vector<InstrGroup>;
3210   InstrGroupList Groups;
3211 
3212   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3213     MachineInstr *SI = ShufIns[i];
3214     if (SI == nullptr)
3215       continue;
3216 
3217     InstrGroup G;
3218     G.Ins.push_back(SI);
3219     G.Out.Reg = getDefReg(SI);
3220     RegisterSet Inputs;
3221     HBS::getInstrUses(*SI, Inputs);
3222 
3223     for (unsigned j = i+1; j < n; ++j) {
3224       MachineInstr *MI = ShufIns[j];
3225       if (MI == nullptr)
3226         continue;
3227       RegisterSet Defs;
3228       HBS::getInstrDefs(*MI, Defs);
3229       // If this instruction does not define any pending inputs, skip it.
3230       if (!Defs.intersects(Inputs))
3231         continue;
3232       // Otherwise, add it to the current group and remove the inputs that
3233       // are defined by MI.
3234       G.Ins.push_back(MI);
3235       Inputs.remove(Defs);
3236       // Then add all registers used by MI.
3237       HBS::getInstrUses(*MI, Inputs);
3238       ShufIns[j] = nullptr;
3239     }
3240 
3241     // Only add a group if it requires at most one register.
3242     if (Inputs.count() > 1)
3243       continue;
3244     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3245       return G.Out.Reg == P.LR.Reg;
3246     };
3247     if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3248       continue;
3249 
3250     G.Inp.Reg = Inputs.find_first();
3251     Groups.push_back(G);
3252   }
3253 
3254   LLVM_DEBUG({
3255     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3256       InstrGroup &G = Groups[i];
3257       dbgs() << "Group[" << i << "] inp: "
3258              << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3259              << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3260       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3261         dbgs() << "  " << *G.Ins[j];
3262     }
3263   });
3264 
3265   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3266     InstrGroup &G = Groups[i];
3267     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3268       continue;
3269     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3270       return G.Out.Reg == P.LR.Reg;
3271     };
3272     auto F = llvm::find_if(Phis, LoopInpEq);
3273     if (F == Phis.end())
3274       continue;
3275     unsigned PrehR = 0;
3276     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3277       const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3278       unsigned Opc = DefPrehR->getOpcode();
3279       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3280         continue;
3281       if (!DefPrehR->getOperand(1).isImm())
3282         continue;
3283       if (DefPrehR->getOperand(1).getImm() != 0)
3284         continue;
3285       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3286       if (RC != MRI->getRegClass(F->PR.Reg)) {
3287         PrehR = MRI->createVirtualRegister(RC);
3288         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3289                                                           : Hexagon::A2_tfrpi;
3290         auto T = C.PB->getFirstTerminator();
3291         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3292         BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3293           .addImm(0);
3294       } else {
3295         PrehR = F->PR.Reg;
3296       }
3297     }
3298     // isSameShuffle could match with PrehR being of a wider class than
3299     // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3300     // it would match for the input being a 32-bit register, and PrehR
3301     // being a 64-bit register (where the low 32 bits match). This could
3302     // be handled, but for now skip these cases.
3303     if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3304       continue;
3305     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3306     Changed = true;
3307   }
3308 
3309   return Changed;
3310 }
3311 
3312 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3313   if (skipFunction(MF.getFunction()))
3314     return false;
3315 
3316   auto &HST = MF.getSubtarget<HexagonSubtarget>();
3317   HII = HST.getInstrInfo();
3318   HRI = HST.getRegisterInfo();
3319   MRI = &MF.getRegInfo();
3320   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3321   BitTracker BT(HE, MF);
3322   LLVM_DEBUG(BT.trace(true));
3323   BT.run();
3324   BTP = &BT;
3325 
3326   std::vector<LoopCand> Cand;
3327 
3328   for (auto &B : MF) {
3329     if (B.pred_size() != 2 || B.succ_size() != 2)
3330       continue;
3331     MachineBasicBlock *PB = nullptr;
3332     bool IsLoop = false;
3333     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3334       if (*PI != &B)
3335         PB = *PI;
3336       else
3337         IsLoop = true;
3338     }
3339     if (!IsLoop)
3340       continue;
3341 
3342     MachineBasicBlock *EB = nullptr;
3343     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3344       if (*SI == &B)
3345         continue;
3346       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3347       // edge from B to EP is non-critical.
3348       if ((*SI)->pred_size() == 1)
3349         EB = *SI;
3350       break;
3351     }
3352 
3353     Cand.push_back(LoopCand(&B, PB, EB));
3354   }
3355 
3356   bool Changed = false;
3357   for (auto &C : Cand)
3358     Changed |= processLoop(C);
3359 
3360   return Changed;
3361 }
3362 
3363 //===----------------------------------------------------------------------===//
3364 //                         Public Constructor Functions
3365 //===----------------------------------------------------------------------===//
3366 
3367 FunctionPass *llvm::createHexagonLoopRescheduling() {
3368   return new HexagonLoopRescheduling();
3369 }
3370 
3371 FunctionPass *llvm::createHexagonBitSimplify() {
3372   return new HexagonBitSimplify();
3373 }
3374