1 //===- HexagonBitSimplify.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "BitTracker.h" 10 #include "HexagonBitTracker.h" 11 #include "HexagonInstrInfo.h" 12 #include "HexagonRegisterInfo.h" 13 #include "HexagonSubtarget.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/GraphTraits.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Compiler.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <limits> 43 #include <utility> 44 #include <vector> 45 46 #define DEBUG_TYPE "hexbit" 47 48 using namespace llvm; 49 50 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden, 51 cl::init(true), cl::desc("Preserve subregisters in tied operands")); 52 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden, 53 cl::init(true), cl::desc("Generate extract instructions")); 54 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden, 55 cl::init(true), cl::desc("Generate bitsplit instructions")); 56 57 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden, 58 cl::init(std::numeric_limits<unsigned>::max())); 59 static unsigned CountExtract = 0; 60 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden, 61 cl::init(std::numeric_limits<unsigned>::max())); 62 static unsigned CountBitSplit = 0; 63 64 namespace llvm { 65 66 void initializeHexagonBitSimplifyPass(PassRegistry& Registry); 67 FunctionPass *createHexagonBitSimplify(); 68 69 } // end namespace llvm 70 71 namespace { 72 73 // Set of virtual registers, based on BitVector. 74 struct RegisterSet : private BitVector { 75 RegisterSet() = default; 76 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} 77 RegisterSet(const RegisterSet &RS) = default; 78 79 using BitVector::clear; 80 using BitVector::count; 81 82 unsigned find_first() const { 83 int First = BitVector::find_first(); 84 if (First < 0) 85 return 0; 86 return x2v(First); 87 } 88 89 unsigned find_next(unsigned Prev) const { 90 int Next = BitVector::find_next(v2x(Prev)); 91 if (Next < 0) 92 return 0; 93 return x2v(Next); 94 } 95 96 RegisterSet &insert(unsigned R) { 97 unsigned Idx = v2x(R); 98 ensure(Idx); 99 return static_cast<RegisterSet&>(BitVector::set(Idx)); 100 } 101 RegisterSet &remove(unsigned R) { 102 unsigned Idx = v2x(R); 103 if (Idx >= size()) 104 return *this; 105 return static_cast<RegisterSet&>(BitVector::reset(Idx)); 106 } 107 108 RegisterSet &insert(const RegisterSet &Rs) { 109 return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); 110 } 111 RegisterSet &remove(const RegisterSet &Rs) { 112 return static_cast<RegisterSet&>(BitVector::reset(Rs)); 113 } 114 115 reference operator[](unsigned R) { 116 unsigned Idx = v2x(R); 117 ensure(Idx); 118 return BitVector::operator[](Idx); 119 } 120 bool operator[](unsigned R) const { 121 unsigned Idx = v2x(R); 122 assert(Idx < size()); 123 return BitVector::operator[](Idx); 124 } 125 bool has(unsigned R) const { 126 unsigned Idx = v2x(R); 127 if (Idx >= size()) 128 return false; 129 return BitVector::test(Idx); 130 } 131 132 bool empty() const { 133 return !BitVector::any(); 134 } 135 bool includes(const RegisterSet &Rs) const { 136 // A.BitVector::test(B) <=> A-B != {} 137 return !Rs.BitVector::test(*this); 138 } 139 bool intersects(const RegisterSet &Rs) const { 140 return BitVector::anyCommon(Rs); 141 } 142 143 private: 144 void ensure(unsigned Idx) { 145 if (size() <= Idx) 146 resize(std::max(Idx+1, 32U)); 147 } 148 149 static inline unsigned v2x(unsigned v) { 150 return TargetRegisterInfo::virtReg2Index(v); 151 } 152 153 static inline unsigned x2v(unsigned x) { 154 return TargetRegisterInfo::index2VirtReg(x); 155 } 156 }; 157 158 struct PrintRegSet { 159 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) 160 : RS(S), TRI(RI) {} 161 162 friend raw_ostream &operator<< (raw_ostream &OS, 163 const PrintRegSet &P); 164 165 private: 166 const RegisterSet &RS; 167 const TargetRegisterInfo *TRI; 168 }; 169 170 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) 171 LLVM_ATTRIBUTE_UNUSED; 172 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { 173 OS << '{'; 174 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) 175 OS << ' ' << printReg(R, P.TRI); 176 OS << " }"; 177 return OS; 178 } 179 180 class Transformation; 181 182 class HexagonBitSimplify : public MachineFunctionPass { 183 public: 184 static char ID; 185 186 HexagonBitSimplify() : MachineFunctionPass(ID) {} 187 188 StringRef getPassName() const override { 189 return "Hexagon bit simplification"; 190 } 191 192 void getAnalysisUsage(AnalysisUsage &AU) const override { 193 AU.addRequired<MachineDominatorTree>(); 194 AU.addPreserved<MachineDominatorTree>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 bool runOnMachineFunction(MachineFunction &MF) override; 199 200 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); 201 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); 202 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, 203 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); 204 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, 205 uint16_t W); 206 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, 207 uint16_t W, uint64_t &U); 208 static bool replaceReg(unsigned OldR, unsigned NewR, 209 MachineRegisterInfo &MRI); 210 static bool getSubregMask(const BitTracker::RegisterRef &RR, 211 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); 212 static bool replaceRegWithSub(unsigned OldR, unsigned NewR, 213 unsigned NewSR, MachineRegisterInfo &MRI); 214 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, 215 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); 216 static bool parseRegSequence(const MachineInstr &I, 217 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, 218 const MachineRegisterInfo &MRI); 219 220 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, 221 uint16_t Begin); 222 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, 223 uint16_t Begin, const HexagonInstrInfo &HII); 224 225 static const TargetRegisterClass *getFinalVRegClass( 226 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); 227 static bool isTransparentCopy(const BitTracker::RegisterRef &RD, 228 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); 229 230 private: 231 MachineDominatorTree *MDT = nullptr; 232 233 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); 234 static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, 235 unsigned NewSub = Hexagon::NoSubRegister); 236 }; 237 238 using HBS = HexagonBitSimplify; 239 240 // The purpose of this class is to provide a common facility to traverse 241 // the function top-down or bottom-up via the dominator tree, and keep 242 // track of the available registers. 243 class Transformation { 244 public: 245 bool TopDown; 246 247 Transformation(bool TD) : TopDown(TD) {} 248 virtual ~Transformation() = default; 249 250 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; 251 }; 252 253 } // end anonymous namespace 254 255 char HexagonBitSimplify::ID = 0; 256 257 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify", 258 "Hexagon bit simplification", false, false) 259 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 260 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify", 261 "Hexagon bit simplification", false, false) 262 263 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, 264 RegisterSet &AVs) { 265 bool Changed = false; 266 267 if (T.TopDown) 268 Changed = T.processBlock(B, AVs); 269 270 RegisterSet Defs; 271 for (auto &I : B) 272 getInstrDefs(I, Defs); 273 RegisterSet NewAVs = AVs; 274 NewAVs.insert(Defs); 275 276 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B))) 277 Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs); 278 279 if (!T.TopDown) 280 Changed |= T.processBlock(B, AVs); 281 282 return Changed; 283 } 284 285 // 286 // Utility functions: 287 // 288 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, 289 RegisterSet &Defs) { 290 for (auto &Op : MI.operands()) { 291 if (!Op.isReg() || !Op.isDef()) 292 continue; 293 unsigned R = Op.getReg(); 294 if (!TargetRegisterInfo::isVirtualRegister(R)) 295 continue; 296 Defs.insert(R); 297 } 298 } 299 300 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, 301 RegisterSet &Uses) { 302 for (auto &Op : MI.operands()) { 303 if (!Op.isReg() || !Op.isUse()) 304 continue; 305 unsigned R = Op.getReg(); 306 if (!TargetRegisterInfo::isVirtualRegister(R)) 307 continue; 308 Uses.insert(R); 309 } 310 } 311 312 // Check if all the bits in range [B, E) in both cells are equal. 313 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, 314 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, 315 uint16_t W) { 316 for (uint16_t i = 0; i < W; ++i) { 317 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. 318 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) 319 return false; 320 // Same for RC2[i]. 321 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) 322 return false; 323 if (RC1[B1+i] != RC2[B2+i]) 324 return false; 325 } 326 return true; 327 } 328 329 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, 330 uint16_t B, uint16_t W) { 331 assert(B < RC.width() && B+W <= RC.width()); 332 for (uint16_t i = B; i < B+W; ++i) 333 if (!RC[i].is(0)) 334 return false; 335 return true; 336 } 337 338 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, 339 uint16_t B, uint16_t W, uint64_t &U) { 340 assert(B < RC.width() && B+W <= RC.width()); 341 int64_t T = 0; 342 for (uint16_t i = B+W; i > B; --i) { 343 const BitTracker::BitValue &BV = RC[i-1]; 344 T <<= 1; 345 if (BV.is(1)) 346 T |= 1; 347 else if (!BV.is(0)) 348 return false; 349 } 350 U = T; 351 return true; 352 } 353 354 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, 355 MachineRegisterInfo &MRI) { 356 if (!TargetRegisterInfo::isVirtualRegister(OldR) || 357 !TargetRegisterInfo::isVirtualRegister(NewR)) 358 return false; 359 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); 360 decltype(End) NextI; 361 for (auto I = Begin; I != End; I = NextI) { 362 NextI = std::next(I); 363 I->setReg(NewR); 364 } 365 return Begin != End; 366 } 367 368 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, 369 unsigned NewSR, MachineRegisterInfo &MRI) { 370 if (!TargetRegisterInfo::isVirtualRegister(OldR) || 371 !TargetRegisterInfo::isVirtualRegister(NewR)) 372 return false; 373 if (hasTiedUse(OldR, MRI, NewSR)) 374 return false; 375 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); 376 decltype(End) NextI; 377 for (auto I = Begin; I != End; I = NextI) { 378 NextI = std::next(I); 379 I->setReg(NewR); 380 I->setSubReg(NewSR); 381 } 382 return Begin != End; 383 } 384 385 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, 386 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { 387 if (!TargetRegisterInfo::isVirtualRegister(OldR) || 388 !TargetRegisterInfo::isVirtualRegister(NewR)) 389 return false; 390 if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR)) 391 return false; 392 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); 393 decltype(End) NextI; 394 for (auto I = Begin; I != End; I = NextI) { 395 NextI = std::next(I); 396 if (I->getSubReg() != OldSR) 397 continue; 398 I->setReg(NewR); 399 I->setSubReg(NewSR); 400 } 401 return Begin != End; 402 } 403 404 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB 405 // of Sub in Reg, and set Width to the size of Sub in bits. Return true, 406 // if this succeeded, otherwise return false. 407 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, 408 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { 409 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); 410 if (RR.Sub == 0) { 411 Begin = 0; 412 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC); 413 return true; 414 } 415 416 Begin = 0; 417 418 switch (RC->getID()) { 419 case Hexagon::DoubleRegsRegClassID: 420 case Hexagon::HvxWRRegClassID: 421 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2; 422 if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi) 423 Begin = Width; 424 break; 425 default: 426 return false; 427 } 428 return true; 429 } 430 431 432 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high 433 // subregister. 434 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, 435 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, 436 const MachineRegisterInfo &MRI) { 437 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); 438 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); 439 auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg()); 440 auto &HRI = static_cast<const HexagonRegisterInfo&>( 441 *MRI.getTargetRegisterInfo()); 442 unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo); 443 unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi); 444 assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo)); 445 if (Sub1 == SubLo && Sub2 == SubHi) { 446 SL = I.getOperand(1); 447 SH = I.getOperand(3); 448 return true; 449 } 450 if (Sub1 == SubHi && Sub2 == SubLo) { 451 SH = I.getOperand(1); 452 SL = I.getOperand(3); 453 return true; 454 } 455 return false; 456 } 457 458 // All stores (except 64-bit stores) take a 32-bit register as the source 459 // of the value to be stored. If the instruction stores into a location 460 // that is shorter than 32 bits, some bits of the source register are not 461 // used. For each store instruction, calculate the set of used bits in 462 // the source register, and set appropriate bits in Bits. Return true if 463 // the bits are calculated, false otherwise. 464 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, 465 uint16_t Begin) { 466 using namespace Hexagon; 467 468 switch (Opc) { 469 // Store byte 470 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 471 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new 472 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 473 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 474 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 475 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 476 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new 477 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new 478 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new 479 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new 480 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 481 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new 482 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 483 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 484 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 485 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 486 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new 487 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new 488 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new 489 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new 490 case S4_storerb_ap: // memb(Re32=#U6)=Rt32 491 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new 492 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 493 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new 494 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 495 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new 496 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 497 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new 498 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 499 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new 500 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 501 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new 502 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 503 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new 504 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 505 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 506 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 507 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 508 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new 509 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new 510 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new 511 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new 512 case S2_storerbgp: // memb(gp+#u16:0)=Rt32 513 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new 514 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 515 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 516 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 517 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 518 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new 519 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new 520 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new 521 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new 522 Bits.set(Begin, Begin+8); 523 return true; 524 525 // Store low half 526 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 527 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new 528 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 529 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 530 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 531 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 532 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new 533 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new 534 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new 535 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new 536 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 537 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new 538 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 539 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 540 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 541 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 542 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new 543 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new 544 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new 545 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new 546 case S4_storerh_ap: // memh(Re32=#U6)=Rt32 547 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new 548 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 549 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new 550 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 551 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new 552 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 553 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new 554 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 555 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new 556 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 557 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new 558 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 559 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 560 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 561 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 562 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 563 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new 564 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new 565 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new 566 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new 567 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new 568 case S2_storerhgp: // memh(gp+#u16:1)=Rt32 569 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new 570 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 571 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 572 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 573 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 574 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new 575 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new 576 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new 577 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new 578 Bits.set(Begin, Begin+16); 579 return true; 580 581 // Store high half 582 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 583 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 584 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 585 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 586 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 587 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 588 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 589 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 590 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 591 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 592 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 593 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 594 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 595 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 596 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 597 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 598 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 599 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 600 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 601 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 602 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 603 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 604 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 605 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 606 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 607 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 608 Bits.set(Begin+16, Begin+32); 609 return true; 610 } 611 612 return false; 613 } 614 615 // For an instruction with opcode Opc, calculate the set of bits that it 616 // uses in a register in operand OpN. This only calculates the set of used 617 // bits for cases where it does not depend on any operands (as is the case 618 // in shifts, for example). For concrete instructions from a program, the 619 // operand may be a subregister of a larger register, while Bits would 620 // correspond to the larger register in its entirety. Because of that, 621 // the parameter Begin can be used to indicate which bit of Bits should be 622 // considered the LSB of the operand. 623 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, 624 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { 625 using namespace Hexagon; 626 627 const MCInstrDesc &D = HII.get(Opc); 628 if (D.mayStore()) { 629 if (OpN == D.getNumOperands()-1) 630 return getUsedBitsInStore(Opc, Bits, Begin); 631 return false; 632 } 633 634 switch (Opc) { 635 // One register source. Used bits: R1[0-7]. 636 case A2_sxtb: 637 case A2_zxtb: 638 case A4_cmpbeqi: 639 case A4_cmpbgti: 640 case A4_cmpbgtui: 641 if (OpN == 1) { 642 Bits.set(Begin, Begin+8); 643 return true; 644 } 645 break; 646 647 // One register source. Used bits: R1[0-15]. 648 case A2_aslh: 649 case A2_sxth: 650 case A2_zxth: 651 case A4_cmpheqi: 652 case A4_cmphgti: 653 case A4_cmphgtui: 654 if (OpN == 1) { 655 Bits.set(Begin, Begin+16); 656 return true; 657 } 658 break; 659 660 // One register source. Used bits: R1[16-31]. 661 case A2_asrh: 662 if (OpN == 1) { 663 Bits.set(Begin+16, Begin+32); 664 return true; 665 } 666 break; 667 668 // Two register sources. Used bits: R1[0-7], R2[0-7]. 669 case A4_cmpbeq: 670 case A4_cmpbgt: 671 case A4_cmpbgtu: 672 if (OpN == 1) { 673 Bits.set(Begin, Begin+8); 674 return true; 675 } 676 break; 677 678 // Two register sources. Used bits: R1[0-15], R2[0-15]. 679 case A4_cmpheq: 680 case A4_cmphgt: 681 case A4_cmphgtu: 682 case A2_addh_h16_ll: 683 case A2_addh_h16_sat_ll: 684 case A2_addh_l16_ll: 685 case A2_addh_l16_sat_ll: 686 case A2_combine_ll: 687 case A2_subh_h16_ll: 688 case A2_subh_h16_sat_ll: 689 case A2_subh_l16_ll: 690 case A2_subh_l16_sat_ll: 691 case M2_mpy_acc_ll_s0: 692 case M2_mpy_acc_ll_s1: 693 case M2_mpy_acc_sat_ll_s0: 694 case M2_mpy_acc_sat_ll_s1: 695 case M2_mpy_ll_s0: 696 case M2_mpy_ll_s1: 697 case M2_mpy_nac_ll_s0: 698 case M2_mpy_nac_ll_s1: 699 case M2_mpy_nac_sat_ll_s0: 700 case M2_mpy_nac_sat_ll_s1: 701 case M2_mpy_rnd_ll_s0: 702 case M2_mpy_rnd_ll_s1: 703 case M2_mpy_sat_ll_s0: 704 case M2_mpy_sat_ll_s1: 705 case M2_mpy_sat_rnd_ll_s0: 706 case M2_mpy_sat_rnd_ll_s1: 707 case M2_mpyd_acc_ll_s0: 708 case M2_mpyd_acc_ll_s1: 709 case M2_mpyd_ll_s0: 710 case M2_mpyd_ll_s1: 711 case M2_mpyd_nac_ll_s0: 712 case M2_mpyd_nac_ll_s1: 713 case M2_mpyd_rnd_ll_s0: 714 case M2_mpyd_rnd_ll_s1: 715 case M2_mpyu_acc_ll_s0: 716 case M2_mpyu_acc_ll_s1: 717 case M2_mpyu_ll_s0: 718 case M2_mpyu_ll_s1: 719 case M2_mpyu_nac_ll_s0: 720 case M2_mpyu_nac_ll_s1: 721 case M2_mpyud_acc_ll_s0: 722 case M2_mpyud_acc_ll_s1: 723 case M2_mpyud_ll_s0: 724 case M2_mpyud_ll_s1: 725 case M2_mpyud_nac_ll_s0: 726 case M2_mpyud_nac_ll_s1: 727 if (OpN == 1 || OpN == 2) { 728 Bits.set(Begin, Begin+16); 729 return true; 730 } 731 break; 732 733 // Two register sources. Used bits: R1[0-15], R2[16-31]. 734 case A2_addh_h16_lh: 735 case A2_addh_h16_sat_lh: 736 case A2_combine_lh: 737 case A2_subh_h16_lh: 738 case A2_subh_h16_sat_lh: 739 case M2_mpy_acc_lh_s0: 740 case M2_mpy_acc_lh_s1: 741 case M2_mpy_acc_sat_lh_s0: 742 case M2_mpy_acc_sat_lh_s1: 743 case M2_mpy_lh_s0: 744 case M2_mpy_lh_s1: 745 case M2_mpy_nac_lh_s0: 746 case M2_mpy_nac_lh_s1: 747 case M2_mpy_nac_sat_lh_s0: 748 case M2_mpy_nac_sat_lh_s1: 749 case M2_mpy_rnd_lh_s0: 750 case M2_mpy_rnd_lh_s1: 751 case M2_mpy_sat_lh_s0: 752 case M2_mpy_sat_lh_s1: 753 case M2_mpy_sat_rnd_lh_s0: 754 case M2_mpy_sat_rnd_lh_s1: 755 case M2_mpyd_acc_lh_s0: 756 case M2_mpyd_acc_lh_s1: 757 case M2_mpyd_lh_s0: 758 case M2_mpyd_lh_s1: 759 case M2_mpyd_nac_lh_s0: 760 case M2_mpyd_nac_lh_s1: 761 case M2_mpyd_rnd_lh_s0: 762 case M2_mpyd_rnd_lh_s1: 763 case M2_mpyu_acc_lh_s0: 764 case M2_mpyu_acc_lh_s1: 765 case M2_mpyu_lh_s0: 766 case M2_mpyu_lh_s1: 767 case M2_mpyu_nac_lh_s0: 768 case M2_mpyu_nac_lh_s1: 769 case M2_mpyud_acc_lh_s0: 770 case M2_mpyud_acc_lh_s1: 771 case M2_mpyud_lh_s0: 772 case M2_mpyud_lh_s1: 773 case M2_mpyud_nac_lh_s0: 774 case M2_mpyud_nac_lh_s1: 775 // These four are actually LH. 776 case A2_addh_l16_hl: 777 case A2_addh_l16_sat_hl: 778 case A2_subh_l16_hl: 779 case A2_subh_l16_sat_hl: 780 if (OpN == 1) { 781 Bits.set(Begin, Begin+16); 782 return true; 783 } 784 if (OpN == 2) { 785 Bits.set(Begin+16, Begin+32); 786 return true; 787 } 788 break; 789 790 // Two register sources, used bits: R1[16-31], R2[0-15]. 791 case A2_addh_h16_hl: 792 case A2_addh_h16_sat_hl: 793 case A2_combine_hl: 794 case A2_subh_h16_hl: 795 case A2_subh_h16_sat_hl: 796 case M2_mpy_acc_hl_s0: 797 case M2_mpy_acc_hl_s1: 798 case M2_mpy_acc_sat_hl_s0: 799 case M2_mpy_acc_sat_hl_s1: 800 case M2_mpy_hl_s0: 801 case M2_mpy_hl_s1: 802 case M2_mpy_nac_hl_s0: 803 case M2_mpy_nac_hl_s1: 804 case M2_mpy_nac_sat_hl_s0: 805 case M2_mpy_nac_sat_hl_s1: 806 case M2_mpy_rnd_hl_s0: 807 case M2_mpy_rnd_hl_s1: 808 case M2_mpy_sat_hl_s0: 809 case M2_mpy_sat_hl_s1: 810 case M2_mpy_sat_rnd_hl_s0: 811 case M2_mpy_sat_rnd_hl_s1: 812 case M2_mpyd_acc_hl_s0: 813 case M2_mpyd_acc_hl_s1: 814 case M2_mpyd_hl_s0: 815 case M2_mpyd_hl_s1: 816 case M2_mpyd_nac_hl_s0: 817 case M2_mpyd_nac_hl_s1: 818 case M2_mpyd_rnd_hl_s0: 819 case M2_mpyd_rnd_hl_s1: 820 case M2_mpyu_acc_hl_s0: 821 case M2_mpyu_acc_hl_s1: 822 case M2_mpyu_hl_s0: 823 case M2_mpyu_hl_s1: 824 case M2_mpyu_nac_hl_s0: 825 case M2_mpyu_nac_hl_s1: 826 case M2_mpyud_acc_hl_s0: 827 case M2_mpyud_acc_hl_s1: 828 case M2_mpyud_hl_s0: 829 case M2_mpyud_hl_s1: 830 case M2_mpyud_nac_hl_s0: 831 case M2_mpyud_nac_hl_s1: 832 if (OpN == 1) { 833 Bits.set(Begin+16, Begin+32); 834 return true; 835 } 836 if (OpN == 2) { 837 Bits.set(Begin, Begin+16); 838 return true; 839 } 840 break; 841 842 // Two register sources, used bits: R1[16-31], R2[16-31]. 843 case A2_addh_h16_hh: 844 case A2_addh_h16_sat_hh: 845 case A2_combine_hh: 846 case A2_subh_h16_hh: 847 case A2_subh_h16_sat_hh: 848 case M2_mpy_acc_hh_s0: 849 case M2_mpy_acc_hh_s1: 850 case M2_mpy_acc_sat_hh_s0: 851 case M2_mpy_acc_sat_hh_s1: 852 case M2_mpy_hh_s0: 853 case M2_mpy_hh_s1: 854 case M2_mpy_nac_hh_s0: 855 case M2_mpy_nac_hh_s1: 856 case M2_mpy_nac_sat_hh_s0: 857 case M2_mpy_nac_sat_hh_s1: 858 case M2_mpy_rnd_hh_s0: 859 case M2_mpy_rnd_hh_s1: 860 case M2_mpy_sat_hh_s0: 861 case M2_mpy_sat_hh_s1: 862 case M2_mpy_sat_rnd_hh_s0: 863 case M2_mpy_sat_rnd_hh_s1: 864 case M2_mpyd_acc_hh_s0: 865 case M2_mpyd_acc_hh_s1: 866 case M2_mpyd_hh_s0: 867 case M2_mpyd_hh_s1: 868 case M2_mpyd_nac_hh_s0: 869 case M2_mpyd_nac_hh_s1: 870 case M2_mpyd_rnd_hh_s0: 871 case M2_mpyd_rnd_hh_s1: 872 case M2_mpyu_acc_hh_s0: 873 case M2_mpyu_acc_hh_s1: 874 case M2_mpyu_hh_s0: 875 case M2_mpyu_hh_s1: 876 case M2_mpyu_nac_hh_s0: 877 case M2_mpyu_nac_hh_s1: 878 case M2_mpyud_acc_hh_s0: 879 case M2_mpyud_acc_hh_s1: 880 case M2_mpyud_hh_s0: 881 case M2_mpyud_hh_s1: 882 case M2_mpyud_nac_hh_s0: 883 case M2_mpyud_nac_hh_s1: 884 if (OpN == 1 || OpN == 2) { 885 Bits.set(Begin+16, Begin+32); 886 return true; 887 } 888 break; 889 } 890 891 return false; 892 } 893 894 // Calculate the register class that matches Reg:Sub. For example, if 895 // %1 is a double register, then %1:isub_hi would match the "int" 896 // register class. 897 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( 898 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { 899 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 900 return nullptr; 901 auto *RC = MRI.getRegClass(RR.Reg); 902 if (RR.Sub == 0) 903 return RC; 904 auto &HRI = static_cast<const HexagonRegisterInfo&>( 905 *MRI.getTargetRegisterInfo()); 906 907 auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void { 908 (void)HRI; 909 assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) || 910 Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi)); 911 }; 912 913 switch (RC->getID()) { 914 case Hexagon::DoubleRegsRegClassID: 915 VerifySR(RC, RR.Sub); 916 return &Hexagon::IntRegsRegClass; 917 case Hexagon::HvxWRRegClassID: 918 VerifySR(RC, RR.Sub); 919 return &Hexagon::HvxVRRegClass; 920 } 921 return nullptr; 922 } 923 924 // Check if RD could be replaced with RS at any possible use of RD. 925 // For example a predicate register cannot be replaced with a integer 926 // register, but a 64-bit register with a subregister can be replaced 927 // with a 32-bit register. 928 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, 929 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { 930 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || 931 !TargetRegisterInfo::isVirtualRegister(RS.Reg)) 932 return false; 933 // Return false if one (or both) classes are nullptr. 934 auto *DRC = getFinalVRegClass(RD, MRI); 935 if (!DRC) 936 return false; 937 938 return DRC == getFinalVRegClass(RS, MRI); 939 } 940 941 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, 942 unsigned NewSub) { 943 if (!PreserveTiedOps) 944 return false; 945 return llvm::any_of(MRI.use_operands(Reg), 946 [NewSub] (const MachineOperand &Op) -> bool { 947 return Op.getSubReg() != NewSub && Op.isTied(); 948 }); 949 } 950 951 namespace { 952 953 class DeadCodeElimination { 954 public: 955 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) 956 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), 957 MDT(mdt), MRI(mf.getRegInfo()) {} 958 959 bool run() { 960 return runOnNode(MDT.getRootNode()); 961 } 962 963 private: 964 bool isDead(unsigned R) const; 965 bool runOnNode(MachineDomTreeNode *N); 966 967 MachineFunction &MF; 968 const HexagonInstrInfo &HII; 969 MachineDominatorTree &MDT; 970 MachineRegisterInfo &MRI; 971 }; 972 973 } // end anonymous namespace 974 975 bool DeadCodeElimination::isDead(unsigned R) const { 976 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { 977 MachineInstr *UseI = I->getParent(); 978 if (UseI->isDebugValue()) 979 continue; 980 if (UseI->isPHI()) { 981 assert(!UseI->getOperand(0).getSubReg()); 982 unsigned DR = UseI->getOperand(0).getReg(); 983 if (DR == R) 984 continue; 985 } 986 return false; 987 } 988 return true; 989 } 990 991 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { 992 bool Changed = false; 993 994 for (auto *DTN : children<MachineDomTreeNode*>(N)) 995 Changed |= runOnNode(DTN); 996 997 MachineBasicBlock *B = N->getBlock(); 998 std::vector<MachineInstr*> Instrs; 999 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) 1000 Instrs.push_back(&*I); 1001 1002 for (auto MI : Instrs) { 1003 unsigned Opc = MI->getOpcode(); 1004 // Do not touch lifetime markers. This is why the target-independent DCE 1005 // cannot be used. 1006 if (Opc == TargetOpcode::LIFETIME_START || 1007 Opc == TargetOpcode::LIFETIME_END) 1008 continue; 1009 bool Store = false; 1010 if (MI->isInlineAsm()) 1011 continue; 1012 // Delete PHIs if possible. 1013 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) 1014 continue; 1015 1016 bool AllDead = true; 1017 SmallVector<unsigned,2> Regs; 1018 for (auto &Op : MI->operands()) { 1019 if (!Op.isReg() || !Op.isDef()) 1020 continue; 1021 unsigned R = Op.getReg(); 1022 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { 1023 AllDead = false; 1024 break; 1025 } 1026 Regs.push_back(R); 1027 } 1028 if (!AllDead) 1029 continue; 1030 1031 B->erase(MI); 1032 for (unsigned i = 0, n = Regs.size(); i != n; ++i) 1033 MRI.markUsesInDebugValueAsUndef(Regs[i]); 1034 Changed = true; 1035 } 1036 1037 return Changed; 1038 } 1039 1040 namespace { 1041 1042 // Eliminate redundant instructions 1043 // 1044 // This transformation will identify instructions where the output register 1045 // is the same as one of its input registers. This only works on instructions 1046 // that define a single register (unlike post-increment loads, for example). 1047 // The equality check is actually more detailed: the code calculates which 1048 // bits of the output are used, and only compares these bits with the input 1049 // registers. 1050 // If the output matches an input, the instruction is replaced with COPY. 1051 // The copies will be removed by another transformation. 1052 class RedundantInstrElimination : public Transformation { 1053 public: 1054 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, 1055 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) 1056 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} 1057 1058 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1059 1060 private: 1061 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, 1062 unsigned &LostB, unsigned &LostE); 1063 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, 1064 unsigned &LostB, unsigned &LostE); 1065 bool computeUsedBits(unsigned Reg, BitVector &Bits); 1066 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, 1067 uint16_t Begin); 1068 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); 1069 1070 const HexagonInstrInfo &HII; 1071 const HexagonRegisterInfo &HRI; 1072 MachineRegisterInfo &MRI; 1073 BitTracker &BT; 1074 }; 1075 1076 } // end anonymous namespace 1077 1078 // Check if the instruction is a lossy shift left, where the input being 1079 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range 1080 // of bit indices that are lost. 1081 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, 1082 unsigned OpN, unsigned &LostB, unsigned &LostE) { 1083 using namespace Hexagon; 1084 1085 unsigned Opc = MI.getOpcode(); 1086 unsigned ImN, RegN, Width; 1087 switch (Opc) { 1088 case S2_asl_i_p: 1089 ImN = 2; 1090 RegN = 1; 1091 Width = 64; 1092 break; 1093 case S2_asl_i_p_acc: 1094 case S2_asl_i_p_and: 1095 case S2_asl_i_p_nac: 1096 case S2_asl_i_p_or: 1097 case S2_asl_i_p_xacc: 1098 ImN = 3; 1099 RegN = 2; 1100 Width = 64; 1101 break; 1102 case S2_asl_i_r: 1103 ImN = 2; 1104 RegN = 1; 1105 Width = 32; 1106 break; 1107 case S2_addasl_rrri: 1108 case S4_andi_asl_ri: 1109 case S4_ori_asl_ri: 1110 case S4_addi_asl_ri: 1111 case S4_subi_asl_ri: 1112 case S2_asl_i_r_acc: 1113 case S2_asl_i_r_and: 1114 case S2_asl_i_r_nac: 1115 case S2_asl_i_r_or: 1116 case S2_asl_i_r_sat: 1117 case S2_asl_i_r_xacc: 1118 ImN = 3; 1119 RegN = 2; 1120 Width = 32; 1121 break; 1122 default: 1123 return false; 1124 } 1125 1126 if (RegN != OpN) 1127 return false; 1128 1129 assert(MI.getOperand(ImN).isImm()); 1130 unsigned S = MI.getOperand(ImN).getImm(); 1131 if (S == 0) 1132 return false; 1133 LostB = Width-S; 1134 LostE = Width; 1135 return true; 1136 } 1137 1138 // Check if the instruction is a lossy shift right, where the input being 1139 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range 1140 // of bit indices that are lost. 1141 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, 1142 unsigned OpN, unsigned &LostB, unsigned &LostE) { 1143 using namespace Hexagon; 1144 1145 unsigned Opc = MI.getOpcode(); 1146 unsigned ImN, RegN; 1147 switch (Opc) { 1148 case S2_asr_i_p: 1149 case S2_lsr_i_p: 1150 ImN = 2; 1151 RegN = 1; 1152 break; 1153 case S2_asr_i_p_acc: 1154 case S2_asr_i_p_and: 1155 case S2_asr_i_p_nac: 1156 case S2_asr_i_p_or: 1157 case S2_lsr_i_p_acc: 1158 case S2_lsr_i_p_and: 1159 case S2_lsr_i_p_nac: 1160 case S2_lsr_i_p_or: 1161 case S2_lsr_i_p_xacc: 1162 ImN = 3; 1163 RegN = 2; 1164 break; 1165 case S2_asr_i_r: 1166 case S2_lsr_i_r: 1167 ImN = 2; 1168 RegN = 1; 1169 break; 1170 case S4_andi_lsr_ri: 1171 case S4_ori_lsr_ri: 1172 case S4_addi_lsr_ri: 1173 case S4_subi_lsr_ri: 1174 case S2_asr_i_r_acc: 1175 case S2_asr_i_r_and: 1176 case S2_asr_i_r_nac: 1177 case S2_asr_i_r_or: 1178 case S2_lsr_i_r_acc: 1179 case S2_lsr_i_r_and: 1180 case S2_lsr_i_r_nac: 1181 case S2_lsr_i_r_or: 1182 case S2_lsr_i_r_xacc: 1183 ImN = 3; 1184 RegN = 2; 1185 break; 1186 1187 default: 1188 return false; 1189 } 1190 1191 if (RegN != OpN) 1192 return false; 1193 1194 assert(MI.getOperand(ImN).isImm()); 1195 unsigned S = MI.getOperand(ImN).getImm(); 1196 LostB = 0; 1197 LostE = S; 1198 return true; 1199 } 1200 1201 // Calculate the bit vector that corresponds to the used bits of register Reg. 1202 // The vector Bits has the same size, as the size of Reg in bits. If the cal- 1203 // culation fails (i.e. the used bits are unknown), it returns false. Other- 1204 // wise, it returns true and sets the corresponding bits in Bits. 1205 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { 1206 BitVector Used(Bits.size()); 1207 RegisterSet Visited; 1208 std::vector<unsigned> Pending; 1209 Pending.push_back(Reg); 1210 1211 for (unsigned i = 0; i < Pending.size(); ++i) { 1212 unsigned R = Pending[i]; 1213 if (Visited.has(R)) 1214 continue; 1215 Visited.insert(R); 1216 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { 1217 BitTracker::RegisterRef UR = *I; 1218 unsigned B, W; 1219 if (!HBS::getSubregMask(UR, B, W, MRI)) 1220 return false; 1221 MachineInstr &UseI = *I->getParent(); 1222 if (UseI.isPHI() || UseI.isCopy()) { 1223 unsigned DefR = UseI.getOperand(0).getReg(); 1224 if (!TargetRegisterInfo::isVirtualRegister(DefR)) 1225 return false; 1226 Pending.push_back(DefR); 1227 } else { 1228 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) 1229 return false; 1230 } 1231 } 1232 } 1233 Bits |= Used; 1234 return true; 1235 } 1236 1237 // Calculate the bits used by instruction MI in a register in operand OpN. 1238 // Return true/false if the calculation succeeds/fails. If is succeeds, set 1239 // used bits in Bits. This function does not reset any bits in Bits, so 1240 // subsequent calls over different instructions will result in the union 1241 // of the used bits in all these instructions. 1242 // The register in question may be used with a sub-register, whereas Bits 1243 // holds the bits for the entire register. To keep track of that, the 1244 // argument Begin indicates where in Bits is the lowest-significant bit 1245 // of the register used in operand OpN. For example, in instruction: 1246 // %1 = S2_lsr_i_r %2:isub_hi, 10 1247 // the operand 1 is a 32-bit register, which happens to be a subregister 1248 // of the 64-bit register %2, and that subregister starts at position 32. 1249 // In this case Begin=32, since Bits[32] would be the lowest-significant bit 1250 // of %2:isub_hi. 1251 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, 1252 unsigned OpN, BitVector &Bits, uint16_t Begin) { 1253 unsigned Opc = MI.getOpcode(); 1254 BitVector T(Bits.size()); 1255 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); 1256 // Even if we don't have bits yet, we could still provide some information 1257 // if the instruction is a lossy shift: the lost bits will be marked as 1258 // not used. 1259 unsigned LB, LE; 1260 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { 1261 assert(MI.getOperand(OpN).isReg()); 1262 BitTracker::RegisterRef RR = MI.getOperand(OpN); 1263 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); 1264 uint16_t Width = HRI.getRegSizeInBits(*RC); 1265 1266 if (!GotBits) 1267 T.set(Begin, Begin+Width); 1268 assert(LB <= LE && LB < Width && LE <= Width); 1269 T.reset(Begin+LB, Begin+LE); 1270 GotBits = true; 1271 } 1272 if (GotBits) 1273 Bits |= T; 1274 return GotBits; 1275 } 1276 1277 // Calculates the used bits in RD ("defined register"), and checks if these 1278 // bits in RS ("used register") and RD are identical. 1279 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, 1280 BitTracker::RegisterRef RS) { 1281 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); 1282 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 1283 1284 unsigned DB, DW; 1285 if (!HBS::getSubregMask(RD, DB, DW, MRI)) 1286 return false; 1287 unsigned SB, SW; 1288 if (!HBS::getSubregMask(RS, SB, SW, MRI)) 1289 return false; 1290 if (SW != DW) 1291 return false; 1292 1293 BitVector Used(DC.width()); 1294 if (!computeUsedBits(RD.Reg, Used)) 1295 return false; 1296 1297 for (unsigned i = 0; i != DW; ++i) 1298 if (Used[i+DB] && DC[DB+i] != SC[SB+i]) 1299 return false; 1300 return true; 1301 } 1302 1303 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, 1304 const RegisterSet&) { 1305 if (!BT.reached(&B)) 1306 return false; 1307 bool Changed = false; 1308 1309 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { 1310 NextI = std::next(I); 1311 MachineInstr *MI = &*I; 1312 1313 if (MI->getOpcode() == TargetOpcode::COPY) 1314 continue; 1315 if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) 1316 continue; 1317 unsigned NumD = MI->getDesc().getNumDefs(); 1318 if (NumD != 1) 1319 continue; 1320 1321 BitTracker::RegisterRef RD = MI->getOperand(0); 1322 if (!BT.has(RD.Reg)) 1323 continue; 1324 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); 1325 auto At = MachineBasicBlock::iterator(MI); 1326 1327 // Find a source operand that is equal to the result. 1328 for (auto &Op : MI->uses()) { 1329 if (!Op.isReg()) 1330 continue; 1331 BitTracker::RegisterRef RS = Op; 1332 if (!BT.has(RS.Reg)) 1333 continue; 1334 if (!HBS::isTransparentCopy(RD, RS, MRI)) 1335 continue; 1336 1337 unsigned BN, BW; 1338 if (!HBS::getSubregMask(RS, BN, BW, MRI)) 1339 continue; 1340 1341 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 1342 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) 1343 continue; 1344 1345 // If found, replace the instruction with a COPY. 1346 const DebugLoc &DL = MI->getDebugLoc(); 1347 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); 1348 unsigned NewR = MRI.createVirtualRegister(FRC); 1349 MachineInstr *CopyI = 1350 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 1351 .addReg(RS.Reg, 0, RS.Sub); 1352 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 1353 // This pass can create copies between registers that don't have the 1354 // exact same values. Updating the tracker has to involve updating 1355 // all dependent cells. Example: 1356 // %1 = inst %2 ; %1 != %2, but used bits are equal 1357 // 1358 // %3 = copy %2 ; <- inserted 1359 // ... = %3 ; <- replaced from %2 1360 // Indirectly, we can create a "copy" between %1 and %2 even 1361 // though their exact values do not match. 1362 BT.visit(*CopyI); 1363 Changed = true; 1364 break; 1365 } 1366 } 1367 1368 return Changed; 1369 } 1370 1371 namespace { 1372 1373 // Recognize instructions that produce constant values known at compile-time. 1374 // Replace them with register definitions that load these constants directly. 1375 class ConstGeneration : public Transformation { 1376 public: 1377 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, 1378 MachineRegisterInfo &mri) 1379 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} 1380 1381 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1382 static bool isTfrConst(const MachineInstr &MI); 1383 1384 private: 1385 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, 1386 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); 1387 1388 const HexagonInstrInfo &HII; 1389 MachineRegisterInfo &MRI; 1390 BitTracker &BT; 1391 }; 1392 1393 } // end anonymous namespace 1394 1395 bool ConstGeneration::isTfrConst(const MachineInstr &MI) { 1396 unsigned Opc = MI.getOpcode(); 1397 switch (Opc) { 1398 case Hexagon::A2_combineii: 1399 case Hexagon::A4_combineii: 1400 case Hexagon::A2_tfrsi: 1401 case Hexagon::A2_tfrpi: 1402 case Hexagon::PS_true: 1403 case Hexagon::PS_false: 1404 case Hexagon::CONST32: 1405 case Hexagon::CONST64: 1406 return true; 1407 } 1408 return false; 1409 } 1410 1411 // Generate a transfer-immediate instruction that is appropriate for the 1412 // register class and the actual value being transferred. 1413 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, 1414 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { 1415 unsigned Reg = MRI.createVirtualRegister(RC); 1416 if (RC == &Hexagon::IntRegsRegClass) { 1417 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) 1418 .addImm(int32_t(C)); 1419 return Reg; 1420 } 1421 1422 if (RC == &Hexagon::DoubleRegsRegClass) { 1423 if (isInt<8>(C)) { 1424 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) 1425 .addImm(C); 1426 return Reg; 1427 } 1428 1429 unsigned Lo = Lo_32(C), Hi = Hi_32(C); 1430 if (isInt<8>(Lo) || isInt<8>(Hi)) { 1431 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii 1432 : Hexagon::A4_combineii; 1433 BuildMI(B, At, DL, HII.get(Opc), Reg) 1434 .addImm(int32_t(Hi)) 1435 .addImm(int32_t(Lo)); 1436 return Reg; 1437 } 1438 1439 BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg) 1440 .addImm(C); 1441 return Reg; 1442 } 1443 1444 if (RC == &Hexagon::PredRegsRegClass) { 1445 unsigned Opc; 1446 if (C == 0) 1447 Opc = Hexagon::PS_false; 1448 else if ((C & 0xFF) == 0xFF) 1449 Opc = Hexagon::PS_true; 1450 else 1451 return 0; 1452 BuildMI(B, At, DL, HII.get(Opc), Reg); 1453 return Reg; 1454 } 1455 1456 return 0; 1457 } 1458 1459 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { 1460 if (!BT.reached(&B)) 1461 return false; 1462 bool Changed = false; 1463 RegisterSet Defs; 1464 1465 for (auto I = B.begin(), E = B.end(); I != E; ++I) { 1466 if (isTfrConst(*I)) 1467 continue; 1468 Defs.clear(); 1469 HBS::getInstrDefs(*I, Defs); 1470 if (Defs.count() != 1) 1471 continue; 1472 unsigned DR = Defs.find_first(); 1473 if (!TargetRegisterInfo::isVirtualRegister(DR)) 1474 continue; 1475 uint64_t U; 1476 const BitTracker::RegisterCell &DRC = BT.lookup(DR); 1477 if (HBS::getConst(DRC, 0, DRC.width(), U)) { 1478 int64_t C = U; 1479 DebugLoc DL = I->getDebugLoc(); 1480 auto At = I->isPHI() ? B.getFirstNonPHI() : I; 1481 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); 1482 if (ImmReg) { 1483 HBS::replaceReg(DR, ImmReg, MRI); 1484 BT.put(ImmReg, DRC); 1485 Changed = true; 1486 } 1487 } 1488 } 1489 return Changed; 1490 } 1491 1492 namespace { 1493 1494 // Identify pairs of available registers which hold identical values. 1495 // In such cases, only one of them needs to be calculated, the other one 1496 // will be defined as a copy of the first. 1497 class CopyGeneration : public Transformation { 1498 public: 1499 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, 1500 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) 1501 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} 1502 1503 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1504 1505 private: 1506 bool findMatch(const BitTracker::RegisterRef &Inp, 1507 BitTracker::RegisterRef &Out, const RegisterSet &AVs); 1508 1509 const HexagonInstrInfo &HII; 1510 const HexagonRegisterInfo &HRI; 1511 MachineRegisterInfo &MRI; 1512 BitTracker &BT; 1513 RegisterSet Forbidden; 1514 }; 1515 1516 // Eliminate register copies RD = RS, by replacing the uses of RD with 1517 // with uses of RS. 1518 class CopyPropagation : public Transformation { 1519 public: 1520 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) 1521 : Transformation(false), HRI(hri), MRI(mri) {} 1522 1523 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1524 1525 static bool isCopyReg(unsigned Opc, bool NoConv); 1526 1527 private: 1528 bool propagateRegCopy(MachineInstr &MI); 1529 1530 const HexagonRegisterInfo &HRI; 1531 MachineRegisterInfo &MRI; 1532 }; 1533 1534 } // end anonymous namespace 1535 1536 /// Check if there is a register in AVs that is identical to Inp. If so, 1537 /// set Out to the found register. The output may be a pair Reg:Sub. 1538 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, 1539 BitTracker::RegisterRef &Out, const RegisterSet &AVs) { 1540 if (!BT.has(Inp.Reg)) 1541 return false; 1542 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); 1543 auto *FRC = HBS::getFinalVRegClass(Inp, MRI); 1544 unsigned B, W; 1545 if (!HBS::getSubregMask(Inp, B, W, MRI)) 1546 return false; 1547 1548 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { 1549 if (!BT.has(R) || Forbidden[R]) 1550 continue; 1551 const BitTracker::RegisterCell &RC = BT.lookup(R); 1552 unsigned RW = RC.width(); 1553 if (W == RW) { 1554 if (FRC != MRI.getRegClass(R)) 1555 continue; 1556 if (!HBS::isTransparentCopy(R, Inp, MRI)) 1557 continue; 1558 if (!HBS::isEqual(InpRC, B, RC, 0, W)) 1559 continue; 1560 Out.Reg = R; 1561 Out.Sub = 0; 1562 return true; 1563 } 1564 // Check if there is a super-register, whose part (with a subregister) 1565 // is equal to the input. 1566 // Only do double registers for now. 1567 if (W*2 != RW) 1568 continue; 1569 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) 1570 continue; 1571 1572 if (HBS::isEqual(InpRC, B, RC, 0, W)) 1573 Out.Sub = Hexagon::isub_lo; 1574 else if (HBS::isEqual(InpRC, B, RC, W, W)) 1575 Out.Sub = Hexagon::isub_hi; 1576 else 1577 continue; 1578 Out.Reg = R; 1579 if (HBS::isTransparentCopy(Out, Inp, MRI)) 1580 return true; 1581 } 1582 return false; 1583 } 1584 1585 bool CopyGeneration::processBlock(MachineBasicBlock &B, 1586 const RegisterSet &AVs) { 1587 if (!BT.reached(&B)) 1588 return false; 1589 RegisterSet AVB(AVs); 1590 bool Changed = false; 1591 RegisterSet Defs; 1592 1593 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; 1594 ++I, AVB.insert(Defs)) { 1595 NextI = std::next(I); 1596 Defs.clear(); 1597 HBS::getInstrDefs(*I, Defs); 1598 1599 unsigned Opc = I->getOpcode(); 1600 if (CopyPropagation::isCopyReg(Opc, false) || 1601 ConstGeneration::isTfrConst(*I)) 1602 continue; 1603 1604 DebugLoc DL = I->getDebugLoc(); 1605 auto At = I->isPHI() ? B.getFirstNonPHI() : I; 1606 1607 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { 1608 BitTracker::RegisterRef MR; 1609 auto *FRC = HBS::getFinalVRegClass(R, MRI); 1610 1611 if (findMatch(R, MR, AVB)) { 1612 unsigned NewR = MRI.createVirtualRegister(FRC); 1613 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 1614 .addReg(MR.Reg, 0, MR.Sub); 1615 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); 1616 HBS::replaceReg(R, NewR, MRI); 1617 Forbidden.insert(R); 1618 continue; 1619 } 1620 1621 if (FRC == &Hexagon::DoubleRegsRegClass || 1622 FRC == &Hexagon::HvxWRRegClass) { 1623 // Try to generate REG_SEQUENCE. 1624 unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo); 1625 unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi); 1626 BitTracker::RegisterRef TL = { R, SubLo }; 1627 BitTracker::RegisterRef TH = { R, SubHi }; 1628 BitTracker::RegisterRef ML, MH; 1629 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) { 1630 auto *FRC = HBS::getFinalVRegClass(R, MRI); 1631 unsigned NewR = MRI.createVirtualRegister(FRC); 1632 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR) 1633 .addReg(ML.Reg, 0, ML.Sub) 1634 .addImm(SubLo) 1635 .addReg(MH.Reg, 0, MH.Sub) 1636 .addImm(SubHi); 1637 BT.put(BitTracker::RegisterRef(NewR), BT.get(R)); 1638 HBS::replaceReg(R, NewR, MRI); 1639 Forbidden.insert(R); 1640 } 1641 } 1642 } 1643 } 1644 1645 return Changed; 1646 } 1647 1648 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) { 1649 switch (Opc) { 1650 case TargetOpcode::COPY: 1651 case TargetOpcode::REG_SEQUENCE: 1652 case Hexagon::A4_combineir: 1653 case Hexagon::A4_combineri: 1654 return true; 1655 case Hexagon::A2_tfr: 1656 case Hexagon::A2_tfrp: 1657 case Hexagon::A2_combinew: 1658 case Hexagon::V6_vcombine: 1659 return NoConv; 1660 default: 1661 break; 1662 } 1663 return false; 1664 } 1665 1666 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { 1667 bool Changed = false; 1668 unsigned Opc = MI.getOpcode(); 1669 BitTracker::RegisterRef RD = MI.getOperand(0); 1670 assert(MI.getOperand(0).getSubReg() == 0); 1671 1672 switch (Opc) { 1673 case TargetOpcode::COPY: 1674 case Hexagon::A2_tfr: 1675 case Hexagon::A2_tfrp: { 1676 BitTracker::RegisterRef RS = MI.getOperand(1); 1677 if (!HBS::isTransparentCopy(RD, RS, MRI)) 1678 break; 1679 if (RS.Sub != 0) 1680 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); 1681 else 1682 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); 1683 break; 1684 } 1685 case TargetOpcode::REG_SEQUENCE: { 1686 BitTracker::RegisterRef SL, SH; 1687 if (HBS::parseRegSequence(MI, SL, SH, MRI)) { 1688 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg); 1689 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo); 1690 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi); 1691 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI); 1692 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI); 1693 } 1694 break; 1695 } 1696 case Hexagon::A2_combinew: 1697 case Hexagon::V6_vcombine: { 1698 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg); 1699 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo); 1700 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi); 1701 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); 1702 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI); 1703 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI); 1704 break; 1705 } 1706 case Hexagon::A4_combineir: 1707 case Hexagon::A4_combineri: { 1708 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; 1709 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo 1710 : Hexagon::isub_hi; 1711 BitTracker::RegisterRef RS = MI.getOperand(SrcX); 1712 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); 1713 break; 1714 } 1715 } 1716 return Changed; 1717 } 1718 1719 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { 1720 std::vector<MachineInstr*> Instrs; 1721 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) 1722 Instrs.push_back(&*I); 1723 1724 bool Changed = false; 1725 for (auto I : Instrs) { 1726 unsigned Opc = I->getOpcode(); 1727 if (!CopyPropagation::isCopyReg(Opc, true)) 1728 continue; 1729 Changed |= propagateRegCopy(*I); 1730 } 1731 1732 return Changed; 1733 } 1734 1735 namespace { 1736 1737 // Recognize patterns that can be simplified and replace them with the 1738 // simpler forms. 1739 // This is by no means complete 1740 class BitSimplification : public Transformation { 1741 public: 1742 BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt, 1743 const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri, 1744 MachineRegisterInfo &mri, MachineFunction &mf) 1745 : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri), 1746 MF(mf), BT(bt) {} 1747 1748 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1749 1750 private: 1751 struct RegHalf : public BitTracker::RegisterRef { 1752 bool Low; // Low/High halfword. 1753 }; 1754 1755 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, 1756 unsigned B, RegHalf &RH); 1757 bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum); 1758 1759 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, 1760 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); 1761 unsigned getCombineOpcode(bool HLow, bool LLow); 1762 1763 bool genStoreUpperHalf(MachineInstr *MI); 1764 bool genStoreImmediate(MachineInstr *MI); 1765 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, 1766 const BitTracker::RegisterCell &RC); 1767 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, 1768 const BitTracker::RegisterCell &RC); 1769 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, 1770 const BitTracker::RegisterCell &RC); 1771 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, 1772 const BitTracker::RegisterCell &RC); 1773 bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD, 1774 const BitTracker::RegisterCell &RC, const RegisterSet &AVs); 1775 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, 1776 const BitTracker::RegisterCell &RC); 1777 bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, 1778 const BitTracker::RegisterCell &RC, const RegisterSet &AVs); 1779 bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD); 1780 1781 // Cache of created instructions to avoid creating duplicates. 1782 // XXX Currently only used by genBitSplit. 1783 std::vector<MachineInstr*> NewMIs; 1784 1785 const MachineDominatorTree &MDT; 1786 const HexagonInstrInfo &HII; 1787 const HexagonRegisterInfo &HRI; 1788 MachineRegisterInfo &MRI; 1789 MachineFunction &MF; 1790 BitTracker &BT; 1791 }; 1792 1793 } // end anonymous namespace 1794 1795 // Check if the bits [B..B+16) in register cell RC form a valid halfword, 1796 // i.e. [0..16), [16..32), etc. of some register. If so, return true and 1797 // set the information about the found register in RH. 1798 bool BitSimplification::matchHalf(unsigned SelfR, 1799 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { 1800 // XXX This could be searching in the set of available registers, in case 1801 // the match is not exact. 1802 1803 // Match 16-bit chunks, where the RC[B..B+15] references exactly one 1804 // register and all the bits B..B+15 match between RC and the register. 1805 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, 1806 // and RC = { [0]:0 [1-15]:v1[1-15]... }. 1807 bool Low = false; 1808 unsigned I = B; 1809 while (I < B+16 && RC[I].num()) 1810 I++; 1811 if (I == B+16) 1812 return false; 1813 1814 unsigned Reg = RC[I].RefI.Reg; 1815 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. 1816 if (P < I-B) 1817 return false; 1818 unsigned Pos = P - (I-B); 1819 1820 if (Reg == 0 || Reg == SelfR) // Don't match "self". 1821 return false; 1822 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1823 return false; 1824 if (!BT.has(Reg)) 1825 return false; 1826 1827 const BitTracker::RegisterCell &SC = BT.lookup(Reg); 1828 if (Pos+16 > SC.width()) 1829 return false; 1830 1831 for (unsigned i = 0; i < 16; ++i) { 1832 const BitTracker::BitValue &RV = RC[i+B]; 1833 if (RV.Type == BitTracker::BitValue::Ref) { 1834 if (RV.RefI.Reg != Reg) 1835 return false; 1836 if (RV.RefI.Pos != i+Pos) 1837 return false; 1838 continue; 1839 } 1840 if (RC[i+B] != SC[i+Pos]) 1841 return false; 1842 } 1843 1844 unsigned Sub = 0; 1845 switch (Pos) { 1846 case 0: 1847 Sub = Hexagon::isub_lo; 1848 Low = true; 1849 break; 1850 case 16: 1851 Sub = Hexagon::isub_lo; 1852 Low = false; 1853 break; 1854 case 32: 1855 Sub = Hexagon::isub_hi; 1856 Low = true; 1857 break; 1858 case 48: 1859 Sub = Hexagon::isub_hi; 1860 Low = false; 1861 break; 1862 default: 1863 return false; 1864 } 1865 1866 RH.Reg = Reg; 1867 RH.Sub = Sub; 1868 RH.Low = Low; 1869 // If the subregister is not valid with the register, set it to 0. 1870 if (!HBS::getFinalVRegClass(RH, MRI)) 1871 RH.Sub = 0; 1872 1873 return true; 1874 } 1875 1876 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc, 1877 unsigned OpNum) { 1878 auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF); 1879 auto *RRC = HBS::getFinalVRegClass(R, MRI); 1880 return OpRC->hasSubClassEq(RRC); 1881 } 1882 1883 // Check if RC matches the pattern of a S2_packhl. If so, return true and 1884 // set the inputs Rs and Rt. 1885 bool BitSimplification::matchPackhl(unsigned SelfR, 1886 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, 1887 BitTracker::RegisterRef &Rt) { 1888 RegHalf L1, H1, L2, H2; 1889 1890 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1)) 1891 return false; 1892 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) 1893 return false; 1894 1895 // Rs = H1.L1, Rt = H2.L2 1896 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) 1897 return false; 1898 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) 1899 return false; 1900 1901 Rs = H1; 1902 Rt = H2; 1903 return true; 1904 } 1905 1906 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { 1907 return HLow ? LLow ? Hexagon::A2_combine_ll 1908 : Hexagon::A2_combine_lh 1909 : LLow ? Hexagon::A2_combine_hl 1910 : Hexagon::A2_combine_hh; 1911 } 1912 1913 // If MI stores the upper halfword of a register (potentially obtained via 1914 // shifts or extracts), replace it with a storerf instruction. This could 1915 // cause the "extraction" code to become dead. 1916 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { 1917 unsigned Opc = MI->getOpcode(); 1918 if (Opc != Hexagon::S2_storerh_io) 1919 return false; 1920 1921 MachineOperand &ValOp = MI->getOperand(2); 1922 BitTracker::RegisterRef RS = ValOp; 1923 if (!BT.has(RS.Reg)) 1924 return false; 1925 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); 1926 RegHalf H; 1927 if (!matchHalf(0, RC, 0, H)) 1928 return false; 1929 if (H.Low) 1930 return false; 1931 MI->setDesc(HII.get(Hexagon::S2_storerf_io)); 1932 ValOp.setReg(H.Reg); 1933 ValOp.setSubReg(H.Sub); 1934 return true; 1935 } 1936 1937 // If MI stores a value known at compile-time, and the value is within a range 1938 // that avoids using constant-extenders, replace it with a store-immediate. 1939 bool BitSimplification::genStoreImmediate(MachineInstr *MI) { 1940 unsigned Opc = MI->getOpcode(); 1941 unsigned Align = 0; 1942 switch (Opc) { 1943 case Hexagon::S2_storeri_io: 1944 Align++; 1945 LLVM_FALLTHROUGH; 1946 case Hexagon::S2_storerh_io: 1947 Align++; 1948 LLVM_FALLTHROUGH; 1949 case Hexagon::S2_storerb_io: 1950 break; 1951 default: 1952 return false; 1953 } 1954 1955 // Avoid stores to frame-indices (due to an unknown offset). 1956 if (!MI->getOperand(0).isReg()) 1957 return false; 1958 MachineOperand &OffOp = MI->getOperand(1); 1959 if (!OffOp.isImm()) 1960 return false; 1961 1962 int64_t Off = OffOp.getImm(); 1963 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). 1964 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) 1965 return false; 1966 // Source register: 1967 BitTracker::RegisterRef RS = MI->getOperand(2); 1968 if (!BT.has(RS.Reg)) 1969 return false; 1970 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); 1971 uint64_t U; 1972 if (!HBS::getConst(RC, 0, RC.width(), U)) 1973 return false; 1974 1975 // Only consider 8-bit values to avoid constant-extenders. 1976 int V; 1977 switch (Opc) { 1978 case Hexagon::S2_storerb_io: 1979 V = int8_t(U); 1980 break; 1981 case Hexagon::S2_storerh_io: 1982 V = int16_t(U); 1983 break; 1984 case Hexagon::S2_storeri_io: 1985 V = int32_t(U); 1986 break; 1987 default: 1988 // Opc is already checked above to be one of the three store instructions. 1989 // This silences a -Wuninitialized false positive on GCC 5.4. 1990 llvm_unreachable("Unexpected store opcode"); 1991 } 1992 if (!isInt<8>(V)) 1993 return false; 1994 1995 MI->RemoveOperand(2); 1996 switch (Opc) { 1997 case Hexagon::S2_storerb_io: 1998 MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); 1999 break; 2000 case Hexagon::S2_storerh_io: 2001 MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); 2002 break; 2003 case Hexagon::S2_storeri_io: 2004 MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); 2005 break; 2006 } 2007 MI->addOperand(MachineOperand::CreateImm(V)); 2008 return true; 2009 } 2010 2011 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the 2012 // last instruction in a sequence that results in something equivalent to 2013 // the pack-halfwords. The intent is to cause the entire sequence to become 2014 // dead. 2015 bool BitSimplification::genPackhl(MachineInstr *MI, 2016 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2017 unsigned Opc = MI->getOpcode(); 2018 if (Opc == Hexagon::S2_packhl) 2019 return false; 2020 BitTracker::RegisterRef Rs, Rt; 2021 if (!matchPackhl(RD.Reg, RC, Rs, Rt)) 2022 return false; 2023 if (!validateReg(Rs, Hexagon::S2_packhl, 1) || 2024 !validateReg(Rt, Hexagon::S2_packhl, 2)) 2025 return false; 2026 2027 MachineBasicBlock &B = *MI->getParent(); 2028 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); 2029 DebugLoc DL = MI->getDebugLoc(); 2030 auto At = MI->isPHI() ? B.getFirstNonPHI() 2031 : MachineBasicBlock::iterator(MI); 2032 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) 2033 .addReg(Rs.Reg, 0, Rs.Sub) 2034 .addReg(Rt.Reg, 0, Rt.Sub); 2035 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2036 BT.put(BitTracker::RegisterRef(NewR), RC); 2037 return true; 2038 } 2039 2040 // If MI produces halfword of the input in the low half of the output, 2041 // replace it with zero-extend or extractu. 2042 bool BitSimplification::genExtractHalf(MachineInstr *MI, 2043 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2044 RegHalf L; 2045 // Check for halfword in low 16 bits, zeros elsewhere. 2046 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) 2047 return false; 2048 2049 unsigned Opc = MI->getOpcode(); 2050 MachineBasicBlock &B = *MI->getParent(); 2051 DebugLoc DL = MI->getDebugLoc(); 2052 2053 // Prefer zxth, since zxth can go in any slot, while extractu only in 2054 // slots 2 and 3. 2055 unsigned NewR = 0; 2056 auto At = MI->isPHI() ? B.getFirstNonPHI() 2057 : MachineBasicBlock::iterator(MI); 2058 if (L.Low && Opc != Hexagon::A2_zxth) { 2059 if (validateReg(L, Hexagon::A2_zxth, 1)) { 2060 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2061 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) 2062 .addReg(L.Reg, 0, L.Sub); 2063 } 2064 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { 2065 if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) { 2066 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2067 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) 2068 .addReg(L.Reg, 0, L.Sub) 2069 .addImm(16); 2070 } 2071 } 2072 if (NewR == 0) 2073 return false; 2074 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2075 BT.put(BitTracker::RegisterRef(NewR), RC); 2076 return true; 2077 } 2078 2079 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the 2080 // combine. 2081 bool BitSimplification::genCombineHalf(MachineInstr *MI, 2082 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2083 RegHalf L, H; 2084 // Check for combine h/l 2085 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) 2086 return false; 2087 // Do nothing if this is just a reg copy. 2088 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) 2089 return false; 2090 2091 unsigned Opc = MI->getOpcode(); 2092 unsigned COpc = getCombineOpcode(H.Low, L.Low); 2093 if (COpc == Opc) 2094 return false; 2095 if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2)) 2096 return false; 2097 2098 MachineBasicBlock &B = *MI->getParent(); 2099 DebugLoc DL = MI->getDebugLoc(); 2100 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2101 auto At = MI->isPHI() ? B.getFirstNonPHI() 2102 : MachineBasicBlock::iterator(MI); 2103 BuildMI(B, At, DL, HII.get(COpc), NewR) 2104 .addReg(H.Reg, 0, H.Sub) 2105 .addReg(L.Reg, 0, L.Sub); 2106 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2107 BT.put(BitTracker::RegisterRef(NewR), RC); 2108 return true; 2109 } 2110 2111 // If MI resets high bits of a register and keeps the lower ones, replace it 2112 // with zero-extend byte/half, and-immediate, or extractu, as appropriate. 2113 bool BitSimplification::genExtractLow(MachineInstr *MI, 2114 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2115 unsigned Opc = MI->getOpcode(); 2116 switch (Opc) { 2117 case Hexagon::A2_zxtb: 2118 case Hexagon::A2_zxth: 2119 case Hexagon::S2_extractu: 2120 return false; 2121 } 2122 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { 2123 int32_t Imm = MI->getOperand(2).getImm(); 2124 if (isInt<10>(Imm)) 2125 return false; 2126 } 2127 2128 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) 2129 return false; 2130 unsigned W = RC.width(); 2131 while (W > 0 && RC[W-1].is(0)) 2132 W--; 2133 if (W == 0 || W == RC.width()) 2134 return false; 2135 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb 2136 : (W == 16) ? Hexagon::A2_zxth 2137 : (W < 10) ? Hexagon::A2_andir 2138 : Hexagon::S2_extractu; 2139 MachineBasicBlock &B = *MI->getParent(); 2140 DebugLoc DL = MI->getDebugLoc(); 2141 2142 for (auto &Op : MI->uses()) { 2143 if (!Op.isReg()) 2144 continue; 2145 BitTracker::RegisterRef RS = Op; 2146 if (!BT.has(RS.Reg)) 2147 continue; 2148 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 2149 unsigned BN, BW; 2150 if (!HBS::getSubregMask(RS, BN, BW, MRI)) 2151 continue; 2152 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) 2153 continue; 2154 if (!validateReg(RS, NewOpc, 1)) 2155 continue; 2156 2157 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2158 auto At = MI->isPHI() ? B.getFirstNonPHI() 2159 : MachineBasicBlock::iterator(MI); 2160 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) 2161 .addReg(RS.Reg, 0, RS.Sub); 2162 if (NewOpc == Hexagon::A2_andir) 2163 MIB.addImm((1 << W) - 1); 2164 else if (NewOpc == Hexagon::S2_extractu) 2165 MIB.addImm(W).addImm(0); 2166 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2167 BT.put(BitTracker::RegisterRef(NewR), RC); 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 bool BitSimplification::genBitSplit(MachineInstr *MI, 2174 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, 2175 const RegisterSet &AVs) { 2176 if (!GenBitSplit) 2177 return false; 2178 if (MaxBitSplit.getNumOccurrences()) { 2179 if (CountBitSplit >= MaxBitSplit) 2180 return false; 2181 } 2182 2183 unsigned Opc = MI->getOpcode(); 2184 switch (Opc) { 2185 case Hexagon::A4_bitsplit: 2186 case Hexagon::A4_bitspliti: 2187 return false; 2188 } 2189 2190 unsigned W = RC.width(); 2191 if (W != 32) 2192 return false; 2193 2194 auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned { 2195 unsigned Z = C.width(); 2196 while (Z > 0 && C[Z-1].is(0)) 2197 --Z; 2198 return C.width() - Z; 2199 }; 2200 2201 // Count the number of leading zeros in the target RC. 2202 unsigned Z = ctlz(RC); 2203 if (Z == 0 || Z == W) 2204 return false; 2205 2206 // A simplistic analysis: assume the source register (the one being split) 2207 // is fully unknown, and that all its bits are self-references. 2208 const BitTracker::BitValue &B0 = RC[0]; 2209 if (B0.Type != BitTracker::BitValue::Ref) 2210 return false; 2211 2212 unsigned SrcR = B0.RefI.Reg; 2213 unsigned SrcSR = 0; 2214 unsigned Pos = B0.RefI.Pos; 2215 2216 // All the non-zero bits should be consecutive bits from the same register. 2217 for (unsigned i = 1; i < W-Z; ++i) { 2218 const BitTracker::BitValue &V = RC[i]; 2219 if (V.Type != BitTracker::BitValue::Ref) 2220 return false; 2221 if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i) 2222 return false; 2223 } 2224 2225 // Now, find the other bitfield among AVs. 2226 for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) { 2227 // The number of leading zeros here should be the number of trailing 2228 // non-zeros in RC. 2229 unsigned SRC = MRI.getRegClass(S)->getID(); 2230 if (SRC != Hexagon::IntRegsRegClassID && 2231 SRC != Hexagon::DoubleRegsRegClassID) 2232 continue; 2233 if (!BT.has(S)) 2234 continue; 2235 const BitTracker::RegisterCell &SC = BT.lookup(S); 2236 if (SC.width() != W || ctlz(SC) != W-Z) 2237 continue; 2238 // The Z lower bits should now match SrcR. 2239 const BitTracker::BitValue &S0 = SC[0]; 2240 if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR) 2241 continue; 2242 unsigned P = S0.RefI.Pos; 2243 2244 if (Pos <= P && (Pos + W-Z) != P) 2245 continue; 2246 if (P < Pos && (P + Z) != Pos) 2247 continue; 2248 // The starting bitfield position must be at a subregister boundary. 2249 if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32) 2250 continue; 2251 2252 unsigned I; 2253 for (I = 1; I < Z; ++I) { 2254 const BitTracker::BitValue &V = SC[I]; 2255 if (V.Type != BitTracker::BitValue::Ref) 2256 break; 2257 if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I) 2258 break; 2259 } 2260 if (I != Z) 2261 continue; 2262 2263 // Generate bitsplit where S is defined. 2264 if (MaxBitSplit.getNumOccurrences()) 2265 CountBitSplit++; 2266 MachineInstr *DefS = MRI.getVRegDef(S); 2267 assert(DefS != nullptr); 2268 DebugLoc DL = DefS->getDebugLoc(); 2269 MachineBasicBlock &B = *DefS->getParent(); 2270 auto At = DefS->isPHI() ? B.getFirstNonPHI() 2271 : MachineBasicBlock::iterator(DefS); 2272 if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID) 2273 SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo; 2274 if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1)) 2275 continue; 2276 unsigned ImmOp = Pos <= P ? W-Z : Z; 2277 2278 // Find an existing bitsplit instruction if one already exists. 2279 unsigned NewR = 0; 2280 for (MachineInstr *In : NewMIs) { 2281 if (In->getOpcode() != Hexagon::A4_bitspliti) 2282 continue; 2283 MachineOperand &Op1 = In->getOperand(1); 2284 if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR) 2285 continue; 2286 if (In->getOperand(2).getImm() != ImmOp) 2287 continue; 2288 // Check if the target register is available here. 2289 MachineOperand &Op0 = In->getOperand(0); 2290 MachineInstr *DefI = MRI.getVRegDef(Op0.getReg()); 2291 assert(DefI != nullptr); 2292 if (!MDT.dominates(DefI, &*At)) 2293 continue; 2294 2295 // Found one that can be reused. 2296 assert(Op0.getSubReg() == 0); 2297 NewR = Op0.getReg(); 2298 break; 2299 } 2300 if (!NewR) { 2301 NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); 2302 auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR) 2303 .addReg(SrcR, 0, SrcSR) 2304 .addImm(ImmOp); 2305 NewMIs.push_back(NewBS); 2306 } 2307 if (Pos <= P) { 2308 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI); 2309 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI); 2310 } else { 2311 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI); 2312 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI); 2313 } 2314 return true; 2315 } 2316 2317 return false; 2318 } 2319 2320 // Check for tstbit simplification opportunity, where the bit being checked 2321 // can be tracked back to another register. For example: 2322 // %2 = S2_lsr_i_r %1, 5 2323 // %3 = S2_tstbit_i %2, 0 2324 // => 2325 // %3 = S2_tstbit_i %1, 5 2326 bool BitSimplification::simplifyTstbit(MachineInstr *MI, 2327 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2328 unsigned Opc = MI->getOpcode(); 2329 if (Opc != Hexagon::S2_tstbit_i) 2330 return false; 2331 2332 unsigned BN = MI->getOperand(2).getImm(); 2333 BitTracker::RegisterRef RS = MI->getOperand(1); 2334 unsigned F, W; 2335 DebugLoc DL = MI->getDebugLoc(); 2336 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) 2337 return false; 2338 MachineBasicBlock &B = *MI->getParent(); 2339 auto At = MI->isPHI() ? B.getFirstNonPHI() 2340 : MachineBasicBlock::iterator(MI); 2341 2342 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 2343 const BitTracker::BitValue &V = SC[F+BN]; 2344 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { 2345 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); 2346 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is 2347 // a double register, need to use a subregister and adjust bit 2348 // number. 2349 unsigned P = std::numeric_limits<unsigned>::max(); 2350 BitTracker::RegisterRef RR(V.RefI.Reg, 0); 2351 if (TC == &Hexagon::DoubleRegsRegClass) { 2352 P = V.RefI.Pos; 2353 RR.Sub = Hexagon::isub_lo; 2354 if (P >= 32) { 2355 P -= 32; 2356 RR.Sub = Hexagon::isub_hi; 2357 } 2358 } else if (TC == &Hexagon::IntRegsRegClass) { 2359 P = V.RefI.Pos; 2360 } 2361 if (P != std::numeric_limits<unsigned>::max()) { 2362 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 2363 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) 2364 .addReg(RR.Reg, 0, RR.Sub) 2365 .addImm(P); 2366 HBS::replaceReg(RD.Reg, NewR, MRI); 2367 BT.put(NewR, RC); 2368 return true; 2369 } 2370 } else if (V.is(0) || V.is(1)) { 2371 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 2372 unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true; 2373 BuildMI(B, At, DL, HII.get(NewOpc), NewR); 2374 HBS::replaceReg(RD.Reg, NewR, MRI); 2375 return true; 2376 } 2377 2378 return false; 2379 } 2380 2381 // Detect whether RD is a bitfield extract (sign- or zero-extended) of 2382 // some register from the AVs set. Create a new corresponding instruction 2383 // at the location of MI. The intent is to recognize situations where 2384 // a sequence of instructions performs an operation that is equivalent to 2385 // an extract operation, such as a shift left followed by a shift right. 2386 bool BitSimplification::simplifyExtractLow(MachineInstr *MI, 2387 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, 2388 const RegisterSet &AVs) { 2389 if (!GenExtract) 2390 return false; 2391 if (MaxExtract.getNumOccurrences()) { 2392 if (CountExtract >= MaxExtract) 2393 return false; 2394 CountExtract++; 2395 } 2396 2397 unsigned W = RC.width(); 2398 unsigned RW = W; 2399 unsigned Len; 2400 bool Signed; 2401 2402 // The code is mostly class-independent, except for the part that generates 2403 // the extract instruction, and establishes the source register (in case it 2404 // needs to use a subregister). 2405 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); 2406 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) 2407 return false; 2408 assert(RD.Sub == 0); 2409 2410 // Observation: 2411 // If the cell has a form of 00..0xx..x with k zeros and n remaining 2412 // bits, this could be an extractu of the n bits, but it could also be 2413 // an extractu of a longer field which happens to have 0s in the top 2414 // bit positions. 2415 // The same logic applies to sign-extended fields. 2416 // 2417 // Do not check for the extended extracts, since it would expand the 2418 // search space quite a bit. The search may be expensive as it is. 2419 2420 const BitTracker::BitValue &TopV = RC[W-1]; 2421 2422 // Eliminate candidates that have self-referential bits, since they 2423 // cannot be extracts from other registers. Also, skip registers that 2424 // have compile-time constant values. 2425 bool IsConst = true; 2426 for (unsigned I = 0; I != W; ++I) { 2427 const BitTracker::BitValue &V = RC[I]; 2428 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg) 2429 return false; 2430 IsConst = IsConst && (V.is(0) || V.is(1)); 2431 } 2432 if (IsConst) 2433 return false; 2434 2435 if (TopV.is(0) || TopV.is(1)) { 2436 bool S = TopV.is(1); 2437 for (--W; W > 0 && RC[W-1].is(S); --W) 2438 ; 2439 Len = W; 2440 Signed = S; 2441 // The sign bit must be a part of the field being extended. 2442 if (Signed) 2443 ++Len; 2444 } else { 2445 // This could still be a sign-extended extract. 2446 assert(TopV.Type == BitTracker::BitValue::Ref); 2447 if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1) 2448 return false; 2449 for (--W; W > 0 && RC[W-1] == TopV; --W) 2450 ; 2451 // The top bits of RC are copies of TopV. One occurrence of TopV will 2452 // be a part of the field. 2453 Len = W + 1; 2454 Signed = true; 2455 } 2456 2457 // This would be just a copy. It should be handled elsewhere. 2458 if (Len == RW) 2459 return false; 2460 2461 LLVM_DEBUG({ 2462 dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub) 2463 << ", MI: " << *MI; 2464 dbgs() << "Cell: " << RC << '\n'; 2465 dbgs() << "Expected bitfield size: " << Len << " bits, " 2466 << (Signed ? "sign" : "zero") << "-extended\n"; 2467 }); 2468 2469 bool Changed = false; 2470 2471 for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) { 2472 if (!BT.has(R)) 2473 continue; 2474 const BitTracker::RegisterCell &SC = BT.lookup(R); 2475 unsigned SW = SC.width(); 2476 2477 // The source can be longer than the destination, as long as its size is 2478 // a multiple of the size of the destination. Also, we would need to be 2479 // able to refer to the subregister in the source that would be of the 2480 // same size as the destination, but only check the sizes here. 2481 if (SW < RW || (SW % RW) != 0) 2482 continue; 2483 2484 // The field can start at any offset in SC as long as it contains Len 2485 // bits and does not cross subregister boundary (if the source register 2486 // is longer than the destination). 2487 unsigned Off = 0; 2488 while (Off <= SW-Len) { 2489 unsigned OE = (Off+Len)/RW; 2490 if (OE != Off/RW) { 2491 // The assumption here is that if the source (R) is longer than the 2492 // destination, then the destination is a sequence of words of 2493 // size RW, and each such word in R can be accessed via a subregister. 2494 // 2495 // If the beginning and the end of the field cross the subregister 2496 // boundary, advance to the next subregister. 2497 Off = OE*RW; 2498 continue; 2499 } 2500 if (HBS::isEqual(RC, 0, SC, Off, Len)) 2501 break; 2502 ++Off; 2503 } 2504 2505 if (Off > SW-Len) 2506 continue; 2507 2508 // Found match. 2509 unsigned ExtOpc = 0; 2510 if (Off == 0) { 2511 if (Len == 8) 2512 ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb; 2513 else if (Len == 16) 2514 ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth; 2515 else if (Len < 10 && !Signed) 2516 ExtOpc = Hexagon::A2_andir; 2517 } 2518 if (ExtOpc == 0) { 2519 ExtOpc = 2520 Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp) 2521 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup); 2522 } 2523 unsigned SR = 0; 2524 // This only recognizes isub_lo and isub_hi. 2525 if (RW != SW && RW*2 != SW) 2526 continue; 2527 if (RW != SW) 2528 SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi; 2529 Off = Off % RW; 2530 2531 if (!validateReg({R,SR}, ExtOpc, 1)) 2532 continue; 2533 2534 // Don't generate the same instruction as the one being optimized. 2535 if (MI->getOpcode() == ExtOpc) { 2536 // All possible ExtOpc's have the source in operand(1). 2537 const MachineOperand &SrcOp = MI->getOperand(1); 2538 if (SrcOp.getReg() == R) 2539 continue; 2540 } 2541 2542 DebugLoc DL = MI->getDebugLoc(); 2543 MachineBasicBlock &B = *MI->getParent(); 2544 unsigned NewR = MRI.createVirtualRegister(FRC); 2545 auto At = MI->isPHI() ? B.getFirstNonPHI() 2546 : MachineBasicBlock::iterator(MI); 2547 auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR) 2548 .addReg(R, 0, SR); 2549 switch (ExtOpc) { 2550 case Hexagon::A2_sxtb: 2551 case Hexagon::A2_zxtb: 2552 case Hexagon::A2_sxth: 2553 case Hexagon::A2_zxth: 2554 break; 2555 case Hexagon::A2_andir: 2556 MIB.addImm((1u << Len) - 1); 2557 break; 2558 case Hexagon::S4_extract: 2559 case Hexagon::S2_extractu: 2560 case Hexagon::S4_extractp: 2561 case Hexagon::S2_extractup: 2562 MIB.addImm(Len) 2563 .addImm(Off); 2564 break; 2565 default: 2566 llvm_unreachable("Unexpected opcode"); 2567 } 2568 2569 HBS::replaceReg(RD.Reg, NewR, MRI); 2570 BT.put(BitTracker::RegisterRef(NewR), RC); 2571 Changed = true; 2572 break; 2573 } 2574 2575 return Changed; 2576 } 2577 2578 bool BitSimplification::simplifyRCmp0(MachineInstr *MI, 2579 BitTracker::RegisterRef RD) { 2580 unsigned Opc = MI->getOpcode(); 2581 if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi) 2582 return false; 2583 MachineOperand &CmpOp = MI->getOperand(2); 2584 if (!CmpOp.isImm() || CmpOp.getImm() != 0) 2585 return false; 2586 2587 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); 2588 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) 2589 return false; 2590 assert(RD.Sub == 0); 2591 2592 MachineBasicBlock &B = *MI->getParent(); 2593 const DebugLoc &DL = MI->getDebugLoc(); 2594 auto At = MI->isPHI() ? B.getFirstNonPHI() 2595 : MachineBasicBlock::iterator(MI); 2596 bool KnownZ = true; 2597 bool KnownNZ = false; 2598 2599 BitTracker::RegisterRef SR = MI->getOperand(1); 2600 if (!BT.has(SR.Reg)) 2601 return false; 2602 const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg); 2603 unsigned F, W; 2604 if (!HBS::getSubregMask(SR, F, W, MRI)) 2605 return false; 2606 2607 for (uint16_t I = F; I != F+W; ++I) { 2608 const BitTracker::BitValue &V = SC[I]; 2609 if (!V.is(0)) 2610 KnownZ = false; 2611 if (V.is(1)) 2612 KnownNZ = true; 2613 } 2614 2615 auto ReplaceWithConst = [&] (int C) { 2616 unsigned NewR = MRI.createVirtualRegister(FRC); 2617 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR) 2618 .addImm(C); 2619 HBS::replaceReg(RD.Reg, NewR, MRI); 2620 BitTracker::RegisterCell NewRC(W); 2621 for (uint16_t I = 0; I != W; ++I) { 2622 NewRC[I] = BitTracker::BitValue(C & 1); 2623 C = unsigned(C) >> 1; 2624 } 2625 BT.put(BitTracker::RegisterRef(NewR), NewRC); 2626 return true; 2627 }; 2628 2629 auto IsNonZero = [] (const MachineOperand &Op) { 2630 if (Op.isGlobal() || Op.isBlockAddress()) 2631 return true; 2632 if (Op.isImm()) 2633 return Op.getImm() != 0; 2634 if (Op.isCImm()) 2635 return !Op.getCImm()->isZero(); 2636 if (Op.isFPImm()) 2637 return !Op.getFPImm()->isZero(); 2638 return false; 2639 }; 2640 2641 auto IsZero = [] (const MachineOperand &Op) { 2642 if (Op.isGlobal() || Op.isBlockAddress()) 2643 return false; 2644 if (Op.isImm()) 2645 return Op.getImm() == 0; 2646 if (Op.isCImm()) 2647 return Op.getCImm()->isZero(); 2648 if (Op.isFPImm()) 2649 return Op.getFPImm()->isZero(); 2650 return false; 2651 }; 2652 2653 // If the source register is known to be 0 or non-0, the comparison can 2654 // be folded to a load of a constant. 2655 if (KnownZ || KnownNZ) { 2656 assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0"); 2657 return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi)); 2658 } 2659 2660 // Special case: if the compare comes from a C2_muxii, then we know the 2661 // two possible constants that can be the source value. 2662 MachineInstr *InpDef = MRI.getVRegDef(SR.Reg); 2663 if (!InpDef) 2664 return false; 2665 if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) { 2666 MachineOperand &Src1 = InpDef->getOperand(2); 2667 MachineOperand &Src2 = InpDef->getOperand(3); 2668 // Check if both are non-zero. 2669 bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2); 2670 if (KnownNZ1 && KnownNZ2) 2671 return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi); 2672 // Check if both are zero. 2673 bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2); 2674 if (KnownZ1 && KnownZ2) 2675 return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi); 2676 2677 // If for both operands we know that they are either 0 or non-0, 2678 // replace the comparison with a C2_muxii, using the same predicate 2679 // register, but with operands substituted with 0/1 accordingly. 2680 if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) { 2681 unsigned NewR = MRI.createVirtualRegister(FRC); 2682 BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR) 2683 .addReg(InpDef->getOperand(1).getReg()) 2684 .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi)) 2685 .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi)); 2686 HBS::replaceReg(RD.Reg, NewR, MRI); 2687 // Create a new cell with only the least significant bit unknown. 2688 BitTracker::RegisterCell NewRC(W); 2689 NewRC[0] = BitTracker::BitValue::self(); 2690 NewRC.fill(1, W, BitTracker::BitValue::Zero); 2691 BT.put(BitTracker::RegisterRef(NewR), NewRC); 2692 return true; 2693 } 2694 } 2695 2696 return false; 2697 } 2698 2699 bool BitSimplification::processBlock(MachineBasicBlock &B, 2700 const RegisterSet &AVs) { 2701 if (!BT.reached(&B)) 2702 return false; 2703 bool Changed = false; 2704 RegisterSet AVB = AVs; 2705 RegisterSet Defs; 2706 2707 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { 2708 MachineInstr *MI = &*I; 2709 Defs.clear(); 2710 HBS::getInstrDefs(*MI, Defs); 2711 2712 unsigned Opc = MI->getOpcode(); 2713 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) 2714 continue; 2715 2716 if (MI->mayStore()) { 2717 bool T = genStoreUpperHalf(MI); 2718 T = T || genStoreImmediate(MI); 2719 Changed |= T; 2720 continue; 2721 } 2722 2723 if (Defs.count() != 1) 2724 continue; 2725 const MachineOperand &Op0 = MI->getOperand(0); 2726 if (!Op0.isReg() || !Op0.isDef()) 2727 continue; 2728 BitTracker::RegisterRef RD = Op0; 2729 if (!BT.has(RD.Reg)) 2730 continue; 2731 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); 2732 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); 2733 2734 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { 2735 bool T = genPackhl(MI, RD, RC); 2736 T = T || simplifyExtractLow(MI, RD, RC, AVB); 2737 Changed |= T; 2738 continue; 2739 } 2740 2741 if (FRC->getID() == Hexagon::IntRegsRegClassID) { 2742 bool T = genBitSplit(MI, RD, RC, AVB); 2743 T = T || simplifyExtractLow(MI, RD, RC, AVB); 2744 T = T || genExtractHalf(MI, RD, RC); 2745 T = T || genCombineHalf(MI, RD, RC); 2746 T = T || genExtractLow(MI, RD, RC); 2747 T = T || simplifyRCmp0(MI, RD); 2748 Changed |= T; 2749 continue; 2750 } 2751 2752 if (FRC->getID() == Hexagon::PredRegsRegClassID) { 2753 bool T = simplifyTstbit(MI, RD, RC); 2754 Changed |= T; 2755 continue; 2756 } 2757 } 2758 return Changed; 2759 } 2760 2761 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { 2762 if (skipFunction(MF.getFunction())) 2763 return false; 2764 2765 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2766 auto &HRI = *HST.getRegisterInfo(); 2767 auto &HII = *HST.getInstrInfo(); 2768 2769 MDT = &getAnalysis<MachineDominatorTree>(); 2770 MachineRegisterInfo &MRI = MF.getRegInfo(); 2771 bool Changed; 2772 2773 Changed = DeadCodeElimination(MF, *MDT).run(); 2774 2775 const HexagonEvaluator HE(HRI, MRI, HII, MF); 2776 BitTracker BT(HE, MF); 2777 LLVM_DEBUG(BT.trace(true)); 2778 BT.run(); 2779 2780 MachineBasicBlock &Entry = MF.front(); 2781 2782 RegisterSet AIG; // Available registers for IG. 2783 ConstGeneration ImmG(BT, HII, MRI); 2784 Changed |= visitBlock(Entry, ImmG, AIG); 2785 2786 RegisterSet ARE; // Available registers for RIE. 2787 RedundantInstrElimination RIE(BT, HII, HRI, MRI); 2788 bool Ried = visitBlock(Entry, RIE, ARE); 2789 if (Ried) { 2790 Changed = true; 2791 BT.run(); 2792 } 2793 2794 RegisterSet ACG; // Available registers for CG. 2795 CopyGeneration CopyG(BT, HII, HRI, MRI); 2796 Changed |= visitBlock(Entry, CopyG, ACG); 2797 2798 RegisterSet ACP; // Available registers for CP. 2799 CopyPropagation CopyP(HRI, MRI); 2800 Changed |= visitBlock(Entry, CopyP, ACP); 2801 2802 Changed = DeadCodeElimination(MF, *MDT).run() || Changed; 2803 2804 BT.run(); 2805 RegisterSet ABS; // Available registers for BS. 2806 BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF); 2807 Changed |= visitBlock(Entry, BitS, ABS); 2808 2809 Changed = DeadCodeElimination(MF, *MDT).run() || Changed; 2810 2811 if (Changed) { 2812 for (auto &B : MF) 2813 for (auto &I : B) 2814 I.clearKillInfo(); 2815 DeadCodeElimination(MF, *MDT).run(); 2816 } 2817 return Changed; 2818 } 2819 2820 // Recognize loops where the code at the end of the loop matches the code 2821 // before the entry of the loop, and the matching code is such that is can 2822 // be simplified. This pass relies on the bit simplification above and only 2823 // prepares code in a way that can be handled by the bit simplifcation. 2824 // 2825 // This is the motivating testcase (and explanation): 2826 // 2827 // { 2828 // loop0(.LBB0_2, r1) // %for.body.preheader 2829 // r5:4 = memd(r0++#8) 2830 // } 2831 // { 2832 // r3 = lsr(r4, #16) 2833 // r7:6 = combine(r5, r5) 2834 // } 2835 // { 2836 // r3 = insert(r5, #16, #16) 2837 // r7:6 = vlsrw(r7:6, #16) 2838 // } 2839 // .LBB0_2: 2840 // { 2841 // memh(r2+#4) = r5 2842 // memh(r2+#6) = r6 # R6 is really R5.H 2843 // } 2844 // { 2845 // r2 = add(r2, #8) 2846 // memh(r2+#0) = r4 2847 // memh(r2+#2) = r3 # R3 is really R4.H 2848 // } 2849 // { 2850 // r5:4 = memd(r0++#8) 2851 // } 2852 // { # "Shuffling" code that sets up R3 and R6 2853 // r3 = lsr(r4, #16) # so that their halves can be stored in the 2854 // r7:6 = combine(r5, r5) # next iteration. This could be folded into 2855 // } # the stores if the code was at the beginning 2856 // { # of the loop iteration. Since the same code 2857 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved 2858 // r7:6 = vlsrw(r7:6, #16) # there. 2859 // }:endloop0 2860 // 2861 // 2862 // The outcome: 2863 // 2864 // { 2865 // loop0(.LBB0_2, r1) 2866 // r5:4 = memd(r0++#8) 2867 // } 2868 // .LBB0_2: 2869 // { 2870 // memh(r2+#4) = r5 2871 // memh(r2+#6) = r5.h 2872 // } 2873 // { 2874 // r2 = add(r2, #8) 2875 // memh(r2+#0) = r4 2876 // memh(r2+#2) = r4.h 2877 // } 2878 // { 2879 // r5:4 = memd(r0++#8) 2880 // }:endloop0 2881 2882 namespace llvm { 2883 2884 FunctionPass *createHexagonLoopRescheduling(); 2885 void initializeHexagonLoopReschedulingPass(PassRegistry&); 2886 2887 } // end namespace llvm 2888 2889 namespace { 2890 2891 class HexagonLoopRescheduling : public MachineFunctionPass { 2892 public: 2893 static char ID; 2894 2895 HexagonLoopRescheduling() : MachineFunctionPass(ID) { 2896 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); 2897 } 2898 2899 bool runOnMachineFunction(MachineFunction &MF) override; 2900 2901 private: 2902 const HexagonInstrInfo *HII = nullptr; 2903 const HexagonRegisterInfo *HRI = nullptr; 2904 MachineRegisterInfo *MRI = nullptr; 2905 BitTracker *BTP = nullptr; 2906 2907 struct LoopCand { 2908 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, 2909 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} 2910 2911 MachineBasicBlock *LB, *PB, *EB; 2912 }; 2913 using InstrList = std::vector<MachineInstr *>; 2914 struct InstrGroup { 2915 BitTracker::RegisterRef Inp, Out; 2916 InstrList Ins; 2917 }; 2918 struct PhiInfo { 2919 PhiInfo(MachineInstr &P, MachineBasicBlock &B); 2920 2921 unsigned DefR; 2922 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register 2923 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block 2924 }; 2925 2926 static unsigned getDefReg(const MachineInstr *MI); 2927 bool isConst(unsigned Reg) const; 2928 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; 2929 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; 2930 bool isShuffleOf(unsigned OutR, unsigned InpR) const; 2931 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, 2932 unsigned &InpR2) const; 2933 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, 2934 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); 2935 bool processLoop(LoopCand &C); 2936 }; 2937 2938 } // end anonymous namespace 2939 2940 char HexagonLoopRescheduling::ID = 0; 2941 2942 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", 2943 "Hexagon Loop Rescheduling", false, false) 2944 2945 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, 2946 MachineBasicBlock &B) { 2947 DefR = HexagonLoopRescheduling::getDefReg(&P); 2948 LB = &B; 2949 PB = nullptr; 2950 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { 2951 const MachineOperand &OpB = P.getOperand(i+1); 2952 if (OpB.getMBB() == &B) { 2953 LR = P.getOperand(i); 2954 continue; 2955 } 2956 PB = OpB.getMBB(); 2957 PR = P.getOperand(i); 2958 } 2959 } 2960 2961 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { 2962 RegisterSet Defs; 2963 HBS::getInstrDefs(*MI, Defs); 2964 if (Defs.count() != 1) 2965 return 0; 2966 return Defs.find_first(); 2967 } 2968 2969 bool HexagonLoopRescheduling::isConst(unsigned Reg) const { 2970 if (!BTP->has(Reg)) 2971 return false; 2972 const BitTracker::RegisterCell &RC = BTP->lookup(Reg); 2973 for (unsigned i = 0, w = RC.width(); i < w; ++i) { 2974 const BitTracker::BitValue &V = RC[i]; 2975 if (!V.is(0) && !V.is(1)) 2976 return false; 2977 } 2978 return true; 2979 } 2980 2981 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, 2982 unsigned DefR) const { 2983 unsigned Opc = MI->getOpcode(); 2984 switch (Opc) { 2985 case TargetOpcode::COPY: 2986 case Hexagon::S2_lsr_i_r: 2987 case Hexagon::S2_asr_i_r: 2988 case Hexagon::S2_asl_i_r: 2989 case Hexagon::S2_lsr_i_p: 2990 case Hexagon::S2_asr_i_p: 2991 case Hexagon::S2_asl_i_p: 2992 case Hexagon::S2_insert: 2993 case Hexagon::A2_or: 2994 case Hexagon::A2_orp: 2995 case Hexagon::A2_and: 2996 case Hexagon::A2_andp: 2997 case Hexagon::A2_combinew: 2998 case Hexagon::A4_combineri: 2999 case Hexagon::A4_combineir: 3000 case Hexagon::A2_combineii: 3001 case Hexagon::A4_combineii: 3002 case Hexagon::A2_combine_ll: 3003 case Hexagon::A2_combine_lh: 3004 case Hexagon::A2_combine_hl: 3005 case Hexagon::A2_combine_hh: 3006 return true; 3007 } 3008 return false; 3009 } 3010 3011 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, 3012 unsigned InpR) const { 3013 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { 3014 const MachineOperand &Op = MI->getOperand(i); 3015 if (!Op.isReg()) 3016 continue; 3017 if (Op.getReg() == InpR) 3018 return i == n-1; 3019 } 3020 return false; 3021 } 3022 3023 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { 3024 if (!BTP->has(OutR) || !BTP->has(InpR)) 3025 return false; 3026 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); 3027 for (unsigned i = 0, w = OutC.width(); i < w; ++i) { 3028 const BitTracker::BitValue &V = OutC[i]; 3029 if (V.Type != BitTracker::BitValue::Ref) 3030 continue; 3031 if (V.RefI.Reg != InpR) 3032 return false; 3033 } 3034 return true; 3035 } 3036 3037 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, 3038 unsigned OutR2, unsigned &InpR2) const { 3039 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) 3040 return false; 3041 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); 3042 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); 3043 unsigned W = OutC1.width(); 3044 unsigned MatchR = 0; 3045 if (W != OutC2.width()) 3046 return false; 3047 for (unsigned i = 0; i < W; ++i) { 3048 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; 3049 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) 3050 return false; 3051 if (V1.Type != BitTracker::BitValue::Ref) 3052 continue; 3053 if (V1.RefI.Pos != V2.RefI.Pos) 3054 return false; 3055 if (V1.RefI.Reg != InpR1) 3056 return false; 3057 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) 3058 return false; 3059 if (!MatchR) 3060 MatchR = V2.RefI.Reg; 3061 else if (V2.RefI.Reg != MatchR) 3062 return false; 3063 } 3064 InpR2 = MatchR; 3065 return true; 3066 } 3067 3068 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, 3069 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, 3070 unsigned NewPredR) { 3071 DenseMap<unsigned,unsigned> RegMap; 3072 3073 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); 3074 unsigned PhiR = MRI->createVirtualRegister(PhiRC); 3075 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) 3076 .addReg(NewPredR) 3077 .addMBB(&PB) 3078 .addReg(G.Inp.Reg) 3079 .addMBB(&LB); 3080 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); 3081 3082 for (unsigned i = G.Ins.size(); i > 0; --i) { 3083 const MachineInstr *SI = G.Ins[i-1]; 3084 unsigned DR = getDefReg(SI); 3085 const TargetRegisterClass *RC = MRI->getRegClass(DR); 3086 unsigned NewDR = MRI->createVirtualRegister(RC); 3087 DebugLoc DL = SI->getDebugLoc(); 3088 3089 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); 3090 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { 3091 const MachineOperand &Op = SI->getOperand(j); 3092 if (!Op.isReg()) { 3093 MIB.add(Op); 3094 continue; 3095 } 3096 if (!Op.isUse()) 3097 continue; 3098 unsigned UseR = RegMap[Op.getReg()]; 3099 MIB.addReg(UseR, 0, Op.getSubReg()); 3100 } 3101 RegMap.insert(std::make_pair(DR, NewDR)); 3102 } 3103 3104 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); 3105 } 3106 3107 bool HexagonLoopRescheduling::processLoop(LoopCand &C) { 3108 LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB) 3109 << "\n"); 3110 std::vector<PhiInfo> Phis; 3111 for (auto &I : *C.LB) { 3112 if (!I.isPHI()) 3113 break; 3114 unsigned PR = getDefReg(&I); 3115 if (isConst(PR)) 3116 continue; 3117 bool BadUse = false, GoodUse = false; 3118 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { 3119 MachineInstr *UseI = UI->getParent(); 3120 if (UseI->getParent() != C.LB) { 3121 BadUse = true; 3122 break; 3123 } 3124 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) 3125 GoodUse = true; 3126 } 3127 if (BadUse || !GoodUse) 3128 continue; 3129 3130 Phis.push_back(PhiInfo(I, *C.LB)); 3131 } 3132 3133 LLVM_DEBUG({ 3134 dbgs() << "Phis: {"; 3135 for (auto &I : Phis) { 3136 dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi(" 3137 << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() 3138 << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" 3139 << I.LB->getNumber() << ')'; 3140 } 3141 dbgs() << " }\n"; 3142 }); 3143 3144 if (Phis.empty()) 3145 return false; 3146 3147 bool Changed = false; 3148 InstrList ShufIns; 3149 3150 // Go backwards in the block: for each bit shuffling instruction, check 3151 // if that instruction could potentially be moved to the front of the loop: 3152 // the output of the loop cannot be used in a non-shuffling instruction 3153 // in this loop. 3154 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { 3155 if (I->isTerminator()) 3156 continue; 3157 if (I->isPHI()) 3158 break; 3159 3160 RegisterSet Defs; 3161 HBS::getInstrDefs(*I, Defs); 3162 if (Defs.count() != 1) 3163 continue; 3164 unsigned DefR = Defs.find_first(); 3165 if (!TargetRegisterInfo::isVirtualRegister(DefR)) 3166 continue; 3167 if (!isBitShuffle(&*I, DefR)) 3168 continue; 3169 3170 bool BadUse = false; 3171 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { 3172 MachineInstr *UseI = UI->getParent(); 3173 if (UseI->getParent() == C.LB) { 3174 if (UseI->isPHI()) { 3175 // If the use is in a phi node in this loop, then it should be 3176 // the value corresponding to the back edge. 3177 unsigned Idx = UI.getOperandNo(); 3178 if (UseI->getOperand(Idx+1).getMBB() != C.LB) 3179 BadUse = true; 3180 } else { 3181 auto F = find(ShufIns, UseI); 3182 if (F == ShufIns.end()) 3183 BadUse = true; 3184 } 3185 } else { 3186 // There is a use outside of the loop, but there is no epilog block 3187 // suitable for a copy-out. 3188 if (C.EB == nullptr) 3189 BadUse = true; 3190 } 3191 if (BadUse) 3192 break; 3193 } 3194 3195 if (BadUse) 3196 continue; 3197 ShufIns.push_back(&*I); 3198 } 3199 3200 // Partition the list of shuffling instructions into instruction groups, 3201 // where each group has to be moved as a whole (i.e. a group is a chain of 3202 // dependent instructions). A group produces a single live output register, 3203 // which is meant to be the input of the loop phi node (although this is 3204 // not checked here yet). It also uses a single register as its input, 3205 // which is some value produced in the loop body. After moving the group 3206 // to the beginning of the loop, that input register would need to be 3207 // the loop-carried register (through a phi node) instead of the (currently 3208 // loop-carried) output register. 3209 using InstrGroupList = std::vector<InstrGroup>; 3210 InstrGroupList Groups; 3211 3212 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { 3213 MachineInstr *SI = ShufIns[i]; 3214 if (SI == nullptr) 3215 continue; 3216 3217 InstrGroup G; 3218 G.Ins.push_back(SI); 3219 G.Out.Reg = getDefReg(SI); 3220 RegisterSet Inputs; 3221 HBS::getInstrUses(*SI, Inputs); 3222 3223 for (unsigned j = i+1; j < n; ++j) { 3224 MachineInstr *MI = ShufIns[j]; 3225 if (MI == nullptr) 3226 continue; 3227 RegisterSet Defs; 3228 HBS::getInstrDefs(*MI, Defs); 3229 // If this instruction does not define any pending inputs, skip it. 3230 if (!Defs.intersects(Inputs)) 3231 continue; 3232 // Otherwise, add it to the current group and remove the inputs that 3233 // are defined by MI. 3234 G.Ins.push_back(MI); 3235 Inputs.remove(Defs); 3236 // Then add all registers used by MI. 3237 HBS::getInstrUses(*MI, Inputs); 3238 ShufIns[j] = nullptr; 3239 } 3240 3241 // Only add a group if it requires at most one register. 3242 if (Inputs.count() > 1) 3243 continue; 3244 auto LoopInpEq = [G] (const PhiInfo &P) -> bool { 3245 return G.Out.Reg == P.LR.Reg; 3246 }; 3247 if (llvm::find_if(Phis, LoopInpEq) == Phis.end()) 3248 continue; 3249 3250 G.Inp.Reg = Inputs.find_first(); 3251 Groups.push_back(G); 3252 } 3253 3254 LLVM_DEBUG({ 3255 for (unsigned i = 0, n = Groups.size(); i < n; ++i) { 3256 InstrGroup &G = Groups[i]; 3257 dbgs() << "Group[" << i << "] inp: " 3258 << printReg(G.Inp.Reg, HRI, G.Inp.Sub) 3259 << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; 3260 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) 3261 dbgs() << " " << *G.Ins[j]; 3262 } 3263 }); 3264 3265 for (unsigned i = 0, n = Groups.size(); i < n; ++i) { 3266 InstrGroup &G = Groups[i]; 3267 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) 3268 continue; 3269 auto LoopInpEq = [G] (const PhiInfo &P) -> bool { 3270 return G.Out.Reg == P.LR.Reg; 3271 }; 3272 auto F = llvm::find_if(Phis, LoopInpEq); 3273 if (F == Phis.end()) 3274 continue; 3275 unsigned PrehR = 0; 3276 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) { 3277 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg); 3278 unsigned Opc = DefPrehR->getOpcode(); 3279 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) 3280 continue; 3281 if (!DefPrehR->getOperand(1).isImm()) 3282 continue; 3283 if (DefPrehR->getOperand(1).getImm() != 0) 3284 continue; 3285 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); 3286 if (RC != MRI->getRegClass(F->PR.Reg)) { 3287 PrehR = MRI->createVirtualRegister(RC); 3288 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi 3289 : Hexagon::A2_tfrpi; 3290 auto T = C.PB->getFirstTerminator(); 3291 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); 3292 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR) 3293 .addImm(0); 3294 } else { 3295 PrehR = F->PR.Reg; 3296 } 3297 } 3298 // isSameShuffle could match with PrehR being of a wider class than 3299 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input, 3300 // it would match for the input being a 32-bit register, and PrehR 3301 // being a 64-bit register (where the low 32 bits match). This could 3302 // be handled, but for now skip these cases. 3303 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg)) 3304 continue; 3305 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR); 3306 Changed = true; 3307 } 3308 3309 return Changed; 3310 } 3311 3312 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { 3313 if (skipFunction(MF.getFunction())) 3314 return false; 3315 3316 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 3317 HII = HST.getInstrInfo(); 3318 HRI = HST.getRegisterInfo(); 3319 MRI = &MF.getRegInfo(); 3320 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); 3321 BitTracker BT(HE, MF); 3322 LLVM_DEBUG(BT.trace(true)); 3323 BT.run(); 3324 BTP = &BT; 3325 3326 std::vector<LoopCand> Cand; 3327 3328 for (auto &B : MF) { 3329 if (B.pred_size() != 2 || B.succ_size() != 2) 3330 continue; 3331 MachineBasicBlock *PB = nullptr; 3332 bool IsLoop = false; 3333 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { 3334 if (*PI != &B) 3335 PB = *PI; 3336 else 3337 IsLoop = true; 3338 } 3339 if (!IsLoop) 3340 continue; 3341 3342 MachineBasicBlock *EB = nullptr; 3343 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { 3344 if (*SI == &B) 3345 continue; 3346 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the 3347 // edge from B to EP is non-critical. 3348 if ((*SI)->pred_size() == 1) 3349 EB = *SI; 3350 break; 3351 } 3352 3353 Cand.push_back(LoopCand(&B, PB, EB)); 3354 } 3355 3356 bool Changed = false; 3357 for (auto &C : Cand) 3358 Changed |= processLoop(C); 3359 3360 return Changed; 3361 } 3362 3363 //===----------------------------------------------------------------------===// 3364 // Public Constructor Functions 3365 //===----------------------------------------------------------------------===// 3366 3367 FunctionPass *llvm::createHexagonLoopRescheduling() { 3368 return new HexagonLoopRescheduling(); 3369 } 3370 3371 FunctionPass *llvm::createHexagonBitSimplify() { 3372 return new HexagonBitSimplify(); 3373 } 3374