xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <limits>
44 #include <utility>
45 #include <vector>
46 
47 #define DEBUG_TYPE "hexbit"
48 
49 using namespace llvm;
50 
51 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
52   cl::init(true), cl::desc("Preserve subregisters in tied operands"));
53 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
54   cl::init(true), cl::desc("Generate extract instructions"));
55 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
56   cl::init(true), cl::desc("Generate bitsplit instructions"));
57 
58 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
59   cl::init(std::numeric_limits<unsigned>::max()));
60 static unsigned CountExtract = 0;
61 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
62   cl::init(std::numeric_limits<unsigned>::max()));
63 static unsigned CountBitSplit = 0;
64 
65 namespace llvm {
66 
67   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
68   FunctionPass *createHexagonBitSimplify();
69 
70 } // end namespace llvm
71 
72 namespace {
73 
74   // Set of virtual registers, based on BitVector.
75   struct RegisterSet : private BitVector {
76     RegisterSet() = default;
77     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
78     RegisterSet(const RegisterSet &RS) = default;
79 
80     using BitVector::clear;
81     using BitVector::count;
82 
83     unsigned find_first() const {
84       int First = BitVector::find_first();
85       if (First < 0)
86         return 0;
87       return x2v(First);
88     }
89 
90     unsigned find_next(unsigned Prev) const {
91       int Next = BitVector::find_next(v2x(Prev));
92       if (Next < 0)
93         return 0;
94       return x2v(Next);
95     }
96 
97     RegisterSet &insert(unsigned R) {
98       unsigned Idx = v2x(R);
99       ensure(Idx);
100       return static_cast<RegisterSet&>(BitVector::set(Idx));
101     }
102     RegisterSet &remove(unsigned R) {
103       unsigned Idx = v2x(R);
104       if (Idx >= size())
105         return *this;
106       return static_cast<RegisterSet&>(BitVector::reset(Idx));
107     }
108 
109     RegisterSet &insert(const RegisterSet &Rs) {
110       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
111     }
112     RegisterSet &remove(const RegisterSet &Rs) {
113       return static_cast<RegisterSet&>(BitVector::reset(Rs));
114     }
115 
116     reference operator[](unsigned R) {
117       unsigned Idx = v2x(R);
118       ensure(Idx);
119       return BitVector::operator[](Idx);
120     }
121     bool operator[](unsigned R) const {
122       unsigned Idx = v2x(R);
123       assert(Idx < size());
124       return BitVector::operator[](Idx);
125     }
126     bool has(unsigned R) const {
127       unsigned Idx = v2x(R);
128       if (Idx >= size())
129         return false;
130       return BitVector::test(Idx);
131     }
132 
133     bool empty() const {
134       return !BitVector::any();
135     }
136     bool includes(const RegisterSet &Rs) const {
137       // A.BitVector::test(B)  <=>  A-B != {}
138       return !Rs.BitVector::test(*this);
139     }
140     bool intersects(const RegisterSet &Rs) const {
141       return BitVector::anyCommon(Rs);
142     }
143 
144   private:
145     void ensure(unsigned Idx) {
146       if (size() <= Idx)
147         resize(std::max(Idx+1, 32U));
148     }
149 
150     static inline unsigned v2x(unsigned v) {
151       return Register::virtReg2Index(v);
152     }
153 
154     static inline unsigned x2v(unsigned x) {
155       return Register::index2VirtReg(x);
156     }
157   };
158 
159   struct PrintRegSet {
160     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
161       : RS(S), TRI(RI) {}
162 
163     friend raw_ostream &operator<< (raw_ostream &OS,
164           const PrintRegSet &P);
165 
166   private:
167     const RegisterSet &RS;
168     const TargetRegisterInfo *TRI;
169   };
170 
171   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
172     LLVM_ATTRIBUTE_UNUSED;
173   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
174     OS << '{';
175     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
176       OS << ' ' << printReg(R, P.TRI);
177     OS << " }";
178     return OS;
179   }
180 
181   class Transformation;
182 
183   class HexagonBitSimplify : public MachineFunctionPass {
184   public:
185     static char ID;
186 
187     HexagonBitSimplify() : MachineFunctionPass(ID) {}
188 
189     StringRef getPassName() const override {
190       return "Hexagon bit simplification";
191     }
192 
193     void getAnalysisUsage(AnalysisUsage &AU) const override {
194       AU.addRequired<MachineDominatorTree>();
195       AU.addPreserved<MachineDominatorTree>();
196       MachineFunctionPass::getAnalysisUsage(AU);
197     }
198 
199     bool runOnMachineFunction(MachineFunction &MF) override;
200 
201     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
202     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
203     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
204         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
205     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
206         uint16_t W);
207     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
208         uint16_t W, uint64_t &U);
209     static bool replaceReg(Register OldR, Register NewR,
210                            MachineRegisterInfo &MRI);
211     static bool getSubregMask(const BitTracker::RegisterRef &RR,
212         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
213     static bool replaceRegWithSub(Register OldR, Register NewR, unsigned NewSR,
214                                   MachineRegisterInfo &MRI);
215     static bool replaceSubWithSub(Register OldR, unsigned OldSR, Register NewR,
216                                   unsigned NewSR, MachineRegisterInfo &MRI);
217     static bool parseRegSequence(const MachineInstr &I,
218         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
219         const MachineRegisterInfo &MRI);
220 
221     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
222         uint16_t Begin);
223     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
224         uint16_t Begin, const HexagonInstrInfo &HII);
225 
226     static const TargetRegisterClass *getFinalVRegClass(
227         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
228     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
229         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
230 
231   private:
232     MachineDominatorTree *MDT = nullptr;
233 
234     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
235     static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
236         unsigned NewSub = Hexagon::NoSubRegister);
237   };
238 
239   using HBS = HexagonBitSimplify;
240 
241   // The purpose of this class is to provide a common facility to traverse
242   // the function top-down or bottom-up via the dominator tree, and keep
243   // track of the available registers.
244   class Transformation {
245   public:
246     bool TopDown;
247 
248     Transformation(bool TD) : TopDown(TD) {}
249     virtual ~Transformation() = default;
250 
251     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
252   };
253 
254 } // end anonymous namespace
255 
256 char HexagonBitSimplify::ID = 0;
257 
258 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
259       "Hexagon bit simplification", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
261 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
262       "Hexagon bit simplification", false, false)
263 
264 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
265       RegisterSet &AVs) {
266   bool Changed = false;
267 
268   if (T.TopDown)
269     Changed = T.processBlock(B, AVs);
270 
271   RegisterSet Defs;
272   for (auto &I : B)
273     getInstrDefs(I, Defs);
274   RegisterSet NewAVs = AVs;
275   NewAVs.insert(Defs);
276 
277   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
278     Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
279 
280   if (!T.TopDown)
281     Changed |= T.processBlock(B, AVs);
282 
283   return Changed;
284 }
285 
286 //
287 // Utility functions:
288 //
289 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
290       RegisterSet &Defs) {
291   for (auto &Op : MI.operands()) {
292     if (!Op.isReg() || !Op.isDef())
293       continue;
294     Register R = Op.getReg();
295     if (!R.isVirtual())
296       continue;
297     Defs.insert(R);
298   }
299 }
300 
301 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
302       RegisterSet &Uses) {
303   for (auto &Op : MI.operands()) {
304     if (!Op.isReg() || !Op.isUse())
305       continue;
306     Register R = Op.getReg();
307     if (!R.isVirtual())
308       continue;
309     Uses.insert(R);
310   }
311 }
312 
313 // Check if all the bits in range [B, E) in both cells are equal.
314 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
315       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
316       uint16_t W) {
317   for (uint16_t i = 0; i < W; ++i) {
318     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
319     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
320       return false;
321     // Same for RC2[i].
322     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
323       return false;
324     if (RC1[B1+i] != RC2[B2+i])
325       return false;
326   }
327   return true;
328 }
329 
330 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
331       uint16_t B, uint16_t W) {
332   assert(B < RC.width() && B+W <= RC.width());
333   for (uint16_t i = B; i < B+W; ++i)
334     if (!RC[i].is(0))
335       return false;
336   return true;
337 }
338 
339 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
340         uint16_t B, uint16_t W, uint64_t &U) {
341   assert(B < RC.width() && B+W <= RC.width());
342   int64_t T = 0;
343   for (uint16_t i = B+W; i > B; --i) {
344     const BitTracker::BitValue &BV = RC[i-1];
345     T <<= 1;
346     if (BV.is(1))
347       T |= 1;
348     else if (!BV.is(0))
349       return false;
350   }
351   U = T;
352   return true;
353 }
354 
355 bool HexagonBitSimplify::replaceReg(Register OldR, Register NewR,
356                                     MachineRegisterInfo &MRI) {
357   if (!OldR.isVirtual() || !NewR.isVirtual())
358     return false;
359   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
360   decltype(End) NextI;
361   for (auto I = Begin; I != End; I = NextI) {
362     NextI = std::next(I);
363     I->setReg(NewR);
364   }
365   return Begin != End;
366 }
367 
368 bool HexagonBitSimplify::replaceRegWithSub(Register OldR, Register NewR,
369                                            unsigned NewSR,
370                                            MachineRegisterInfo &MRI) {
371   if (!OldR.isVirtual() || !NewR.isVirtual())
372     return false;
373   if (hasTiedUse(OldR, MRI, NewSR))
374     return false;
375   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
376   decltype(End) NextI;
377   for (auto I = Begin; I != End; I = NextI) {
378     NextI = std::next(I);
379     I->setReg(NewR);
380     I->setSubReg(NewSR);
381   }
382   return Begin != End;
383 }
384 
385 bool HexagonBitSimplify::replaceSubWithSub(Register OldR, unsigned OldSR,
386                                            Register NewR, unsigned NewSR,
387                                            MachineRegisterInfo &MRI) {
388   if (!OldR.isVirtual() || !NewR.isVirtual())
389     return false;
390   if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
391     return false;
392   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
393   decltype(End) NextI;
394   for (auto I = Begin; I != End; I = NextI) {
395     NextI = std::next(I);
396     if (I->getSubReg() != OldSR)
397       continue;
398     I->setReg(NewR);
399     I->setSubReg(NewSR);
400   }
401   return Begin != End;
402 }
403 
404 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
405 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
406 // if this succeeded, otherwise return false.
407 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
408       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
409   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
410   if (RR.Sub == 0) {
411     Begin = 0;
412     Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
413     return true;
414   }
415 
416   Begin = 0;
417 
418   switch (RC->getID()) {
419     case Hexagon::DoubleRegsRegClassID:
420     case Hexagon::HvxWRRegClassID:
421       Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
422       if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
423         Begin = Width;
424       break;
425     default:
426       return false;
427   }
428   return true;
429 }
430 
431 
432 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
433 // subregister.
434 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
435       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
436       const MachineRegisterInfo &MRI) {
437   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
438   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
439   auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
440   auto &HRI = static_cast<const HexagonRegisterInfo&>(
441                   *MRI.getTargetRegisterInfo());
442   unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
443   unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
444   assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
445   if (Sub1 == SubLo && Sub2 == SubHi) {
446     SL = I.getOperand(1);
447     SH = I.getOperand(3);
448     return true;
449   }
450   if (Sub1 == SubHi && Sub2 == SubLo) {
451     SH = I.getOperand(1);
452     SL = I.getOperand(3);
453     return true;
454   }
455   return false;
456 }
457 
458 // All stores (except 64-bit stores) take a 32-bit register as the source
459 // of the value to be stored. If the instruction stores into a location
460 // that is shorter than 32 bits, some bits of the source register are not
461 // used. For each store instruction, calculate the set of used bits in
462 // the source register, and set appropriate bits in Bits. Return true if
463 // the bits are calculated, false otherwise.
464 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
465       uint16_t Begin) {
466   using namespace Hexagon;
467 
468   switch (Opc) {
469     // Store byte
470     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
471     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
472     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
473     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
474     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
475     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
476     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
477     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
478     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
479     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
480     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
481     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
482     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
483     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
484     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
485     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
486     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
487     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
488     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
489     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
490     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
491     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
492     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
493     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
494     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
495     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
496     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
497     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
498     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
499     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
500     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
501     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
502     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
503     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
504     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
505     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
506     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
507     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
508     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
509     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
510     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
511     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
512     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
513     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
514     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
515     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
516     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
517     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
518     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
519     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
520     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
521     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
522       Bits.set(Begin, Begin+8);
523       return true;
524 
525     // Store low half
526     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
527     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
528     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
529     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
530     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
531     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
532     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
533     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
534     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
535     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
536     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
537     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
538     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
539     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
540     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
541     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
542     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
543     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
544     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
545     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
546     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
547     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
548     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
549     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
550     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
551     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
552     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
553     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
554     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
555     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
556     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
557     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
558     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
559     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
560     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
561     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
562     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
563     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
564     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
565     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
566     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
567     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
568     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
569     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
570     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
571     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
572     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
573     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
574     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
575     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
576     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
577     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
578       Bits.set(Begin, Begin+16);
579       return true;
580 
581     // Store high half
582     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
583     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
584     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
585     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
586     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
587     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
588     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
589     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
590     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
591     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
592     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
593     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
594     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
595     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
596     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
597     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
598     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
599     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
600     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
601     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
602     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
603     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
604     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
605     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
606     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
607     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
608       Bits.set(Begin+16, Begin+32);
609       return true;
610   }
611 
612   return false;
613 }
614 
615 // For an instruction with opcode Opc, calculate the set of bits that it
616 // uses in a register in operand OpN. This only calculates the set of used
617 // bits for cases where it does not depend on any operands (as is the case
618 // in shifts, for example). For concrete instructions from a program, the
619 // operand may be a subregister of a larger register, while Bits would
620 // correspond to the larger register in its entirety. Because of that,
621 // the parameter Begin can be used to indicate which bit of Bits should be
622 // considered the LSB of the operand.
623 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
624       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
625   using namespace Hexagon;
626 
627   const MCInstrDesc &D = HII.get(Opc);
628   if (D.mayStore()) {
629     if (OpN == D.getNumOperands()-1)
630       return getUsedBitsInStore(Opc, Bits, Begin);
631     return false;
632   }
633 
634   switch (Opc) {
635     // One register source. Used bits: R1[0-7].
636     case A2_sxtb:
637     case A2_zxtb:
638     case A4_cmpbeqi:
639     case A4_cmpbgti:
640     case A4_cmpbgtui:
641       if (OpN == 1) {
642         Bits.set(Begin, Begin+8);
643         return true;
644       }
645       break;
646 
647     // One register source. Used bits: R1[0-15].
648     case A2_aslh:
649     case A2_sxth:
650     case A2_zxth:
651     case A4_cmpheqi:
652     case A4_cmphgti:
653     case A4_cmphgtui:
654       if (OpN == 1) {
655         Bits.set(Begin, Begin+16);
656         return true;
657       }
658       break;
659 
660     // One register source. Used bits: R1[16-31].
661     case A2_asrh:
662       if (OpN == 1) {
663         Bits.set(Begin+16, Begin+32);
664         return true;
665       }
666       break;
667 
668     // Two register sources. Used bits: R1[0-7], R2[0-7].
669     case A4_cmpbeq:
670     case A4_cmpbgt:
671     case A4_cmpbgtu:
672       if (OpN == 1) {
673         Bits.set(Begin, Begin+8);
674         return true;
675       }
676       break;
677 
678     // Two register sources. Used bits: R1[0-15], R2[0-15].
679     case A4_cmpheq:
680     case A4_cmphgt:
681     case A4_cmphgtu:
682     case A2_addh_h16_ll:
683     case A2_addh_h16_sat_ll:
684     case A2_addh_l16_ll:
685     case A2_addh_l16_sat_ll:
686     case A2_combine_ll:
687     case A2_subh_h16_ll:
688     case A2_subh_h16_sat_ll:
689     case A2_subh_l16_ll:
690     case A2_subh_l16_sat_ll:
691     case M2_mpy_acc_ll_s0:
692     case M2_mpy_acc_ll_s1:
693     case M2_mpy_acc_sat_ll_s0:
694     case M2_mpy_acc_sat_ll_s1:
695     case M2_mpy_ll_s0:
696     case M2_mpy_ll_s1:
697     case M2_mpy_nac_ll_s0:
698     case M2_mpy_nac_ll_s1:
699     case M2_mpy_nac_sat_ll_s0:
700     case M2_mpy_nac_sat_ll_s1:
701     case M2_mpy_rnd_ll_s0:
702     case M2_mpy_rnd_ll_s1:
703     case M2_mpy_sat_ll_s0:
704     case M2_mpy_sat_ll_s1:
705     case M2_mpy_sat_rnd_ll_s0:
706     case M2_mpy_sat_rnd_ll_s1:
707     case M2_mpyd_acc_ll_s0:
708     case M2_mpyd_acc_ll_s1:
709     case M2_mpyd_ll_s0:
710     case M2_mpyd_ll_s1:
711     case M2_mpyd_nac_ll_s0:
712     case M2_mpyd_nac_ll_s1:
713     case M2_mpyd_rnd_ll_s0:
714     case M2_mpyd_rnd_ll_s1:
715     case M2_mpyu_acc_ll_s0:
716     case M2_mpyu_acc_ll_s1:
717     case M2_mpyu_ll_s0:
718     case M2_mpyu_ll_s1:
719     case M2_mpyu_nac_ll_s0:
720     case M2_mpyu_nac_ll_s1:
721     case M2_mpyud_acc_ll_s0:
722     case M2_mpyud_acc_ll_s1:
723     case M2_mpyud_ll_s0:
724     case M2_mpyud_ll_s1:
725     case M2_mpyud_nac_ll_s0:
726     case M2_mpyud_nac_ll_s1:
727       if (OpN == 1 || OpN == 2) {
728         Bits.set(Begin, Begin+16);
729         return true;
730       }
731       break;
732 
733     // Two register sources. Used bits: R1[0-15], R2[16-31].
734     case A2_addh_h16_lh:
735     case A2_addh_h16_sat_lh:
736     case A2_combine_lh:
737     case A2_subh_h16_lh:
738     case A2_subh_h16_sat_lh:
739     case M2_mpy_acc_lh_s0:
740     case M2_mpy_acc_lh_s1:
741     case M2_mpy_acc_sat_lh_s0:
742     case M2_mpy_acc_sat_lh_s1:
743     case M2_mpy_lh_s0:
744     case M2_mpy_lh_s1:
745     case M2_mpy_nac_lh_s0:
746     case M2_mpy_nac_lh_s1:
747     case M2_mpy_nac_sat_lh_s0:
748     case M2_mpy_nac_sat_lh_s1:
749     case M2_mpy_rnd_lh_s0:
750     case M2_mpy_rnd_lh_s1:
751     case M2_mpy_sat_lh_s0:
752     case M2_mpy_sat_lh_s1:
753     case M2_mpy_sat_rnd_lh_s0:
754     case M2_mpy_sat_rnd_lh_s1:
755     case M2_mpyd_acc_lh_s0:
756     case M2_mpyd_acc_lh_s1:
757     case M2_mpyd_lh_s0:
758     case M2_mpyd_lh_s1:
759     case M2_mpyd_nac_lh_s0:
760     case M2_mpyd_nac_lh_s1:
761     case M2_mpyd_rnd_lh_s0:
762     case M2_mpyd_rnd_lh_s1:
763     case M2_mpyu_acc_lh_s0:
764     case M2_mpyu_acc_lh_s1:
765     case M2_mpyu_lh_s0:
766     case M2_mpyu_lh_s1:
767     case M2_mpyu_nac_lh_s0:
768     case M2_mpyu_nac_lh_s1:
769     case M2_mpyud_acc_lh_s0:
770     case M2_mpyud_acc_lh_s1:
771     case M2_mpyud_lh_s0:
772     case M2_mpyud_lh_s1:
773     case M2_mpyud_nac_lh_s0:
774     case M2_mpyud_nac_lh_s1:
775     // These four are actually LH.
776     case A2_addh_l16_hl:
777     case A2_addh_l16_sat_hl:
778     case A2_subh_l16_hl:
779     case A2_subh_l16_sat_hl:
780       if (OpN == 1) {
781         Bits.set(Begin, Begin+16);
782         return true;
783       }
784       if (OpN == 2) {
785         Bits.set(Begin+16, Begin+32);
786         return true;
787       }
788       break;
789 
790     // Two register sources, used bits: R1[16-31], R2[0-15].
791     case A2_addh_h16_hl:
792     case A2_addh_h16_sat_hl:
793     case A2_combine_hl:
794     case A2_subh_h16_hl:
795     case A2_subh_h16_sat_hl:
796     case M2_mpy_acc_hl_s0:
797     case M2_mpy_acc_hl_s1:
798     case M2_mpy_acc_sat_hl_s0:
799     case M2_mpy_acc_sat_hl_s1:
800     case M2_mpy_hl_s0:
801     case M2_mpy_hl_s1:
802     case M2_mpy_nac_hl_s0:
803     case M2_mpy_nac_hl_s1:
804     case M2_mpy_nac_sat_hl_s0:
805     case M2_mpy_nac_sat_hl_s1:
806     case M2_mpy_rnd_hl_s0:
807     case M2_mpy_rnd_hl_s1:
808     case M2_mpy_sat_hl_s0:
809     case M2_mpy_sat_hl_s1:
810     case M2_mpy_sat_rnd_hl_s0:
811     case M2_mpy_sat_rnd_hl_s1:
812     case M2_mpyd_acc_hl_s0:
813     case M2_mpyd_acc_hl_s1:
814     case M2_mpyd_hl_s0:
815     case M2_mpyd_hl_s1:
816     case M2_mpyd_nac_hl_s0:
817     case M2_mpyd_nac_hl_s1:
818     case M2_mpyd_rnd_hl_s0:
819     case M2_mpyd_rnd_hl_s1:
820     case M2_mpyu_acc_hl_s0:
821     case M2_mpyu_acc_hl_s1:
822     case M2_mpyu_hl_s0:
823     case M2_mpyu_hl_s1:
824     case M2_mpyu_nac_hl_s0:
825     case M2_mpyu_nac_hl_s1:
826     case M2_mpyud_acc_hl_s0:
827     case M2_mpyud_acc_hl_s1:
828     case M2_mpyud_hl_s0:
829     case M2_mpyud_hl_s1:
830     case M2_mpyud_nac_hl_s0:
831     case M2_mpyud_nac_hl_s1:
832       if (OpN == 1) {
833         Bits.set(Begin+16, Begin+32);
834         return true;
835       }
836       if (OpN == 2) {
837         Bits.set(Begin, Begin+16);
838         return true;
839       }
840       break;
841 
842     // Two register sources, used bits: R1[16-31], R2[16-31].
843     case A2_addh_h16_hh:
844     case A2_addh_h16_sat_hh:
845     case A2_combine_hh:
846     case A2_subh_h16_hh:
847     case A2_subh_h16_sat_hh:
848     case M2_mpy_acc_hh_s0:
849     case M2_mpy_acc_hh_s1:
850     case M2_mpy_acc_sat_hh_s0:
851     case M2_mpy_acc_sat_hh_s1:
852     case M2_mpy_hh_s0:
853     case M2_mpy_hh_s1:
854     case M2_mpy_nac_hh_s0:
855     case M2_mpy_nac_hh_s1:
856     case M2_mpy_nac_sat_hh_s0:
857     case M2_mpy_nac_sat_hh_s1:
858     case M2_mpy_rnd_hh_s0:
859     case M2_mpy_rnd_hh_s1:
860     case M2_mpy_sat_hh_s0:
861     case M2_mpy_sat_hh_s1:
862     case M2_mpy_sat_rnd_hh_s0:
863     case M2_mpy_sat_rnd_hh_s1:
864     case M2_mpyd_acc_hh_s0:
865     case M2_mpyd_acc_hh_s1:
866     case M2_mpyd_hh_s0:
867     case M2_mpyd_hh_s1:
868     case M2_mpyd_nac_hh_s0:
869     case M2_mpyd_nac_hh_s1:
870     case M2_mpyd_rnd_hh_s0:
871     case M2_mpyd_rnd_hh_s1:
872     case M2_mpyu_acc_hh_s0:
873     case M2_mpyu_acc_hh_s1:
874     case M2_mpyu_hh_s0:
875     case M2_mpyu_hh_s1:
876     case M2_mpyu_nac_hh_s0:
877     case M2_mpyu_nac_hh_s1:
878     case M2_mpyud_acc_hh_s0:
879     case M2_mpyud_acc_hh_s1:
880     case M2_mpyud_hh_s0:
881     case M2_mpyud_hh_s1:
882     case M2_mpyud_nac_hh_s0:
883     case M2_mpyud_nac_hh_s1:
884       if (OpN == 1 || OpN == 2) {
885         Bits.set(Begin+16, Begin+32);
886         return true;
887       }
888       break;
889   }
890 
891   return false;
892 }
893 
894 // Calculate the register class that matches Reg:Sub. For example, if
895 // %1 is a double register, then %1:isub_hi would match the "int"
896 // register class.
897 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
898       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
899   if (!RR.Reg.isVirtual())
900     return nullptr;
901   auto *RC = MRI.getRegClass(RR.Reg);
902   if (RR.Sub == 0)
903     return RC;
904   auto &HRI = static_cast<const HexagonRegisterInfo&>(
905                   *MRI.getTargetRegisterInfo());
906 
907   auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
908     (void)HRI;
909     assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
910            Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
911   };
912 
913   switch (RC->getID()) {
914     case Hexagon::DoubleRegsRegClassID:
915       VerifySR(RC, RR.Sub);
916       return &Hexagon::IntRegsRegClass;
917     case Hexagon::HvxWRRegClassID:
918       VerifySR(RC, RR.Sub);
919       return &Hexagon::HvxVRRegClass;
920   }
921   return nullptr;
922 }
923 
924 // Check if RD could be replaced with RS at any possible use of RD.
925 // For example a predicate register cannot be replaced with a integer
926 // register, but a 64-bit register with a subregister can be replaced
927 // with a 32-bit register.
928 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
929       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
930   if (!RD.Reg.isVirtual() || !RS.Reg.isVirtual())
931     return false;
932   // Return false if one (or both) classes are nullptr.
933   auto *DRC = getFinalVRegClass(RD, MRI);
934   if (!DRC)
935     return false;
936 
937   return DRC == getFinalVRegClass(RS, MRI);
938 }
939 
940 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
941       unsigned NewSub) {
942   if (!PreserveTiedOps)
943     return false;
944   return llvm::any_of(MRI.use_operands(Reg),
945                       [NewSub] (const MachineOperand &Op) -> bool {
946                         return Op.getSubReg() != NewSub && Op.isTied();
947                       });
948 }
949 
950 namespace {
951 
952   class DeadCodeElimination {
953   public:
954     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
955       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
956         MDT(mdt), MRI(mf.getRegInfo()) {}
957 
958     bool run() {
959       return runOnNode(MDT.getRootNode());
960     }
961 
962   private:
963     bool isDead(unsigned R) const;
964     bool runOnNode(MachineDomTreeNode *N);
965 
966     MachineFunction &MF;
967     const HexagonInstrInfo &HII;
968     MachineDominatorTree &MDT;
969     MachineRegisterInfo &MRI;
970   };
971 
972 } // end anonymous namespace
973 
974 bool DeadCodeElimination::isDead(unsigned R) const {
975   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
976     MachineInstr *UseI = I->getParent();
977     if (UseI->isDebugValue())
978       continue;
979     if (UseI->isPHI()) {
980       assert(!UseI->getOperand(0).getSubReg());
981       Register DR = UseI->getOperand(0).getReg();
982       if (DR == R)
983         continue;
984     }
985     return false;
986   }
987   return true;
988 }
989 
990 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
991   bool Changed = false;
992 
993   for (auto *DTN : children<MachineDomTreeNode*>(N))
994     Changed |= runOnNode(DTN);
995 
996   MachineBasicBlock *B = N->getBlock();
997   std::vector<MachineInstr*> Instrs;
998   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
999     Instrs.push_back(&*I);
1000 
1001   for (auto MI : Instrs) {
1002     unsigned Opc = MI->getOpcode();
1003     // Do not touch lifetime markers. This is why the target-independent DCE
1004     // cannot be used.
1005     if (Opc == TargetOpcode::LIFETIME_START ||
1006         Opc == TargetOpcode::LIFETIME_END)
1007       continue;
1008     bool Store = false;
1009     if (MI->isInlineAsm())
1010       continue;
1011     // Delete PHIs if possible.
1012     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1013       continue;
1014 
1015     bool AllDead = true;
1016     SmallVector<unsigned,2> Regs;
1017     for (auto &Op : MI->operands()) {
1018       if (!Op.isReg() || !Op.isDef())
1019         continue;
1020       Register R = Op.getReg();
1021       if (!R.isVirtual() || !isDead(R)) {
1022         AllDead = false;
1023         break;
1024       }
1025       Regs.push_back(R);
1026     }
1027     if (!AllDead)
1028       continue;
1029 
1030     B->erase(MI);
1031     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1032       MRI.markUsesInDebugValueAsUndef(Regs[i]);
1033     Changed = true;
1034   }
1035 
1036   return Changed;
1037 }
1038 
1039 namespace {
1040 
1041 // Eliminate redundant instructions
1042 //
1043 // This transformation will identify instructions where the output register
1044 // is the same as one of its input registers. This only works on instructions
1045 // that define a single register (unlike post-increment loads, for example).
1046 // The equality check is actually more detailed: the code calculates which
1047 // bits of the output are used, and only compares these bits with the input
1048 // registers.
1049 // If the output matches an input, the instruction is replaced with COPY.
1050 // The copies will be removed by another transformation.
1051   class RedundantInstrElimination : public Transformation {
1052   public:
1053     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1054           const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1055         : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1056 
1057     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1058 
1059   private:
1060     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1061           unsigned &LostB, unsigned &LostE);
1062     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1063           unsigned &LostB, unsigned &LostE);
1064     bool computeUsedBits(unsigned Reg, BitVector &Bits);
1065     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1066           uint16_t Begin);
1067     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1068 
1069     const HexagonInstrInfo &HII;
1070     const HexagonRegisterInfo &HRI;
1071     MachineRegisterInfo &MRI;
1072     BitTracker &BT;
1073   };
1074 
1075 } // end anonymous namespace
1076 
1077 // Check if the instruction is a lossy shift left, where the input being
1078 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1079 // of bit indices that are lost.
1080 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1081       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1082   using namespace Hexagon;
1083 
1084   unsigned Opc = MI.getOpcode();
1085   unsigned ImN, RegN, Width;
1086   switch (Opc) {
1087     case S2_asl_i_p:
1088       ImN = 2;
1089       RegN = 1;
1090       Width = 64;
1091       break;
1092     case S2_asl_i_p_acc:
1093     case S2_asl_i_p_and:
1094     case S2_asl_i_p_nac:
1095     case S2_asl_i_p_or:
1096     case S2_asl_i_p_xacc:
1097       ImN = 3;
1098       RegN = 2;
1099       Width = 64;
1100       break;
1101     case S2_asl_i_r:
1102       ImN = 2;
1103       RegN = 1;
1104       Width = 32;
1105       break;
1106     case S2_addasl_rrri:
1107     case S4_andi_asl_ri:
1108     case S4_ori_asl_ri:
1109     case S4_addi_asl_ri:
1110     case S4_subi_asl_ri:
1111     case S2_asl_i_r_acc:
1112     case S2_asl_i_r_and:
1113     case S2_asl_i_r_nac:
1114     case S2_asl_i_r_or:
1115     case S2_asl_i_r_sat:
1116     case S2_asl_i_r_xacc:
1117       ImN = 3;
1118       RegN = 2;
1119       Width = 32;
1120       break;
1121     default:
1122       return false;
1123   }
1124 
1125   if (RegN != OpN)
1126     return false;
1127 
1128   assert(MI.getOperand(ImN).isImm());
1129   unsigned S = MI.getOperand(ImN).getImm();
1130   if (S == 0)
1131     return false;
1132   LostB = Width-S;
1133   LostE = Width;
1134   return true;
1135 }
1136 
1137 // Check if the instruction is a lossy shift right, where the input being
1138 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1139 // of bit indices that are lost.
1140 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1141       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1142   using namespace Hexagon;
1143 
1144   unsigned Opc = MI.getOpcode();
1145   unsigned ImN, RegN;
1146   switch (Opc) {
1147     case S2_asr_i_p:
1148     case S2_lsr_i_p:
1149       ImN = 2;
1150       RegN = 1;
1151       break;
1152     case S2_asr_i_p_acc:
1153     case S2_asr_i_p_and:
1154     case S2_asr_i_p_nac:
1155     case S2_asr_i_p_or:
1156     case S2_lsr_i_p_acc:
1157     case S2_lsr_i_p_and:
1158     case S2_lsr_i_p_nac:
1159     case S2_lsr_i_p_or:
1160     case S2_lsr_i_p_xacc:
1161       ImN = 3;
1162       RegN = 2;
1163       break;
1164     case S2_asr_i_r:
1165     case S2_lsr_i_r:
1166       ImN = 2;
1167       RegN = 1;
1168       break;
1169     case S4_andi_lsr_ri:
1170     case S4_ori_lsr_ri:
1171     case S4_addi_lsr_ri:
1172     case S4_subi_lsr_ri:
1173     case S2_asr_i_r_acc:
1174     case S2_asr_i_r_and:
1175     case S2_asr_i_r_nac:
1176     case S2_asr_i_r_or:
1177     case S2_lsr_i_r_acc:
1178     case S2_lsr_i_r_and:
1179     case S2_lsr_i_r_nac:
1180     case S2_lsr_i_r_or:
1181     case S2_lsr_i_r_xacc:
1182       ImN = 3;
1183       RegN = 2;
1184       break;
1185 
1186     default:
1187       return false;
1188   }
1189 
1190   if (RegN != OpN)
1191     return false;
1192 
1193   assert(MI.getOperand(ImN).isImm());
1194   unsigned S = MI.getOperand(ImN).getImm();
1195   LostB = 0;
1196   LostE = S;
1197   return true;
1198 }
1199 
1200 // Calculate the bit vector that corresponds to the used bits of register Reg.
1201 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1202 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1203 // wise, it returns true and sets the corresponding bits in Bits.
1204 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1205   BitVector Used(Bits.size());
1206   RegisterSet Visited;
1207   std::vector<unsigned> Pending;
1208   Pending.push_back(Reg);
1209 
1210   for (unsigned i = 0; i < Pending.size(); ++i) {
1211     unsigned R = Pending[i];
1212     if (Visited.has(R))
1213       continue;
1214     Visited.insert(R);
1215     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1216       BitTracker::RegisterRef UR = *I;
1217       unsigned B, W;
1218       if (!HBS::getSubregMask(UR, B, W, MRI))
1219         return false;
1220       MachineInstr &UseI = *I->getParent();
1221       if (UseI.isPHI() || UseI.isCopy()) {
1222         Register DefR = UseI.getOperand(0).getReg();
1223         if (!DefR.isVirtual())
1224           return false;
1225         Pending.push_back(DefR);
1226       } else {
1227         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1228           return false;
1229       }
1230     }
1231   }
1232   Bits |= Used;
1233   return true;
1234 }
1235 
1236 // Calculate the bits used by instruction MI in a register in operand OpN.
1237 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1238 // used bits in Bits. This function does not reset any bits in Bits, so
1239 // subsequent calls over different instructions will result in the union
1240 // of the used bits in all these instructions.
1241 // The register in question may be used with a sub-register, whereas Bits
1242 // holds the bits for the entire register. To keep track of that, the
1243 // argument Begin indicates where in Bits is the lowest-significant bit
1244 // of the register used in operand OpN. For example, in instruction:
1245 //   %1 = S2_lsr_i_r %2:isub_hi, 10
1246 // the operand 1 is a 32-bit register, which happens to be a subregister
1247 // of the 64-bit register %2, and that subregister starts at position 32.
1248 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1249 // of %2:isub_hi.
1250 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1251       unsigned OpN, BitVector &Bits, uint16_t Begin) {
1252   unsigned Opc = MI.getOpcode();
1253   BitVector T(Bits.size());
1254   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1255   // Even if we don't have bits yet, we could still provide some information
1256   // if the instruction is a lossy shift: the lost bits will be marked as
1257   // not used.
1258   unsigned LB, LE;
1259   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1260     assert(MI.getOperand(OpN).isReg());
1261     BitTracker::RegisterRef RR = MI.getOperand(OpN);
1262     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1263     uint16_t Width = HRI.getRegSizeInBits(*RC);
1264 
1265     if (!GotBits)
1266       T.set(Begin, Begin+Width);
1267     assert(LB <= LE && LB < Width && LE <= Width);
1268     T.reset(Begin+LB, Begin+LE);
1269     GotBits = true;
1270   }
1271   if (GotBits)
1272     Bits |= T;
1273   return GotBits;
1274 }
1275 
1276 // Calculates the used bits in RD ("defined register"), and checks if these
1277 // bits in RS ("used register") and RD are identical.
1278 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1279       BitTracker::RegisterRef RS) {
1280   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1281   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1282 
1283   unsigned DB, DW;
1284   if (!HBS::getSubregMask(RD, DB, DW, MRI))
1285     return false;
1286   unsigned SB, SW;
1287   if (!HBS::getSubregMask(RS, SB, SW, MRI))
1288     return false;
1289   if (SW != DW)
1290     return false;
1291 
1292   BitVector Used(DC.width());
1293   if (!computeUsedBits(RD.Reg, Used))
1294     return false;
1295 
1296   for (unsigned i = 0; i != DW; ++i)
1297     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1298       return false;
1299   return true;
1300 }
1301 
1302 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1303       const RegisterSet&) {
1304   if (!BT.reached(&B))
1305     return false;
1306   bool Changed = false;
1307 
1308   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1309     NextI = std::next(I);
1310     MachineInstr *MI = &*I;
1311 
1312     if (MI->getOpcode() == TargetOpcode::COPY)
1313       continue;
1314     if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1315       continue;
1316     unsigned NumD = MI->getDesc().getNumDefs();
1317     if (NumD != 1)
1318       continue;
1319 
1320     BitTracker::RegisterRef RD = MI->getOperand(0);
1321     if (!BT.has(RD.Reg))
1322       continue;
1323     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1324     auto At = MachineBasicBlock::iterator(MI);
1325 
1326     // Find a source operand that is equal to the result.
1327     for (auto &Op : MI->uses()) {
1328       if (!Op.isReg())
1329         continue;
1330       BitTracker::RegisterRef RS = Op;
1331       if (!BT.has(RS.Reg))
1332         continue;
1333       if (!HBS::isTransparentCopy(RD, RS, MRI))
1334         continue;
1335 
1336       unsigned BN, BW;
1337       if (!HBS::getSubregMask(RS, BN, BW, MRI))
1338         continue;
1339 
1340       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1341       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1342         continue;
1343 
1344       // If found, replace the instruction with a COPY.
1345       const DebugLoc &DL = MI->getDebugLoc();
1346       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1347       Register NewR = MRI.createVirtualRegister(FRC);
1348       MachineInstr *CopyI =
1349           BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1350             .addReg(RS.Reg, 0, RS.Sub);
1351       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1352       // This pass can create copies between registers that don't have the
1353       // exact same values. Updating the tracker has to involve updating
1354       // all dependent cells. Example:
1355       //   %1  = inst %2     ; %1 != %2, but used bits are equal
1356       //
1357       //   %3  = copy %2     ; <- inserted
1358       //   ... = %3          ; <- replaced from %2
1359       // Indirectly, we can create a "copy" between %1 and %2 even
1360       // though their exact values do not match.
1361       BT.visit(*CopyI);
1362       Changed = true;
1363       break;
1364     }
1365   }
1366 
1367   return Changed;
1368 }
1369 
1370 namespace {
1371 
1372 // Recognize instructions that produce constant values known at compile-time.
1373 // Replace them with register definitions that load these constants directly.
1374   class ConstGeneration : public Transformation {
1375   public:
1376     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1377         MachineRegisterInfo &mri)
1378       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1379 
1380     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1381     static bool isTfrConst(const MachineInstr &MI);
1382 
1383   private:
1384     Register genTfrConst(const TargetRegisterClass *RC, int64_t C,
1385                          MachineBasicBlock &B, MachineBasicBlock::iterator At,
1386                          DebugLoc &DL);
1387 
1388     const HexagonInstrInfo &HII;
1389     MachineRegisterInfo &MRI;
1390     BitTracker &BT;
1391   };
1392 
1393 } // end anonymous namespace
1394 
1395 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1396   unsigned Opc = MI.getOpcode();
1397   switch (Opc) {
1398     case Hexagon::A2_combineii:
1399     case Hexagon::A4_combineii:
1400     case Hexagon::A2_tfrsi:
1401     case Hexagon::A2_tfrpi:
1402     case Hexagon::PS_true:
1403     case Hexagon::PS_false:
1404     case Hexagon::CONST32:
1405     case Hexagon::CONST64:
1406       return true;
1407   }
1408   return false;
1409 }
1410 
1411 // Generate a transfer-immediate instruction that is appropriate for the
1412 // register class and the actual value being transferred.
1413 Register ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1414                                       MachineBasicBlock &B,
1415                                       MachineBasicBlock::iterator At,
1416                                       DebugLoc &DL) {
1417   Register Reg = MRI.createVirtualRegister(RC);
1418   if (RC == &Hexagon::IntRegsRegClass) {
1419     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1420         .addImm(int32_t(C));
1421     return Reg;
1422   }
1423 
1424   if (RC == &Hexagon::DoubleRegsRegClass) {
1425     if (isInt<8>(C)) {
1426       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1427           .addImm(C);
1428       return Reg;
1429     }
1430 
1431     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1432     if (isInt<8>(Lo) || isInt<8>(Hi)) {
1433       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1434                                   : Hexagon::A4_combineii;
1435       BuildMI(B, At, DL, HII.get(Opc), Reg)
1436           .addImm(int32_t(Hi))
1437           .addImm(int32_t(Lo));
1438       return Reg;
1439     }
1440     MachineFunction *MF = B.getParent();
1441     auto &HST = MF->getSubtarget<HexagonSubtarget>();
1442 
1443     // Disable CONST64 for tiny core since it takes a LD resource.
1444     if (!HST.isTinyCore() ||
1445         MF->getFunction().hasOptSize()) {
1446       BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1447           .addImm(C);
1448       return Reg;
1449     }
1450   }
1451 
1452   if (RC == &Hexagon::PredRegsRegClass) {
1453     unsigned Opc;
1454     if (C == 0)
1455       Opc = Hexagon::PS_false;
1456     else if ((C & 0xFF) == 0xFF)
1457       Opc = Hexagon::PS_true;
1458     else
1459       return 0;
1460     BuildMI(B, At, DL, HII.get(Opc), Reg);
1461     return Reg;
1462   }
1463 
1464   return 0;
1465 }
1466 
1467 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1468   if (!BT.reached(&B))
1469     return false;
1470   bool Changed = false;
1471   RegisterSet Defs;
1472 
1473   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1474     if (isTfrConst(*I))
1475       continue;
1476     Defs.clear();
1477     HBS::getInstrDefs(*I, Defs);
1478     if (Defs.count() != 1)
1479       continue;
1480     Register DR = Defs.find_first();
1481     if (!DR.isVirtual())
1482       continue;
1483     uint64_t U;
1484     const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1485     if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1486       int64_t C = U;
1487       DebugLoc DL = I->getDebugLoc();
1488       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1489       Register ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1490       if (ImmReg) {
1491         HBS::replaceReg(DR, ImmReg, MRI);
1492         BT.put(ImmReg, DRC);
1493         Changed = true;
1494       }
1495     }
1496   }
1497   return Changed;
1498 }
1499 
1500 namespace {
1501 
1502 // Identify pairs of available registers which hold identical values.
1503 // In such cases, only one of them needs to be calculated, the other one
1504 // will be defined as a copy of the first.
1505   class CopyGeneration : public Transformation {
1506   public:
1507     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1508         const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1509       : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1510 
1511     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1512 
1513   private:
1514     bool findMatch(const BitTracker::RegisterRef &Inp,
1515         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1516 
1517     const HexagonInstrInfo &HII;
1518     const HexagonRegisterInfo &HRI;
1519     MachineRegisterInfo &MRI;
1520     BitTracker &BT;
1521     RegisterSet Forbidden;
1522   };
1523 
1524 // Eliminate register copies RD = RS, by replacing the uses of RD with
1525 // with uses of RS.
1526   class CopyPropagation : public Transformation {
1527   public:
1528     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1529         : Transformation(false), HRI(hri), MRI(mri) {}
1530 
1531     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1532 
1533     static bool isCopyReg(unsigned Opc, bool NoConv);
1534 
1535   private:
1536     bool propagateRegCopy(MachineInstr &MI);
1537 
1538     const HexagonRegisterInfo &HRI;
1539     MachineRegisterInfo &MRI;
1540   };
1541 
1542 } // end anonymous namespace
1543 
1544 /// Check if there is a register in AVs that is identical to Inp. If so,
1545 /// set Out to the found register. The output may be a pair Reg:Sub.
1546 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1547       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1548   if (!BT.has(Inp.Reg))
1549     return false;
1550   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1551   auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1552   unsigned B, W;
1553   if (!HBS::getSubregMask(Inp, B, W, MRI))
1554     return false;
1555 
1556   for (Register R = AVs.find_first(); R; R = AVs.find_next(R)) {
1557     if (!BT.has(R) || Forbidden[R])
1558       continue;
1559     const BitTracker::RegisterCell &RC = BT.lookup(R);
1560     unsigned RW = RC.width();
1561     if (W == RW) {
1562       if (FRC != MRI.getRegClass(R))
1563         continue;
1564       if (!HBS::isTransparentCopy(R, Inp, MRI))
1565         continue;
1566       if (!HBS::isEqual(InpRC, B, RC, 0, W))
1567         continue;
1568       Out.Reg = R;
1569       Out.Sub = 0;
1570       return true;
1571     }
1572     // Check if there is a super-register, whose part (with a subregister)
1573     // is equal to the input.
1574     // Only do double registers for now.
1575     if (W*2 != RW)
1576       continue;
1577     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1578       continue;
1579 
1580     if (HBS::isEqual(InpRC, B, RC, 0, W))
1581       Out.Sub = Hexagon::isub_lo;
1582     else if (HBS::isEqual(InpRC, B, RC, W, W))
1583       Out.Sub = Hexagon::isub_hi;
1584     else
1585       continue;
1586     Out.Reg = R;
1587     if (HBS::isTransparentCopy(Out, Inp, MRI))
1588       return true;
1589   }
1590   return false;
1591 }
1592 
1593 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1594       const RegisterSet &AVs) {
1595   if (!BT.reached(&B))
1596     return false;
1597   RegisterSet AVB(AVs);
1598   bool Changed = false;
1599   RegisterSet Defs;
1600 
1601   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1602        ++I, AVB.insert(Defs)) {
1603     NextI = std::next(I);
1604     Defs.clear();
1605     HBS::getInstrDefs(*I, Defs);
1606 
1607     unsigned Opc = I->getOpcode();
1608     if (CopyPropagation::isCopyReg(Opc, false) ||
1609         ConstGeneration::isTfrConst(*I))
1610       continue;
1611 
1612     DebugLoc DL = I->getDebugLoc();
1613     auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1614 
1615     for (Register R = Defs.find_first(); R; R = Defs.find_next(R)) {
1616       BitTracker::RegisterRef MR;
1617       auto *FRC = HBS::getFinalVRegClass(R, MRI);
1618 
1619       if (findMatch(R, MR, AVB)) {
1620         Register NewR = MRI.createVirtualRegister(FRC);
1621         BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1622           .addReg(MR.Reg, 0, MR.Sub);
1623         BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1624         HBS::replaceReg(R, NewR, MRI);
1625         Forbidden.insert(R);
1626         continue;
1627       }
1628 
1629       if (FRC == &Hexagon::DoubleRegsRegClass ||
1630           FRC == &Hexagon::HvxWRRegClass) {
1631         // Try to generate REG_SEQUENCE.
1632         unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1633         unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1634         BitTracker::RegisterRef TL = { R, SubLo };
1635         BitTracker::RegisterRef TH = { R, SubHi };
1636         BitTracker::RegisterRef ML, MH;
1637         if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1638           auto *FRC = HBS::getFinalVRegClass(R, MRI);
1639           Register NewR = MRI.createVirtualRegister(FRC);
1640           BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1641             .addReg(ML.Reg, 0, ML.Sub)
1642             .addImm(SubLo)
1643             .addReg(MH.Reg, 0, MH.Sub)
1644             .addImm(SubHi);
1645           BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1646           HBS::replaceReg(R, NewR, MRI);
1647           Forbidden.insert(R);
1648         }
1649       }
1650     }
1651   }
1652 
1653   return Changed;
1654 }
1655 
1656 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1657   switch (Opc) {
1658     case TargetOpcode::COPY:
1659     case TargetOpcode::REG_SEQUENCE:
1660     case Hexagon::A4_combineir:
1661     case Hexagon::A4_combineri:
1662       return true;
1663     case Hexagon::A2_tfr:
1664     case Hexagon::A2_tfrp:
1665     case Hexagon::A2_combinew:
1666     case Hexagon::V6_vcombine:
1667       return NoConv;
1668     default:
1669       break;
1670   }
1671   return false;
1672 }
1673 
1674 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1675   bool Changed = false;
1676   unsigned Opc = MI.getOpcode();
1677   BitTracker::RegisterRef RD = MI.getOperand(0);
1678   assert(MI.getOperand(0).getSubReg() == 0);
1679 
1680   switch (Opc) {
1681     case TargetOpcode::COPY:
1682     case Hexagon::A2_tfr:
1683     case Hexagon::A2_tfrp: {
1684       BitTracker::RegisterRef RS = MI.getOperand(1);
1685       if (!HBS::isTransparentCopy(RD, RS, MRI))
1686         break;
1687       if (RS.Sub != 0)
1688         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1689       else
1690         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1691       break;
1692     }
1693     case TargetOpcode::REG_SEQUENCE: {
1694       BitTracker::RegisterRef SL, SH;
1695       if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1696         const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1697         unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1698         unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1699         Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1700         Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1701       }
1702       break;
1703     }
1704     case Hexagon::A2_combinew:
1705     case Hexagon::V6_vcombine: {
1706       const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1707       unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1708       unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1709       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1710       Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1711       Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1712       break;
1713     }
1714     case Hexagon::A4_combineir:
1715     case Hexagon::A4_combineri: {
1716       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1717       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1718                                                     : Hexagon::isub_hi;
1719       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1720       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1721       break;
1722     }
1723   }
1724   return Changed;
1725 }
1726 
1727 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1728   std::vector<MachineInstr*> Instrs;
1729   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1730     Instrs.push_back(&*I);
1731 
1732   bool Changed = false;
1733   for (auto I : Instrs) {
1734     unsigned Opc = I->getOpcode();
1735     if (!CopyPropagation::isCopyReg(Opc, true))
1736       continue;
1737     Changed |= propagateRegCopy(*I);
1738   }
1739 
1740   return Changed;
1741 }
1742 
1743 namespace {
1744 
1745 // Recognize patterns that can be simplified and replace them with the
1746 // simpler forms.
1747 // This is by no means complete
1748   class BitSimplification : public Transformation {
1749   public:
1750     BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1751         const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1752         MachineRegisterInfo &mri, MachineFunction &mf)
1753       : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1754         MF(mf), BT(bt) {}
1755 
1756     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1757 
1758   private:
1759     struct RegHalf : public BitTracker::RegisterRef {
1760       bool Low;  // Low/High halfword.
1761     };
1762 
1763     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1764           unsigned B, RegHalf &RH);
1765     bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1766 
1767     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1768           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1769     unsigned getCombineOpcode(bool HLow, bool LLow);
1770 
1771     bool genStoreUpperHalf(MachineInstr *MI);
1772     bool genStoreImmediate(MachineInstr *MI);
1773     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1774           const BitTracker::RegisterCell &RC);
1775     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1776           const BitTracker::RegisterCell &RC);
1777     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1778           const BitTracker::RegisterCell &RC);
1779     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1780           const BitTracker::RegisterCell &RC);
1781     bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1782           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1783     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1784           const BitTracker::RegisterCell &RC);
1785     bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1786           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1787     bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1788 
1789     // Cache of created instructions to avoid creating duplicates.
1790     // XXX Currently only used by genBitSplit.
1791     std::vector<MachineInstr*> NewMIs;
1792 
1793     const MachineDominatorTree &MDT;
1794     const HexagonInstrInfo &HII;
1795     const HexagonRegisterInfo &HRI;
1796     MachineRegisterInfo &MRI;
1797     MachineFunction &MF;
1798     BitTracker &BT;
1799   };
1800 
1801 } // end anonymous namespace
1802 
1803 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1804 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1805 // set the information about the found register in RH.
1806 bool BitSimplification::matchHalf(unsigned SelfR,
1807       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1808   // XXX This could be searching in the set of available registers, in case
1809   // the match is not exact.
1810 
1811   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1812   // register and all the bits B..B+15 match between RC and the register.
1813   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1814   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1815   bool Low = false;
1816   unsigned I = B;
1817   while (I < B+16 && RC[I].num())
1818     I++;
1819   if (I == B+16)
1820     return false;
1821 
1822   Register Reg = RC[I].RefI.Reg;
1823   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1824   if (P < I-B)
1825     return false;
1826   unsigned Pos = P - (I-B);
1827 
1828   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1829     return false;
1830   if (!Reg.isVirtual())
1831     return false;
1832   if (!BT.has(Reg))
1833     return false;
1834 
1835   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1836   if (Pos+16 > SC.width())
1837     return false;
1838 
1839   for (unsigned i = 0; i < 16; ++i) {
1840     const BitTracker::BitValue &RV = RC[i+B];
1841     if (RV.Type == BitTracker::BitValue::Ref) {
1842       if (RV.RefI.Reg != Reg)
1843         return false;
1844       if (RV.RefI.Pos != i+Pos)
1845         return false;
1846       continue;
1847     }
1848     if (RC[i+B] != SC[i+Pos])
1849       return false;
1850   }
1851 
1852   unsigned Sub = 0;
1853   switch (Pos) {
1854     case 0:
1855       Sub = Hexagon::isub_lo;
1856       Low = true;
1857       break;
1858     case 16:
1859       Sub = Hexagon::isub_lo;
1860       Low = false;
1861       break;
1862     case 32:
1863       Sub = Hexagon::isub_hi;
1864       Low = true;
1865       break;
1866     case 48:
1867       Sub = Hexagon::isub_hi;
1868       Low = false;
1869       break;
1870     default:
1871       return false;
1872   }
1873 
1874   RH.Reg = Reg;
1875   RH.Sub = Sub;
1876   RH.Low = Low;
1877   // If the subregister is not valid with the register, set it to 0.
1878   if (!HBS::getFinalVRegClass(RH, MRI))
1879     RH.Sub = 0;
1880 
1881   return true;
1882 }
1883 
1884 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1885       unsigned OpNum) {
1886   auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1887   auto *RRC = HBS::getFinalVRegClass(R, MRI);
1888   return OpRC->hasSubClassEq(RRC);
1889 }
1890 
1891 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1892 // set the inputs Rs and Rt.
1893 bool BitSimplification::matchPackhl(unsigned SelfR,
1894       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1895       BitTracker::RegisterRef &Rt) {
1896   RegHalf L1, H1, L2, H2;
1897 
1898   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1899     return false;
1900   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1901     return false;
1902 
1903   // Rs = H1.L1, Rt = H2.L2
1904   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1905     return false;
1906   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1907     return false;
1908 
1909   Rs = H1;
1910   Rt = H2;
1911   return true;
1912 }
1913 
1914 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1915   return HLow ? LLow ? Hexagon::A2_combine_ll
1916                      : Hexagon::A2_combine_lh
1917               : LLow ? Hexagon::A2_combine_hl
1918                      : Hexagon::A2_combine_hh;
1919 }
1920 
1921 // If MI stores the upper halfword of a register (potentially obtained via
1922 // shifts or extracts), replace it with a storerf instruction. This could
1923 // cause the "extraction" code to become dead.
1924 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1925   unsigned Opc = MI->getOpcode();
1926   if (Opc != Hexagon::S2_storerh_io)
1927     return false;
1928 
1929   MachineOperand &ValOp = MI->getOperand(2);
1930   BitTracker::RegisterRef RS = ValOp;
1931   if (!BT.has(RS.Reg))
1932     return false;
1933   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1934   RegHalf H;
1935   if (!matchHalf(0, RC, 0, H))
1936     return false;
1937   if (H.Low)
1938     return false;
1939   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1940   ValOp.setReg(H.Reg);
1941   ValOp.setSubReg(H.Sub);
1942   return true;
1943 }
1944 
1945 // If MI stores a value known at compile-time, and the value is within a range
1946 // that avoids using constant-extenders, replace it with a store-immediate.
1947 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1948   unsigned Opc = MI->getOpcode();
1949   unsigned Align = 0;
1950   switch (Opc) {
1951     case Hexagon::S2_storeri_io:
1952       Align++;
1953       LLVM_FALLTHROUGH;
1954     case Hexagon::S2_storerh_io:
1955       Align++;
1956       LLVM_FALLTHROUGH;
1957     case Hexagon::S2_storerb_io:
1958       break;
1959     default:
1960       return false;
1961   }
1962 
1963   // Avoid stores to frame-indices (due to an unknown offset).
1964   if (!MI->getOperand(0).isReg())
1965     return false;
1966   MachineOperand &OffOp = MI->getOperand(1);
1967   if (!OffOp.isImm())
1968     return false;
1969 
1970   int64_t Off = OffOp.getImm();
1971   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1972   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1973     return false;
1974   // Source register:
1975   BitTracker::RegisterRef RS = MI->getOperand(2);
1976   if (!BT.has(RS.Reg))
1977     return false;
1978   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1979   uint64_t U;
1980   if (!HBS::getConst(RC, 0, RC.width(), U))
1981     return false;
1982 
1983   // Only consider 8-bit values to avoid constant-extenders.
1984   int V;
1985   switch (Opc) {
1986     case Hexagon::S2_storerb_io:
1987       V = int8_t(U);
1988       break;
1989     case Hexagon::S2_storerh_io:
1990       V = int16_t(U);
1991       break;
1992     case Hexagon::S2_storeri_io:
1993       V = int32_t(U);
1994       break;
1995     default:
1996       // Opc is already checked above to be one of the three store instructions.
1997       // This silences a -Wuninitialized false positive on GCC 5.4.
1998       llvm_unreachable("Unexpected store opcode");
1999   }
2000   if (!isInt<8>(V))
2001     return false;
2002 
2003   MI->RemoveOperand(2);
2004   switch (Opc) {
2005     case Hexagon::S2_storerb_io:
2006       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
2007       break;
2008     case Hexagon::S2_storerh_io:
2009       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2010       break;
2011     case Hexagon::S2_storeri_io:
2012       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2013       break;
2014   }
2015   MI->addOperand(MachineOperand::CreateImm(V));
2016   return true;
2017 }
2018 
2019 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2020 // last instruction in a sequence that results in something equivalent to
2021 // the pack-halfwords. The intent is to cause the entire sequence to become
2022 // dead.
2023 bool BitSimplification::genPackhl(MachineInstr *MI,
2024       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2025   unsigned Opc = MI->getOpcode();
2026   if (Opc == Hexagon::S2_packhl)
2027     return false;
2028   BitTracker::RegisterRef Rs, Rt;
2029   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2030     return false;
2031   if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2032       !validateReg(Rt, Hexagon::S2_packhl, 2))
2033     return false;
2034 
2035   MachineBasicBlock &B = *MI->getParent();
2036   Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2037   DebugLoc DL = MI->getDebugLoc();
2038   auto At = MI->isPHI() ? B.getFirstNonPHI()
2039                         : MachineBasicBlock::iterator(MI);
2040   BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2041       .addReg(Rs.Reg, 0, Rs.Sub)
2042       .addReg(Rt.Reg, 0, Rt.Sub);
2043   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2044   BT.put(BitTracker::RegisterRef(NewR), RC);
2045   return true;
2046 }
2047 
2048 // If MI produces halfword of the input in the low half of the output,
2049 // replace it with zero-extend or extractu.
2050 bool BitSimplification::genExtractHalf(MachineInstr *MI,
2051       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2052   RegHalf L;
2053   // Check for halfword in low 16 bits, zeros elsewhere.
2054   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2055     return false;
2056 
2057   unsigned Opc = MI->getOpcode();
2058   MachineBasicBlock &B = *MI->getParent();
2059   DebugLoc DL = MI->getDebugLoc();
2060 
2061   // Prefer zxth, since zxth can go in any slot, while extractu only in
2062   // slots 2 and 3.
2063   unsigned NewR = 0;
2064   auto At = MI->isPHI() ? B.getFirstNonPHI()
2065                         : MachineBasicBlock::iterator(MI);
2066   if (L.Low && Opc != Hexagon::A2_zxth) {
2067     if (validateReg(L, Hexagon::A2_zxth, 1)) {
2068       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2069       BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2070           .addReg(L.Reg, 0, L.Sub);
2071     }
2072   } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2073     if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2074       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2075       BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2076           .addReg(L.Reg, 0, L.Sub)
2077           .addImm(16);
2078     }
2079   }
2080   if (NewR == 0)
2081     return false;
2082   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2083   BT.put(BitTracker::RegisterRef(NewR), RC);
2084   return true;
2085 }
2086 
2087 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2088 // combine.
2089 bool BitSimplification::genCombineHalf(MachineInstr *MI,
2090       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2091   RegHalf L, H;
2092   // Check for combine h/l
2093   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2094     return false;
2095   // Do nothing if this is just a reg copy.
2096   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2097     return false;
2098 
2099   unsigned Opc = MI->getOpcode();
2100   unsigned COpc = getCombineOpcode(H.Low, L.Low);
2101   if (COpc == Opc)
2102     return false;
2103   if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2104     return false;
2105 
2106   MachineBasicBlock &B = *MI->getParent();
2107   DebugLoc DL = MI->getDebugLoc();
2108   Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2109   auto At = MI->isPHI() ? B.getFirstNonPHI()
2110                         : MachineBasicBlock::iterator(MI);
2111   BuildMI(B, At, DL, HII.get(COpc), NewR)
2112       .addReg(H.Reg, 0, H.Sub)
2113       .addReg(L.Reg, 0, L.Sub);
2114   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2115   BT.put(BitTracker::RegisterRef(NewR), RC);
2116   return true;
2117 }
2118 
2119 // If MI resets high bits of a register and keeps the lower ones, replace it
2120 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2121 bool BitSimplification::genExtractLow(MachineInstr *MI,
2122       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2123   unsigned Opc = MI->getOpcode();
2124   switch (Opc) {
2125     case Hexagon::A2_zxtb:
2126     case Hexagon::A2_zxth:
2127     case Hexagon::S2_extractu:
2128       return false;
2129   }
2130   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2131     int32_t Imm = MI->getOperand(2).getImm();
2132     if (isInt<10>(Imm))
2133       return false;
2134   }
2135 
2136   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2137     return false;
2138   unsigned W = RC.width();
2139   while (W > 0 && RC[W-1].is(0))
2140     W--;
2141   if (W == 0 || W == RC.width())
2142     return false;
2143   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2144                   : (W == 16) ? Hexagon::A2_zxth
2145                   : (W < 10)  ? Hexagon::A2_andir
2146                   : Hexagon::S2_extractu;
2147   MachineBasicBlock &B = *MI->getParent();
2148   DebugLoc DL = MI->getDebugLoc();
2149 
2150   for (auto &Op : MI->uses()) {
2151     if (!Op.isReg())
2152       continue;
2153     BitTracker::RegisterRef RS = Op;
2154     if (!BT.has(RS.Reg))
2155       continue;
2156     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2157     unsigned BN, BW;
2158     if (!HBS::getSubregMask(RS, BN, BW, MRI))
2159       continue;
2160     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2161       continue;
2162     if (!validateReg(RS, NewOpc, 1))
2163       continue;
2164 
2165     Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2166     auto At = MI->isPHI() ? B.getFirstNonPHI()
2167                           : MachineBasicBlock::iterator(MI);
2168     auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2169                   .addReg(RS.Reg, 0, RS.Sub);
2170     if (NewOpc == Hexagon::A2_andir)
2171       MIB.addImm((1 << W) - 1);
2172     else if (NewOpc == Hexagon::S2_extractu)
2173       MIB.addImm(W).addImm(0);
2174     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2175     BT.put(BitTracker::RegisterRef(NewR), RC);
2176     return true;
2177   }
2178   return false;
2179 }
2180 
2181 bool BitSimplification::genBitSplit(MachineInstr *MI,
2182       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2183       const RegisterSet &AVs) {
2184   if (!GenBitSplit)
2185     return false;
2186   if (MaxBitSplit.getNumOccurrences()) {
2187     if (CountBitSplit >= MaxBitSplit)
2188       return false;
2189   }
2190 
2191   unsigned Opc = MI->getOpcode();
2192   switch (Opc) {
2193     case Hexagon::A4_bitsplit:
2194     case Hexagon::A4_bitspliti:
2195       return false;
2196   }
2197 
2198   unsigned W = RC.width();
2199   if (W != 32)
2200     return false;
2201 
2202   auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2203     unsigned Z = C.width();
2204     while (Z > 0 && C[Z-1].is(0))
2205       --Z;
2206     return C.width() - Z;
2207   };
2208 
2209   // Count the number of leading zeros in the target RC.
2210   unsigned Z = ctlz(RC);
2211   if (Z == 0 || Z == W)
2212     return false;
2213 
2214   // A simplistic analysis: assume the source register (the one being split)
2215   // is fully unknown, and that all its bits are self-references.
2216   const BitTracker::BitValue &B0 = RC[0];
2217   if (B0.Type != BitTracker::BitValue::Ref)
2218     return false;
2219 
2220   unsigned SrcR = B0.RefI.Reg;
2221   unsigned SrcSR = 0;
2222   unsigned Pos = B0.RefI.Pos;
2223 
2224   // All the non-zero bits should be consecutive bits from the same register.
2225   for (unsigned i = 1; i < W-Z; ++i) {
2226     const BitTracker::BitValue &V = RC[i];
2227     if (V.Type != BitTracker::BitValue::Ref)
2228       return false;
2229     if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2230       return false;
2231   }
2232 
2233   // Now, find the other bitfield among AVs.
2234   for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2235     // The number of leading zeros here should be the number of trailing
2236     // non-zeros in RC.
2237     unsigned SRC = MRI.getRegClass(S)->getID();
2238     if (SRC != Hexagon::IntRegsRegClassID &&
2239         SRC != Hexagon::DoubleRegsRegClassID)
2240       continue;
2241     if (!BT.has(S))
2242       continue;
2243     const BitTracker::RegisterCell &SC = BT.lookup(S);
2244     if (SC.width() != W || ctlz(SC) != W-Z)
2245       continue;
2246     // The Z lower bits should now match SrcR.
2247     const BitTracker::BitValue &S0 = SC[0];
2248     if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2249       continue;
2250     unsigned P = S0.RefI.Pos;
2251 
2252     if (Pos <= P && (Pos + W-Z) != P)
2253       continue;
2254     if (P < Pos && (P + Z) != Pos)
2255       continue;
2256     // The starting bitfield position must be at a subregister boundary.
2257     if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2258       continue;
2259 
2260     unsigned I;
2261     for (I = 1; I < Z; ++I) {
2262       const BitTracker::BitValue &V = SC[I];
2263       if (V.Type != BitTracker::BitValue::Ref)
2264         break;
2265       if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2266         break;
2267     }
2268     if (I != Z)
2269       continue;
2270 
2271     // Generate bitsplit where S is defined.
2272     if (MaxBitSplit.getNumOccurrences())
2273       CountBitSplit++;
2274     MachineInstr *DefS = MRI.getVRegDef(S);
2275     assert(DefS != nullptr);
2276     DebugLoc DL = DefS->getDebugLoc();
2277     MachineBasicBlock &B = *DefS->getParent();
2278     auto At = DefS->isPHI() ? B.getFirstNonPHI()
2279                             : MachineBasicBlock::iterator(DefS);
2280     if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2281       SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2282     if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2283       continue;
2284     unsigned ImmOp = Pos <= P ? W-Z : Z;
2285 
2286     // Find an existing bitsplit instruction if one already exists.
2287     unsigned NewR = 0;
2288     for (MachineInstr *In : NewMIs) {
2289       if (In->getOpcode() != Hexagon::A4_bitspliti)
2290         continue;
2291       MachineOperand &Op1 = In->getOperand(1);
2292       if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2293         continue;
2294       if (In->getOperand(2).getImm() != ImmOp)
2295         continue;
2296       // Check if the target register is available here.
2297       MachineOperand &Op0 = In->getOperand(0);
2298       MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2299       assert(DefI != nullptr);
2300       if (!MDT.dominates(DefI, &*At))
2301         continue;
2302 
2303       // Found one that can be reused.
2304       assert(Op0.getSubReg() == 0);
2305       NewR = Op0.getReg();
2306       break;
2307     }
2308     if (!NewR) {
2309       NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2310       auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2311                       .addReg(SrcR, 0, SrcSR)
2312                       .addImm(ImmOp);
2313       NewMIs.push_back(NewBS);
2314     }
2315     if (Pos <= P) {
2316       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2317       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
2318     } else {
2319       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
2320       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2321     }
2322     return true;
2323   }
2324 
2325   return false;
2326 }
2327 
2328 // Check for tstbit simplification opportunity, where the bit being checked
2329 // can be tracked back to another register. For example:
2330 //   %2 = S2_lsr_i_r  %1, 5
2331 //   %3 = S2_tstbit_i %2, 0
2332 // =>
2333 //   %3 = S2_tstbit_i %1, 5
2334 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2335       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2336   unsigned Opc = MI->getOpcode();
2337   if (Opc != Hexagon::S2_tstbit_i)
2338     return false;
2339 
2340   unsigned BN = MI->getOperand(2).getImm();
2341   BitTracker::RegisterRef RS = MI->getOperand(1);
2342   unsigned F, W;
2343   DebugLoc DL = MI->getDebugLoc();
2344   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2345     return false;
2346   MachineBasicBlock &B = *MI->getParent();
2347   auto At = MI->isPHI() ? B.getFirstNonPHI()
2348                         : MachineBasicBlock::iterator(MI);
2349 
2350   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2351   const BitTracker::BitValue &V = SC[F+BN];
2352   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2353     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2354     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2355     // a double register, need to use a subregister and adjust bit
2356     // number.
2357     unsigned P = std::numeric_limits<unsigned>::max();
2358     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2359     if (TC == &Hexagon::DoubleRegsRegClass) {
2360       P = V.RefI.Pos;
2361       RR.Sub = Hexagon::isub_lo;
2362       if (P >= 32) {
2363         P -= 32;
2364         RR.Sub = Hexagon::isub_hi;
2365       }
2366     } else if (TC == &Hexagon::IntRegsRegClass) {
2367       P = V.RefI.Pos;
2368     }
2369     if (P != std::numeric_limits<unsigned>::max()) {
2370       Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2371       BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2372           .addReg(RR.Reg, 0, RR.Sub)
2373           .addImm(P);
2374       HBS::replaceReg(RD.Reg, NewR, MRI);
2375       BT.put(NewR, RC);
2376       return true;
2377     }
2378   } else if (V.is(0) || V.is(1)) {
2379     Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2380     unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2381     BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2382     HBS::replaceReg(RD.Reg, NewR, MRI);
2383     return true;
2384   }
2385 
2386   return false;
2387 }
2388 
2389 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
2390 // some register from the AVs set. Create a new corresponding instruction
2391 // at the location of MI. The intent is to recognize situations where
2392 // a sequence of instructions performs an operation that is equivalent to
2393 // an extract operation, such as a shift left followed by a shift right.
2394 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2395       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2396       const RegisterSet &AVs) {
2397   if (!GenExtract)
2398     return false;
2399   if (MaxExtract.getNumOccurrences()) {
2400     if (CountExtract >= MaxExtract)
2401       return false;
2402     CountExtract++;
2403   }
2404 
2405   unsigned W = RC.width();
2406   unsigned RW = W;
2407   unsigned Len;
2408   bool Signed;
2409 
2410   // The code is mostly class-independent, except for the part that generates
2411   // the extract instruction, and establishes the source register (in case it
2412   // needs to use a subregister).
2413   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2414   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2415     return false;
2416   assert(RD.Sub == 0);
2417 
2418   // Observation:
2419   // If the cell has a form of 00..0xx..x with k zeros and n remaining
2420   // bits, this could be an extractu of the n bits, but it could also be
2421   // an extractu of a longer field which happens to have 0s in the top
2422   // bit positions.
2423   // The same logic applies to sign-extended fields.
2424   //
2425   // Do not check for the extended extracts, since it would expand the
2426   // search space quite a bit. The search may be expensive as it is.
2427 
2428   const BitTracker::BitValue &TopV = RC[W-1];
2429 
2430   // Eliminate candidates that have self-referential bits, since they
2431   // cannot be extracts from other registers. Also, skip registers that
2432   // have compile-time constant values.
2433   bool IsConst = true;
2434   for (unsigned I = 0; I != W; ++I) {
2435     const BitTracker::BitValue &V = RC[I];
2436     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2437       return false;
2438     IsConst = IsConst && (V.is(0) || V.is(1));
2439   }
2440   if (IsConst)
2441     return false;
2442 
2443   if (TopV.is(0) || TopV.is(1)) {
2444     bool S = TopV.is(1);
2445     for (--W; W > 0 && RC[W-1].is(S); --W)
2446       ;
2447     Len = W;
2448     Signed = S;
2449     // The sign bit must be a part of the field being extended.
2450     if (Signed)
2451       ++Len;
2452   } else {
2453     // This could still be a sign-extended extract.
2454     assert(TopV.Type == BitTracker::BitValue::Ref);
2455     if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2456       return false;
2457     for (--W; W > 0 && RC[W-1] == TopV; --W)
2458       ;
2459     // The top bits of RC are copies of TopV. One occurrence of TopV will
2460     // be a part of the field.
2461     Len = W + 1;
2462     Signed = true;
2463   }
2464 
2465   // This would be just a copy. It should be handled elsewhere.
2466   if (Len == RW)
2467     return false;
2468 
2469   LLVM_DEBUG({
2470     dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2471            << ", MI: " << *MI;
2472     dbgs() << "Cell: " << RC << '\n';
2473     dbgs() << "Expected bitfield size: " << Len << " bits, "
2474            << (Signed ? "sign" : "zero") << "-extended\n";
2475   });
2476 
2477   bool Changed = false;
2478 
2479   for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2480     if (!BT.has(R))
2481       continue;
2482     const BitTracker::RegisterCell &SC = BT.lookup(R);
2483     unsigned SW = SC.width();
2484 
2485     // The source can be longer than the destination, as long as its size is
2486     // a multiple of the size of the destination. Also, we would need to be
2487     // able to refer to the subregister in the source that would be of the
2488     // same size as the destination, but only check the sizes here.
2489     if (SW < RW || (SW % RW) != 0)
2490       continue;
2491 
2492     // The field can start at any offset in SC as long as it contains Len
2493     // bits and does not cross subregister boundary (if the source register
2494     // is longer than the destination).
2495     unsigned Off = 0;
2496     while (Off <= SW-Len) {
2497       unsigned OE = (Off+Len)/RW;
2498       if (OE != Off/RW) {
2499         // The assumption here is that if the source (R) is longer than the
2500         // destination, then the destination is a sequence of words of
2501         // size RW, and each such word in R can be accessed via a subregister.
2502         //
2503         // If the beginning and the end of the field cross the subregister
2504         // boundary, advance to the next subregister.
2505         Off = OE*RW;
2506         continue;
2507       }
2508       if (HBS::isEqual(RC, 0, SC, Off, Len))
2509         break;
2510       ++Off;
2511     }
2512 
2513     if (Off > SW-Len)
2514       continue;
2515 
2516     // Found match.
2517     unsigned ExtOpc = 0;
2518     if (Off == 0) {
2519       if (Len == 8)
2520         ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2521       else if (Len == 16)
2522         ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2523       else if (Len < 10 && !Signed)
2524         ExtOpc = Hexagon::A2_andir;
2525     }
2526     if (ExtOpc == 0) {
2527       ExtOpc =
2528           Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
2529                  : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2530     }
2531     unsigned SR = 0;
2532     // This only recognizes isub_lo and isub_hi.
2533     if (RW != SW && RW*2 != SW)
2534       continue;
2535     if (RW != SW)
2536       SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2537     Off = Off % RW;
2538 
2539     if (!validateReg({R,SR}, ExtOpc, 1))
2540       continue;
2541 
2542     // Don't generate the same instruction as the one being optimized.
2543     if (MI->getOpcode() == ExtOpc) {
2544       // All possible ExtOpc's have the source in operand(1).
2545       const MachineOperand &SrcOp = MI->getOperand(1);
2546       if (SrcOp.getReg() == R)
2547         continue;
2548     }
2549 
2550     DebugLoc DL = MI->getDebugLoc();
2551     MachineBasicBlock &B = *MI->getParent();
2552     Register NewR = MRI.createVirtualRegister(FRC);
2553     auto At = MI->isPHI() ? B.getFirstNonPHI()
2554                           : MachineBasicBlock::iterator(MI);
2555     auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2556                   .addReg(R, 0, SR);
2557     switch (ExtOpc) {
2558       case Hexagon::A2_sxtb:
2559       case Hexagon::A2_zxtb:
2560       case Hexagon::A2_sxth:
2561       case Hexagon::A2_zxth:
2562         break;
2563       case Hexagon::A2_andir:
2564         MIB.addImm((1u << Len) - 1);
2565         break;
2566       case Hexagon::S4_extract:
2567       case Hexagon::S2_extractu:
2568       case Hexagon::S4_extractp:
2569       case Hexagon::S2_extractup:
2570         MIB.addImm(Len)
2571            .addImm(Off);
2572         break;
2573       default:
2574         llvm_unreachable("Unexpected opcode");
2575     }
2576 
2577     HBS::replaceReg(RD.Reg, NewR, MRI);
2578     BT.put(BitTracker::RegisterRef(NewR), RC);
2579     Changed = true;
2580     break;
2581   }
2582 
2583   return Changed;
2584 }
2585 
2586 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2587       BitTracker::RegisterRef RD) {
2588   unsigned Opc = MI->getOpcode();
2589   if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2590     return false;
2591   MachineOperand &CmpOp = MI->getOperand(2);
2592   if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2593     return false;
2594 
2595   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2596   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2597     return false;
2598   assert(RD.Sub == 0);
2599 
2600   MachineBasicBlock &B = *MI->getParent();
2601   const DebugLoc &DL = MI->getDebugLoc();
2602   auto At = MI->isPHI() ? B.getFirstNonPHI()
2603                         : MachineBasicBlock::iterator(MI);
2604   bool KnownZ = true;
2605   bool KnownNZ = false;
2606 
2607   BitTracker::RegisterRef SR = MI->getOperand(1);
2608   if (!BT.has(SR.Reg))
2609     return false;
2610   const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2611   unsigned F, W;
2612   if (!HBS::getSubregMask(SR, F, W, MRI))
2613     return false;
2614 
2615   for (uint16_t I = F; I != F+W; ++I) {
2616     const BitTracker::BitValue &V = SC[I];
2617     if (!V.is(0))
2618       KnownZ = false;
2619     if (V.is(1))
2620       KnownNZ = true;
2621   }
2622 
2623   auto ReplaceWithConst = [&](int C) {
2624     Register NewR = MRI.createVirtualRegister(FRC);
2625     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2626       .addImm(C);
2627     HBS::replaceReg(RD.Reg, NewR, MRI);
2628     BitTracker::RegisterCell NewRC(W);
2629     for (uint16_t I = 0; I != W; ++I) {
2630       NewRC[I] = BitTracker::BitValue(C & 1);
2631       C = unsigned(C) >> 1;
2632     }
2633     BT.put(BitTracker::RegisterRef(NewR), NewRC);
2634     return true;
2635   };
2636 
2637   auto IsNonZero = [] (const MachineOperand &Op) {
2638     if (Op.isGlobal() || Op.isBlockAddress())
2639       return true;
2640     if (Op.isImm())
2641       return Op.getImm() != 0;
2642     if (Op.isCImm())
2643       return !Op.getCImm()->isZero();
2644     if (Op.isFPImm())
2645       return !Op.getFPImm()->isZero();
2646     return false;
2647   };
2648 
2649   auto IsZero = [] (const MachineOperand &Op) {
2650     if (Op.isGlobal() || Op.isBlockAddress())
2651       return false;
2652     if (Op.isImm())
2653       return Op.getImm() == 0;
2654     if (Op.isCImm())
2655       return Op.getCImm()->isZero();
2656     if (Op.isFPImm())
2657       return Op.getFPImm()->isZero();
2658     return false;
2659   };
2660 
2661   // If the source register is known to be 0 or non-0, the comparison can
2662   // be folded to a load of a constant.
2663   if (KnownZ || KnownNZ) {
2664     assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2665     return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2666   }
2667 
2668   // Special case: if the compare comes from a C2_muxii, then we know the
2669   // two possible constants that can be the source value.
2670   MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2671   if (!InpDef)
2672     return false;
2673   if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2674     MachineOperand &Src1 = InpDef->getOperand(2);
2675     MachineOperand &Src2 = InpDef->getOperand(3);
2676     // Check if both are non-zero.
2677     bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2678     if (KnownNZ1 && KnownNZ2)
2679       return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2680     // Check if both are zero.
2681     bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2682     if (KnownZ1 && KnownZ2)
2683       return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2684 
2685     // If for both operands we know that they are either 0 or non-0,
2686     // replace the comparison with a C2_muxii, using the same predicate
2687     // register, but with operands substituted with 0/1 accordingly.
2688     if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2689       Register NewR = MRI.createVirtualRegister(FRC);
2690       BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2691         .addReg(InpDef->getOperand(1).getReg())
2692         .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2693         .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2694       HBS::replaceReg(RD.Reg, NewR, MRI);
2695       // Create a new cell with only the least significant bit unknown.
2696       BitTracker::RegisterCell NewRC(W);
2697       NewRC[0] = BitTracker::BitValue::self();
2698       NewRC.fill(1, W, BitTracker::BitValue::Zero);
2699       BT.put(BitTracker::RegisterRef(NewR), NewRC);
2700       return true;
2701     }
2702   }
2703 
2704   return false;
2705 }
2706 
2707 bool BitSimplification::processBlock(MachineBasicBlock &B,
2708       const RegisterSet &AVs) {
2709   if (!BT.reached(&B))
2710     return false;
2711   bool Changed = false;
2712   RegisterSet AVB = AVs;
2713   RegisterSet Defs;
2714 
2715   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2716     MachineInstr *MI = &*I;
2717     Defs.clear();
2718     HBS::getInstrDefs(*MI, Defs);
2719 
2720     unsigned Opc = MI->getOpcode();
2721     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2722       continue;
2723 
2724     if (MI->mayStore()) {
2725       bool T = genStoreUpperHalf(MI);
2726       T = T || genStoreImmediate(MI);
2727       Changed |= T;
2728       continue;
2729     }
2730 
2731     if (Defs.count() != 1)
2732       continue;
2733     const MachineOperand &Op0 = MI->getOperand(0);
2734     if (!Op0.isReg() || !Op0.isDef())
2735       continue;
2736     BitTracker::RegisterRef RD = Op0;
2737     if (!BT.has(RD.Reg))
2738       continue;
2739     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2740     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2741 
2742     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2743       bool T = genPackhl(MI, RD, RC);
2744       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2745       Changed |= T;
2746       continue;
2747     }
2748 
2749     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2750       bool T = genBitSplit(MI, RD, RC, AVB);
2751       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2752       T = T || genExtractHalf(MI, RD, RC);
2753       T = T || genCombineHalf(MI, RD, RC);
2754       T = T || genExtractLow(MI, RD, RC);
2755       T = T || simplifyRCmp0(MI, RD);
2756       Changed |= T;
2757       continue;
2758     }
2759 
2760     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2761       bool T = simplifyTstbit(MI, RD, RC);
2762       Changed |= T;
2763       continue;
2764     }
2765   }
2766   return Changed;
2767 }
2768 
2769 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2770   if (skipFunction(MF.getFunction()))
2771     return false;
2772 
2773   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2774   auto &HRI = *HST.getRegisterInfo();
2775   auto &HII = *HST.getInstrInfo();
2776 
2777   MDT = &getAnalysis<MachineDominatorTree>();
2778   MachineRegisterInfo &MRI = MF.getRegInfo();
2779   bool Changed;
2780 
2781   Changed = DeadCodeElimination(MF, *MDT).run();
2782 
2783   const HexagonEvaluator HE(HRI, MRI, HII, MF);
2784   BitTracker BT(HE, MF);
2785   LLVM_DEBUG(BT.trace(true));
2786   BT.run();
2787 
2788   MachineBasicBlock &Entry = MF.front();
2789 
2790   RegisterSet AIG;  // Available registers for IG.
2791   ConstGeneration ImmG(BT, HII, MRI);
2792   Changed |= visitBlock(Entry, ImmG, AIG);
2793 
2794   RegisterSet ARE;  // Available registers for RIE.
2795   RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2796   bool Ried = visitBlock(Entry, RIE, ARE);
2797   if (Ried) {
2798     Changed = true;
2799     BT.run();
2800   }
2801 
2802   RegisterSet ACG;  // Available registers for CG.
2803   CopyGeneration CopyG(BT, HII, HRI, MRI);
2804   Changed |= visitBlock(Entry, CopyG, ACG);
2805 
2806   RegisterSet ACP;  // Available registers for CP.
2807   CopyPropagation CopyP(HRI, MRI);
2808   Changed |= visitBlock(Entry, CopyP, ACP);
2809 
2810   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2811 
2812   BT.run();
2813   RegisterSet ABS;  // Available registers for BS.
2814   BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2815   Changed |= visitBlock(Entry, BitS, ABS);
2816 
2817   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2818 
2819   if (Changed) {
2820     for (auto &B : MF)
2821       for (auto &I : B)
2822         I.clearKillInfo();
2823     DeadCodeElimination(MF, *MDT).run();
2824   }
2825   return Changed;
2826 }
2827 
2828 // Recognize loops where the code at the end of the loop matches the code
2829 // before the entry of the loop, and the matching code is such that is can
2830 // be simplified. This pass relies on the bit simplification above and only
2831 // prepares code in a way that can be handled by the bit simplifcation.
2832 //
2833 // This is the motivating testcase (and explanation):
2834 //
2835 // {
2836 //   loop0(.LBB0_2, r1)      // %for.body.preheader
2837 //   r5:4 = memd(r0++#8)
2838 // }
2839 // {
2840 //   r3 = lsr(r4, #16)
2841 //   r7:6 = combine(r5, r5)
2842 // }
2843 // {
2844 //   r3 = insert(r5, #16, #16)
2845 //   r7:6 = vlsrw(r7:6, #16)
2846 // }
2847 // .LBB0_2:
2848 // {
2849 //   memh(r2+#4) = r5
2850 //   memh(r2+#6) = r6            # R6 is really R5.H
2851 // }
2852 // {
2853 //   r2 = add(r2, #8)
2854 //   memh(r2+#0) = r4
2855 //   memh(r2+#2) = r3            # R3 is really R4.H
2856 // }
2857 // {
2858 //   r5:4 = memd(r0++#8)
2859 // }
2860 // {                             # "Shuffling" code that sets up R3 and R6
2861 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2862 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2863 // }                             # the stores if the code was at the beginning
2864 // {                             # of the loop iteration. Since the same code
2865 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2866 //   r7:6 = vlsrw(r7:6, #16)     # there.
2867 // }:endloop0
2868 //
2869 //
2870 // The outcome:
2871 //
2872 // {
2873 //   loop0(.LBB0_2, r1)
2874 //   r5:4 = memd(r0++#8)
2875 // }
2876 // .LBB0_2:
2877 // {
2878 //   memh(r2+#4) = r5
2879 //   memh(r2+#6) = r5.h
2880 // }
2881 // {
2882 //   r2 = add(r2, #8)
2883 //   memh(r2+#0) = r4
2884 //   memh(r2+#2) = r4.h
2885 // }
2886 // {
2887 //   r5:4 = memd(r0++#8)
2888 // }:endloop0
2889 
2890 namespace llvm {
2891 
2892   FunctionPass *createHexagonLoopRescheduling();
2893   void initializeHexagonLoopReschedulingPass(PassRegistry&);
2894 
2895 } // end namespace llvm
2896 
2897 namespace {
2898 
2899   class HexagonLoopRescheduling : public MachineFunctionPass {
2900   public:
2901     static char ID;
2902 
2903     HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2904       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2905     }
2906 
2907     bool runOnMachineFunction(MachineFunction &MF) override;
2908 
2909   private:
2910     const HexagonInstrInfo *HII = nullptr;
2911     const HexagonRegisterInfo *HRI = nullptr;
2912     MachineRegisterInfo *MRI = nullptr;
2913     BitTracker *BTP = nullptr;
2914 
2915     struct LoopCand {
2916       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2917             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2918 
2919       MachineBasicBlock *LB, *PB, *EB;
2920     };
2921     using InstrList = std::vector<MachineInstr *>;
2922     struct InstrGroup {
2923       BitTracker::RegisterRef Inp, Out;
2924       InstrList Ins;
2925     };
2926     struct PhiInfo {
2927       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2928 
2929       unsigned DefR;
2930       BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2931       MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
2932     };
2933 
2934     static unsigned getDefReg(const MachineInstr *MI);
2935     bool isConst(unsigned Reg) const;
2936     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2937     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2938     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2939     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2940         unsigned &InpR2) const;
2941     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2942         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2943     bool processLoop(LoopCand &C);
2944   };
2945 
2946 } // end anonymous namespace
2947 
2948 char HexagonLoopRescheduling::ID = 0;
2949 
2950 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2951   "Hexagon Loop Rescheduling", false, false)
2952 
2953 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2954       MachineBasicBlock &B) {
2955   DefR = HexagonLoopRescheduling::getDefReg(&P);
2956   LB = &B;
2957   PB = nullptr;
2958   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2959     const MachineOperand &OpB = P.getOperand(i+1);
2960     if (OpB.getMBB() == &B) {
2961       LR = P.getOperand(i);
2962       continue;
2963     }
2964     PB = OpB.getMBB();
2965     PR = P.getOperand(i);
2966   }
2967 }
2968 
2969 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2970   RegisterSet Defs;
2971   HBS::getInstrDefs(*MI, Defs);
2972   if (Defs.count() != 1)
2973     return 0;
2974   return Defs.find_first();
2975 }
2976 
2977 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2978   if (!BTP->has(Reg))
2979     return false;
2980   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2981   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2982     const BitTracker::BitValue &V = RC[i];
2983     if (!V.is(0) && !V.is(1))
2984       return false;
2985   }
2986   return true;
2987 }
2988 
2989 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2990       unsigned DefR) const {
2991   unsigned Opc = MI->getOpcode();
2992   switch (Opc) {
2993     case TargetOpcode::COPY:
2994     case Hexagon::S2_lsr_i_r:
2995     case Hexagon::S2_asr_i_r:
2996     case Hexagon::S2_asl_i_r:
2997     case Hexagon::S2_lsr_i_p:
2998     case Hexagon::S2_asr_i_p:
2999     case Hexagon::S2_asl_i_p:
3000     case Hexagon::S2_insert:
3001     case Hexagon::A2_or:
3002     case Hexagon::A2_orp:
3003     case Hexagon::A2_and:
3004     case Hexagon::A2_andp:
3005     case Hexagon::A2_combinew:
3006     case Hexagon::A4_combineri:
3007     case Hexagon::A4_combineir:
3008     case Hexagon::A2_combineii:
3009     case Hexagon::A4_combineii:
3010     case Hexagon::A2_combine_ll:
3011     case Hexagon::A2_combine_lh:
3012     case Hexagon::A2_combine_hl:
3013     case Hexagon::A2_combine_hh:
3014       return true;
3015   }
3016   return false;
3017 }
3018 
3019 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3020       unsigned InpR) const {
3021   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3022     const MachineOperand &Op = MI->getOperand(i);
3023     if (!Op.isReg())
3024       continue;
3025     if (Op.getReg() == InpR)
3026       return i == n-1;
3027   }
3028   return false;
3029 }
3030 
3031 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3032   if (!BTP->has(OutR) || !BTP->has(InpR))
3033     return false;
3034   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3035   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3036     const BitTracker::BitValue &V = OutC[i];
3037     if (V.Type != BitTracker::BitValue::Ref)
3038       continue;
3039     if (V.RefI.Reg != InpR)
3040       return false;
3041   }
3042   return true;
3043 }
3044 
3045 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3046       unsigned OutR2, unsigned &InpR2) const {
3047   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3048     return false;
3049   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3050   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3051   unsigned W = OutC1.width();
3052   unsigned MatchR = 0;
3053   if (W != OutC2.width())
3054     return false;
3055   for (unsigned i = 0; i < W; ++i) {
3056     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3057     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3058       return false;
3059     if (V1.Type != BitTracker::BitValue::Ref)
3060       continue;
3061     if (V1.RefI.Pos != V2.RefI.Pos)
3062       return false;
3063     if (V1.RefI.Reg != InpR1)
3064       return false;
3065     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3066       return false;
3067     if (!MatchR)
3068       MatchR = V2.RefI.Reg;
3069     else if (V2.RefI.Reg != MatchR)
3070       return false;
3071   }
3072   InpR2 = MatchR;
3073   return true;
3074 }
3075 
3076 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3077       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3078       unsigned NewPredR) {
3079   DenseMap<unsigned,unsigned> RegMap;
3080 
3081   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3082   Register PhiR = MRI->createVirtualRegister(PhiRC);
3083   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3084     .addReg(NewPredR)
3085     .addMBB(&PB)
3086     .addReg(G.Inp.Reg)
3087     .addMBB(&LB);
3088   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3089 
3090   for (unsigned i = G.Ins.size(); i > 0; --i) {
3091     const MachineInstr *SI = G.Ins[i-1];
3092     unsigned DR = getDefReg(SI);
3093     const TargetRegisterClass *RC = MRI->getRegClass(DR);
3094     Register NewDR = MRI->createVirtualRegister(RC);
3095     DebugLoc DL = SI->getDebugLoc();
3096 
3097     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3098     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3099       const MachineOperand &Op = SI->getOperand(j);
3100       if (!Op.isReg()) {
3101         MIB.add(Op);
3102         continue;
3103       }
3104       if (!Op.isUse())
3105         continue;
3106       unsigned UseR = RegMap[Op.getReg()];
3107       MIB.addReg(UseR, 0, Op.getSubReg());
3108     }
3109     RegMap.insert(std::make_pair(DR, NewDR));
3110   }
3111 
3112   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3113 }
3114 
3115 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3116   LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3117                     << "\n");
3118   std::vector<PhiInfo> Phis;
3119   for (auto &I : *C.LB) {
3120     if (!I.isPHI())
3121       break;
3122     unsigned PR = getDefReg(&I);
3123     if (isConst(PR))
3124       continue;
3125     bool BadUse = false, GoodUse = false;
3126     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3127       MachineInstr *UseI = UI->getParent();
3128       if (UseI->getParent() != C.LB) {
3129         BadUse = true;
3130         break;
3131       }
3132       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3133         GoodUse = true;
3134     }
3135     if (BadUse || !GoodUse)
3136       continue;
3137 
3138     Phis.push_back(PhiInfo(I, *C.LB));
3139   }
3140 
3141   LLVM_DEBUG({
3142     dbgs() << "Phis: {";
3143     for (auto &I : Phis) {
3144       dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3145              << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3146              << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3147              << I.LB->getNumber() << ')';
3148     }
3149     dbgs() << " }\n";
3150   });
3151 
3152   if (Phis.empty())
3153     return false;
3154 
3155   bool Changed = false;
3156   InstrList ShufIns;
3157 
3158   // Go backwards in the block: for each bit shuffling instruction, check
3159   // if that instruction could potentially be moved to the front of the loop:
3160   // the output of the loop cannot be used in a non-shuffling instruction
3161   // in this loop.
3162   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3163     if (I->isTerminator())
3164       continue;
3165     if (I->isPHI())
3166       break;
3167 
3168     RegisterSet Defs;
3169     HBS::getInstrDefs(*I, Defs);
3170     if (Defs.count() != 1)
3171       continue;
3172     Register DefR = Defs.find_first();
3173     if (!DefR.isVirtual())
3174       continue;
3175     if (!isBitShuffle(&*I, DefR))
3176       continue;
3177 
3178     bool BadUse = false;
3179     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3180       MachineInstr *UseI = UI->getParent();
3181       if (UseI->getParent() == C.LB) {
3182         if (UseI->isPHI()) {
3183           // If the use is in a phi node in this loop, then it should be
3184           // the value corresponding to the back edge.
3185           unsigned Idx = UI.getOperandNo();
3186           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3187             BadUse = true;
3188         } else {
3189           auto F = find(ShufIns, UseI);
3190           if (F == ShufIns.end())
3191             BadUse = true;
3192         }
3193       } else {
3194         // There is a use outside of the loop, but there is no epilog block
3195         // suitable for a copy-out.
3196         if (C.EB == nullptr)
3197           BadUse = true;
3198       }
3199       if (BadUse)
3200         break;
3201     }
3202 
3203     if (BadUse)
3204       continue;
3205     ShufIns.push_back(&*I);
3206   }
3207 
3208   // Partition the list of shuffling instructions into instruction groups,
3209   // where each group has to be moved as a whole (i.e. a group is a chain of
3210   // dependent instructions). A group produces a single live output register,
3211   // which is meant to be the input of the loop phi node (although this is
3212   // not checked here yet). It also uses a single register as its input,
3213   // which is some value produced in the loop body. After moving the group
3214   // to the beginning of the loop, that input register would need to be
3215   // the loop-carried register (through a phi node) instead of the (currently
3216   // loop-carried) output register.
3217   using InstrGroupList = std::vector<InstrGroup>;
3218   InstrGroupList Groups;
3219 
3220   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3221     MachineInstr *SI = ShufIns[i];
3222     if (SI == nullptr)
3223       continue;
3224 
3225     InstrGroup G;
3226     G.Ins.push_back(SI);
3227     G.Out.Reg = getDefReg(SI);
3228     RegisterSet Inputs;
3229     HBS::getInstrUses(*SI, Inputs);
3230 
3231     for (unsigned j = i+1; j < n; ++j) {
3232       MachineInstr *MI = ShufIns[j];
3233       if (MI == nullptr)
3234         continue;
3235       RegisterSet Defs;
3236       HBS::getInstrDefs(*MI, Defs);
3237       // If this instruction does not define any pending inputs, skip it.
3238       if (!Defs.intersects(Inputs))
3239         continue;
3240       // Otherwise, add it to the current group and remove the inputs that
3241       // are defined by MI.
3242       G.Ins.push_back(MI);
3243       Inputs.remove(Defs);
3244       // Then add all registers used by MI.
3245       HBS::getInstrUses(*MI, Inputs);
3246       ShufIns[j] = nullptr;
3247     }
3248 
3249     // Only add a group if it requires at most one register.
3250     if (Inputs.count() > 1)
3251       continue;
3252     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3253       return G.Out.Reg == P.LR.Reg;
3254     };
3255     if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3256       continue;
3257 
3258     G.Inp.Reg = Inputs.find_first();
3259     Groups.push_back(G);
3260   }
3261 
3262   LLVM_DEBUG({
3263     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3264       InstrGroup &G = Groups[i];
3265       dbgs() << "Group[" << i << "] inp: "
3266              << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3267              << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3268       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3269         dbgs() << "  " << *G.Ins[j];
3270     }
3271   });
3272 
3273   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3274     InstrGroup &G = Groups[i];
3275     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3276       continue;
3277     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3278       return G.Out.Reg == P.LR.Reg;
3279     };
3280     auto F = llvm::find_if(Phis, LoopInpEq);
3281     if (F == Phis.end())
3282       continue;
3283     unsigned PrehR = 0;
3284     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3285       const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3286       unsigned Opc = DefPrehR->getOpcode();
3287       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3288         continue;
3289       if (!DefPrehR->getOperand(1).isImm())
3290         continue;
3291       if (DefPrehR->getOperand(1).getImm() != 0)
3292         continue;
3293       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3294       if (RC != MRI->getRegClass(F->PR.Reg)) {
3295         PrehR = MRI->createVirtualRegister(RC);
3296         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3297                                                           : Hexagon::A2_tfrpi;
3298         auto T = C.PB->getFirstTerminator();
3299         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3300         BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3301           .addImm(0);
3302       } else {
3303         PrehR = F->PR.Reg;
3304       }
3305     }
3306     // isSameShuffle could match with PrehR being of a wider class than
3307     // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3308     // it would match for the input being a 32-bit register, and PrehR
3309     // being a 64-bit register (where the low 32 bits match). This could
3310     // be handled, but for now skip these cases.
3311     if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3312       continue;
3313     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3314     Changed = true;
3315   }
3316 
3317   return Changed;
3318 }
3319 
3320 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3321   if (skipFunction(MF.getFunction()))
3322     return false;
3323 
3324   auto &HST = MF.getSubtarget<HexagonSubtarget>();
3325   HII = HST.getInstrInfo();
3326   HRI = HST.getRegisterInfo();
3327   MRI = &MF.getRegInfo();
3328   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3329   BitTracker BT(HE, MF);
3330   LLVM_DEBUG(BT.trace(true));
3331   BT.run();
3332   BTP = &BT;
3333 
3334   std::vector<LoopCand> Cand;
3335 
3336   for (auto &B : MF) {
3337     if (B.pred_size() != 2 || B.succ_size() != 2)
3338       continue;
3339     MachineBasicBlock *PB = nullptr;
3340     bool IsLoop = false;
3341     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3342       if (*PI != &B)
3343         PB = *PI;
3344       else
3345         IsLoop = true;
3346     }
3347     if (!IsLoop)
3348       continue;
3349 
3350     MachineBasicBlock *EB = nullptr;
3351     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3352       if (*SI == &B)
3353         continue;
3354       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3355       // edge from B to EP is non-critical.
3356       if ((*SI)->pred_size() == 1)
3357         EB = *SI;
3358       break;
3359     }
3360 
3361     Cand.push_back(LoopCand(&B, PB, EB));
3362   }
3363 
3364   bool Changed = false;
3365   for (auto &C : Cand)
3366     Changed |= processLoop(C);
3367 
3368   return Changed;
3369 }
3370 
3371 //===----------------------------------------------------------------------===//
3372 //                         Public Constructor Functions
3373 //===----------------------------------------------------------------------===//
3374 
3375 FunctionPass *llvm::createHexagonLoopRescheduling() {
3376   return new HexagonLoopRescheduling();
3377 }
3378 
3379 FunctionPass *llvm::createHexagonBitSimplify() {
3380   return new HexagonBitSimplify();
3381 }
3382