xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/BitTracker.h (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
11 
12 #include "llvm/ADT/DenseSet.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/MachineOperand.h"
17 #include <cassert>
18 #include <cstdint>
19 #include <map>
20 #include <queue>
21 #include <set>
22 #include <utility>
23 
24 namespace llvm {
25 
26 class BitVector;
27 class ConstantInt;
28 class MachineRegisterInfo;
29 class MachineBasicBlock;
30 class MachineFunction;
31 class raw_ostream;
32 class TargetRegisterClass;
33 class TargetRegisterInfo;
34 
35 struct BitTracker {
36   struct BitRef;
37   struct RegisterRef;
38   struct BitValue;
39   struct BitMask;
40   struct RegisterCell;
41   struct MachineEvaluator;
42 
43   using BranchTargetList = SetVector<const MachineBasicBlock *>;
44   using CellMapType = std::map<unsigned, RegisterCell>;
45 
46   BitTracker(const MachineEvaluator &E, MachineFunction &F);
47   ~BitTracker();
48 
49   void run();
50   void trace(bool On = false) { Trace = On; }
51   bool has(unsigned Reg) const;
52   const RegisterCell &lookup(unsigned Reg) const;
53   RegisterCell get(RegisterRef RR) const;
54   void put(RegisterRef RR, const RegisterCell &RC);
55   void subst(RegisterRef OldRR, RegisterRef NewRR);
56   bool reached(const MachineBasicBlock *B) const;
57   void visit(const MachineInstr &MI);
58 
59   void print_cells(raw_ostream &OS) const;
60 
61 private:
62   void visitPHI(const MachineInstr &PI);
63   void visitNonBranch(const MachineInstr &MI);
64   void visitBranchesFrom(const MachineInstr &BI);
65   void visitUsesOf(Register Reg);
66 
67   using CFGEdge = std::pair<int, int>;
68   using EdgeSetType = std::set<CFGEdge>;
69   using InstrSetType = std::set<const MachineInstr *>;
70   using EdgeQueueType = std::queue<CFGEdge>;
71 
72   // Priority queue of instructions using modified registers, ordered by
73   // their relative position in a basic block.
74   struct UseQueueType {
75     UseQueueType() : Uses(Dist) {}
76 
77     unsigned size() const {
78       return Uses.size();
79     }
80     bool empty() const {
81       return size() == 0;
82     }
83     MachineInstr *front() const {
84       return Uses.top();
85     }
86     void push(MachineInstr *MI) {
87       if (Set.insert(MI).second)
88         Uses.push(MI);
89     }
90     void pop() {
91       Set.erase(front());
92       Uses.pop();
93     }
94     void reset() {
95       Dist.clear();
96     }
97   private:
98     struct Cmp {
99       Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
100       bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
101       DenseMap<const MachineInstr*,unsigned> &Dist;
102     };
103     std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
104     DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
105     DenseMap<const MachineInstr*,unsigned> Dist;
106   };
107 
108   void reset();
109   void runEdgeQueue(BitVector &BlockScanned);
110   void runUseQueue();
111 
112   const MachineEvaluator &ME;
113   MachineFunction &MF;
114   MachineRegisterInfo &MRI;
115   CellMapType &Map;
116 
117   EdgeSetType EdgeExec;         // Executable flow graph edges.
118   InstrSetType InstrExec;       // Executable instructions.
119   UseQueueType UseQ;            // Work queue of register uses.
120   EdgeQueueType FlowQ;          // Work queue of CFG edges.
121   DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
122   bool Trace;                   // Enable tracing for debugging.
123 };
124 
125 // Abstraction of a reference to bit at position Pos from a register Reg.
126 struct BitTracker::BitRef {
127   BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
128 
129   bool operator== (const BitRef &BR) const {
130     // If Reg is 0, disregard Pos.
131     return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
132   }
133 
134   Register Reg;
135   uint16_t Pos;
136 };
137 
138 // Abstraction of a register reference in MachineOperand.  It contains the
139 // register number and the subregister index.
140 // FIXME: Consolidate duplicate definitions of RegisterRef
141 struct BitTracker::RegisterRef {
142   RegisterRef(Register R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
143   RegisterRef(const MachineOperand &MO)
144       : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
145 
146   Register Reg;
147   unsigned Sub;
148 };
149 
150 // Value that a single bit can take.  This is outside of the context of
151 // any register, it is more of an abstraction of the two-element set of
152 // possible bit values.  One extension here is the "Ref" type, which
153 // indicates that this bit takes the same value as the bit described by
154 // RefInfo.
155 struct BitTracker::BitValue {
156   enum ValueType {
157     Top,    // Bit not yet defined.
158     Zero,   // Bit = 0.
159     One,    // Bit = 1.
160     Ref     // Bit value same as the one described in RefI.
161     // Conceptually, there is no explicit "bottom" value: the lattice's
162     // bottom will be expressed as a "ref to itself", which, in the context
163     // of registers, could be read as "this value of this bit is defined by
164     // this bit".
165     // The ordering is:
166     //   x <= Top,
167     //   Self <= x, where "Self" is "ref to itself".
168     // This makes the value lattice different for each virtual register
169     // (even for each bit in the same virtual register), since the "bottom"
170     // for one register will be a simple "ref" for another register.
171     // Since we do not store the "Self" bit and register number, the meet
172     // operation will need to take it as a parameter.
173     //
174     // In practice there is a special case for values that are not associa-
175     // ted with any specific virtual register. An example would be a value
176     // corresponding to a bit of a physical register, or an intermediate
177     // value obtained in some computation (such as instruction evaluation).
178     // Such cases are identical to the usual Ref type, but the register
179     // number is 0. In such case the Pos field of the reference is ignored.
180     //
181     // What is worthy of notice is that in value V (that is a "ref"), as long
182     // as the RefI.Reg is not 0, it may actually be the same register as the
183     // one in which V will be contained.  If the RefI.Pos refers to the posi-
184     // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
185     // otherwise V is taken to be identical to the referenced bit of the
186     // same register.
187     // If RefI.Reg is 0, however, such a reference to the same register is
188     // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
189     // is treated as "bottom".
190   };
191   ValueType Type;
192   BitRef RefI;
193 
194   BitValue(ValueType T = Top) : Type(T) {}
195   BitValue(bool B) : Type(B ? One : Zero) {}
196   BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
197 
198   bool operator== (const BitValue &V) const {
199     if (Type != V.Type)
200       return false;
201     if (Type == Ref && !(RefI == V.RefI))
202       return false;
203     return true;
204   }
205   bool operator!= (const BitValue &V) const {
206     return !operator==(V);
207   }
208 
209   bool is(unsigned T) const {
210     assert(T == 0 || T == 1);
211     return T == 0 ? Type == Zero
212                   : (T == 1 ? Type == One : false);
213   }
214 
215   // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
216   // (1)  x.x = x
217   // (2)  x.y = y.x
218   // (3)  x.(y.z) = (x.y).z
219   // (4)  x.T = x  (i.e. T = "top")
220   // (5)  x.B = B  (i.e. B = "bottom")
221   //
222   // This "meet" function will update the value of the "*this" object with
223   // the newly calculated one, and return "true" if the value of *this has
224   // changed, and "false" otherwise.
225   // To prove that it satisfies the conditions (1)-(5), it is sufficient
226   // to show that a relation
227   //   x <= y  <=>  x.y = x
228   // defines a partial order (i.e. that "meet" is same as "infimum").
229   bool meet(const BitValue &V, const BitRef &Self) {
230     // First, check the cases where there is nothing to be done.
231     if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
232       return false;
233     if (V.Type == Top)                  // This.meet(Top) = This
234       return false;
235     if (*this == V)                     // This.meet(This) = This
236       return false;
237 
238     // At this point, we know that the value of "this" will change.
239     // If it is Top, it will become the same as V, otherwise it will
240     // become "bottom" (i.e. Self).
241     if (Type == Top) {
242       Type = V.Type;
243       RefI = V.RefI;  // This may be irrelevant, but copy anyway.
244       return true;
245     }
246     // Become "bottom".
247     Type = Ref;
248     RefI = Self;
249     return true;
250   }
251 
252   // Create a reference to the bit value V.
253   static BitValue ref(const BitValue &V);
254   // Create a "self".
255   static BitValue self(const BitRef &Self = BitRef());
256 
257   bool num() const {
258     return Type == Zero || Type == One;
259   }
260 
261   operator bool() const {
262     assert(Type == Zero || Type == One);
263     return Type == One;
264   }
265 
266   friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
267 };
268 
269 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
270 inline BitTracker::BitValue
271 BitTracker::BitValue::ref(const BitValue &V) {
272   if (V.Type != Ref)
273     return BitValue(V.Type);
274   if (V.RefI.Reg != 0)
275     return BitValue(V.RefI.Reg, V.RefI.Pos);
276   return self();
277 }
278 
279 inline BitTracker::BitValue
280 BitTracker::BitValue::self(const BitRef &Self) {
281   return BitValue(Self.Reg, Self.Pos);
282 }
283 
284 // A sequence of bits starting from index B up to and including index E.
285 // If E < B, the mask represents two sections: [0..E] and [B..W) where
286 // W is the width of the register.
287 struct BitTracker::BitMask {
288   BitMask() = default;
289   BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
290 
291   uint16_t first() const { return B; }
292   uint16_t last() const { return E; }
293 
294 private:
295   uint16_t B = 0;
296   uint16_t E = 0;
297 };
298 
299 // Representation of a register: a list of BitValues.
300 struct BitTracker::RegisterCell {
301   RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
302 
303   uint16_t width() const {
304     return Bits.size();
305   }
306 
307   const BitValue &operator[](uint16_t BitN) const {
308     assert(BitN < Bits.size());
309     return Bits[BitN];
310   }
311   BitValue &operator[](uint16_t BitN) {
312     assert(BitN < Bits.size());
313     return Bits[BitN];
314   }
315 
316   bool meet(const RegisterCell &RC, Register SelfR);
317   RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
318   RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
319   RegisterCell &rol(uint16_t Sh);    // Rotate left.
320   RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
321   RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
322   uint16_t cl(bool B) const;
323   uint16_t ct(bool B) const;
324 
325   bool operator== (const RegisterCell &RC) const;
326   bool operator!= (const RegisterCell &RC) const {
327     return !operator==(RC);
328   }
329 
330   // Replace the ref-to-reg-0 bit values with the given register.
331   RegisterCell &regify(unsigned R);
332 
333   // Generate a "ref" cell for the corresponding register. In the resulting
334   // cell each bit will be described as being the same as the corresponding
335   // bit in register Reg (i.e. the cell is "defined" by register Reg).
336   static RegisterCell self(unsigned Reg, uint16_t Width);
337   // Generate a "top" cell of given size.
338   static RegisterCell top(uint16_t Width);
339   // Generate a cell that is a "ref" to another cell.
340   static RegisterCell ref(const RegisterCell &C);
341 
342 private:
343   // The DefaultBitN is here only to avoid frequent reallocation of the
344   // memory in the vector.
345   static const unsigned DefaultBitN = 32;
346   using BitValueList = SmallVector<BitValue, DefaultBitN>;
347   BitValueList Bits;
348 
349   friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
350 };
351 
352 inline bool BitTracker::has(unsigned Reg) const {
353   return Map.find(Reg) != Map.end();
354 }
355 
356 inline const BitTracker::RegisterCell&
357 BitTracker::lookup(unsigned Reg) const {
358   CellMapType::const_iterator F = Map.find(Reg);
359   assert(F != Map.end());
360   return F->second;
361 }
362 
363 inline BitTracker::RegisterCell
364 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
365   RegisterCell RC(Width);
366   for (uint16_t i = 0; i < Width; ++i)
367     RC.Bits[i] = BitValue::self(BitRef(Reg, i));
368   return RC;
369 }
370 
371 inline BitTracker::RegisterCell
372 BitTracker::RegisterCell::top(uint16_t Width) {
373   RegisterCell RC(Width);
374   for (uint16_t i = 0; i < Width; ++i)
375     RC.Bits[i] = BitValue(BitValue::Top);
376   return RC;
377 }
378 
379 inline BitTracker::RegisterCell
380 BitTracker::RegisterCell::ref(const RegisterCell &C) {
381   uint16_t W = C.width();
382   RegisterCell RC(W);
383   for (unsigned i = 0; i < W; ++i)
384     RC[i] = BitValue::ref(C[i]);
385   return RC;
386 }
387 
388 // A class to evaluate target's instructions and update the cell maps.
389 // This is used internally by the bit tracker.  A target that wants to
390 // utilize this should implement the evaluation functions (noted below)
391 // in a subclass of this class.
392 struct BitTracker::MachineEvaluator {
393   MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
394       : TRI(T), MRI(M) {}
395   virtual ~MachineEvaluator() = default;
396 
397   uint16_t getRegBitWidth(const RegisterRef &RR) const;
398 
399   RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
400   void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
401 
402   // A result of any operation should use refs to the source cells, not
403   // the cells directly. This function is a convenience wrapper to quickly
404   // generate a ref for a cell corresponding to a register reference.
405   RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
406     RegisterCell RC = getCell(RR, M);
407     return RegisterCell::ref(RC);
408   }
409 
410   // Helper functions.
411   // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
412   bool isInt(const RegisterCell &A) const;
413   // Convert cell to an immediate value.
414   uint64_t toInt(const RegisterCell &A) const;
415 
416   // Generate cell from an immediate value.
417   RegisterCell eIMM(int64_t V, uint16_t W) const;
418   RegisterCell eIMM(const ConstantInt *CI) const;
419 
420   // Arithmetic.
421   RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
422   RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
423   RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
424   RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
425 
426   // Shifts.
427   RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
428   RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
429   RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
430 
431   // Logical.
432   RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
433   RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
434   RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
435   RegisterCell eNOT(const RegisterCell &A1) const;
436 
437   // Set bit, clear bit.
438   RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
439   RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
440 
441   // Count leading/trailing bits (zeros/ones).
442   RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
443   RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
444 
445   // Sign/zero extension.
446   RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
447   RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
448 
449   // Extract/insert
450   // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
451   // INS R,S,b:  take R and replace bits starting from b with S.
452   RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
453   RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
454                     uint16_t AtN) const;
455 
456   // User-provided functions for individual targets:
457 
458   // Return a sub-register mask that indicates which bits in Reg belong
459   // to the subregister Sub. These bits are assumed to be contiguous in
460   // the super-register, and have the same ordering in the sub-register
461   // as in the super-register. It is valid to call this function with
462   // Sub == 0, in this case, the function should return a mask that spans
463   // the entire register Reg (which is what the default implementation
464   // does).
465   virtual BitMask mask(Register Reg, unsigned Sub) const;
466   // Indicate whether a given register class should be tracked.
467   virtual bool track(const TargetRegisterClass *RC) const { return true; }
468   // Evaluate a non-branching machine instruction, given the cell map with
469   // the input values. Place the results in the Outputs map. Return "true"
470   // if evaluation succeeded, "false" otherwise.
471   virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
472                         CellMapType &Outputs) const;
473   // Evaluate a branch, given the cell map with the input values. Fill out
474   // a list of all possible branch targets and indicate (through a flag)
475   // whether the branch could fall-through. Return "true" if this information
476   // has been successfully computed, "false" otherwise.
477   virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
478                         BranchTargetList &Targets, bool &FallsThru) const = 0;
479   // Given a register class RC, return a register class that should be assumed
480   // when a register from class RC is used with a subregister of index Idx.
481   virtual const TargetRegisterClass&
482   composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
483     if (Idx == 0)
484       return RC;
485     llvm_unreachable("Unimplemented composeWithSubRegIndex");
486   }
487   // Return the size in bits of the physical register Reg.
488   virtual uint16_t getPhysRegBitWidth(MCRegister Reg) const;
489 
490   const TargetRegisterInfo &TRI;
491   MachineRegisterInfo &MRI;
492 };
493 
494 } // end namespace llvm
495 
496 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
497