xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/BitTracker.h (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
11 
12 #include "llvm/ADT/DenseSet.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/MachineOperand.h"
17 #include <cassert>
18 #include <cstdint>
19 #include <map>
20 #include <queue>
21 #include <set>
22 #include <utility>
23 
24 namespace llvm {
25 
26 class BitVector;
27 class ConstantInt;
28 class MachineRegisterInfo;
29 class MachineBasicBlock;
30 class MachineFunction;
31 class raw_ostream;
32 class TargetRegisterClass;
33 class TargetRegisterInfo;
34 
35 struct BitTracker {
36   struct BitRef;
37   struct RegisterRef;
38   struct BitValue;
39   struct BitMask;
40   struct RegisterCell;
41   struct MachineEvaluator;
42 
43   using BranchTargetList = SetVector<const MachineBasicBlock *>;
44   using CellMapType = std::map<unsigned, RegisterCell>;
45 
46   BitTracker(const MachineEvaluator &E, MachineFunction &F);
47   ~BitTracker();
48 
49   void run();
50   void trace(bool On = false) { Trace = On; }
51   bool has(unsigned Reg) const;
52   const RegisterCell &lookup(unsigned Reg) const;
53   RegisterCell get(RegisterRef RR) const;
54   void put(RegisterRef RR, const RegisterCell &RC);
55   void subst(RegisterRef OldRR, RegisterRef NewRR);
56   bool reached(const MachineBasicBlock *B) const;
57   void visit(const MachineInstr &MI);
58 
59   void print_cells(raw_ostream &OS) const;
60 
61 private:
62   void visitPHI(const MachineInstr &PI);
63   void visitNonBranch(const MachineInstr &MI);
64   void visitBranchesFrom(const MachineInstr &BI);
65   void visitUsesOf(unsigned Reg);
66 
67   using CFGEdge = std::pair<int, int>;
68   using EdgeSetType = std::set<CFGEdge>;
69   using InstrSetType = std::set<const MachineInstr *>;
70   using EdgeQueueType = std::queue<CFGEdge>;
71 
72   // Priority queue of instructions using modified registers, ordered by
73   // their relative position in a basic block.
74   struct UseQueueType {
75     UseQueueType() : Uses(Dist) {}
76 
77     unsigned size() const {
78       return Uses.size();
79     }
80     bool empty() const {
81       return size() == 0;
82     }
83     MachineInstr *front() const {
84       return Uses.top();
85     }
86     void push(MachineInstr *MI) {
87       if (Set.insert(MI).second)
88         Uses.push(MI);
89     }
90     void pop() {
91       Set.erase(front());
92       Uses.pop();
93     }
94     void reset() {
95       Dist.clear();
96     }
97   private:
98     struct Cmp {
99       Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
100       bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
101       DenseMap<const MachineInstr*,unsigned> &Dist;
102     };
103     std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
104     DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
105     DenseMap<const MachineInstr*,unsigned> Dist;
106   };
107 
108   void reset();
109   void runEdgeQueue(BitVector &BlockScanned);
110   void runUseQueue();
111 
112   const MachineEvaluator &ME;
113   MachineFunction &MF;
114   MachineRegisterInfo &MRI;
115   CellMapType &Map;
116 
117   EdgeSetType EdgeExec;         // Executable flow graph edges.
118   InstrSetType InstrExec;       // Executable instructions.
119   UseQueueType UseQ;            // Work queue of register uses.
120   EdgeQueueType FlowQ;          // Work queue of CFG edges.
121   DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
122   bool Trace;                   // Enable tracing for debugging.
123 };
124 
125 // Abstraction of a reference to bit at position Pos from a register Reg.
126 struct BitTracker::BitRef {
127   BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
128 
129   bool operator== (const BitRef &BR) const {
130     // If Reg is 0, disregard Pos.
131     return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
132   }
133 
134   unsigned Reg;
135   uint16_t Pos;
136 };
137 
138 // Abstraction of a register reference in MachineOperand.  It contains the
139 // register number and the subregister index.
140 struct BitTracker::RegisterRef {
141   RegisterRef(unsigned R = 0, unsigned S = 0)
142     : Reg(R), Sub(S) {}
143   RegisterRef(const MachineOperand &MO)
144       : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
145 
146   unsigned Reg, Sub;
147 };
148 
149 // Value that a single bit can take.  This is outside of the context of
150 // any register, it is more of an abstraction of the two-element set of
151 // possible bit values.  One extension here is the "Ref" type, which
152 // indicates that this bit takes the same value as the bit described by
153 // RefInfo.
154 struct BitTracker::BitValue {
155   enum ValueType {
156     Top,    // Bit not yet defined.
157     Zero,   // Bit = 0.
158     One,    // Bit = 1.
159     Ref     // Bit value same as the one described in RefI.
160     // Conceptually, there is no explicit "bottom" value: the lattice's
161     // bottom will be expressed as a "ref to itself", which, in the context
162     // of registers, could be read as "this value of this bit is defined by
163     // this bit".
164     // The ordering is:
165     //   x <= Top,
166     //   Self <= x, where "Self" is "ref to itself".
167     // This makes the value lattice different for each virtual register
168     // (even for each bit in the same virtual register), since the "bottom"
169     // for one register will be a simple "ref" for another register.
170     // Since we do not store the "Self" bit and register number, the meet
171     // operation will need to take it as a parameter.
172     //
173     // In practice there is a special case for values that are not associa-
174     // ted with any specific virtual register. An example would be a value
175     // corresponding to a bit of a physical register, or an intermediate
176     // value obtained in some computation (such as instruction evaluation).
177     // Such cases are identical to the usual Ref type, but the register
178     // number is 0. In such case the Pos field of the reference is ignored.
179     //
180     // What is worthy of notice is that in value V (that is a "ref"), as long
181     // as the RefI.Reg is not 0, it may actually be the same register as the
182     // one in which V will be contained.  If the RefI.Pos refers to the posi-
183     // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
184     // otherwise V is taken to be identical to the referenced bit of the
185     // same register.
186     // If RefI.Reg is 0, however, such a reference to the same register is
187     // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
188     // is treated as "bottom".
189   };
190   ValueType Type;
191   BitRef RefI;
192 
193   BitValue(ValueType T = Top) : Type(T) {}
194   BitValue(bool B) : Type(B ? One : Zero) {}
195   BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
196 
197   bool operator== (const BitValue &V) const {
198     if (Type != V.Type)
199       return false;
200     if (Type == Ref && !(RefI == V.RefI))
201       return false;
202     return true;
203   }
204   bool operator!= (const BitValue &V) const {
205     return !operator==(V);
206   }
207 
208   bool is(unsigned T) const {
209     assert(T == 0 || T == 1);
210     return T == 0 ? Type == Zero
211                   : (T == 1 ? Type == One : false);
212   }
213 
214   // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
215   // (1)  x.x = x
216   // (2)  x.y = y.x
217   // (3)  x.(y.z) = (x.y).z
218   // (4)  x.T = x  (i.e. T = "top")
219   // (5)  x.B = B  (i.e. B = "bottom")
220   //
221   // This "meet" function will update the value of the "*this" object with
222   // the newly calculated one, and return "true" if the value of *this has
223   // changed, and "false" otherwise.
224   // To prove that it satisfies the conditions (1)-(5), it is sufficient
225   // to show that a relation
226   //   x <= y  <=>  x.y = x
227   // defines a partial order (i.e. that "meet" is same as "infimum").
228   bool meet(const BitValue &V, const BitRef &Self) {
229     // First, check the cases where there is nothing to be done.
230     if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
231       return false;
232     if (V.Type == Top)                  // This.meet(Top) = This
233       return false;
234     if (*this == V)                     // This.meet(This) = This
235       return false;
236 
237     // At this point, we know that the value of "this" will change.
238     // If it is Top, it will become the same as V, otherwise it will
239     // become "bottom" (i.e. Self).
240     if (Type == Top) {
241       Type = V.Type;
242       RefI = V.RefI;  // This may be irrelevant, but copy anyway.
243       return true;
244     }
245     // Become "bottom".
246     Type = Ref;
247     RefI = Self;
248     return true;
249   }
250 
251   // Create a reference to the bit value V.
252   static BitValue ref(const BitValue &V);
253   // Create a "self".
254   static BitValue self(const BitRef &Self = BitRef());
255 
256   bool num() const {
257     return Type == Zero || Type == One;
258   }
259 
260   operator bool() const {
261     assert(Type == Zero || Type == One);
262     return Type == One;
263   }
264 
265   friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
266 };
267 
268 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
269 inline BitTracker::BitValue
270 BitTracker::BitValue::ref(const BitValue &V) {
271   if (V.Type != Ref)
272     return BitValue(V.Type);
273   if (V.RefI.Reg != 0)
274     return BitValue(V.RefI.Reg, V.RefI.Pos);
275   return self();
276 }
277 
278 inline BitTracker::BitValue
279 BitTracker::BitValue::self(const BitRef &Self) {
280   return BitValue(Self.Reg, Self.Pos);
281 }
282 
283 // A sequence of bits starting from index B up to and including index E.
284 // If E < B, the mask represents two sections: [0..E] and [B..W) where
285 // W is the width of the register.
286 struct BitTracker::BitMask {
287   BitMask() = default;
288   BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
289 
290   uint16_t first() const { return B; }
291   uint16_t last() const { return E; }
292 
293 private:
294   uint16_t B = 0;
295   uint16_t E = 0;
296 };
297 
298 // Representation of a register: a list of BitValues.
299 struct BitTracker::RegisterCell {
300   RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
301 
302   uint16_t width() const {
303     return Bits.size();
304   }
305 
306   const BitValue &operator[](uint16_t BitN) const {
307     assert(BitN < Bits.size());
308     return Bits[BitN];
309   }
310   BitValue &operator[](uint16_t BitN) {
311     assert(BitN < Bits.size());
312     return Bits[BitN];
313   }
314 
315   bool meet(const RegisterCell &RC, unsigned SelfR);
316   RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
317   RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
318   RegisterCell &rol(uint16_t Sh);    // Rotate left.
319   RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
320   RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
321   uint16_t cl(bool B) const;
322   uint16_t ct(bool B) const;
323 
324   bool operator== (const RegisterCell &RC) const;
325   bool operator!= (const RegisterCell &RC) const {
326     return !operator==(RC);
327   }
328 
329   // Replace the ref-to-reg-0 bit values with the given register.
330   RegisterCell &regify(unsigned R);
331 
332   // Generate a "ref" cell for the corresponding register. In the resulting
333   // cell each bit will be described as being the same as the corresponding
334   // bit in register Reg (i.e. the cell is "defined" by register Reg).
335   static RegisterCell self(unsigned Reg, uint16_t Width);
336   // Generate a "top" cell of given size.
337   static RegisterCell top(uint16_t Width);
338   // Generate a cell that is a "ref" to another cell.
339   static RegisterCell ref(const RegisterCell &C);
340 
341 private:
342   // The DefaultBitN is here only to avoid frequent reallocation of the
343   // memory in the vector.
344   static const unsigned DefaultBitN = 32;
345   using BitValueList = SmallVector<BitValue, DefaultBitN>;
346   BitValueList Bits;
347 
348   friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
349 };
350 
351 inline bool BitTracker::has(unsigned Reg) const {
352   return Map.find(Reg) != Map.end();
353 }
354 
355 inline const BitTracker::RegisterCell&
356 BitTracker::lookup(unsigned Reg) const {
357   CellMapType::const_iterator F = Map.find(Reg);
358   assert(F != Map.end());
359   return F->second;
360 }
361 
362 inline BitTracker::RegisterCell
363 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
364   RegisterCell RC(Width);
365   for (uint16_t i = 0; i < Width; ++i)
366     RC.Bits[i] = BitValue::self(BitRef(Reg, i));
367   return RC;
368 }
369 
370 inline BitTracker::RegisterCell
371 BitTracker::RegisterCell::top(uint16_t Width) {
372   RegisterCell RC(Width);
373   for (uint16_t i = 0; i < Width; ++i)
374     RC.Bits[i] = BitValue(BitValue::Top);
375   return RC;
376 }
377 
378 inline BitTracker::RegisterCell
379 BitTracker::RegisterCell::ref(const RegisterCell &C) {
380   uint16_t W = C.width();
381   RegisterCell RC(W);
382   for (unsigned i = 0; i < W; ++i)
383     RC[i] = BitValue::ref(C[i]);
384   return RC;
385 }
386 
387 // A class to evaluate target's instructions and update the cell maps.
388 // This is used internally by the bit tracker.  A target that wants to
389 // utilize this should implement the evaluation functions (noted below)
390 // in a subclass of this class.
391 struct BitTracker::MachineEvaluator {
392   MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
393       : TRI(T), MRI(M) {}
394   virtual ~MachineEvaluator() = default;
395 
396   uint16_t getRegBitWidth(const RegisterRef &RR) const;
397 
398   RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
399   void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
400 
401   // A result of any operation should use refs to the source cells, not
402   // the cells directly. This function is a convenience wrapper to quickly
403   // generate a ref for a cell corresponding to a register reference.
404   RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
405     RegisterCell RC = getCell(RR, M);
406     return RegisterCell::ref(RC);
407   }
408 
409   // Helper functions.
410   // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
411   bool isInt(const RegisterCell &A) const;
412   // Convert cell to an immediate value.
413   uint64_t toInt(const RegisterCell &A) const;
414 
415   // Generate cell from an immediate value.
416   RegisterCell eIMM(int64_t V, uint16_t W) const;
417   RegisterCell eIMM(const ConstantInt *CI) const;
418 
419   // Arithmetic.
420   RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
421   RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
422   RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
423   RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
424 
425   // Shifts.
426   RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
427   RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
428   RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
429 
430   // Logical.
431   RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
432   RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
433   RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
434   RegisterCell eNOT(const RegisterCell &A1) const;
435 
436   // Set bit, clear bit.
437   RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
438   RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
439 
440   // Count leading/trailing bits (zeros/ones).
441   RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
442   RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
443 
444   // Sign/zero extension.
445   RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
446   RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
447 
448   // Extract/insert
449   // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
450   // INS R,S,b:  take R and replace bits starting from b with S.
451   RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
452   RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
453                     uint16_t AtN) const;
454 
455   // User-provided functions for individual targets:
456 
457   // Return a sub-register mask that indicates which bits in Reg belong
458   // to the subregister Sub. These bits are assumed to be contiguous in
459   // the super-register, and have the same ordering in the sub-register
460   // as in the super-register. It is valid to call this function with
461   // Sub == 0, in this case, the function should return a mask that spans
462   // the entire register Reg (which is what the default implementation
463   // does).
464   virtual BitMask mask(unsigned Reg, unsigned Sub) const;
465   // Indicate whether a given register class should be tracked.
466   virtual bool track(const TargetRegisterClass *RC) const { return true; }
467   // Evaluate a non-branching machine instruction, given the cell map with
468   // the input values. Place the results in the Outputs map. Return "true"
469   // if evaluation succeeded, "false" otherwise.
470   virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
471                         CellMapType &Outputs) const;
472   // Evaluate a branch, given the cell map with the input values. Fill out
473   // a list of all possible branch targets and indicate (through a flag)
474   // whether the branch could fall-through. Return "true" if this information
475   // has been successfully computed, "false" otherwise.
476   virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
477                         BranchTargetList &Targets, bool &FallsThru) const = 0;
478   // Given a register class RC, return a register class that should be assumed
479   // when a register from class RC is used with a subregister of index Idx.
480   virtual const TargetRegisterClass&
481   composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
482     if (Idx == 0)
483       return RC;
484     llvm_unreachable("Unimplemented composeWithSubRegIndex");
485   }
486   // Return the size in bits of the physical register Reg.
487   virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;
488 
489   const TargetRegisterInfo &TRI;
490   MachineRegisterInfo &MRI;
491 };
492 
493 } // end namespace llvm
494 
495 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
496