1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H 10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H 11 12 #include "llvm/ADT/DenseSet.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/CodeGen/MachineInstr.h" 16 #include "llvm/CodeGen/MachineOperand.h" 17 #include <cassert> 18 #include <cstdint> 19 #include <map> 20 #include <queue> 21 #include <set> 22 #include <utility> 23 24 namespace llvm { 25 26 class BitVector; 27 class ConstantInt; 28 class MachineRegisterInfo; 29 class MachineBasicBlock; 30 class MachineFunction; 31 class raw_ostream; 32 class TargetRegisterClass; 33 class TargetRegisterInfo; 34 35 struct BitTracker { 36 struct BitRef; 37 struct RegisterRef; 38 struct BitValue; 39 struct BitMask; 40 struct RegisterCell; 41 struct MachineEvaluator; 42 43 using BranchTargetList = SetVector<const MachineBasicBlock *>; 44 using CellMapType = std::map<unsigned, RegisterCell>; 45 46 BitTracker(const MachineEvaluator &E, MachineFunction &F); 47 ~BitTracker(); 48 49 void run(); 50 void trace(bool On = false) { Trace = On; } 51 bool has(unsigned Reg) const; 52 const RegisterCell &lookup(unsigned Reg) const; 53 RegisterCell get(RegisterRef RR) const; 54 void put(RegisterRef RR, const RegisterCell &RC); 55 void subst(RegisterRef OldRR, RegisterRef NewRR); 56 bool reached(const MachineBasicBlock *B) const; 57 void visit(const MachineInstr &MI); 58 59 void print_cells(raw_ostream &OS) const; 60 61 private: 62 void visitPHI(const MachineInstr &PI); 63 void visitNonBranch(const MachineInstr &MI); 64 void visitBranchesFrom(const MachineInstr &BI); 65 void visitUsesOf(unsigned Reg); 66 67 using CFGEdge = std::pair<int, int>; 68 using EdgeSetType = std::set<CFGEdge>; 69 using InstrSetType = std::set<const MachineInstr *>; 70 using EdgeQueueType = std::queue<CFGEdge>; 71 72 // Priority queue of instructions using modified registers, ordered by 73 // their relative position in a basic block. 74 struct UseQueueType { 75 UseQueueType() : Uses(Dist) {} 76 77 unsigned size() const { 78 return Uses.size(); 79 } 80 bool empty() const { 81 return size() == 0; 82 } 83 MachineInstr *front() const { 84 return Uses.top(); 85 } 86 void push(MachineInstr *MI) { 87 if (Set.insert(MI).second) 88 Uses.push(MI); 89 } 90 void pop() { 91 Set.erase(front()); 92 Uses.pop(); 93 } 94 void reset() { 95 Dist.clear(); 96 } 97 private: 98 struct Cmp { 99 Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {} 100 bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const; 101 DenseMap<const MachineInstr*,unsigned> &Dist; 102 }; 103 std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses; 104 DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries. 105 DenseMap<const MachineInstr*,unsigned> Dist; 106 }; 107 108 void reset(); 109 void runEdgeQueue(BitVector &BlockScanned); 110 void runUseQueue(); 111 112 const MachineEvaluator &ME; 113 MachineFunction &MF; 114 MachineRegisterInfo &MRI; 115 CellMapType ⤅ 116 117 EdgeSetType EdgeExec; // Executable flow graph edges. 118 InstrSetType InstrExec; // Executable instructions. 119 UseQueueType UseQ; // Work queue of register uses. 120 EdgeQueueType FlowQ; // Work queue of CFG edges. 121 DenseSet<unsigned> ReachedBB; // Cache of reached blocks. 122 bool Trace; // Enable tracing for debugging. 123 }; 124 125 // Abstraction of a reference to bit at position Pos from a register Reg. 126 struct BitTracker::BitRef { 127 BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {} 128 129 bool operator== (const BitRef &BR) const { 130 // If Reg is 0, disregard Pos. 131 return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos); 132 } 133 134 unsigned Reg; 135 uint16_t Pos; 136 }; 137 138 // Abstraction of a register reference in MachineOperand. It contains the 139 // register number and the subregister index. 140 struct BitTracker::RegisterRef { 141 RegisterRef(unsigned R = 0, unsigned S = 0) 142 : Reg(R), Sub(S) {} 143 RegisterRef(const MachineOperand &MO) 144 : Reg(MO.getReg()), Sub(MO.getSubReg()) {} 145 146 unsigned Reg, Sub; 147 }; 148 149 // Value that a single bit can take. This is outside of the context of 150 // any register, it is more of an abstraction of the two-element set of 151 // possible bit values. One extension here is the "Ref" type, which 152 // indicates that this bit takes the same value as the bit described by 153 // RefInfo. 154 struct BitTracker::BitValue { 155 enum ValueType { 156 Top, // Bit not yet defined. 157 Zero, // Bit = 0. 158 One, // Bit = 1. 159 Ref // Bit value same as the one described in RefI. 160 // Conceptually, there is no explicit "bottom" value: the lattice's 161 // bottom will be expressed as a "ref to itself", which, in the context 162 // of registers, could be read as "this value of this bit is defined by 163 // this bit". 164 // The ordering is: 165 // x <= Top, 166 // Self <= x, where "Self" is "ref to itself". 167 // This makes the value lattice different for each virtual register 168 // (even for each bit in the same virtual register), since the "bottom" 169 // for one register will be a simple "ref" for another register. 170 // Since we do not store the "Self" bit and register number, the meet 171 // operation will need to take it as a parameter. 172 // 173 // In practice there is a special case for values that are not associa- 174 // ted with any specific virtual register. An example would be a value 175 // corresponding to a bit of a physical register, or an intermediate 176 // value obtained in some computation (such as instruction evaluation). 177 // Such cases are identical to the usual Ref type, but the register 178 // number is 0. In such case the Pos field of the reference is ignored. 179 // 180 // What is worthy of notice is that in value V (that is a "ref"), as long 181 // as the RefI.Reg is not 0, it may actually be the same register as the 182 // one in which V will be contained. If the RefI.Pos refers to the posi- 183 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"), 184 // otherwise V is taken to be identical to the referenced bit of the 185 // same register. 186 // If RefI.Reg is 0, however, such a reference to the same register is 187 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0 188 // is treated as "bottom". 189 }; 190 ValueType Type; 191 BitRef RefI; 192 193 BitValue(ValueType T = Top) : Type(T) {} 194 BitValue(bool B) : Type(B ? One : Zero) {} 195 BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {} 196 197 bool operator== (const BitValue &V) const { 198 if (Type != V.Type) 199 return false; 200 if (Type == Ref && !(RefI == V.RefI)) 201 return false; 202 return true; 203 } 204 bool operator!= (const BitValue &V) const { 205 return !operator==(V); 206 } 207 208 bool is(unsigned T) const { 209 assert(T == 0 || T == 1); 210 return T == 0 ? Type == Zero 211 : (T == 1 ? Type == One : false); 212 } 213 214 // The "meet" operation is the "." operation in a semilattice (L, ., T, B): 215 // (1) x.x = x 216 // (2) x.y = y.x 217 // (3) x.(y.z) = (x.y).z 218 // (4) x.T = x (i.e. T = "top") 219 // (5) x.B = B (i.e. B = "bottom") 220 // 221 // This "meet" function will update the value of the "*this" object with 222 // the newly calculated one, and return "true" if the value of *this has 223 // changed, and "false" otherwise. 224 // To prove that it satisfies the conditions (1)-(5), it is sufficient 225 // to show that a relation 226 // x <= y <=> x.y = x 227 // defines a partial order (i.e. that "meet" is same as "infimum"). 228 bool meet(const BitValue &V, const BitRef &Self) { 229 // First, check the cases where there is nothing to be done. 230 if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This) 231 return false; 232 if (V.Type == Top) // This.meet(Top) = This 233 return false; 234 if (*this == V) // This.meet(This) = This 235 return false; 236 237 // At this point, we know that the value of "this" will change. 238 // If it is Top, it will become the same as V, otherwise it will 239 // become "bottom" (i.e. Self). 240 if (Type == Top) { 241 Type = V.Type; 242 RefI = V.RefI; // This may be irrelevant, but copy anyway. 243 return true; 244 } 245 // Become "bottom". 246 Type = Ref; 247 RefI = Self; 248 return true; 249 } 250 251 // Create a reference to the bit value V. 252 static BitValue ref(const BitValue &V); 253 // Create a "self". 254 static BitValue self(const BitRef &Self = BitRef()); 255 256 bool num() const { 257 return Type == Zero || Type == One; 258 } 259 260 operator bool() const { 261 assert(Type == Zero || Type == One); 262 return Type == One; 263 } 264 265 friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV); 266 }; 267 268 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V). 269 inline BitTracker::BitValue 270 BitTracker::BitValue::ref(const BitValue &V) { 271 if (V.Type != Ref) 272 return BitValue(V.Type); 273 if (V.RefI.Reg != 0) 274 return BitValue(V.RefI.Reg, V.RefI.Pos); 275 return self(); 276 } 277 278 inline BitTracker::BitValue 279 BitTracker::BitValue::self(const BitRef &Self) { 280 return BitValue(Self.Reg, Self.Pos); 281 } 282 283 // A sequence of bits starting from index B up to and including index E. 284 // If E < B, the mask represents two sections: [0..E] and [B..W) where 285 // W is the width of the register. 286 struct BitTracker::BitMask { 287 BitMask() = default; 288 BitMask(uint16_t b, uint16_t e) : B(b), E(e) {} 289 290 uint16_t first() const { return B; } 291 uint16_t last() const { return E; } 292 293 private: 294 uint16_t B = 0; 295 uint16_t E = 0; 296 }; 297 298 // Representation of a register: a list of BitValues. 299 struct BitTracker::RegisterCell { 300 RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {} 301 302 uint16_t width() const { 303 return Bits.size(); 304 } 305 306 const BitValue &operator[](uint16_t BitN) const { 307 assert(BitN < Bits.size()); 308 return Bits[BitN]; 309 } 310 BitValue &operator[](uint16_t BitN) { 311 assert(BitN < Bits.size()); 312 return Bits[BitN]; 313 } 314 315 bool meet(const RegisterCell &RC, unsigned SelfR); 316 RegisterCell &insert(const RegisterCell &RC, const BitMask &M); 317 RegisterCell extract(const BitMask &M) const; // Returns a new cell. 318 RegisterCell &rol(uint16_t Sh); // Rotate left. 319 RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V); 320 RegisterCell &cat(const RegisterCell &RC); // Concatenate. 321 uint16_t cl(bool B) const; 322 uint16_t ct(bool B) const; 323 324 bool operator== (const RegisterCell &RC) const; 325 bool operator!= (const RegisterCell &RC) const { 326 return !operator==(RC); 327 } 328 329 // Replace the ref-to-reg-0 bit values with the given register. 330 RegisterCell ®ify(unsigned R); 331 332 // Generate a "ref" cell for the corresponding register. In the resulting 333 // cell each bit will be described as being the same as the corresponding 334 // bit in register Reg (i.e. the cell is "defined" by register Reg). 335 static RegisterCell self(unsigned Reg, uint16_t Width); 336 // Generate a "top" cell of given size. 337 static RegisterCell top(uint16_t Width); 338 // Generate a cell that is a "ref" to another cell. 339 static RegisterCell ref(const RegisterCell &C); 340 341 private: 342 // The DefaultBitN is here only to avoid frequent reallocation of the 343 // memory in the vector. 344 static const unsigned DefaultBitN = 32; 345 using BitValueList = SmallVector<BitValue, DefaultBitN>; 346 BitValueList Bits; 347 348 friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC); 349 }; 350 351 inline bool BitTracker::has(unsigned Reg) const { 352 return Map.find(Reg) != Map.end(); 353 } 354 355 inline const BitTracker::RegisterCell& 356 BitTracker::lookup(unsigned Reg) const { 357 CellMapType::const_iterator F = Map.find(Reg); 358 assert(F != Map.end()); 359 return F->second; 360 } 361 362 inline BitTracker::RegisterCell 363 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) { 364 RegisterCell RC(Width); 365 for (uint16_t i = 0; i < Width; ++i) 366 RC.Bits[i] = BitValue::self(BitRef(Reg, i)); 367 return RC; 368 } 369 370 inline BitTracker::RegisterCell 371 BitTracker::RegisterCell::top(uint16_t Width) { 372 RegisterCell RC(Width); 373 for (uint16_t i = 0; i < Width; ++i) 374 RC.Bits[i] = BitValue(BitValue::Top); 375 return RC; 376 } 377 378 inline BitTracker::RegisterCell 379 BitTracker::RegisterCell::ref(const RegisterCell &C) { 380 uint16_t W = C.width(); 381 RegisterCell RC(W); 382 for (unsigned i = 0; i < W; ++i) 383 RC[i] = BitValue::ref(C[i]); 384 return RC; 385 } 386 387 // A class to evaluate target's instructions and update the cell maps. 388 // This is used internally by the bit tracker. A target that wants to 389 // utilize this should implement the evaluation functions (noted below) 390 // in a subclass of this class. 391 struct BitTracker::MachineEvaluator { 392 MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M) 393 : TRI(T), MRI(M) {} 394 virtual ~MachineEvaluator() = default; 395 396 uint16_t getRegBitWidth(const RegisterRef &RR) const; 397 398 RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const; 399 void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const; 400 401 // A result of any operation should use refs to the source cells, not 402 // the cells directly. This function is a convenience wrapper to quickly 403 // generate a ref for a cell corresponding to a register reference. 404 RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const { 405 RegisterCell RC = getCell(RR, M); 406 return RegisterCell::ref(RC); 407 } 408 409 // Helper functions. 410 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1). 411 bool isInt(const RegisterCell &A) const; 412 // Convert cell to an immediate value. 413 uint64_t toInt(const RegisterCell &A) const; 414 415 // Generate cell from an immediate value. 416 RegisterCell eIMM(int64_t V, uint16_t W) const; 417 RegisterCell eIMM(const ConstantInt *CI) const; 418 419 // Arithmetic. 420 RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const; 421 RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const; 422 RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const; 423 RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const; 424 425 // Shifts. 426 RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const; 427 RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const; 428 RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const; 429 430 // Logical. 431 RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const; 432 RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const; 433 RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const; 434 RegisterCell eNOT(const RegisterCell &A1) const; 435 436 // Set bit, clear bit. 437 RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const; 438 RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const; 439 440 // Count leading/trailing bits (zeros/ones). 441 RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const; 442 RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const; 443 444 // Sign/zero extension. 445 RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const; 446 RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const; 447 448 // Extract/insert 449 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1. 450 // INS R,S,b: take R and replace bits starting from b with S. 451 RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const; 452 RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2, 453 uint16_t AtN) const; 454 455 // User-provided functions for individual targets: 456 457 // Return a sub-register mask that indicates which bits in Reg belong 458 // to the subregister Sub. These bits are assumed to be contiguous in 459 // the super-register, and have the same ordering in the sub-register 460 // as in the super-register. It is valid to call this function with 461 // Sub == 0, in this case, the function should return a mask that spans 462 // the entire register Reg (which is what the default implementation 463 // does). 464 virtual BitMask mask(unsigned Reg, unsigned Sub) const; 465 // Indicate whether a given register class should be tracked. 466 virtual bool track(const TargetRegisterClass *RC) const { return true; } 467 // Evaluate a non-branching machine instruction, given the cell map with 468 // the input values. Place the results in the Outputs map. Return "true" 469 // if evaluation succeeded, "false" otherwise. 470 virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs, 471 CellMapType &Outputs) const; 472 // Evaluate a branch, given the cell map with the input values. Fill out 473 // a list of all possible branch targets and indicate (through a flag) 474 // whether the branch could fall-through. Return "true" if this information 475 // has been successfully computed, "false" otherwise. 476 virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs, 477 BranchTargetList &Targets, bool &FallsThru) const = 0; 478 // Given a register class RC, return a register class that should be assumed 479 // when a register from class RC is used with a subregister of index Idx. 480 virtual const TargetRegisterClass& 481 composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const { 482 if (Idx == 0) 483 return RC; 484 llvm_unreachable("Unimplemented composeWithSubRegIndex"); 485 } 486 // Return the size in bits of the physical register Reg. 487 virtual uint16_t getPhysRegBitWidth(unsigned Reg) const; 488 489 const TargetRegisterInfo &TRI; 490 MachineRegisterInfo &MRI; 491 }; 492 493 } // end namespace llvm 494 495 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H 496