1 //===- DirectX/DXILWriter/ValueEnumerator.h - Number values -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class gives values and types Unique ID's. 10 // Forked from lib/Bitcode/Writer 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_DXILWRITER_VALUEENUMERATOR_H 15 #define LLVM_DXILWRITER_VALUEENUMERATOR_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/UniqueVector.h" 20 #include "llvm/IR/Attributes.h" 21 #include "llvm/IR/UseListOrder.h" 22 #include <cassert> 23 #include <cstdint> 24 #include <utility> 25 #include <vector> 26 27 namespace llvm { 28 29 class BasicBlock; 30 class Comdat; 31 class DIArgList; 32 class Function; 33 class Instruction; 34 class LocalAsMetadata; 35 class MDNode; 36 class Metadata; 37 class Module; 38 class NamedMDNode; 39 class raw_ostream; 40 class Type; 41 class Value; 42 class ValueSymbolTable; 43 44 namespace dxil { 45 46 class ValueEnumerator { 47 public: 48 using TypeList = std::vector<Type *>; 49 50 // For each value, we remember its Value* and occurrence frequency. 51 using ValueList = std::vector<std::pair<const Value *, unsigned>>; 52 53 /// Attribute groups as encoded in bitcode are almost AttributeSets, but they 54 /// include the AttributeList index, so we have to track that in our map. 55 using IndexAndAttrSet = std::pair<unsigned, AttributeSet>; 56 57 UseListOrderStack UseListOrders; 58 59 private: 60 using TypeMapType = DenseMap<Type *, unsigned>; 61 TypeMapType TypeMap; 62 TypeList Types; 63 64 using ValueMapType = DenseMap<const Value *, unsigned>; 65 ValueMapType ValueMap; 66 ValueList Values; 67 68 using ComdatSetType = UniqueVector<const Comdat *>; 69 ComdatSetType Comdats; 70 71 std::vector<const Metadata *> MDs; 72 std::vector<const Metadata *> FunctionMDs; 73 74 /// Index of information about a piece of metadata. 75 struct MDIndex { 76 unsigned F = 0; ///< The ID of the function for this metadata, if any. 77 unsigned ID = 0; ///< The implicit ID of this metadata in bitcode. 78 79 MDIndex() = default; 80 explicit MDIndex(unsigned F) : F(F) {} 81 82 /// Check if this has a function tag, and it's different from NewF. 83 bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; } 84 85 /// Fetch the MD this references out of the given metadata array. 86 const Metadata *get(ArrayRef<const Metadata *> MDs) const { 87 assert(ID && "Expected non-zero ID"); 88 assert(ID <= MDs.size() && "Expected valid ID"); 89 return MDs[ID - 1]; 90 } 91 }; 92 93 using MetadataMapType = DenseMap<const Metadata *, MDIndex>; 94 MetadataMapType MetadataMap; 95 96 /// Range of metadata IDs, as a half-open range. 97 struct MDRange { 98 unsigned First = 0; 99 unsigned Last = 0; 100 101 /// Number of strings in the prefix of the metadata range. 102 unsigned NumStrings = 0; 103 104 MDRange() = default; 105 explicit MDRange(unsigned First) : First(First) {} 106 }; 107 SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo; 108 109 using AttributeGroupMapType = DenseMap<IndexAndAttrSet, unsigned>; 110 AttributeGroupMapType AttributeGroupMap; 111 std::vector<IndexAndAttrSet> AttributeGroups; 112 113 using AttributeListMapType = DenseMap<AttributeList, unsigned>; 114 AttributeListMapType AttributeListMap; 115 std::vector<AttributeList> AttributeLists; 116 117 /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by 118 /// the "getGlobalBasicBlockID" method. 119 mutable DenseMap<const BasicBlock *, unsigned> GlobalBasicBlockIDs; 120 121 using InstructionMapType = DenseMap<const Instruction *, unsigned>; 122 InstructionMapType InstructionMap; 123 unsigned InstructionCount; 124 125 /// BasicBlocks - This contains all the basic blocks for the currently 126 /// incorporated function. Their reverse mapping is stored in ValueMap. 127 std::vector<const BasicBlock *> BasicBlocks; 128 129 /// When a function is incorporated, this is the size of the Values list 130 /// before incorporation. 131 unsigned NumModuleValues; 132 133 /// When a function is incorporated, this is the size of the Metadatas list 134 /// before incorporation. 135 unsigned NumModuleMDs = 0; 136 unsigned NumMDStrings = 0; 137 138 unsigned FirstFuncConstantID; 139 unsigned FirstInstID; 140 141 public: 142 ValueEnumerator(const Module &M, Type *PrefixType); 143 ValueEnumerator(const ValueEnumerator &) = delete; 144 ValueEnumerator &operator=(const ValueEnumerator &) = delete; 145 146 void dump() const; 147 void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const; 148 void print(raw_ostream &OS, const MetadataMapType &Map, 149 const char *Name) const; 150 151 unsigned getValueID(const Value *V) const; 152 153 unsigned getMetadataID(const Metadata *MD) const { 154 auto ID = getMetadataOrNullID(MD); 155 assert(ID != 0 && "Metadata not in slotcalculator!"); 156 return ID - 1; 157 } 158 159 unsigned getMetadataOrNullID(const Metadata *MD) const { 160 return MetadataMap.lookup(MD).ID; 161 } 162 163 unsigned numMDs() const { return MDs.size(); } 164 165 unsigned getTypeID(Type *T) const { 166 TypeMapType::const_iterator I = TypeMap.find(T); 167 assert(I != TypeMap.end() && "Type not in ValueEnumerator!"); 168 return I->second - 1; 169 } 170 171 unsigned getInstructionID(const Instruction *I) const; 172 void setInstructionID(const Instruction *I); 173 174 unsigned getAttributeListID(AttributeList PAL) const { 175 if (PAL.isEmpty()) 176 return 0; // Null maps to zero. 177 AttributeListMapType::const_iterator I = AttributeListMap.find(PAL); 178 assert(I != AttributeListMap.end() && "Attribute not in ValueEnumerator!"); 179 return I->second; 180 } 181 182 unsigned getAttributeGroupID(IndexAndAttrSet Group) const { 183 if (!Group.second.hasAttributes()) 184 return 0; // Null maps to zero. 185 AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(Group); 186 assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!"); 187 return I->second; 188 } 189 190 /// getFunctionConstantRange - Return the range of values that corresponds to 191 /// function-local constants. 192 void getFunctionConstantRange(unsigned &Start, unsigned &End) const { 193 Start = FirstFuncConstantID; 194 End = FirstInstID; 195 } 196 197 const ValueList &getValues() const { return Values; } 198 199 /// Check whether the current block has any metadata to emit. 200 bool hasMDs() const { return NumModuleMDs < MDs.size(); } 201 202 /// Get the MDString metadata for this block. 203 ArrayRef<const Metadata *> getMDStrings() const { 204 return ArrayRef(MDs).slice(NumModuleMDs, NumMDStrings); 205 } 206 207 /// Get the non-MDString metadata for this block. 208 ArrayRef<const Metadata *> getNonMDStrings() const { 209 return ArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings); 210 } 211 212 const TypeList &getTypes() const { return Types; } 213 214 const std::vector<const BasicBlock *> &getBasicBlocks() const { 215 return BasicBlocks; 216 } 217 218 const std::vector<AttributeList> &getAttributeLists() const { 219 return AttributeLists; 220 } 221 222 const std::vector<IndexAndAttrSet> &getAttributeGroups() const { 223 return AttributeGroups; 224 } 225 226 const ComdatSetType &getComdats() const { return Comdats; } 227 unsigned getComdatID(const Comdat *C) const; 228 229 /// getGlobalBasicBlockID - This returns the function-specific ID for the 230 /// specified basic block. This is relatively expensive information, so it 231 /// should only be used by rare constructs such as address-of-label. 232 unsigned getGlobalBasicBlockID(const BasicBlock *BB) const; 233 234 /// incorporateFunction/purgeFunction - If you'd like to deal with a function, 235 /// use these two methods to get its data into the ValueEnumerator! 236 void incorporateFunction(const Function &F); 237 238 void purgeFunction(); 239 uint64_t computeBitsRequiredForTypeIndicies() const; 240 241 void EnumerateType(Type *T); 242 243 private: 244 245 /// Reorder the reachable metadata. 246 /// 247 /// This is not just an optimization, but is mandatory for emitting MDString 248 /// correctly. 249 void organizeMetadata(); 250 251 /// Drop the function tag from the transitive operands of the given node. 252 void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD); 253 254 /// Incorporate the function metadata. 255 /// 256 /// This should be called before enumerating LocalAsMetadata for the 257 /// function. 258 void incorporateFunctionMetadata(const Function &F); 259 260 /// Enumerate a single instance of metadata with the given function tag. 261 /// 262 /// If \c MD has already been enumerated, check that \c F matches its 263 /// function tag. If not, call \a dropFunctionFromMetadata(). 264 /// 265 /// Otherwise, mark \c MD as visited. Assign it an ID, or just return it if 266 /// it's an \a MDNode. 267 const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD); 268 269 unsigned getMetadataFunctionID(const Function *F) const; 270 271 /// Enumerate reachable metadata in (almost) post-order. 272 /// 273 /// Enumerate all the metadata reachable from MD. We want to minimize the 274 /// cost of reading bitcode records, and so the primary consideration is that 275 /// operands of uniqued nodes are resolved before the nodes are read. This 276 /// avoids re-uniquing them on the context and factors away RAUW support. 277 /// 278 /// This algorithm guarantees that subgraphs of uniqued nodes are in 279 /// post-order. Distinct subgraphs reachable only from a single uniqued node 280 /// will be in post-order. 281 /// 282 /// \note The relative order of a distinct and uniqued node is irrelevant. 283 /// \a organizeMetadata() will later partition distinct nodes ahead of 284 /// uniqued ones. 285 ///{ 286 void EnumerateMetadata(const Function *F, const Metadata *MD); 287 void EnumerateMetadata(unsigned F, const Metadata *MD); 288 ///} 289 290 void EnumerateFunctionLocalMetadata(const Function &F, 291 const LocalAsMetadata *Local); 292 void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local); 293 void EnumerateFunctionLocalListMetadata(const Function &F, 294 const DIArgList *ArgList); 295 void EnumerateFunctionLocalListMetadata(unsigned F, const DIArgList *Arglist); 296 void EnumerateNamedMDNode(const NamedMDNode *NMD); 297 void EnumerateValue(const Value *V); 298 void EnumerateOperandType(const Value *V); 299 void EnumerateAttributes(AttributeList PAL); 300 301 void EnumerateValueSymbolTable(const ValueSymbolTable &ST); 302 void EnumerateNamedMetadata(const Module &M); 303 }; 304 305 } // end namespace dxil 306 } // end namespace llvm 307 308 #endif // LLVM_DXILWRITER_VALUEENUMERATOR_H 309