xref: /freebsd/contrib/llvm-project/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 // Forked from lib/Bitcode/Writer
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DXILValueEnumerator.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Argument.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/GlobalIFunc.h"
25 #include "llvm/IR/GlobalObject.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/TypedPointerType.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cstddef>
46 #include <iterator>
47 #include <tuple>
48 
49 using namespace llvm;
50 using namespace llvm::dxil;
51 
52 namespace {
53 
54 struct OrderMap {
55   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
56   unsigned LastGlobalConstantID = 0;
57   unsigned LastGlobalValueID = 0;
58 
59   OrderMap() = default;
60 
61   bool isGlobalConstant(unsigned ID) const {
62     return ID <= LastGlobalConstantID;
63   }
64 
65   bool isGlobalValue(unsigned ID) const {
66     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
67   }
68 
69   unsigned size() const { return IDs.size(); }
70   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
71 
72   std::pair<unsigned, bool> lookup(const Value *V) const {
73     return IDs.lookup(V);
74   }
75 
76   void index(const Value *V) {
77     // Explicitly sequence get-size and insert-value operations to avoid UB.
78     unsigned ID = IDs.size() + 1;
79     IDs[V].first = ID;
80   }
81 };
82 
83 } // end anonymous namespace
84 
85 static void orderValue(const Value *V, OrderMap &OM) {
86   if (OM.lookup(V).first)
87     return;
88 
89   if (const Constant *C = dyn_cast<Constant>(V)) {
90     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
91       for (const Value *Op : C->operands())
92         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
93           orderValue(Op, OM);
94       if (auto *CE = dyn_cast<ConstantExpr>(C))
95         if (CE->getOpcode() == Instruction::ShuffleVector)
96           orderValue(CE->getShuffleMaskForBitcode(), OM);
97     }
98   }
99 
100   // Note: we cannot cache this lookup above, since inserting into the map
101   // changes the map's size, and thus affects the other IDs.
102   OM.index(V);
103 }
104 
105 static OrderMap orderModule(const Module &M) {
106   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
107   // and ValueEnumerator::incorporateFunction().
108   OrderMap OM;
109 
110   // In the reader, initializers of GlobalValues are set *after* all the
111   // globals have been read.  Rather than awkwardly modeling this behaviour
112   // directly in predictValueUseListOrderImpl(), just assign IDs to
113   // initializers of GlobalValues before GlobalValues themselves to model this
114   // implicitly.
115   for (const GlobalVariable &G : M.globals())
116     if (G.hasInitializer())
117       if (!isa<GlobalValue>(G.getInitializer()))
118         orderValue(G.getInitializer(), OM);
119   for (const GlobalAlias &A : M.aliases())
120     if (!isa<GlobalValue>(A.getAliasee()))
121       orderValue(A.getAliasee(), OM);
122   for (const GlobalIFunc &I : M.ifuncs())
123     if (!isa<GlobalValue>(I.getResolver()))
124       orderValue(I.getResolver(), OM);
125   for (const Function &F : M) {
126     for (const Use &U : F.operands())
127       if (!isa<GlobalValue>(U.get()))
128         orderValue(U.get(), OM);
129   }
130 
131   // As constants used in metadata operands are emitted as module-level
132   // constants, we must order them before other operands. Also, we must order
133   // these before global values, as these will be read before setting the
134   // global values' initializers. The latter matters for constants which have
135   // uses towards other constants that are used as initializers.
136   auto orderConstantValue = [&OM](const Value *V) {
137     if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
138       orderValue(V, OM);
139   };
140   for (const Function &F : M) {
141     if (F.isDeclaration())
142       continue;
143     for (const BasicBlock &BB : F)
144       for (const Instruction &I : BB)
145         for (const Value *V : I.operands()) {
146           if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
147             if (const auto *VAM =
148                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
149               orderConstantValue(VAM->getValue());
150             } else if (const auto *AL =
151                            dyn_cast<DIArgList>(MAV->getMetadata())) {
152               for (const auto *VAM : AL->getArgs())
153                 orderConstantValue(VAM->getValue());
154             }
155           }
156         }
157   }
158   OM.LastGlobalConstantID = OM.size();
159 
160   // Initializers of GlobalValues are processed in
161   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
162   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
163   // by giving IDs in reverse order.
164   //
165   // Since GlobalValues never reference each other directly (just through
166   // initializers), their relative IDs only matter for determining order of
167   // uses in their initializers.
168   for (const Function &F : M)
169     orderValue(&F, OM);
170   for (const GlobalAlias &A : M.aliases())
171     orderValue(&A, OM);
172   for (const GlobalIFunc &I : M.ifuncs())
173     orderValue(&I, OM);
174   for (const GlobalVariable &G : M.globals())
175     orderValue(&G, OM);
176   OM.LastGlobalValueID = OM.size();
177 
178   for (const Function &F : M) {
179     if (F.isDeclaration())
180       continue;
181     // Here we need to match the union of ValueEnumerator::incorporateFunction()
182     // and WriteFunction().  Basic blocks are implicitly declared before
183     // anything else (by declaring their size).
184     for (const BasicBlock &BB : F)
185       orderValue(&BB, OM);
186     for (const Argument &A : F.args())
187       orderValue(&A, OM);
188     for (const BasicBlock &BB : F)
189       for (const Instruction &I : BB) {
190         for (const Value *Op : I.operands())
191           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
192               isa<InlineAsm>(*Op))
193             orderValue(Op, OM);
194         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
195           orderValue(SVI->getShuffleMaskForBitcode(), OM);
196       }
197     for (const BasicBlock &BB : F)
198       for (const Instruction &I : BB)
199         orderValue(&I, OM);
200   }
201   return OM;
202 }
203 
204 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
205                                          unsigned ID, const OrderMap &OM,
206                                          UseListOrderStack &Stack) {
207   // Predict use-list order for this one.
208   using Entry = std::pair<const Use *, unsigned>;
209   SmallVector<Entry, 64> List;
210   for (const Use &U : V->uses())
211     // Check if this user will be serialized.
212     if (OM.lookup(U.getUser()).first)
213       List.push_back(std::make_pair(&U, List.size()));
214 
215   if (List.size() < 2)
216     // We may have lost some users.
217     return;
218 
219   bool IsGlobalValue = OM.isGlobalValue(ID);
220   llvm::sort(List, [&](const Entry &L, const Entry &R) {
221     const Use *LU = L.first;
222     const Use *RU = R.first;
223     if (LU == RU)
224       return false;
225 
226     auto LID = OM.lookup(LU->getUser()).first;
227     auto RID = OM.lookup(RU->getUser()).first;
228 
229     // Global values are processed in reverse order.
230     //
231     // Moreover, initializers of GlobalValues are set *after* all the globals
232     // have been read (despite having earlier IDs).  Rather than awkwardly
233     // modeling this behaviour here, orderModule() has assigned IDs to
234     // initializers of GlobalValues before GlobalValues themselves.
235     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) {
236       if (LID == RID)
237         return LU->getOperandNo() > RU->getOperandNo();
238       return LID < RID;
239     }
240 
241     // If ID is 4, then expect: 7 6 5 1 2 3.
242     if (LID < RID) {
243       if (RID <= ID)
244         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245           return true;
246       return false;
247     }
248     if (RID < LID) {
249       if (LID <= ID)
250         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
251           return false;
252       return true;
253     }
254 
255     // LID and RID are equal, so we have different operands of the same user.
256     // Assume operands are added in order for all instructions.
257     if (LID <= ID)
258       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
259         return LU->getOperandNo() < RU->getOperandNo();
260     return LU->getOperandNo() > RU->getOperandNo();
261   });
262 
263   if (llvm::is_sorted(List, llvm::less_second()))
264     // Order is already correct.
265     return;
266 
267   // Store the shuffle.
268   Stack.emplace_back(V, F, List.size());
269   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
270   for (size_t I = 0, E = List.size(); I != E; ++I)
271     Stack.back().Shuffle[I] = List[I].second;
272 }
273 
274 static void predictValueUseListOrder(const Value *V, const Function *F,
275                                      OrderMap &OM, UseListOrderStack &Stack) {
276   auto &IDPair = OM[V];
277   assert(IDPair.first && "Unmapped value");
278   if (IDPair.second)
279     // Already predicted.
280     return;
281 
282   // Do the actual prediction.
283   IDPair.second = true;
284   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
285     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
286 
287   // Recursive descent into constants.
288   if (const Constant *C = dyn_cast<Constant>(V)) {
289     if (C->getNumOperands()) { // Visit GlobalValues.
290       for (const Value *Op : C->operands())
291         if (isa<Constant>(Op)) // Visit GlobalValues.
292           predictValueUseListOrder(Op, F, OM, Stack);
293       if (auto *CE = dyn_cast<ConstantExpr>(C))
294         if (CE->getOpcode() == Instruction::ShuffleVector)
295           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
296                                    Stack);
297     }
298   }
299 }
300 
301 static UseListOrderStack predictUseListOrder(const Module &M) {
302   OrderMap OM = orderModule(M);
303 
304   // Use-list orders need to be serialized after all the users have been added
305   // to a value, or else the shuffles will be incomplete.  Store them per
306   // function in a stack.
307   //
308   // Aside from function order, the order of values doesn't matter much here.
309   UseListOrderStack Stack;
310 
311   // We want to visit the functions backward now so we can list function-local
312   // constants in the last Function they're used in.  Module-level constants
313   // have already been visited above.
314   for (const Function &F : llvm::reverse(M)) {
315     if (F.isDeclaration())
316       continue;
317     for (const BasicBlock &BB : F)
318       predictValueUseListOrder(&BB, &F, OM, Stack);
319     for (const Argument &A : F.args())
320       predictValueUseListOrder(&A, &F, OM, Stack);
321     for (const BasicBlock &BB : F)
322       for (const Instruction &I : BB) {
323         for (const Value *Op : I.operands())
324           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
325             predictValueUseListOrder(Op, &F, OM, Stack);
326         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
327           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
328                                    Stack);
329       }
330     for (const BasicBlock &BB : F)
331       for (const Instruction &I : BB)
332         predictValueUseListOrder(&I, &F, OM, Stack);
333   }
334 
335   // Visit globals last, since the module-level use-list block will be seen
336   // before the function bodies are processed.
337   for (const GlobalVariable &G : M.globals())
338     predictValueUseListOrder(&G, nullptr, OM, Stack);
339   for (const Function &F : M)
340     predictValueUseListOrder(&F, nullptr, OM, Stack);
341   for (const GlobalAlias &A : M.aliases())
342     predictValueUseListOrder(&A, nullptr, OM, Stack);
343   for (const GlobalIFunc &I : M.ifuncs())
344     predictValueUseListOrder(&I, nullptr, OM, Stack);
345   for (const GlobalVariable &G : M.globals())
346     if (G.hasInitializer())
347       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
348   for (const GlobalAlias &A : M.aliases())
349     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
350   for (const GlobalIFunc &I : M.ifuncs())
351     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
352   for (const Function &F : M) {
353     for (const Use &U : F.operands())
354       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
355   }
356 
357   return Stack;
358 }
359 
360 ValueEnumerator::ValueEnumerator(const Module &M, Type *PrefixType) {
361   EnumerateType(PrefixType);
362 
363   UseListOrders = predictUseListOrder(M);
364 
365   // Enumerate the global variables.
366   for (const GlobalVariable &GV : M.globals()) {
367     EnumerateValue(&GV);
368     EnumerateType(GV.getValueType());
369   }
370 
371   // Enumerate the functions.
372   for (const Function &F : M) {
373     EnumerateValue(&F);
374     EnumerateType(F.getValueType());
375     EnumerateType(
376         TypedPointerType::get(F.getFunctionType(), F.getAddressSpace()));
377     EnumerateAttributes(F.getAttributes());
378   }
379 
380   // Enumerate the aliases.
381   for (const GlobalAlias &GA : M.aliases()) {
382     EnumerateValue(&GA);
383     EnumerateType(GA.getValueType());
384   }
385 
386   // Enumerate the ifuncs.
387   for (const GlobalIFunc &GIF : M.ifuncs()) {
388     EnumerateValue(&GIF);
389     EnumerateType(GIF.getValueType());
390   }
391 
392   // Enumerate the global variable initializers and attributes.
393   for (const GlobalVariable &GV : M.globals()) {
394     if (GV.hasInitializer())
395       EnumerateValue(GV.getInitializer());
396     EnumerateType(
397         TypedPointerType::get(GV.getValueType(), GV.getAddressSpace()));
398     if (GV.hasAttributes())
399       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
400   }
401 
402   // Enumerate the aliasees.
403   for (const GlobalAlias &GA : M.aliases())
404     EnumerateValue(GA.getAliasee());
405 
406   // Enumerate the ifunc resolvers.
407   for (const GlobalIFunc &GIF : M.ifuncs())
408     EnumerateValue(GIF.getResolver());
409 
410   // Enumerate any optional Function data.
411   for (const Function &F : M)
412     for (const Use &U : F.operands())
413       EnumerateValue(U.get());
414 
415   // Enumerate the metadata type.
416   //
417   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
418   // only encodes the metadata type when it's used as a value.
419   EnumerateType(Type::getMetadataTy(M.getContext()));
420 
421   // Insert constants and metadata that are named at module level into the slot
422   // pool so that the module symbol table can refer to them...
423   EnumerateValueSymbolTable(M.getValueSymbolTable());
424   EnumerateNamedMetadata(M);
425 
426   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
427   for (const GlobalVariable &GV : M.globals()) {
428     MDs.clear();
429     GV.getAllMetadata(MDs);
430     for (const auto &I : MDs)
431       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
432       // to write metadata to the global variable's own metadata block
433       // (PR28134).
434       EnumerateMetadata(nullptr, I.second);
435   }
436 
437   // Enumerate types used by function bodies and argument lists.
438   for (const Function &F : M) {
439     for (const Argument &A : F.args())
440       EnumerateType(A.getType());
441 
442     // Enumerate metadata attached to this function.
443     MDs.clear();
444     F.getAllMetadata(MDs);
445     for (const auto &I : MDs)
446       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
447 
448     for (const BasicBlock &BB : F)
449       for (const Instruction &I : BB) {
450         for (const Use &Op : I.operands()) {
451           auto *MD = dyn_cast<MetadataAsValue>(&Op);
452           if (!MD) {
453             EnumerateOperandType(Op);
454             continue;
455           }
456 
457           // Local metadata is enumerated during function-incorporation, but
458           // any ConstantAsMetadata arguments in a DIArgList should be examined
459           // now.
460           if (isa<LocalAsMetadata>(MD->getMetadata()))
461             continue;
462           if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
463             for (auto *VAM : AL->getArgs())
464               if (isa<ConstantAsMetadata>(VAM))
465                 EnumerateMetadata(&F, VAM);
466             continue;
467           }
468 
469           EnumerateMetadata(&F, MD->getMetadata());
470         }
471         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
472           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
473         if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
474           EnumerateType(GEP->getSourceElementType());
475         if (auto *AI = dyn_cast<AllocaInst>(&I))
476           EnumerateType(AI->getAllocatedType());
477         EnumerateType(I.getType());
478         if (const auto *Call = dyn_cast<CallBase>(&I)) {
479           EnumerateAttributes(Call->getAttributes());
480           EnumerateType(Call->getFunctionType());
481         }
482 
483         // Enumerate metadata attached with this instruction.
484         MDs.clear();
485         I.getAllMetadataOtherThanDebugLoc(MDs);
486         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
487           EnumerateMetadata(&F, MDs[i].second);
488 
489         // Don't enumerate the location directly -- it has a special record
490         // type -- but enumerate its operands.
491         if (DILocation *L = I.getDebugLoc())
492           for (const Metadata *Op : L->operands())
493             EnumerateMetadata(&F, Op);
494       }
495   }
496 
497   // Organize metadata ordering.
498   organizeMetadata();
499 }
500 
501 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
502   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
503   assert(I != InstructionMap.end() && "Instruction is not mapped!");
504   return I->second;
505 }
506 
507 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
508   unsigned ComdatID = Comdats.idFor(C);
509   assert(ComdatID && "Comdat not found!");
510   return ComdatID;
511 }
512 
513 void ValueEnumerator::setInstructionID(const Instruction *I) {
514   InstructionMap[I] = InstructionCount++;
515 }
516 
517 unsigned ValueEnumerator::getValueID(const Value *V) const {
518   if (auto *MD = dyn_cast<MetadataAsValue>(V))
519     return getMetadataID(MD->getMetadata());
520 
521   ValueMapType::const_iterator I = ValueMap.find(V);
522   assert(I != ValueMap.end() && "Value not in slotcalculator!");
523   return I->second - 1;
524 }
525 
526 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
527 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
528   print(dbgs(), ValueMap, "Default");
529   dbgs() << '\n';
530   print(dbgs(), MetadataMap, "MetaData");
531   dbgs() << '\n';
532 }
533 #endif
534 
535 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
536                             const char *Name) const {
537   OS << "Map Name: " << Name << "\n";
538   OS << "Size: " << Map.size() << "\n";
539   for (const auto &I : Map) {
540     const Value *V = I.first;
541     if (V->hasName())
542       OS << "Value: " << V->getName();
543     else
544       OS << "Value: [null]\n";
545     V->print(errs());
546     errs() << '\n';
547 
548     OS << " Uses(" << V->getNumUses() << "):";
549     for (const Use &U : V->uses()) {
550       if (&U != &*V->use_begin())
551         OS << ",";
552       if (U->hasName())
553         OS << " " << U->getName();
554       else
555         OS << " [null]";
556     }
557     OS << "\n\n";
558   }
559 }
560 
561 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
562                             const char *Name) const {
563   OS << "Map Name: " << Name << "\n";
564   OS << "Size: " << Map.size() << "\n";
565   for (const auto &I : Map) {
566     const Metadata *MD = I.first;
567     OS << "Metadata: slot = " << I.second.ID << "\n";
568     OS << "Metadata: function = " << I.second.F << "\n";
569     MD->print(OS);
570     OS << "\n";
571   }
572 }
573 
574 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
575 /// table into the values table.
576 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
577   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
578        VI != VE; ++VI)
579     EnumerateValue(VI->getValue());
580 }
581 
582 /// Insert all of the values referenced by named metadata in the specified
583 /// module.
584 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
585   for (const auto &I : M.named_metadata())
586     EnumerateNamedMDNode(&I);
587 }
588 
589 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
590   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
591     EnumerateMetadata(nullptr, MD->getOperand(i));
592 }
593 
594 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
595   return F ? getValueID(F) + 1 : 0;
596 }
597 
598 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
599   EnumerateMetadata(getMetadataFunctionID(F), MD);
600 }
601 
602 void ValueEnumerator::EnumerateFunctionLocalMetadata(
603     const Function &F, const LocalAsMetadata *Local) {
604   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
605 }
606 
607 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
608     const Function &F, const DIArgList *ArgList) {
609   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
610 }
611 
612 void ValueEnumerator::dropFunctionFromMetadata(
613     MetadataMapType::value_type &FirstMD) {
614   SmallVector<const MDNode *, 64> Worklist;
615   auto push = [&Worklist](MetadataMapType::value_type &MD) {
616     auto &Entry = MD.second;
617 
618     // Nothing to do if this metadata isn't tagged.
619     if (!Entry.F)
620       return;
621 
622     // Drop the function tag.
623     Entry.F = 0;
624 
625     // If this is has an ID and is an MDNode, then its operands have entries as
626     // well.  We need to drop the function from them too.
627     if (Entry.ID)
628       if (auto *N = dyn_cast<MDNode>(MD.first))
629         Worklist.push_back(N);
630   };
631   push(FirstMD);
632   while (!Worklist.empty())
633     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
634       if (!Op)
635         continue;
636       auto MD = MetadataMap.find(Op);
637       if (MD != MetadataMap.end())
638         push(*MD);
639     }
640 }
641 
642 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
643   // It's vital for reader efficiency that uniqued subgraphs are done in
644   // post-order; it's expensive when their operands have forward references.
645   // If a distinct node is referenced from a uniqued node, it'll be delayed
646   // until the uniqued subgraph has been completely traversed.
647   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
648 
649   // Start by enumerating MD, and then work through its transitive operands in
650   // post-order.  This requires a depth-first search.
651   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
652   if (const MDNode *N = enumerateMetadataImpl(F, MD))
653     Worklist.push_back(std::make_pair(N, N->op_begin()));
654 
655   while (!Worklist.empty()) {
656     const MDNode *N = Worklist.back().first;
657 
658     // Enumerate operands until we hit a new node.  We need to traverse these
659     // nodes' operands before visiting the rest of N's operands.
660     MDNode::op_iterator I = std::find_if(
661         Worklist.back().second, N->op_end(),
662         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
663     if (I != N->op_end()) {
664       auto *Op = cast<MDNode>(*I);
665       Worklist.back().second = ++I;
666 
667       // Delay traversing Op if it's a distinct node and N is uniqued.
668       if (Op->isDistinct() && !N->isDistinct())
669         DelayedDistinctNodes.push_back(Op);
670       else
671         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
672       continue;
673     }
674 
675     // All the operands have been visited.  Now assign an ID.
676     Worklist.pop_back();
677     MDs.push_back(N);
678     MetadataMap[N].ID = MDs.size();
679 
680     // Flush out any delayed distinct nodes; these are all the distinct nodes
681     // that are leaves in last uniqued subgraph.
682     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
683       for (const MDNode *N : DelayedDistinctNodes)
684         Worklist.push_back(std::make_pair(N, N->op_begin()));
685       DelayedDistinctNodes.clear();
686     }
687   }
688 }
689 
690 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F,
691                                                      const Metadata *MD) {
692   if (!MD)
693     return nullptr;
694 
695   assert(
696       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
697       "Invalid metadata kind");
698 
699   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
700   MDIndex &Entry = Insertion.first->second;
701   if (!Insertion.second) {
702     // Already mapped.  If F doesn't match the function tag, drop it.
703     if (Entry.hasDifferentFunction(F))
704       dropFunctionFromMetadata(*Insertion.first);
705     return nullptr;
706   }
707 
708   // Don't assign IDs to metadata nodes.
709   if (auto *N = dyn_cast<MDNode>(MD))
710     return N;
711 
712   // Save the metadata.
713   MDs.push_back(MD);
714   Entry.ID = MDs.size();
715 
716   // Enumerate the constant, if any.
717   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
718     EnumerateValue(C->getValue());
719 
720   return nullptr;
721 }
722 
723 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
724 /// information reachable from the metadata.
725 void ValueEnumerator::EnumerateFunctionLocalMetadata(
726     unsigned F, const LocalAsMetadata *Local) {
727   assert(F && "Expected a function");
728 
729   // Check to see if it's already in!
730   MDIndex &Index = MetadataMap[Local];
731   if (Index.ID) {
732     assert(Index.F == F && "Expected the same function");
733     return;
734   }
735 
736   MDs.push_back(Local);
737   Index.F = F;
738   Index.ID = MDs.size();
739 
740   EnumerateValue(Local->getValue());
741 }
742 
743 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
744 /// information reachable from the metadata.
745 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
746     unsigned F, const DIArgList *ArgList) {
747   assert(F && "Expected a function");
748 
749   // Check to see if it's already in!
750   MDIndex &Index = MetadataMap[ArgList];
751   if (Index.ID) {
752     assert(Index.F == F && "Expected the same function");
753     return;
754   }
755 
756   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
757     if (isa<LocalAsMetadata>(VAM)) {
758       assert(MetadataMap.count(VAM) &&
759              "LocalAsMetadata should be enumerated before DIArgList");
760       assert(MetadataMap[VAM].F == F &&
761              "Expected LocalAsMetadata in the same function");
762     } else {
763       assert(isa<ConstantAsMetadata>(VAM) &&
764              "Expected LocalAsMetadata or ConstantAsMetadata");
765       assert(ValueMap.count(VAM->getValue()) &&
766              "Constant should be enumerated beforeDIArgList");
767       EnumerateMetadata(F, VAM);
768     }
769   }
770 
771   MDs.push_back(ArgList);
772   Index.F = F;
773   Index.ID = MDs.size();
774 }
775 
776 static unsigned getMetadataTypeOrder(const Metadata *MD) {
777   // Strings are emitted in bulk and must come first.
778   if (isa<MDString>(MD))
779     return 0;
780 
781   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
782   // to the front since we can detect it.
783   auto *N = dyn_cast<MDNode>(MD);
784   if (!N)
785     return 1;
786 
787   // The reader is fast forward references for distinct node operands, but slow
788   // when uniqued operands are unresolved.
789   return N->isDistinct() ? 2 : 3;
790 }
791 
792 void ValueEnumerator::organizeMetadata() {
793   assert(MetadataMap.size() == MDs.size() &&
794          "Metadata map and vector out of sync");
795 
796   if (MDs.empty())
797     return;
798 
799   // Copy out the index information from MetadataMap in order to choose a new
800   // order.
801   SmallVector<MDIndex, 64> Order;
802   Order.reserve(MetadataMap.size());
803   for (const Metadata *MD : MDs)
804     Order.push_back(MetadataMap.lookup(MD));
805 
806   // Partition:
807   //   - by function, then
808   //   - by isa<MDString>
809   // and then sort by the original/current ID.  Since the IDs are guaranteed to
810   // be unique, the result of llvm::sort will be deterministic.  There's no need
811   // for std::stable_sort.
812   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
813     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
814            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
815   });
816 
817   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
818   // and fix up MetadataMap.
819   std::vector<const Metadata *> OldMDs;
820   MDs.swap(OldMDs);
821   MDs.reserve(OldMDs.size());
822   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
823     auto *MD = Order[I].get(OldMDs);
824     MDs.push_back(MD);
825     MetadataMap[MD].ID = I + 1;
826     if (isa<MDString>(MD))
827       ++NumMDStrings;
828   }
829 
830   // Return early if there's nothing for the functions.
831   if (MDs.size() == Order.size())
832     return;
833 
834   // Build the function metadata ranges.
835   MDRange R;
836   FunctionMDs.reserve(OldMDs.size());
837   unsigned PrevF = 0;
838   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
839        ++I) {
840     unsigned F = Order[I].F;
841     if (!PrevF) {
842       PrevF = F;
843     } else if (PrevF != F) {
844       R.Last = FunctionMDs.size();
845       std::swap(R, FunctionMDInfo[PrevF]);
846       R.First = FunctionMDs.size();
847 
848       ID = MDs.size();
849       PrevF = F;
850     }
851 
852     auto *MD = Order[I].get(OldMDs);
853     FunctionMDs.push_back(MD);
854     MetadataMap[MD].ID = ++ID;
855     if (isa<MDString>(MD))
856       ++R.NumStrings;
857   }
858   R.Last = FunctionMDs.size();
859   FunctionMDInfo[PrevF] = R;
860 }
861 
862 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
863   NumModuleMDs = MDs.size();
864 
865   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
866   NumMDStrings = R.NumStrings;
867   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
868              FunctionMDs.begin() + R.Last);
869 }
870 
871 void ValueEnumerator::EnumerateValue(const Value *V) {
872   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
873   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
874 
875   // Check to see if it's already in!
876   unsigned &ValueID = ValueMap[V];
877   if (ValueID) {
878     // Increment use count.
879     Values[ValueID - 1].second++;
880     return;
881   }
882 
883   if (auto *GO = dyn_cast<GlobalObject>(V))
884     if (const Comdat *C = GO->getComdat())
885       Comdats.insert(C);
886 
887   // Enumerate the type of this value.
888   EnumerateType(V->getType());
889 
890   if (const Constant *C = dyn_cast<Constant>(V)) {
891     if (isa<GlobalValue>(C)) {
892       // Initializers for globals are handled explicitly elsewhere.
893     } else if (C->getNumOperands()) {
894       // If a constant has operands, enumerate them.  This makes sure that if a
895       // constant has uses (for example an array of const ints), that they are
896       // inserted also.
897 
898       // We prefer to enumerate them with values before we enumerate the user
899       // itself.  This makes it more likely that we can avoid forward references
900       // in the reader.  We know that there can be no cycles in the constants
901       // graph that don't go through a global variable.
902       for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E;
903            ++I)
904         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
905           EnumerateValue(*I);
906       if (auto *CE = dyn_cast<ConstantExpr>(C)) {
907         if (CE->getOpcode() == Instruction::ShuffleVector)
908           EnumerateValue(CE->getShuffleMaskForBitcode());
909         if (auto *GEP = dyn_cast<GEPOperator>(CE))
910           EnumerateType(GEP->getSourceElementType());
911       }
912 
913       // Finally, add the value.  Doing this could make the ValueID reference be
914       // dangling, don't reuse it.
915       Values.push_back(std::make_pair(V, 1U));
916       ValueMap[V] = Values.size();
917       return;
918     }
919   }
920 
921   // Add the value.
922   Values.push_back(std::make_pair(V, 1U));
923   ValueID = Values.size();
924 }
925 
926 void ValueEnumerator::EnumerateType(Type *Ty) {
927   unsigned *TypeID = &TypeMap[Ty];
928 
929   // We've already seen this type.
930   if (*TypeID)
931     return;
932 
933   // If it is a non-anonymous struct, mark the type as being visited so that we
934   // don't recursively visit it.  This is safe because we allow forward
935   // references of these in the bitcode reader.
936   if (StructType *STy = dyn_cast<StructType>(Ty))
937     if (!STy->isLiteral())
938       *TypeID = ~0U;
939 
940   // Enumerate all of the subtypes before we enumerate this type.  This ensures
941   // that the type will be enumerated in an order that can be directly built.
942   for (Type *SubTy : Ty->subtypes())
943     EnumerateType(SubTy);
944 
945   // Refresh the TypeID pointer in case the table rehashed.
946   TypeID = &TypeMap[Ty];
947 
948   // Check to see if we got the pointer another way.  This can happen when
949   // enumerating recursive types that hit the base case deeper than they start.
950   //
951   // If this is actually a struct that we are treating as forward ref'able,
952   // then emit the definition now that all of its contents are available.
953   if (*TypeID && *TypeID != ~0U)
954     return;
955 
956   // Add this type now that its contents are all happily enumerated.
957   Types.push_back(Ty);
958 
959   *TypeID = Types.size();
960 }
961 
962 // Enumerate the types for the specified value.  If the value is a constant,
963 // walk through it, enumerating the types of the constant.
964 void ValueEnumerator::EnumerateOperandType(const Value *V) {
965   EnumerateType(V->getType());
966 
967   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
968 
969   const Constant *C = dyn_cast<Constant>(V);
970   if (!C)
971     return;
972 
973   // If this constant is already enumerated, ignore it, we know its type must
974   // be enumerated.
975   if (ValueMap.count(C))
976     return;
977 
978   // This constant may have operands, make sure to enumerate the types in
979   // them.
980   for (const Value *Op : C->operands()) {
981     // Don't enumerate basic blocks here, this happens as operands to
982     // blockaddress.
983     if (isa<BasicBlock>(Op))
984       continue;
985 
986     EnumerateOperandType(Op);
987   }
988   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
989     if (CE->getOpcode() == Instruction::ShuffleVector)
990       EnumerateOperandType(CE->getShuffleMaskForBitcode());
991     if (CE->getOpcode() == Instruction::GetElementPtr)
992       EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
993   }
994 }
995 
996 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
997   if (PAL.isEmpty())
998     return; // null is always 0.
999 
1000   // Do a lookup.
1001   unsigned &Entry = AttributeListMap[PAL];
1002   if (Entry == 0) {
1003     // Never saw this before, add it.
1004     AttributeLists.push_back(PAL);
1005     Entry = AttributeLists.size();
1006   }
1007 
1008   // Do lookups for all attribute groups.
1009   for (unsigned i : PAL.indexes()) {
1010     AttributeSet AS = PAL.getAttributes(i);
1011     if (!AS.hasAttributes())
1012       continue;
1013     IndexAndAttrSet Pair = {i, AS};
1014     unsigned &Entry = AttributeGroupMap[Pair];
1015     if (Entry == 0) {
1016       AttributeGroups.push_back(Pair);
1017       Entry = AttributeGroups.size();
1018 
1019       for (Attribute Attr : AS) {
1020         if (Attr.isTypeAttribute())
1021           EnumerateType(Attr.getValueAsType());
1022       }
1023     }
1024   }
1025 }
1026 
1027 void ValueEnumerator::incorporateFunction(const Function &F) {
1028   InstructionCount = 0;
1029   NumModuleValues = Values.size();
1030 
1031   // Add global metadata to the function block.  This doesn't include
1032   // LocalAsMetadata.
1033   incorporateFunctionMetadata(F);
1034 
1035   // Adding function arguments to the value table.
1036   for (const auto &I : F.args()) {
1037     EnumerateValue(&I);
1038     if (I.hasAttribute(Attribute::ByVal))
1039       EnumerateType(I.getParamByValType());
1040     else if (I.hasAttribute(Attribute::StructRet))
1041       EnumerateType(I.getParamStructRetType());
1042     else if (I.hasAttribute(Attribute::ByRef))
1043       EnumerateType(I.getParamByRefType());
1044   }
1045   FirstFuncConstantID = Values.size();
1046 
1047   // Add all function-level constants to the value table.
1048   for (const BasicBlock &BB : F) {
1049     for (const Instruction &I : BB) {
1050       for (const Use &OI : I.operands()) {
1051         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1052           EnumerateValue(OI);
1053       }
1054       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1055         EnumerateValue(SVI->getShuffleMaskForBitcode());
1056     }
1057     BasicBlocks.push_back(&BB);
1058     ValueMap[&BB] = BasicBlocks.size();
1059   }
1060 
1061   // Add the function's parameter attributes so they are available for use in
1062   // the function's instruction.
1063   EnumerateAttributes(F.getAttributes());
1064 
1065   FirstInstID = Values.size();
1066 
1067   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1068   SmallVector<DIArgList *, 8> ArgListMDVector;
1069   // Add all of the instructions.
1070   for (const BasicBlock &BB : F) {
1071     for (const Instruction &I : BB) {
1072       for (const Use &OI : I.operands()) {
1073         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1074           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1075             // Enumerate metadata after the instructions they might refer to.
1076             FnLocalMDVector.push_back(Local);
1077           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1078             ArgListMDVector.push_back(ArgList);
1079             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1080               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1081                 // Enumerate metadata after the instructions they might refer
1082                 // to.
1083                 FnLocalMDVector.push_back(Local);
1084               }
1085             }
1086           }
1087         }
1088       }
1089 
1090       if (!I.getType()->isVoidTy())
1091         EnumerateValue(&I);
1092     }
1093   }
1094 
1095   // Add all of the function-local metadata.
1096   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1097     // At this point, every local values have been incorporated, we shouldn't
1098     // have a metadata operand that references a value that hasn't been seen.
1099     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1100            "Missing value for metadata operand");
1101     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1102   }
1103   // DIArgList entries must come after function-local metadata, as it is not
1104   // possible to forward-reference them.
1105   for (const DIArgList *ArgList : ArgListMDVector)
1106     EnumerateFunctionLocalListMetadata(F, ArgList);
1107 }
1108 
1109 void ValueEnumerator::purgeFunction() {
1110   /// Remove purged values from the ValueMap.
1111   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1112     ValueMap.erase(Values[i].first);
1113   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1114     MetadataMap.erase(MDs[i]);
1115   for (const BasicBlock *BB : BasicBlocks)
1116     ValueMap.erase(BB);
1117 
1118   Values.resize(NumModuleValues);
1119   MDs.resize(NumModuleMDs);
1120   BasicBlocks.clear();
1121   NumMDStrings = 0;
1122 }
1123 
1124 static void IncorporateFunctionInfoGlobalBBIDs(
1125     const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) {
1126   unsigned Counter = 0;
1127   for (const BasicBlock &BB : *F)
1128     IDMap[&BB] = ++Counter;
1129 }
1130 
1131 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1132 /// specified basic block.  This is relatively expensive information, so it
1133 /// should only be used by rare constructs such as address-of-label.
1134 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1135   unsigned &Idx = GlobalBasicBlockIDs[BB];
1136   if (Idx != 0)
1137     return Idx - 1;
1138 
1139   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1140   return getGlobalBasicBlockID(BB);
1141 }
1142 
1143 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1144   return Log2_32_Ceil(getTypes().size() + 1);
1145 }
1146