1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // Forked from lib/Bitcode/Writer 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DXILValueEnumerator.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Argument.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalIFunc.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/TypedPointerType.h" 35 #include "llvm/IR/Use.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/ValueSymbolTable.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cstddef> 46 #include <iterator> 47 #include <tuple> 48 49 using namespace llvm; 50 using namespace llvm::dxil; 51 52 namespace { 53 54 struct OrderMap { 55 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 56 unsigned LastGlobalConstantID = 0; 57 unsigned LastGlobalValueID = 0; 58 59 OrderMap() = default; 60 61 bool isGlobalConstant(unsigned ID) const { 62 return ID <= LastGlobalConstantID; 63 } 64 65 bool isGlobalValue(unsigned ID) const { 66 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 67 } 68 69 unsigned size() const { return IDs.size(); } 70 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 71 72 std::pair<unsigned, bool> lookup(const Value *V) const { 73 return IDs.lookup(V); 74 } 75 76 void index(const Value *V) { 77 // Explicitly sequence get-size and insert-value operations to avoid UB. 78 unsigned ID = IDs.size() + 1; 79 IDs[V].first = ID; 80 } 81 }; 82 83 } // end anonymous namespace 84 85 static void orderValue(const Value *V, OrderMap &OM) { 86 if (OM.lookup(V).first) 87 return; 88 89 if (const Constant *C = dyn_cast<Constant>(V)) { 90 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 91 for (const Value *Op : C->operands()) 92 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 93 orderValue(Op, OM); 94 if (auto *CE = dyn_cast<ConstantExpr>(C)) 95 if (CE->getOpcode() == Instruction::ShuffleVector) 96 orderValue(CE->getShuffleMaskForBitcode(), OM); 97 } 98 } 99 100 // Note: we cannot cache this lookup above, since inserting into the map 101 // changes the map's size, and thus affects the other IDs. 102 OM.index(V); 103 } 104 105 static OrderMap orderModule(const Module &M) { 106 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 107 // and ValueEnumerator::incorporateFunction(). 108 OrderMap OM; 109 110 // In the reader, initializers of GlobalValues are set *after* all the 111 // globals have been read. Rather than awkwardly modeling this behaviour 112 // directly in predictValueUseListOrderImpl(), just assign IDs to 113 // initializers of GlobalValues before GlobalValues themselves to model this 114 // implicitly. 115 for (const GlobalVariable &G : M.globals()) 116 if (G.hasInitializer()) 117 if (!isa<GlobalValue>(G.getInitializer())) 118 orderValue(G.getInitializer(), OM); 119 for (const GlobalAlias &A : M.aliases()) 120 if (!isa<GlobalValue>(A.getAliasee())) 121 orderValue(A.getAliasee(), OM); 122 for (const GlobalIFunc &I : M.ifuncs()) 123 if (!isa<GlobalValue>(I.getResolver())) 124 orderValue(I.getResolver(), OM); 125 for (const Function &F : M) { 126 for (const Use &U : F.operands()) 127 if (!isa<GlobalValue>(U.get())) 128 orderValue(U.get(), OM); 129 } 130 131 // As constants used in metadata operands are emitted as module-level 132 // constants, we must order them before other operands. Also, we must order 133 // these before global values, as these will be read before setting the 134 // global values' initializers. The latter matters for constants which have 135 // uses towards other constants that are used as initializers. 136 auto orderConstantValue = [&OM](const Value *V) { 137 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V)) 138 orderValue(V, OM); 139 }; 140 for (const Function &F : M) { 141 if (F.isDeclaration()) 142 continue; 143 for (const BasicBlock &BB : F) 144 for (const Instruction &I : BB) 145 for (const Value *V : I.operands()) { 146 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 147 if (const auto *VAM = 148 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) { 149 orderConstantValue(VAM->getValue()); 150 } else if (const auto *AL = 151 dyn_cast<DIArgList>(MAV->getMetadata())) { 152 for (const auto *VAM : AL->getArgs()) 153 orderConstantValue(VAM->getValue()); 154 } 155 } 156 } 157 } 158 OM.LastGlobalConstantID = OM.size(); 159 160 // Initializers of GlobalValues are processed in 161 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 162 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 163 // by giving IDs in reverse order. 164 // 165 // Since GlobalValues never reference each other directly (just through 166 // initializers), their relative IDs only matter for determining order of 167 // uses in their initializers. 168 for (const Function &F : M) 169 orderValue(&F, OM); 170 for (const GlobalAlias &A : M.aliases()) 171 orderValue(&A, OM); 172 for (const GlobalIFunc &I : M.ifuncs()) 173 orderValue(&I, OM); 174 for (const GlobalVariable &G : M.globals()) 175 orderValue(&G, OM); 176 OM.LastGlobalValueID = OM.size(); 177 178 for (const Function &F : M) { 179 if (F.isDeclaration()) 180 continue; 181 // Here we need to match the union of ValueEnumerator::incorporateFunction() 182 // and WriteFunction(). Basic blocks are implicitly declared before 183 // anything else (by declaring their size). 184 for (const BasicBlock &BB : F) 185 orderValue(&BB, OM); 186 for (const Argument &A : F.args()) 187 orderValue(&A, OM); 188 for (const BasicBlock &BB : F) 189 for (const Instruction &I : BB) { 190 for (const Value *Op : I.operands()) 191 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 192 isa<InlineAsm>(*Op)) 193 orderValue(Op, OM); 194 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 195 orderValue(SVI->getShuffleMaskForBitcode(), OM); 196 } 197 for (const BasicBlock &BB : F) 198 for (const Instruction &I : BB) 199 orderValue(&I, OM); 200 } 201 return OM; 202 } 203 204 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 205 unsigned ID, const OrderMap &OM, 206 UseListOrderStack &Stack) { 207 // Predict use-list order for this one. 208 using Entry = std::pair<const Use *, unsigned>; 209 SmallVector<Entry, 64> List; 210 for (const Use &U : V->uses()) 211 // Check if this user will be serialized. 212 if (OM.lookup(U.getUser()).first) 213 List.push_back(std::make_pair(&U, List.size())); 214 215 if (List.size() < 2) 216 // We may have lost some users. 217 return; 218 219 bool IsGlobalValue = OM.isGlobalValue(ID); 220 llvm::sort(List, [&](const Entry &L, const Entry &R) { 221 const Use *LU = L.first; 222 const Use *RU = R.first; 223 if (LU == RU) 224 return false; 225 226 auto LID = OM.lookup(LU->getUser()).first; 227 auto RID = OM.lookup(RU->getUser()).first; 228 229 // Global values are processed in reverse order. 230 // 231 // Moreover, initializers of GlobalValues are set *after* all the globals 232 // have been read (despite having earlier IDs). Rather than awkwardly 233 // modeling this behaviour here, orderModule() has assigned IDs to 234 // initializers of GlobalValues before GlobalValues themselves. 235 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) { 236 if (LID == RID) 237 return LU->getOperandNo() > RU->getOperandNo(); 238 return LID < RID; 239 } 240 241 // If ID is 4, then expect: 7 6 5 1 2 3. 242 if (LID < RID) { 243 if (RID <= ID) 244 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 245 return true; 246 return false; 247 } 248 if (RID < LID) { 249 if (LID <= ID) 250 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 251 return false; 252 return true; 253 } 254 255 // LID and RID are equal, so we have different operands of the same user. 256 // Assume operands are added in order for all instructions. 257 if (LID <= ID) 258 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 259 return LU->getOperandNo() < RU->getOperandNo(); 260 return LU->getOperandNo() > RU->getOperandNo(); 261 }); 262 263 if (llvm::is_sorted(List, llvm::less_second())) 264 // Order is already correct. 265 return; 266 267 // Store the shuffle. 268 Stack.emplace_back(V, F, List.size()); 269 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 270 for (size_t I = 0, E = List.size(); I != E; ++I) 271 Stack.back().Shuffle[I] = List[I].second; 272 } 273 274 static void predictValueUseListOrder(const Value *V, const Function *F, 275 OrderMap &OM, UseListOrderStack &Stack) { 276 auto &IDPair = OM[V]; 277 assert(IDPair.first && "Unmapped value"); 278 if (IDPair.second) 279 // Already predicted. 280 return; 281 282 // Do the actual prediction. 283 IDPair.second = true; 284 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 285 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 286 287 // Recursive descent into constants. 288 if (const Constant *C = dyn_cast<Constant>(V)) { 289 if (C->getNumOperands()) { // Visit GlobalValues. 290 for (const Value *Op : C->operands()) 291 if (isa<Constant>(Op)) // Visit GlobalValues. 292 predictValueUseListOrder(Op, F, OM, Stack); 293 if (auto *CE = dyn_cast<ConstantExpr>(C)) 294 if (CE->getOpcode() == Instruction::ShuffleVector) 295 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 296 Stack); 297 } 298 } 299 } 300 301 static UseListOrderStack predictUseListOrder(const Module &M) { 302 OrderMap OM = orderModule(M); 303 304 // Use-list orders need to be serialized after all the users have been added 305 // to a value, or else the shuffles will be incomplete. Store them per 306 // function in a stack. 307 // 308 // Aside from function order, the order of values doesn't matter much here. 309 UseListOrderStack Stack; 310 311 // We want to visit the functions backward now so we can list function-local 312 // constants in the last Function they're used in. Module-level constants 313 // have already been visited above. 314 for (const Function &F : llvm::reverse(M)) { 315 if (F.isDeclaration()) 316 continue; 317 for (const BasicBlock &BB : F) 318 predictValueUseListOrder(&BB, &F, OM, Stack); 319 for (const Argument &A : F.args()) 320 predictValueUseListOrder(&A, &F, OM, Stack); 321 for (const BasicBlock &BB : F) 322 for (const Instruction &I : BB) { 323 for (const Value *Op : I.operands()) 324 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 325 predictValueUseListOrder(Op, &F, OM, Stack); 326 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 327 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 328 Stack); 329 } 330 for (const BasicBlock &BB : F) 331 for (const Instruction &I : BB) 332 predictValueUseListOrder(&I, &F, OM, Stack); 333 } 334 335 // Visit globals last, since the module-level use-list block will be seen 336 // before the function bodies are processed. 337 for (const GlobalVariable &G : M.globals()) 338 predictValueUseListOrder(&G, nullptr, OM, Stack); 339 for (const Function &F : M) 340 predictValueUseListOrder(&F, nullptr, OM, Stack); 341 for (const GlobalAlias &A : M.aliases()) 342 predictValueUseListOrder(&A, nullptr, OM, Stack); 343 for (const GlobalIFunc &I : M.ifuncs()) 344 predictValueUseListOrder(&I, nullptr, OM, Stack); 345 for (const GlobalVariable &G : M.globals()) 346 if (G.hasInitializer()) 347 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 348 for (const GlobalAlias &A : M.aliases()) 349 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 350 for (const GlobalIFunc &I : M.ifuncs()) 351 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 352 for (const Function &F : M) { 353 for (const Use &U : F.operands()) 354 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 355 } 356 357 return Stack; 358 } 359 360 ValueEnumerator::ValueEnumerator(const Module &M, Type *PrefixType) { 361 EnumerateType(PrefixType); 362 363 UseListOrders = predictUseListOrder(M); 364 365 // Enumerate the global variables. 366 for (const GlobalVariable &GV : M.globals()) { 367 EnumerateValue(&GV); 368 EnumerateType(GV.getValueType()); 369 } 370 371 // Enumerate the functions. 372 for (const Function &F : M) { 373 EnumerateValue(&F); 374 EnumerateType(F.getValueType()); 375 EnumerateType( 376 TypedPointerType::get(F.getFunctionType(), F.getAddressSpace())); 377 EnumerateAttributes(F.getAttributes()); 378 } 379 380 // Enumerate the aliases. 381 for (const GlobalAlias &GA : M.aliases()) { 382 EnumerateValue(&GA); 383 EnumerateType(GA.getValueType()); 384 } 385 386 // Enumerate the ifuncs. 387 for (const GlobalIFunc &GIF : M.ifuncs()) { 388 EnumerateValue(&GIF); 389 EnumerateType(GIF.getValueType()); 390 } 391 392 // Enumerate the global variable initializers and attributes. 393 for (const GlobalVariable &GV : M.globals()) { 394 if (GV.hasInitializer()) 395 EnumerateValue(GV.getInitializer()); 396 EnumerateType( 397 TypedPointerType::get(GV.getValueType(), GV.getAddressSpace())); 398 if (GV.hasAttributes()) 399 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 400 } 401 402 // Enumerate the aliasees. 403 for (const GlobalAlias &GA : M.aliases()) 404 EnumerateValue(GA.getAliasee()); 405 406 // Enumerate the ifunc resolvers. 407 for (const GlobalIFunc &GIF : M.ifuncs()) 408 EnumerateValue(GIF.getResolver()); 409 410 // Enumerate any optional Function data. 411 for (const Function &F : M) 412 for (const Use &U : F.operands()) 413 EnumerateValue(U.get()); 414 415 // Enumerate the metadata type. 416 // 417 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 418 // only encodes the metadata type when it's used as a value. 419 EnumerateType(Type::getMetadataTy(M.getContext())); 420 421 // Insert constants and metadata that are named at module level into the slot 422 // pool so that the module symbol table can refer to them... 423 EnumerateValueSymbolTable(M.getValueSymbolTable()); 424 EnumerateNamedMetadata(M); 425 426 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 427 for (const GlobalVariable &GV : M.globals()) { 428 MDs.clear(); 429 GV.getAllMetadata(MDs); 430 for (const auto &I : MDs) 431 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 432 // to write metadata to the global variable's own metadata block 433 // (PR28134). 434 EnumerateMetadata(nullptr, I.second); 435 } 436 437 // Enumerate types used by function bodies and argument lists. 438 for (const Function &F : M) { 439 for (const Argument &A : F.args()) 440 EnumerateType(A.getType()); 441 442 // Enumerate metadata attached to this function. 443 MDs.clear(); 444 F.getAllMetadata(MDs); 445 for (const auto &I : MDs) 446 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 447 448 for (const BasicBlock &BB : F) 449 for (const Instruction &I : BB) { 450 for (const Use &Op : I.operands()) { 451 auto *MD = dyn_cast<MetadataAsValue>(&Op); 452 if (!MD) { 453 EnumerateOperandType(Op); 454 continue; 455 } 456 457 // Local metadata is enumerated during function-incorporation, but 458 // any ConstantAsMetadata arguments in a DIArgList should be examined 459 // now. 460 if (isa<LocalAsMetadata>(MD->getMetadata())) 461 continue; 462 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) { 463 for (auto *VAM : AL->getArgs()) 464 if (isa<ConstantAsMetadata>(VAM)) 465 EnumerateMetadata(&F, VAM); 466 continue; 467 } 468 469 EnumerateMetadata(&F, MD->getMetadata()); 470 } 471 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 472 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 473 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 474 EnumerateType(GEP->getSourceElementType()); 475 if (auto *AI = dyn_cast<AllocaInst>(&I)) 476 EnumerateType(AI->getAllocatedType()); 477 EnumerateType(I.getType()); 478 if (const auto *Call = dyn_cast<CallBase>(&I)) { 479 EnumerateAttributes(Call->getAttributes()); 480 EnumerateType(Call->getFunctionType()); 481 } 482 483 // Enumerate metadata attached with this instruction. 484 MDs.clear(); 485 I.getAllMetadataOtherThanDebugLoc(MDs); 486 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 487 EnumerateMetadata(&F, MDs[i].second); 488 489 // Don't enumerate the location directly -- it has a special record 490 // type -- but enumerate its operands. 491 if (DILocation *L = I.getDebugLoc()) 492 for (const Metadata *Op : L->operands()) 493 EnumerateMetadata(&F, Op); 494 } 495 } 496 497 // Organize metadata ordering. 498 organizeMetadata(); 499 } 500 501 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 502 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 503 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 504 return I->second; 505 } 506 507 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 508 unsigned ComdatID = Comdats.idFor(C); 509 assert(ComdatID && "Comdat not found!"); 510 return ComdatID; 511 } 512 513 void ValueEnumerator::setInstructionID(const Instruction *I) { 514 InstructionMap[I] = InstructionCount++; 515 } 516 517 unsigned ValueEnumerator::getValueID(const Value *V) const { 518 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 519 return getMetadataID(MD->getMetadata()); 520 521 ValueMapType::const_iterator I = ValueMap.find(V); 522 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 523 return I->second - 1; 524 } 525 526 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 527 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 528 print(dbgs(), ValueMap, "Default"); 529 dbgs() << '\n'; 530 print(dbgs(), MetadataMap, "MetaData"); 531 dbgs() << '\n'; 532 } 533 #endif 534 535 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 536 const char *Name) const { 537 OS << "Map Name: " << Name << "\n"; 538 OS << "Size: " << Map.size() << "\n"; 539 for (const auto &I : Map) { 540 const Value *V = I.first; 541 if (V->hasName()) 542 OS << "Value: " << V->getName(); 543 else 544 OS << "Value: [null]\n"; 545 V->print(errs()); 546 errs() << '\n'; 547 548 OS << " Uses(" << V->getNumUses() << "):"; 549 for (const Use &U : V->uses()) { 550 if (&U != &*V->use_begin()) 551 OS << ","; 552 if (U->hasName()) 553 OS << " " << U->getName(); 554 else 555 OS << " [null]"; 556 } 557 OS << "\n\n"; 558 } 559 } 560 561 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 562 const char *Name) const { 563 OS << "Map Name: " << Name << "\n"; 564 OS << "Size: " << Map.size() << "\n"; 565 for (const auto &I : Map) { 566 const Metadata *MD = I.first; 567 OS << "Metadata: slot = " << I.second.ID << "\n"; 568 OS << "Metadata: function = " << I.second.F << "\n"; 569 MD->print(OS); 570 OS << "\n"; 571 } 572 } 573 574 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 575 /// table into the values table. 576 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 577 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 578 VI != VE; ++VI) 579 EnumerateValue(VI->getValue()); 580 } 581 582 /// Insert all of the values referenced by named metadata in the specified 583 /// module. 584 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 585 for (const auto &I : M.named_metadata()) 586 EnumerateNamedMDNode(&I); 587 } 588 589 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 590 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 591 EnumerateMetadata(nullptr, MD->getOperand(i)); 592 } 593 594 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 595 return F ? getValueID(F) + 1 : 0; 596 } 597 598 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 599 EnumerateMetadata(getMetadataFunctionID(F), MD); 600 } 601 602 void ValueEnumerator::EnumerateFunctionLocalMetadata( 603 const Function &F, const LocalAsMetadata *Local) { 604 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 605 } 606 607 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 608 const Function &F, const DIArgList *ArgList) { 609 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList); 610 } 611 612 void ValueEnumerator::dropFunctionFromMetadata( 613 MetadataMapType::value_type &FirstMD) { 614 SmallVector<const MDNode *, 64> Worklist; 615 auto push = [&Worklist](MetadataMapType::value_type &MD) { 616 auto &Entry = MD.second; 617 618 // Nothing to do if this metadata isn't tagged. 619 if (!Entry.F) 620 return; 621 622 // Drop the function tag. 623 Entry.F = 0; 624 625 // If this is has an ID and is an MDNode, then its operands have entries as 626 // well. We need to drop the function from them too. 627 if (Entry.ID) 628 if (auto *N = dyn_cast<MDNode>(MD.first)) 629 Worklist.push_back(N); 630 }; 631 push(FirstMD); 632 while (!Worklist.empty()) 633 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 634 if (!Op) 635 continue; 636 auto MD = MetadataMap.find(Op); 637 if (MD != MetadataMap.end()) 638 push(*MD); 639 } 640 } 641 642 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 643 // It's vital for reader efficiency that uniqued subgraphs are done in 644 // post-order; it's expensive when their operands have forward references. 645 // If a distinct node is referenced from a uniqued node, it'll be delayed 646 // until the uniqued subgraph has been completely traversed. 647 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 648 649 // Start by enumerating MD, and then work through its transitive operands in 650 // post-order. This requires a depth-first search. 651 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 652 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 653 Worklist.push_back(std::make_pair(N, N->op_begin())); 654 655 while (!Worklist.empty()) { 656 const MDNode *N = Worklist.back().first; 657 658 // Enumerate operands until we hit a new node. We need to traverse these 659 // nodes' operands before visiting the rest of N's operands. 660 MDNode::op_iterator I = std::find_if( 661 Worklist.back().second, N->op_end(), 662 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 663 if (I != N->op_end()) { 664 auto *Op = cast<MDNode>(*I); 665 Worklist.back().second = ++I; 666 667 // Delay traversing Op if it's a distinct node and N is uniqued. 668 if (Op->isDistinct() && !N->isDistinct()) 669 DelayedDistinctNodes.push_back(Op); 670 else 671 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 672 continue; 673 } 674 675 // All the operands have been visited. Now assign an ID. 676 Worklist.pop_back(); 677 MDs.push_back(N); 678 MetadataMap[N].ID = MDs.size(); 679 680 // Flush out any delayed distinct nodes; these are all the distinct nodes 681 // that are leaves in last uniqued subgraph. 682 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 683 for (const MDNode *N : DelayedDistinctNodes) 684 Worklist.push_back(std::make_pair(N, N->op_begin())); 685 DelayedDistinctNodes.clear(); 686 } 687 } 688 } 689 690 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, 691 const Metadata *MD) { 692 if (!MD) 693 return nullptr; 694 695 assert( 696 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 697 "Invalid metadata kind"); 698 699 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 700 MDIndex &Entry = Insertion.first->second; 701 if (!Insertion.second) { 702 // Already mapped. If F doesn't match the function tag, drop it. 703 if (Entry.hasDifferentFunction(F)) 704 dropFunctionFromMetadata(*Insertion.first); 705 return nullptr; 706 } 707 708 // Don't assign IDs to metadata nodes. 709 if (auto *N = dyn_cast<MDNode>(MD)) 710 return N; 711 712 // Save the metadata. 713 MDs.push_back(MD); 714 Entry.ID = MDs.size(); 715 716 // Enumerate the constant, if any. 717 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 718 EnumerateValue(C->getValue()); 719 720 return nullptr; 721 } 722 723 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata 724 /// information reachable from the metadata. 725 void ValueEnumerator::EnumerateFunctionLocalMetadata( 726 unsigned F, const LocalAsMetadata *Local) { 727 assert(F && "Expected a function"); 728 729 // Check to see if it's already in! 730 MDIndex &Index = MetadataMap[Local]; 731 if (Index.ID) { 732 assert(Index.F == F && "Expected the same function"); 733 return; 734 } 735 736 MDs.push_back(Local); 737 Index.F = F; 738 Index.ID = MDs.size(); 739 740 EnumerateValue(Local->getValue()); 741 } 742 743 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata 744 /// information reachable from the metadata. 745 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 746 unsigned F, const DIArgList *ArgList) { 747 assert(F && "Expected a function"); 748 749 // Check to see if it's already in! 750 MDIndex &Index = MetadataMap[ArgList]; 751 if (Index.ID) { 752 assert(Index.F == F && "Expected the same function"); 753 return; 754 } 755 756 for (ValueAsMetadata *VAM : ArgList->getArgs()) { 757 if (isa<LocalAsMetadata>(VAM)) { 758 assert(MetadataMap.count(VAM) && 759 "LocalAsMetadata should be enumerated before DIArgList"); 760 assert(MetadataMap[VAM].F == F && 761 "Expected LocalAsMetadata in the same function"); 762 } else { 763 assert(isa<ConstantAsMetadata>(VAM) && 764 "Expected LocalAsMetadata or ConstantAsMetadata"); 765 assert(ValueMap.count(VAM->getValue()) && 766 "Constant should be enumerated beforeDIArgList"); 767 EnumerateMetadata(F, VAM); 768 } 769 } 770 771 MDs.push_back(ArgList); 772 Index.F = F; 773 Index.ID = MDs.size(); 774 } 775 776 static unsigned getMetadataTypeOrder(const Metadata *MD) { 777 // Strings are emitted in bulk and must come first. 778 if (isa<MDString>(MD)) 779 return 0; 780 781 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 782 // to the front since we can detect it. 783 auto *N = dyn_cast<MDNode>(MD); 784 if (!N) 785 return 1; 786 787 // The reader is fast forward references for distinct node operands, but slow 788 // when uniqued operands are unresolved. 789 return N->isDistinct() ? 2 : 3; 790 } 791 792 void ValueEnumerator::organizeMetadata() { 793 assert(MetadataMap.size() == MDs.size() && 794 "Metadata map and vector out of sync"); 795 796 if (MDs.empty()) 797 return; 798 799 // Copy out the index information from MetadataMap in order to choose a new 800 // order. 801 SmallVector<MDIndex, 64> Order; 802 Order.reserve(MetadataMap.size()); 803 for (const Metadata *MD : MDs) 804 Order.push_back(MetadataMap.lookup(MD)); 805 806 // Partition: 807 // - by function, then 808 // - by isa<MDString> 809 // and then sort by the original/current ID. Since the IDs are guaranteed to 810 // be unique, the result of llvm::sort will be deterministic. There's no need 811 // for std::stable_sort. 812 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 813 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 814 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 815 }); 816 817 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 818 // and fix up MetadataMap. 819 std::vector<const Metadata *> OldMDs; 820 MDs.swap(OldMDs); 821 MDs.reserve(OldMDs.size()); 822 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 823 auto *MD = Order[I].get(OldMDs); 824 MDs.push_back(MD); 825 MetadataMap[MD].ID = I + 1; 826 if (isa<MDString>(MD)) 827 ++NumMDStrings; 828 } 829 830 // Return early if there's nothing for the functions. 831 if (MDs.size() == Order.size()) 832 return; 833 834 // Build the function metadata ranges. 835 MDRange R; 836 FunctionMDs.reserve(OldMDs.size()); 837 unsigned PrevF = 0; 838 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 839 ++I) { 840 unsigned F = Order[I].F; 841 if (!PrevF) { 842 PrevF = F; 843 } else if (PrevF != F) { 844 R.Last = FunctionMDs.size(); 845 std::swap(R, FunctionMDInfo[PrevF]); 846 R.First = FunctionMDs.size(); 847 848 ID = MDs.size(); 849 PrevF = F; 850 } 851 852 auto *MD = Order[I].get(OldMDs); 853 FunctionMDs.push_back(MD); 854 MetadataMap[MD].ID = ++ID; 855 if (isa<MDString>(MD)) 856 ++R.NumStrings; 857 } 858 R.Last = FunctionMDs.size(); 859 FunctionMDInfo[PrevF] = R; 860 } 861 862 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 863 NumModuleMDs = MDs.size(); 864 865 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 866 NumMDStrings = R.NumStrings; 867 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 868 FunctionMDs.begin() + R.Last); 869 } 870 871 void ValueEnumerator::EnumerateValue(const Value *V) { 872 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 873 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 874 875 // Check to see if it's already in! 876 unsigned &ValueID = ValueMap[V]; 877 if (ValueID) { 878 // Increment use count. 879 Values[ValueID - 1].second++; 880 return; 881 } 882 883 if (auto *GO = dyn_cast<GlobalObject>(V)) 884 if (const Comdat *C = GO->getComdat()) 885 Comdats.insert(C); 886 887 // Enumerate the type of this value. 888 EnumerateType(V->getType()); 889 890 if (const Constant *C = dyn_cast<Constant>(V)) { 891 if (isa<GlobalValue>(C)) { 892 // Initializers for globals are handled explicitly elsewhere. 893 } else if (C->getNumOperands()) { 894 // If a constant has operands, enumerate them. This makes sure that if a 895 // constant has uses (for example an array of const ints), that they are 896 // inserted also. 897 898 // We prefer to enumerate them with values before we enumerate the user 899 // itself. This makes it more likely that we can avoid forward references 900 // in the reader. We know that there can be no cycles in the constants 901 // graph that don't go through a global variable. 902 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; 903 ++I) 904 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 905 EnumerateValue(*I); 906 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 907 if (CE->getOpcode() == Instruction::ShuffleVector) 908 EnumerateValue(CE->getShuffleMaskForBitcode()); 909 if (auto *GEP = dyn_cast<GEPOperator>(CE)) 910 EnumerateType(GEP->getSourceElementType()); 911 } 912 913 // Finally, add the value. Doing this could make the ValueID reference be 914 // dangling, don't reuse it. 915 Values.push_back(std::make_pair(V, 1U)); 916 ValueMap[V] = Values.size(); 917 return; 918 } 919 } 920 921 // Add the value. 922 Values.push_back(std::make_pair(V, 1U)); 923 ValueID = Values.size(); 924 } 925 926 void ValueEnumerator::EnumerateType(Type *Ty) { 927 unsigned *TypeID = &TypeMap[Ty]; 928 929 // We've already seen this type. 930 if (*TypeID) 931 return; 932 933 // If it is a non-anonymous struct, mark the type as being visited so that we 934 // don't recursively visit it. This is safe because we allow forward 935 // references of these in the bitcode reader. 936 if (StructType *STy = dyn_cast<StructType>(Ty)) 937 if (!STy->isLiteral()) 938 *TypeID = ~0U; 939 940 // Enumerate all of the subtypes before we enumerate this type. This ensures 941 // that the type will be enumerated in an order that can be directly built. 942 for (Type *SubTy : Ty->subtypes()) 943 EnumerateType(SubTy); 944 945 // Refresh the TypeID pointer in case the table rehashed. 946 TypeID = &TypeMap[Ty]; 947 948 // Check to see if we got the pointer another way. This can happen when 949 // enumerating recursive types that hit the base case deeper than they start. 950 // 951 // If this is actually a struct that we are treating as forward ref'able, 952 // then emit the definition now that all of its contents are available. 953 if (*TypeID && *TypeID != ~0U) 954 return; 955 956 // Add this type now that its contents are all happily enumerated. 957 Types.push_back(Ty); 958 959 *TypeID = Types.size(); 960 } 961 962 // Enumerate the types for the specified value. If the value is a constant, 963 // walk through it, enumerating the types of the constant. 964 void ValueEnumerator::EnumerateOperandType(const Value *V) { 965 EnumerateType(V->getType()); 966 967 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 968 969 const Constant *C = dyn_cast<Constant>(V); 970 if (!C) 971 return; 972 973 // If this constant is already enumerated, ignore it, we know its type must 974 // be enumerated. 975 if (ValueMap.count(C)) 976 return; 977 978 // This constant may have operands, make sure to enumerate the types in 979 // them. 980 for (const Value *Op : C->operands()) { 981 // Don't enumerate basic blocks here, this happens as operands to 982 // blockaddress. 983 if (isa<BasicBlock>(Op)) 984 continue; 985 986 EnumerateOperandType(Op); 987 } 988 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 989 if (CE->getOpcode() == Instruction::ShuffleVector) 990 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 991 if (CE->getOpcode() == Instruction::GetElementPtr) 992 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType()); 993 } 994 } 995 996 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 997 if (PAL.isEmpty()) 998 return; // null is always 0. 999 1000 // Do a lookup. 1001 unsigned &Entry = AttributeListMap[PAL]; 1002 if (Entry == 0) { 1003 // Never saw this before, add it. 1004 AttributeLists.push_back(PAL); 1005 Entry = AttributeLists.size(); 1006 } 1007 1008 // Do lookups for all attribute groups. 1009 for (unsigned i : PAL.indexes()) { 1010 AttributeSet AS = PAL.getAttributes(i); 1011 if (!AS.hasAttributes()) 1012 continue; 1013 IndexAndAttrSet Pair = {i, AS}; 1014 unsigned &Entry = AttributeGroupMap[Pair]; 1015 if (Entry == 0) { 1016 AttributeGroups.push_back(Pair); 1017 Entry = AttributeGroups.size(); 1018 1019 for (Attribute Attr : AS) { 1020 if (Attr.isTypeAttribute()) 1021 EnumerateType(Attr.getValueAsType()); 1022 } 1023 } 1024 } 1025 } 1026 1027 void ValueEnumerator::incorporateFunction(const Function &F) { 1028 InstructionCount = 0; 1029 NumModuleValues = Values.size(); 1030 1031 // Add global metadata to the function block. This doesn't include 1032 // LocalAsMetadata. 1033 incorporateFunctionMetadata(F); 1034 1035 // Adding function arguments to the value table. 1036 for (const auto &I : F.args()) { 1037 EnumerateValue(&I); 1038 if (I.hasAttribute(Attribute::ByVal)) 1039 EnumerateType(I.getParamByValType()); 1040 else if (I.hasAttribute(Attribute::StructRet)) 1041 EnumerateType(I.getParamStructRetType()); 1042 else if (I.hasAttribute(Attribute::ByRef)) 1043 EnumerateType(I.getParamByRefType()); 1044 } 1045 FirstFuncConstantID = Values.size(); 1046 1047 // Add all function-level constants to the value table. 1048 for (const BasicBlock &BB : F) { 1049 for (const Instruction &I : BB) { 1050 for (const Use &OI : I.operands()) { 1051 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1052 EnumerateValue(OI); 1053 } 1054 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1055 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1056 } 1057 BasicBlocks.push_back(&BB); 1058 ValueMap[&BB] = BasicBlocks.size(); 1059 } 1060 1061 // Add the function's parameter attributes so they are available for use in 1062 // the function's instruction. 1063 EnumerateAttributes(F.getAttributes()); 1064 1065 FirstInstID = Values.size(); 1066 1067 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1068 SmallVector<DIArgList *, 8> ArgListMDVector; 1069 // Add all of the instructions. 1070 for (const BasicBlock &BB : F) { 1071 for (const Instruction &I : BB) { 1072 for (const Use &OI : I.operands()) { 1073 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) { 1074 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) { 1075 // Enumerate metadata after the instructions they might refer to. 1076 FnLocalMDVector.push_back(Local); 1077 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) { 1078 ArgListMDVector.push_back(ArgList); 1079 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1080 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1081 // Enumerate metadata after the instructions they might refer 1082 // to. 1083 FnLocalMDVector.push_back(Local); 1084 } 1085 } 1086 } 1087 } 1088 } 1089 1090 if (!I.getType()->isVoidTy()) 1091 EnumerateValue(&I); 1092 } 1093 } 1094 1095 // Add all of the function-local metadata. 1096 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1097 // At this point, every local values have been incorporated, we shouldn't 1098 // have a metadata operand that references a value that hasn't been seen. 1099 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1100 "Missing value for metadata operand"); 1101 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1102 } 1103 // DIArgList entries must come after function-local metadata, as it is not 1104 // possible to forward-reference them. 1105 for (const DIArgList *ArgList : ArgListMDVector) 1106 EnumerateFunctionLocalListMetadata(F, ArgList); 1107 } 1108 1109 void ValueEnumerator::purgeFunction() { 1110 /// Remove purged values from the ValueMap. 1111 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1112 ValueMap.erase(Values[i].first); 1113 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1114 MetadataMap.erase(MDs[i]); 1115 for (const BasicBlock *BB : BasicBlocks) 1116 ValueMap.erase(BB); 1117 1118 Values.resize(NumModuleValues); 1119 MDs.resize(NumModuleMDs); 1120 BasicBlocks.clear(); 1121 NumMDStrings = 0; 1122 } 1123 1124 static void IncorporateFunctionInfoGlobalBBIDs( 1125 const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) { 1126 unsigned Counter = 0; 1127 for (const BasicBlock &BB : *F) 1128 IDMap[&BB] = ++Counter; 1129 } 1130 1131 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1132 /// specified basic block. This is relatively expensive information, so it 1133 /// should only be used by rare constructs such as address-of-label. 1134 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1135 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1136 if (Idx != 0) 1137 return Idx - 1; 1138 1139 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1140 return getGlobalBasicBlockID(BB); 1141 } 1142 1143 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndices() const { 1144 return Log2_32_Ceil(getTypes().size() + 1); 1145 } 1146