1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitcodeCommon.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/Bitcode/LLVMBitCodes.h" 21 #include "llvm/Bitstream/BitCodes.h" 22 #include "llvm/Bitstream/BitstreamWriter.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalIFunc.h" 34 #include "llvm/IR/GlobalObject.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/UseListOrder.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Object/IRSymtab.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/SHA1.h" 53 54 namespace llvm { 55 namespace dxil { 56 57 // Generates an enum to use as an index in the Abbrev array of Metadata record. 58 enum MetadataAbbrev : unsigned { 59 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 60 #include "llvm/IR/Metadata.def" 61 LastPlusOne 62 }; 63 64 class DXILBitcodeWriter { 65 66 /// These are manifest constants used by the bitcode writer. They do not need 67 /// to be kept in sync with the reader, but need to be consistent within this 68 /// file. 69 enum { 70 // VALUE_SYMTAB_BLOCK abbrev id's. 71 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 72 VST_ENTRY_7_ABBREV, 73 VST_ENTRY_6_ABBREV, 74 VST_BBENTRY_6_ABBREV, 75 76 // CONSTANTS_BLOCK abbrev id's. 77 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 78 CONSTANTS_INTEGER_ABBREV, 79 CONSTANTS_CE_CAST_Abbrev, 80 CONSTANTS_NULL_Abbrev, 81 82 // FUNCTION_BLOCK abbrev id's. 83 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 84 FUNCTION_INST_BINOP_ABBREV, 85 FUNCTION_INST_BINOP_FLAGS_ABBREV, 86 FUNCTION_INST_CAST_ABBREV, 87 FUNCTION_INST_RET_VOID_ABBREV, 88 FUNCTION_INST_RET_VAL_ABBREV, 89 FUNCTION_INST_UNREACHABLE_ABBREV, 90 FUNCTION_INST_GEP_ABBREV, 91 }; 92 93 // Cache some types 94 Type *I8Ty; 95 Type *I8PtrTy; 96 97 /// The stream created and owned by the client. 98 BitstreamWriter &Stream; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Map that holds the correspondence between GUIDs in the summary index, 109 /// that came from indirect call profiles, and a value id generated by this 110 /// class to use in the VST and summary block records. 111 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 112 113 /// Tracks the last value id recorded in the GUIDToValueMap. 114 unsigned GlobalValueId; 115 116 /// Saves the offset of the VSTOffset record that must eventually be 117 /// backpatched with the offset of the actual VST. 118 uint64_t VSTOffsetPlaceholder = 0; 119 120 /// Pointer to the buffer allocated by caller for bitcode writing. 121 const SmallVectorImpl<char> &Buffer; 122 123 /// The start bit of the identification block. 124 uint64_t BitcodeStartBit; 125 126 /// This maps values to their typed pointers 127 PointerTypeMap PointerMap; 128 129 public: 130 /// Constructs a ModuleBitcodeWriter object for the given Module, 131 /// writing to the provided \p Buffer. 132 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 133 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 134 : I8Ty(Type::getInt8Ty(M.getContext())), 135 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 136 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 137 BitcodeStartBit(Stream.GetCurrentBitNo()), 138 PointerMap(PointerTypeAnalysis::run(M)) { 139 GlobalValueId = VE.getValues().size(); 140 // Enumerate the typed pointers 141 for (auto El : PointerMap) 142 VE.EnumerateType(El.second); 143 } 144 145 /// Emit the current module to the bitstream. 146 void write(); 147 148 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 149 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 150 StringRef Str, unsigned AbbrevToUse); 151 static void writeIdentificationBlock(BitstreamWriter &Stream); 152 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 153 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 154 155 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 156 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 157 static unsigned getEncodedLinkage(const GlobalValue &GV); 158 static unsigned getEncodedVisibility(const GlobalValue &GV); 159 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 160 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 161 static unsigned getEncodedCastOpcode(unsigned Opcode); 162 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 163 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 164 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 165 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 166 static uint64_t getOptimizationFlags(const Value *V); 167 168 private: 169 void writeModuleVersion(); 170 void writePerModuleGlobalValueSummary(); 171 172 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 173 GlobalValueSummary *Summary, 174 unsigned ValueID, 175 unsigned FSCallsAbbrev, 176 unsigned FSCallsProfileAbbrev, 177 const Function &F); 178 void writeModuleLevelReferences(const GlobalVariable &V, 179 SmallVector<uint64_t, 64> &NameVals, 180 unsigned FSModRefsAbbrev, 181 unsigned FSModVTableRefsAbbrev); 182 183 void assignValueId(GlobalValue::GUID ValGUID) { 184 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 185 } 186 187 unsigned getValueId(GlobalValue::GUID ValGUID) { 188 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 189 // Expect that any GUID value had a value Id assigned by an 190 // earlier call to assignValueId. 191 assert(VMI != GUIDToValueIdMap.end() && 192 "GUID does not have assigned value Id"); 193 return VMI->second; 194 } 195 196 // Helper to get the valueId for the type of value recorded in VI. 197 unsigned getValueId(ValueInfo VI) { 198 if (!VI.haveGVs() || !VI.getValue()) 199 return getValueId(VI.getGUID()); 200 return VE.getValueID(VI.getValue()); 201 } 202 203 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 204 205 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 206 207 size_t addToStrtab(StringRef Str); 208 209 unsigned createDILocationAbbrev(); 210 unsigned createGenericDINodeAbbrev(); 211 212 void writeAttributeGroupTable(); 213 void writeAttributeTable(); 214 void writeTypeTable(); 215 void writeComdats(); 216 void writeValueSymbolTableForwardDecl(); 217 void writeModuleInfo(); 218 void writeValueAsMetadata(const ValueAsMetadata *MD, 219 SmallVectorImpl<uint64_t> &Record); 220 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned &Abbrev); 224 void writeGenericDINode(const GenericDINode *N, 225 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 226 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 227 } 228 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGenericSubrange(const DIGenericSubrange *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev) { 233 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 234 } 235 void writeDIEnumerator(const DIEnumerator *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 238 unsigned Abbrev); 239 void writeDIStringType(const DIStringType *N, 240 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 241 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 242 } 243 void writeDIDerivedType(const DIDerivedType *N, 244 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 245 void writeDICompositeType(const DICompositeType *N, 246 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 247 void writeDISubroutineType(const DISubroutineType *N, 248 SmallVectorImpl<uint64_t> &Record, 249 unsigned Abbrev); 250 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 251 unsigned Abbrev); 252 void writeDICompileUnit(const DICompileUnit *N, 253 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 254 void writeDISubprogram(const DISubprogram *N, 255 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 256 void writeDILexicalBlock(const DILexicalBlock *N, 257 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 258 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 259 SmallVectorImpl<uint64_t> &Record, 260 unsigned Abbrev); 261 void writeDICommonBlock(const DICommonBlock *N, 262 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 263 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 264 } 265 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 266 unsigned Abbrev); 267 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 268 unsigned Abbrev) { 269 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 270 } 271 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 272 unsigned Abbrev) { 273 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 274 } 275 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 276 unsigned Abbrev) { 277 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 278 } 279 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 280 unsigned Abbrev); 281 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 282 SmallVectorImpl<uint64_t> &Record, 283 unsigned Abbrev); 284 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 285 SmallVectorImpl<uint64_t> &Record, 286 unsigned Abbrev); 287 void writeDIGlobalVariable(const DIGlobalVariable *N, 288 SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDILocalVariable(const DILocalVariable *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev) { 294 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 295 } 296 void writeDIExpression(const DIExpression *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev) { 301 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 302 } 303 void writeDIObjCProperty(const DIObjCProperty *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDIImportedEntity(const DIImportedEntity *N, 306 SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 unsigned createNamedMetadataAbbrev(); 309 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 310 unsigned createMetadataStringsAbbrev(); 311 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 312 SmallVectorImpl<uint64_t> &Record); 313 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 314 SmallVectorImpl<uint64_t> &Record, 315 std::vector<unsigned> *MDAbbrevs = nullptr, 316 std::vector<uint64_t> *IndexPos = nullptr); 317 void writeModuleMetadata(); 318 void writeFunctionMetadata(const Function &F); 319 void writeFunctionMetadataAttachment(const Function &F); 320 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 321 const GlobalObject &GO); 322 void writeModuleMetadataKinds(); 323 void writeOperandBundleTags(); 324 void writeSyncScopeNames(); 325 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 326 void writeModuleConstants(); 327 bool pushValueAndType(const Value *V, unsigned InstID, 328 SmallVectorImpl<unsigned> &Vals); 329 void writeOperandBundles(const CallBase &CB, unsigned InstID); 330 void pushValue(const Value *V, unsigned InstID, 331 SmallVectorImpl<unsigned> &Vals); 332 void pushValueSigned(const Value *V, unsigned InstID, 333 SmallVectorImpl<uint64_t> &Vals); 334 void writeInstruction(const Instruction &I, unsigned InstID, 335 SmallVectorImpl<unsigned> &Vals); 336 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 337 void writeGlobalValueSymbolTable( 338 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 339 void writeUseList(UseListOrder &&Order); 340 void writeUseListBlock(const Function *F); 341 void writeFunction(const Function &F); 342 void writeBlockInfo(); 343 344 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 345 346 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 347 348 unsigned getTypeID(Type *T, const Value *V = nullptr); 349 unsigned getTypeID(Type *T, const Function *F); 350 }; 351 352 } // namespace dxil 353 } // namespace llvm 354 355 using namespace llvm; 356 using namespace llvm::dxil; 357 358 //////////////////////////////////////////////////////////////////////////////// 359 /// Begin dxil::BitcodeWriter Implementation 360 //////////////////////////////////////////////////////////////////////////////// 361 362 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 363 raw_fd_stream *FS) 364 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 365 // Emit the file header. 366 Stream->Emit((unsigned)'B', 8); 367 Stream->Emit((unsigned)'C', 8); 368 Stream->Emit(0x0, 4); 369 Stream->Emit(0xC, 4); 370 Stream->Emit(0xE, 4); 371 Stream->Emit(0xD, 4); 372 } 373 374 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 375 376 /// Write the specified module to the specified output stream. 377 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 378 SmallVector<char, 0> Buffer; 379 Buffer.reserve(256 * 1024); 380 381 // If this is darwin or another generic macho target, reserve space for the 382 // header. 383 Triple TT(M.getTargetTriple()); 384 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 385 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 386 387 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 388 Writer.writeModule(M); 389 Writer.writeSymtab(); 390 Writer.writeStrtab(); 391 392 // Write the generated bitstream to "Out". 393 if (!Buffer.empty()) 394 Out.write((char *)&Buffer.front(), Buffer.size()); 395 } 396 397 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 398 Stream->EnterSubblock(Block, 3); 399 400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 401 Abbv->Add(BitCodeAbbrevOp(Record)); 402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 403 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 404 405 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 406 407 Stream->ExitBlock(); 408 } 409 410 void BitcodeWriter::writeSymtab() { 411 assert(!WroteStrtab && !WroteSymtab); 412 413 // If any module has module-level inline asm, we will require a registered asm 414 // parser for the target so that we can create an accurate symbol table for 415 // the module. 416 for (Module *M : Mods) { 417 if (M->getModuleInlineAsm().empty()) 418 continue; 419 } 420 421 WroteSymtab = true; 422 SmallVector<char, 0> Symtab; 423 // The irsymtab::build function may be unable to create a symbol table if the 424 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 425 // table is not required for correctness, but we still want to be able to 426 // write malformed modules to bitcode files, so swallow the error. 427 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 428 consumeError(std::move(E)); 429 return; 430 } 431 432 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 433 {Symtab.data(), Symtab.size()}); 434 } 435 436 void BitcodeWriter::writeStrtab() { 437 assert(!WroteStrtab); 438 439 std::vector<char> Strtab; 440 StrtabBuilder.finalizeInOrder(); 441 Strtab.resize(StrtabBuilder.getSize()); 442 StrtabBuilder.write((uint8_t *)Strtab.data()); 443 444 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 445 {Strtab.data(), Strtab.size()}); 446 447 WroteStrtab = true; 448 } 449 450 void BitcodeWriter::copyStrtab(StringRef Strtab) { 451 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 452 WroteStrtab = true; 453 } 454 455 void BitcodeWriter::writeModule(const Module &M) { 456 assert(!WroteStrtab); 457 458 // The Mods vector is used by irsymtab::build, which requires non-const 459 // Modules in case it needs to materialize metadata. But the bitcode writer 460 // requires that the module is materialized, so we can cast to non-const here, 461 // after checking that it is in fact materialized. 462 assert(M.isMaterialized()); 463 Mods.push_back(const_cast<Module *>(&M)); 464 465 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 466 ModuleWriter.write(); 467 } 468 469 //////////////////////////////////////////////////////////////////////////////// 470 /// Begin dxil::BitcodeWriterBase Implementation 471 //////////////////////////////////////////////////////////////////////////////// 472 473 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 474 switch (Opcode) { 475 default: 476 llvm_unreachable("Unknown cast instruction!"); 477 case Instruction::Trunc: 478 return bitc::CAST_TRUNC; 479 case Instruction::ZExt: 480 return bitc::CAST_ZEXT; 481 case Instruction::SExt: 482 return bitc::CAST_SEXT; 483 case Instruction::FPToUI: 484 return bitc::CAST_FPTOUI; 485 case Instruction::FPToSI: 486 return bitc::CAST_FPTOSI; 487 case Instruction::UIToFP: 488 return bitc::CAST_UITOFP; 489 case Instruction::SIToFP: 490 return bitc::CAST_SITOFP; 491 case Instruction::FPTrunc: 492 return bitc::CAST_FPTRUNC; 493 case Instruction::FPExt: 494 return bitc::CAST_FPEXT; 495 case Instruction::PtrToInt: 496 return bitc::CAST_PTRTOINT; 497 case Instruction::IntToPtr: 498 return bitc::CAST_INTTOPTR; 499 case Instruction::BitCast: 500 return bitc::CAST_BITCAST; 501 case Instruction::AddrSpaceCast: 502 return bitc::CAST_ADDRSPACECAST; 503 } 504 } 505 506 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 507 switch (Opcode) { 508 default: 509 llvm_unreachable("Unknown binary instruction!"); 510 case Instruction::FNeg: 511 return bitc::UNOP_FNEG; 512 } 513 } 514 515 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 516 switch (Opcode) { 517 default: 518 llvm_unreachable("Unknown binary instruction!"); 519 case Instruction::Add: 520 case Instruction::FAdd: 521 return bitc::BINOP_ADD; 522 case Instruction::Sub: 523 case Instruction::FSub: 524 return bitc::BINOP_SUB; 525 case Instruction::Mul: 526 case Instruction::FMul: 527 return bitc::BINOP_MUL; 528 case Instruction::UDiv: 529 return bitc::BINOP_UDIV; 530 case Instruction::FDiv: 531 case Instruction::SDiv: 532 return bitc::BINOP_SDIV; 533 case Instruction::URem: 534 return bitc::BINOP_UREM; 535 case Instruction::FRem: 536 case Instruction::SRem: 537 return bitc::BINOP_SREM; 538 case Instruction::Shl: 539 return bitc::BINOP_SHL; 540 case Instruction::LShr: 541 return bitc::BINOP_LSHR; 542 case Instruction::AShr: 543 return bitc::BINOP_ASHR; 544 case Instruction::And: 545 return bitc::BINOP_AND; 546 case Instruction::Or: 547 return bitc::BINOP_OR; 548 case Instruction::Xor: 549 return bitc::BINOP_XOR; 550 } 551 } 552 553 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 554 if (!T->isOpaquePointerTy()) 555 return VE.getTypeID(T); 556 auto It = PointerMap.find(V); 557 if (It != PointerMap.end()) 558 return VE.getTypeID(It->second); 559 return VE.getTypeID(I8PtrTy); 560 } 561 562 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) { 563 auto It = PointerMap.find(F); 564 if (It != PointerMap.end()) 565 return VE.getTypeID(It->second); 566 return VE.getTypeID(T); 567 } 568 569 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 570 switch (Op) { 571 default: 572 llvm_unreachable("Unknown RMW operation!"); 573 case AtomicRMWInst::Xchg: 574 return bitc::RMW_XCHG; 575 case AtomicRMWInst::Add: 576 return bitc::RMW_ADD; 577 case AtomicRMWInst::Sub: 578 return bitc::RMW_SUB; 579 case AtomicRMWInst::And: 580 return bitc::RMW_AND; 581 case AtomicRMWInst::Nand: 582 return bitc::RMW_NAND; 583 case AtomicRMWInst::Or: 584 return bitc::RMW_OR; 585 case AtomicRMWInst::Xor: 586 return bitc::RMW_XOR; 587 case AtomicRMWInst::Max: 588 return bitc::RMW_MAX; 589 case AtomicRMWInst::Min: 590 return bitc::RMW_MIN; 591 case AtomicRMWInst::UMax: 592 return bitc::RMW_UMAX; 593 case AtomicRMWInst::UMin: 594 return bitc::RMW_UMIN; 595 case AtomicRMWInst::FAdd: 596 return bitc::RMW_FADD; 597 case AtomicRMWInst::FSub: 598 return bitc::RMW_FSUB; 599 case AtomicRMWInst::FMax: 600 return bitc::RMW_FMAX; 601 case AtomicRMWInst::FMin: 602 return bitc::RMW_FMIN; 603 } 604 } 605 606 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 607 switch (Ordering) { 608 case AtomicOrdering::NotAtomic: 609 return bitc::ORDERING_NOTATOMIC; 610 case AtomicOrdering::Unordered: 611 return bitc::ORDERING_UNORDERED; 612 case AtomicOrdering::Monotonic: 613 return bitc::ORDERING_MONOTONIC; 614 case AtomicOrdering::Acquire: 615 return bitc::ORDERING_ACQUIRE; 616 case AtomicOrdering::Release: 617 return bitc::ORDERING_RELEASE; 618 case AtomicOrdering::AcquireRelease: 619 return bitc::ORDERING_ACQREL; 620 case AtomicOrdering::SequentiallyConsistent: 621 return bitc::ORDERING_SEQCST; 622 } 623 llvm_unreachable("Invalid ordering"); 624 } 625 626 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 627 unsigned Code, StringRef Str, 628 unsigned AbbrevToUse) { 629 SmallVector<unsigned, 64> Vals; 630 631 // Code: [strchar x N] 632 for (char C : Str) { 633 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 634 AbbrevToUse = 0; 635 Vals.push_back(C); 636 } 637 638 // Emit the finished record. 639 Stream.EmitRecord(Code, Vals, AbbrevToUse); 640 } 641 642 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 643 switch (Kind) { 644 case Attribute::Alignment: 645 return bitc::ATTR_KIND_ALIGNMENT; 646 case Attribute::AlwaysInline: 647 return bitc::ATTR_KIND_ALWAYS_INLINE; 648 case Attribute::ArgMemOnly: 649 return bitc::ATTR_KIND_ARGMEMONLY; 650 case Attribute::Builtin: 651 return bitc::ATTR_KIND_BUILTIN; 652 case Attribute::ByVal: 653 return bitc::ATTR_KIND_BY_VAL; 654 case Attribute::Convergent: 655 return bitc::ATTR_KIND_CONVERGENT; 656 case Attribute::InAlloca: 657 return bitc::ATTR_KIND_IN_ALLOCA; 658 case Attribute::Cold: 659 return bitc::ATTR_KIND_COLD; 660 case Attribute::InlineHint: 661 return bitc::ATTR_KIND_INLINE_HINT; 662 case Attribute::InReg: 663 return bitc::ATTR_KIND_IN_REG; 664 case Attribute::JumpTable: 665 return bitc::ATTR_KIND_JUMP_TABLE; 666 case Attribute::MinSize: 667 return bitc::ATTR_KIND_MIN_SIZE; 668 case Attribute::Naked: 669 return bitc::ATTR_KIND_NAKED; 670 case Attribute::Nest: 671 return bitc::ATTR_KIND_NEST; 672 case Attribute::NoAlias: 673 return bitc::ATTR_KIND_NO_ALIAS; 674 case Attribute::NoBuiltin: 675 return bitc::ATTR_KIND_NO_BUILTIN; 676 case Attribute::NoCapture: 677 return bitc::ATTR_KIND_NO_CAPTURE; 678 case Attribute::NoDuplicate: 679 return bitc::ATTR_KIND_NO_DUPLICATE; 680 case Attribute::NoImplicitFloat: 681 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 682 case Attribute::NoInline: 683 return bitc::ATTR_KIND_NO_INLINE; 684 case Attribute::NonLazyBind: 685 return bitc::ATTR_KIND_NON_LAZY_BIND; 686 case Attribute::NonNull: 687 return bitc::ATTR_KIND_NON_NULL; 688 case Attribute::Dereferenceable: 689 return bitc::ATTR_KIND_DEREFERENCEABLE; 690 case Attribute::DereferenceableOrNull: 691 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 692 case Attribute::NoRedZone: 693 return bitc::ATTR_KIND_NO_RED_ZONE; 694 case Attribute::NoReturn: 695 return bitc::ATTR_KIND_NO_RETURN; 696 case Attribute::NoUnwind: 697 return bitc::ATTR_KIND_NO_UNWIND; 698 case Attribute::OptimizeForSize: 699 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 700 case Attribute::OptimizeNone: 701 return bitc::ATTR_KIND_OPTIMIZE_NONE; 702 case Attribute::ReadNone: 703 return bitc::ATTR_KIND_READ_NONE; 704 case Attribute::ReadOnly: 705 return bitc::ATTR_KIND_READ_ONLY; 706 case Attribute::Returned: 707 return bitc::ATTR_KIND_RETURNED; 708 case Attribute::ReturnsTwice: 709 return bitc::ATTR_KIND_RETURNS_TWICE; 710 case Attribute::SExt: 711 return bitc::ATTR_KIND_S_EXT; 712 case Attribute::StackAlignment: 713 return bitc::ATTR_KIND_STACK_ALIGNMENT; 714 case Attribute::StackProtect: 715 return bitc::ATTR_KIND_STACK_PROTECT; 716 case Attribute::StackProtectReq: 717 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 718 case Attribute::StackProtectStrong: 719 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 720 case Attribute::SafeStack: 721 return bitc::ATTR_KIND_SAFESTACK; 722 case Attribute::StructRet: 723 return bitc::ATTR_KIND_STRUCT_RET; 724 case Attribute::SanitizeAddress: 725 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 726 case Attribute::SanitizeThread: 727 return bitc::ATTR_KIND_SANITIZE_THREAD; 728 case Attribute::SanitizeMemory: 729 return bitc::ATTR_KIND_SANITIZE_MEMORY; 730 case Attribute::UWTable: 731 return bitc::ATTR_KIND_UW_TABLE; 732 case Attribute::ZExt: 733 return bitc::ATTR_KIND_Z_EXT; 734 case Attribute::EndAttrKinds: 735 llvm_unreachable("Can not encode end-attribute kinds marker."); 736 case Attribute::None: 737 llvm_unreachable("Can not encode none-attribute."); 738 case Attribute::EmptyKey: 739 case Attribute::TombstoneKey: 740 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 741 default: 742 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 743 "should be stripped in DXILPrepare"); 744 } 745 746 llvm_unreachable("Trying to encode unknown attribute"); 747 } 748 749 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 750 uint64_t V) { 751 if ((int64_t)V >= 0) 752 Vals.push_back(V << 1); 753 else 754 Vals.push_back((-V << 1) | 1); 755 } 756 757 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 758 const APInt &A) { 759 // We have an arbitrary precision integer value to write whose 760 // bit width is > 64. However, in canonical unsigned integer 761 // format it is likely that the high bits are going to be zero. 762 // So, we only write the number of active words. 763 unsigned NumWords = A.getActiveWords(); 764 const uint64_t *RawData = A.getRawData(); 765 for (unsigned i = 0; i < NumWords; i++) 766 emitSignedInt64(Vals, RawData[i]); 767 } 768 769 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 770 uint64_t Flags = 0; 771 772 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 773 if (OBO->hasNoSignedWrap()) 774 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 775 if (OBO->hasNoUnsignedWrap()) 776 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 777 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 778 if (PEO->isExact()) 779 Flags |= 1 << bitc::PEO_EXACT; 780 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 781 if (FPMO->hasAllowReassoc()) 782 Flags |= bitc::AllowReassoc; 783 if (FPMO->hasNoNaNs()) 784 Flags |= bitc::NoNaNs; 785 if (FPMO->hasNoInfs()) 786 Flags |= bitc::NoInfs; 787 if (FPMO->hasNoSignedZeros()) 788 Flags |= bitc::NoSignedZeros; 789 if (FPMO->hasAllowReciprocal()) 790 Flags |= bitc::AllowReciprocal; 791 if (FPMO->hasAllowContract()) 792 Flags |= bitc::AllowContract; 793 if (FPMO->hasApproxFunc()) 794 Flags |= bitc::ApproxFunc; 795 } 796 797 return Flags; 798 } 799 800 unsigned 801 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 802 switch (Linkage) { 803 case GlobalValue::ExternalLinkage: 804 return 0; 805 case GlobalValue::WeakAnyLinkage: 806 return 16; 807 case GlobalValue::AppendingLinkage: 808 return 2; 809 case GlobalValue::InternalLinkage: 810 return 3; 811 case GlobalValue::LinkOnceAnyLinkage: 812 return 18; 813 case GlobalValue::ExternalWeakLinkage: 814 return 7; 815 case GlobalValue::CommonLinkage: 816 return 8; 817 case GlobalValue::PrivateLinkage: 818 return 9; 819 case GlobalValue::WeakODRLinkage: 820 return 17; 821 case GlobalValue::LinkOnceODRLinkage: 822 return 19; 823 case GlobalValue::AvailableExternallyLinkage: 824 return 12; 825 } 826 llvm_unreachable("Invalid linkage"); 827 } 828 829 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 830 return getEncodedLinkage(GV.getLinkage()); 831 } 832 833 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 834 switch (GV.getVisibility()) { 835 case GlobalValue::DefaultVisibility: 836 return 0; 837 case GlobalValue::HiddenVisibility: 838 return 1; 839 case GlobalValue::ProtectedVisibility: 840 return 2; 841 } 842 llvm_unreachable("Invalid visibility"); 843 } 844 845 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 846 switch (GV.getDLLStorageClass()) { 847 case GlobalValue::DefaultStorageClass: 848 return 0; 849 case GlobalValue::DLLImportStorageClass: 850 return 1; 851 case GlobalValue::DLLExportStorageClass: 852 return 2; 853 } 854 llvm_unreachable("Invalid DLL storage class"); 855 } 856 857 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 858 switch (GV.getThreadLocalMode()) { 859 case GlobalVariable::NotThreadLocal: 860 return 0; 861 case GlobalVariable::GeneralDynamicTLSModel: 862 return 1; 863 case GlobalVariable::LocalDynamicTLSModel: 864 return 2; 865 case GlobalVariable::InitialExecTLSModel: 866 return 3; 867 case GlobalVariable::LocalExecTLSModel: 868 return 4; 869 } 870 llvm_unreachable("Invalid TLS model"); 871 } 872 873 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 874 switch (C.getSelectionKind()) { 875 case Comdat::Any: 876 return bitc::COMDAT_SELECTION_KIND_ANY; 877 case Comdat::ExactMatch: 878 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 879 case Comdat::Largest: 880 return bitc::COMDAT_SELECTION_KIND_LARGEST; 881 case Comdat::NoDeduplicate: 882 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 883 case Comdat::SameSize: 884 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 885 } 886 llvm_unreachable("Invalid selection kind"); 887 } 888 889 //////////////////////////////////////////////////////////////////////////////// 890 /// Begin DXILBitcodeWriter Implementation 891 //////////////////////////////////////////////////////////////////////////////// 892 893 void DXILBitcodeWriter::writeAttributeGroupTable() { 894 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 895 VE.getAttributeGroups(); 896 if (AttrGrps.empty()) 897 return; 898 899 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 900 901 SmallVector<uint64_t, 64> Record; 902 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 903 unsigned AttrListIndex = Pair.first; 904 AttributeSet AS = Pair.second; 905 Record.push_back(VE.getAttributeGroupID(Pair)); 906 Record.push_back(AttrListIndex); 907 908 for (Attribute Attr : AS) { 909 if (Attr.isEnumAttribute()) { 910 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 911 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 912 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 913 Record.push_back(0); 914 Record.push_back(Val); 915 } else if (Attr.isIntAttribute()) { 916 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 917 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 918 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 919 Record.push_back(1); 920 Record.push_back(Val); 921 Record.push_back(Attr.getValueAsInt()); 922 } else { 923 StringRef Kind = Attr.getKindAsString(); 924 StringRef Val = Attr.getValueAsString(); 925 926 Record.push_back(Val.empty() ? 3 : 4); 927 Record.append(Kind.begin(), Kind.end()); 928 Record.push_back(0); 929 if (!Val.empty()) { 930 Record.append(Val.begin(), Val.end()); 931 Record.push_back(0); 932 } 933 } 934 } 935 936 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 937 Record.clear(); 938 } 939 940 Stream.ExitBlock(); 941 } 942 943 void DXILBitcodeWriter::writeAttributeTable() { 944 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 945 if (Attrs.empty()) 946 return; 947 948 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 949 950 SmallVector<uint64_t, 64> Record; 951 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 952 AttributeList AL = Attrs[i]; 953 for (unsigned i : AL.indexes()) { 954 AttributeSet AS = AL.getAttributes(i); 955 if (AS.hasAttributes()) 956 Record.push_back(VE.getAttributeGroupID({i, AS})); 957 } 958 959 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 960 Record.clear(); 961 } 962 963 Stream.ExitBlock(); 964 } 965 966 /// WriteTypeTable - Write out the type table for a module. 967 void DXILBitcodeWriter::writeTypeTable() { 968 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 969 970 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 971 SmallVector<uint64_t, 64> TypeVals; 972 973 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 974 975 // Abbrev for TYPE_CODE_POINTER. 976 auto Abbv = std::make_shared<BitCodeAbbrev>(); 977 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 979 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 980 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 981 982 // Abbrev for TYPE_CODE_FUNCTION. 983 Abbv = std::make_shared<BitCodeAbbrev>(); 984 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 988 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 989 990 // Abbrev for TYPE_CODE_STRUCT_ANON. 991 Abbv = std::make_shared<BitCodeAbbrev>(); 992 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 996 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 997 998 // Abbrev for TYPE_CODE_STRUCT_NAME. 999 Abbv = std::make_shared<BitCodeAbbrev>(); 1000 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1003 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1004 1005 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1006 Abbv = std::make_shared<BitCodeAbbrev>(); 1007 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1011 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1012 1013 // Abbrev for TYPE_CODE_ARRAY. 1014 Abbv = std::make_shared<BitCodeAbbrev>(); 1015 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1018 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1019 1020 // Emit an entry count so the reader can reserve space. 1021 TypeVals.push_back(TypeList.size()); 1022 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1023 TypeVals.clear(); 1024 1025 // Loop over all of the types, emitting each in turn. 1026 for (Type *T : TypeList) { 1027 int AbbrevToUse = 0; 1028 unsigned Code = 0; 1029 1030 switch (T->getTypeID()) { 1031 case Type::BFloatTyID: 1032 case Type::X86_AMXTyID: 1033 case Type::TokenTyID: 1034 llvm_unreachable("These should never be used!!!"); 1035 break; 1036 case Type::VoidTyID: 1037 Code = bitc::TYPE_CODE_VOID; 1038 break; 1039 case Type::HalfTyID: 1040 Code = bitc::TYPE_CODE_HALF; 1041 break; 1042 case Type::FloatTyID: 1043 Code = bitc::TYPE_CODE_FLOAT; 1044 break; 1045 case Type::DoubleTyID: 1046 Code = bitc::TYPE_CODE_DOUBLE; 1047 break; 1048 case Type::X86_FP80TyID: 1049 Code = bitc::TYPE_CODE_X86_FP80; 1050 break; 1051 case Type::FP128TyID: 1052 Code = bitc::TYPE_CODE_FP128; 1053 break; 1054 case Type::PPC_FP128TyID: 1055 Code = bitc::TYPE_CODE_PPC_FP128; 1056 break; 1057 case Type::LabelTyID: 1058 Code = bitc::TYPE_CODE_LABEL; 1059 break; 1060 case Type::MetadataTyID: 1061 Code = bitc::TYPE_CODE_METADATA; 1062 break; 1063 case Type::X86_MMXTyID: 1064 Code = bitc::TYPE_CODE_X86_MMX; 1065 break; 1066 case Type::IntegerTyID: 1067 // INTEGER: [width] 1068 Code = bitc::TYPE_CODE_INTEGER; 1069 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1070 break; 1071 case Type::DXILPointerTyID: { 1072 TypedPointerType *PTy = cast<TypedPointerType>(T); 1073 // POINTER: [pointee type, address space] 1074 Code = bitc::TYPE_CODE_POINTER; 1075 TypeVals.push_back(getTypeID(PTy->getElementType())); 1076 unsigned AddressSpace = PTy->getAddressSpace(); 1077 TypeVals.push_back(AddressSpace); 1078 if (AddressSpace == 0) 1079 AbbrevToUse = PtrAbbrev; 1080 break; 1081 } 1082 case Type::PointerTyID: { 1083 PointerType *PTy = cast<PointerType>(T); 1084 // POINTER: [pointee type, address space] 1085 Code = bitc::TYPE_CODE_POINTER; 1086 // Emitting an empty struct type for the opaque pointer's type allows 1087 // this to be order-independent. Non-struct types must be emitted in 1088 // bitcode before they can be referenced. 1089 if (PTy->isOpaquePointerTy()) { 1090 TypeVals.push_back(false); 1091 Code = bitc::TYPE_CODE_OPAQUE; 1092 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1093 "dxilOpaquePtrReservedName", StructNameAbbrev); 1094 } else { 1095 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); 1096 unsigned AddressSpace = PTy->getAddressSpace(); 1097 TypeVals.push_back(AddressSpace); 1098 if (AddressSpace == 0) 1099 AbbrevToUse = PtrAbbrev; 1100 } 1101 break; 1102 } 1103 case Type::FunctionTyID: { 1104 FunctionType *FT = cast<FunctionType>(T); 1105 // FUNCTION: [isvararg, retty, paramty x N] 1106 Code = bitc::TYPE_CODE_FUNCTION; 1107 TypeVals.push_back(FT->isVarArg()); 1108 TypeVals.push_back(getTypeID(FT->getReturnType())); 1109 for (Type *PTy : FT->params()) 1110 TypeVals.push_back(getTypeID(PTy)); 1111 AbbrevToUse = FunctionAbbrev; 1112 break; 1113 } 1114 case Type::StructTyID: { 1115 StructType *ST = cast<StructType>(T); 1116 // STRUCT: [ispacked, eltty x N] 1117 TypeVals.push_back(ST->isPacked()); 1118 // Output all of the element types. 1119 for (Type *ElTy : ST->elements()) 1120 TypeVals.push_back(getTypeID(ElTy)); 1121 1122 if (ST->isLiteral()) { 1123 Code = bitc::TYPE_CODE_STRUCT_ANON; 1124 AbbrevToUse = StructAnonAbbrev; 1125 } else { 1126 if (ST->isOpaque()) { 1127 Code = bitc::TYPE_CODE_OPAQUE; 1128 } else { 1129 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1130 AbbrevToUse = StructNamedAbbrev; 1131 } 1132 1133 // Emit the name if it is present. 1134 if (!ST->getName().empty()) 1135 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1136 StructNameAbbrev); 1137 } 1138 break; 1139 } 1140 case Type::ArrayTyID: { 1141 ArrayType *AT = cast<ArrayType>(T); 1142 // ARRAY: [numelts, eltty] 1143 Code = bitc::TYPE_CODE_ARRAY; 1144 TypeVals.push_back(AT->getNumElements()); 1145 TypeVals.push_back(getTypeID(AT->getElementType())); 1146 AbbrevToUse = ArrayAbbrev; 1147 break; 1148 } 1149 case Type::FixedVectorTyID: 1150 case Type::ScalableVectorTyID: { 1151 VectorType *VT = cast<VectorType>(T); 1152 // VECTOR [numelts, eltty] 1153 Code = bitc::TYPE_CODE_VECTOR; 1154 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1155 TypeVals.push_back(getTypeID(VT->getElementType())); 1156 break; 1157 } 1158 } 1159 1160 // Emit the finished record. 1161 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1162 TypeVals.clear(); 1163 } 1164 1165 Stream.ExitBlock(); 1166 } 1167 1168 void DXILBitcodeWriter::writeComdats() { 1169 SmallVector<uint16_t, 64> Vals; 1170 for (const Comdat *C : VE.getComdats()) { 1171 // COMDAT: [selection_kind, name] 1172 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1173 size_t Size = C->getName().size(); 1174 assert(isUInt<16>(Size)); 1175 Vals.push_back(Size); 1176 for (char Chr : C->getName()) 1177 Vals.push_back((unsigned char)Chr); 1178 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1179 Vals.clear(); 1180 } 1181 } 1182 1183 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1184 1185 /// Emit top-level description of module, including target triple, inline asm, 1186 /// descriptors for global variables, and function prototype info. 1187 /// Returns the bit offset to backpatch with the location of the real VST. 1188 void DXILBitcodeWriter::writeModuleInfo() { 1189 // Emit various pieces of data attached to a module. 1190 if (!M.getTargetTriple().empty()) 1191 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1192 0 /*TODO*/); 1193 const std::string &DL = M.getDataLayoutStr(); 1194 if (!DL.empty()) 1195 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1196 if (!M.getModuleInlineAsm().empty()) 1197 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1198 0 /*TODO*/); 1199 1200 // Emit information about sections and GC, computing how many there are. Also 1201 // compute the maximum alignment value. 1202 std::map<std::string, unsigned> SectionMap; 1203 std::map<std::string, unsigned> GCMap; 1204 MaybeAlign MaxAlignment; 1205 unsigned MaxGlobalType = 0; 1206 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1207 if (A) 1208 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1209 }; 1210 for (const GlobalVariable &GV : M.globals()) { 1211 UpdateMaxAlignment(GV.getAlign()); 1212 MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV)); 1213 if (GV.hasSection()) { 1214 // Give section names unique ID's. 1215 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1216 if (!Entry) { 1217 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1218 GV.getSection(), 0 /*TODO*/); 1219 Entry = SectionMap.size(); 1220 } 1221 } 1222 } 1223 for (const Function &F : M) { 1224 UpdateMaxAlignment(F.getAlign()); 1225 if (F.hasSection()) { 1226 // Give section names unique ID's. 1227 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1228 if (!Entry) { 1229 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1230 0 /*TODO*/); 1231 Entry = SectionMap.size(); 1232 } 1233 } 1234 if (F.hasGC()) { 1235 // Same for GC names. 1236 unsigned &Entry = GCMap[F.getGC()]; 1237 if (!Entry) { 1238 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1239 0 /*TODO*/); 1240 Entry = GCMap.size(); 1241 } 1242 } 1243 } 1244 1245 // Emit abbrev for globals, now that we know # sections and max alignment. 1246 unsigned SimpleGVarAbbrev = 0; 1247 if (!M.global_empty()) { 1248 // Add an abbrev for common globals with no visibility or thread 1249 // localness. 1250 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1251 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1253 Log2_32_Ceil(MaxGlobalType + 1))); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1255 //| explicitType << 1 1256 //| constant 1257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1259 if (!MaxAlignment) // Alignment. 1260 Abbv->Add(BitCodeAbbrevOp(0)); 1261 else { 1262 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1264 Log2_32_Ceil(MaxEncAlignment + 1))); 1265 } 1266 if (SectionMap.empty()) // Section. 1267 Abbv->Add(BitCodeAbbrevOp(0)); 1268 else 1269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1270 Log2_32_Ceil(SectionMap.size() + 1))); 1271 // Don't bother emitting vis + thread local. 1272 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1273 } 1274 1275 // Emit the global variable information. 1276 SmallVector<unsigned, 64> Vals; 1277 for (const GlobalVariable &GV : M.globals()) { 1278 unsigned AbbrevToUse = 0; 1279 1280 // GLOBALVAR: [type, isconst, initid, 1281 // linkage, alignment, section, visibility, threadlocal, 1282 // unnamed_addr, externally_initialized, dllstorageclass, 1283 // comdat] 1284 Vals.push_back(getTypeID(GV.getValueType(), &GV)); 1285 Vals.push_back( 1286 GV.getType()->getAddressSpace() << 2 | 2 | 1287 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1288 // unsigned int and bool 1289 Vals.push_back( 1290 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1291 Vals.push_back(getEncodedLinkage(GV)); 1292 Vals.push_back(getEncodedAlign(GV.getAlign())); 1293 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1294 : 0); 1295 if (GV.isThreadLocal() || 1296 GV.getVisibility() != GlobalValue::DefaultVisibility || 1297 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1298 GV.isExternallyInitialized() || 1299 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1300 GV.hasComdat()) { 1301 Vals.push_back(getEncodedVisibility(GV)); 1302 Vals.push_back(getEncodedThreadLocalMode(GV)); 1303 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1304 Vals.push_back(GV.isExternallyInitialized()); 1305 Vals.push_back(getEncodedDLLStorageClass(GV)); 1306 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1307 } else { 1308 AbbrevToUse = SimpleGVarAbbrev; 1309 } 1310 1311 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1312 Vals.clear(); 1313 } 1314 1315 // Emit the function proto information. 1316 for (const Function &F : M) { 1317 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1318 // section, visibility, gc, unnamed_addr, prologuedata, 1319 // dllstorageclass, comdat, prefixdata, personalityfn] 1320 Vals.push_back(getTypeID(F.getFunctionType(), &F)); 1321 Vals.push_back(F.getCallingConv()); 1322 Vals.push_back(F.isDeclaration()); 1323 Vals.push_back(getEncodedLinkage(F)); 1324 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1325 Vals.push_back(getEncodedAlign(F.getAlign())); 1326 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1327 : 0); 1328 Vals.push_back(getEncodedVisibility(F)); 1329 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1330 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1331 Vals.push_back( 1332 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1333 Vals.push_back(getEncodedDLLStorageClass(F)); 1334 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1335 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1336 : 0); 1337 Vals.push_back( 1338 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1339 1340 unsigned AbbrevToUse = 0; 1341 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1342 Vals.clear(); 1343 } 1344 1345 // Emit the alias information. 1346 for (const GlobalAlias &A : M.aliases()) { 1347 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1348 Vals.push_back(getTypeID(A.getValueType(), &A)); 1349 Vals.push_back(VE.getValueID(A.getAliasee())); 1350 Vals.push_back(getEncodedLinkage(A)); 1351 Vals.push_back(getEncodedVisibility(A)); 1352 Vals.push_back(getEncodedDLLStorageClass(A)); 1353 Vals.push_back(getEncodedThreadLocalMode(A)); 1354 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1355 unsigned AbbrevToUse = 0; 1356 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1357 Vals.clear(); 1358 } 1359 } 1360 1361 void DXILBitcodeWriter::writeValueAsMetadata( 1362 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1363 // Mimic an MDNode with a value as one operand. 1364 Value *V = MD->getValue(); 1365 Type *Ty = V->getType(); 1366 if (Function *F = dyn_cast<Function>(V)) 1367 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1368 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1369 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1370 Record.push_back(getTypeID(Ty)); 1371 Record.push_back(VE.getValueID(V)); 1372 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1373 Record.clear(); 1374 } 1375 1376 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1377 SmallVectorImpl<uint64_t> &Record, 1378 unsigned Abbrev) { 1379 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1380 Metadata *MD = N->getOperand(i); 1381 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1382 "Unexpected function-local metadata"); 1383 Record.push_back(VE.getMetadataOrNullID(MD)); 1384 } 1385 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1386 : bitc::METADATA_NODE, 1387 Record, Abbrev); 1388 Record.clear(); 1389 } 1390 1391 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1392 SmallVectorImpl<uint64_t> &Record, 1393 unsigned &Abbrev) { 1394 if (!Abbrev) 1395 Abbrev = createDILocationAbbrev(); 1396 Record.push_back(N->isDistinct()); 1397 Record.push_back(N->getLine()); 1398 Record.push_back(N->getColumn()); 1399 Record.push_back(VE.getMetadataID(N->getScope())); 1400 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1401 1402 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1403 Record.clear(); 1404 } 1405 1406 static uint64_t rotateSign(APInt Val) { 1407 int64_t I = Val.getSExtValue(); 1408 uint64_t U = I; 1409 return I < 0 ? ~(U << 1) : U << 1; 1410 } 1411 1412 static uint64_t rotateSign(DISubrange::BoundType Val) { 1413 return rotateSign(Val.get<ConstantInt *>()->getValue()); 1414 } 1415 1416 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1417 SmallVectorImpl<uint64_t> &Record, 1418 unsigned Abbrev) { 1419 Record.push_back(N->isDistinct()); 1420 Record.push_back( 1421 N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); 1422 Record.push_back(rotateSign(N->getLowerBound())); 1423 1424 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1425 Record.clear(); 1426 } 1427 1428 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1429 SmallVectorImpl<uint64_t> &Record, 1430 unsigned Abbrev) { 1431 Record.push_back(N->isDistinct()); 1432 Record.push_back(rotateSign(N->getValue())); 1433 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1434 1435 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1436 Record.clear(); 1437 } 1438 1439 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1440 SmallVectorImpl<uint64_t> &Record, 1441 unsigned Abbrev) { 1442 Record.push_back(N->isDistinct()); 1443 Record.push_back(N->getTag()); 1444 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1445 Record.push_back(N->getSizeInBits()); 1446 Record.push_back(N->getAlignInBits()); 1447 Record.push_back(N->getEncoding()); 1448 1449 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1450 Record.clear(); 1451 } 1452 1453 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1454 SmallVectorImpl<uint64_t> &Record, 1455 unsigned Abbrev) { 1456 Record.push_back(N->isDistinct()); 1457 Record.push_back(N->getTag()); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1460 Record.push_back(N->getLine()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1463 Record.push_back(N->getSizeInBits()); 1464 Record.push_back(N->getAlignInBits()); 1465 Record.push_back(N->getOffsetInBits()); 1466 Record.push_back(N->getFlags()); 1467 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1468 1469 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1470 Record.clear(); 1471 } 1472 1473 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1474 SmallVectorImpl<uint64_t> &Record, 1475 unsigned Abbrev) { 1476 Record.push_back(N->isDistinct()); 1477 Record.push_back(N->getTag()); 1478 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1479 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1480 Record.push_back(N->getLine()); 1481 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1482 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1483 Record.push_back(N->getSizeInBits()); 1484 Record.push_back(N->getAlignInBits()); 1485 Record.push_back(N->getOffsetInBits()); 1486 Record.push_back(N->getFlags()); 1487 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1488 Record.push_back(N->getRuntimeLang()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1492 1493 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1494 Record.clear(); 1495 } 1496 1497 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1498 SmallVectorImpl<uint64_t> &Record, 1499 unsigned Abbrev) { 1500 Record.push_back(N->isDistinct()); 1501 Record.push_back(N->getFlags()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1503 1504 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1505 Record.clear(); 1506 } 1507 1508 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1509 SmallVectorImpl<uint64_t> &Record, 1510 unsigned Abbrev) { 1511 Record.push_back(N->isDistinct()); 1512 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1514 1515 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1520 SmallVectorImpl<uint64_t> &Record, 1521 unsigned Abbrev) { 1522 Record.push_back(N->isDistinct()); 1523 Record.push_back(N->getSourceLanguage()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1526 Record.push_back(N->isOptimized()); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1528 Record.push_back(N->getRuntimeVersion()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1530 Record.push_back(N->getEmissionKind()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1533 Record.push_back(/* subprograms */ 0); 1534 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1536 Record.push_back(N->getDWOId()); 1537 1538 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1539 Record.clear(); 1540 } 1541 1542 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1543 SmallVectorImpl<uint64_t> &Record, 1544 unsigned Abbrev) { 1545 Record.push_back(N->isDistinct()); 1546 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1549 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1550 Record.push_back(N->getLine()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1552 Record.push_back(N->isLocalToUnit()); 1553 Record.push_back(N->isDefinition()); 1554 Record.push_back(N->getScopeLine()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1556 Record.push_back(N->getVirtuality()); 1557 Record.push_back(N->getVirtualIndex()); 1558 Record.push_back(N->getFlags()); 1559 Record.push_back(N->isOptimized()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1564 1565 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1566 Record.clear(); 1567 } 1568 1569 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1570 SmallVectorImpl<uint64_t> &Record, 1571 unsigned Abbrev) { 1572 Record.push_back(N->isDistinct()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1575 Record.push_back(N->getLine()); 1576 Record.push_back(N->getColumn()); 1577 1578 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 void DXILBitcodeWriter::writeDILexicalBlockFile( 1583 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1584 unsigned Abbrev) { 1585 Record.push_back(N->isDistinct()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1588 Record.push_back(N->getDiscriminator()); 1589 1590 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1591 Record.clear(); 1592 } 1593 1594 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1595 SmallVectorImpl<uint64_t> &Record, 1596 unsigned Abbrev) { 1597 Record.push_back(N->isDistinct()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1601 Record.push_back(/* line number */ 0); 1602 1603 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1608 SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 Record.push_back(N->isDistinct()); 1611 for (auto &I : N->operands()) 1612 Record.push_back(VE.getMetadataOrNullID(I)); 1613 1614 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1619 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1624 1625 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1626 Record.clear(); 1627 } 1628 1629 void DXILBitcodeWriter::writeDITemplateValueParameter( 1630 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 Record.push_back(N->isDistinct()); 1633 Record.push_back(N->getTag()); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1637 1638 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 Record.push_back(N->isDistinct()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1650 Record.push_back(N->getLine()); 1651 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1652 Record.push_back(N->isLocalToUnit()); 1653 Record.push_back(N->isDefinition()); 1654 Record.push_back(/* N->getRawVariable() */ 0); 1655 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1656 1657 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1662 SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(N->getTag()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1668 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1669 Record.push_back(N->getLine()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1671 Record.push_back(N->getArg()); 1672 Record.push_back(N->getFlags()); 1673 1674 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1679 SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 Record.reserve(N->getElements().size() + 1); 1682 1683 Record.push_back(N->isDistinct()); 1684 Record.append(N->elements_begin(), N->elements_end()); 1685 1686 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1687 Record.clear(); 1688 } 1689 1690 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1691 SmallVectorImpl<uint64_t> &Record, 1692 unsigned Abbrev) { 1693 llvm_unreachable("DXIL does not support objc!!!"); 1694 } 1695 1696 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1697 SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 Record.push_back(N->isDistinct()); 1700 Record.push_back(N->getTag()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1703 Record.push_back(N->getLine()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1705 1706 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1707 Record.clear(); 1708 } 1709 1710 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1711 // Abbrev for METADATA_LOCATION. 1712 // 1713 // Assume the column is usually under 128, and always output the inlined-at 1714 // location (it's never more expensive than building an array size 1). 1715 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1716 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1722 return Stream.EmitAbbrev(std::move(Abbv)); 1723 } 1724 1725 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1726 // Abbrev for METADATA_GENERIC_DEBUG. 1727 // 1728 // Assume the column is usually under 128, and always output the inlined-at 1729 // location (it's never more expensive than building an array size 1). 1730 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1731 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1738 return Stream.EmitAbbrev(std::move(Abbv)); 1739 } 1740 1741 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1742 SmallVectorImpl<uint64_t> &Record, 1743 std::vector<unsigned> *MDAbbrevs, 1744 std::vector<uint64_t> *IndexPos) { 1745 if (MDs.empty()) 1746 return; 1747 1748 // Initialize MDNode abbreviations. 1749 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1750 #include "llvm/IR/Metadata.def" 1751 1752 for (const Metadata *MD : MDs) { 1753 if (IndexPos) 1754 IndexPos->push_back(Stream.GetCurrentBitNo()); 1755 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1756 assert(N->isResolved() && "Expected forward references to be resolved"); 1757 1758 switch (N->getMetadataID()) { 1759 default: 1760 llvm_unreachable("Invalid MDNode subclass"); 1761 #define HANDLE_MDNODE_LEAF(CLASS) \ 1762 case Metadata::CLASS##Kind: \ 1763 if (MDAbbrevs) \ 1764 write##CLASS(cast<CLASS>(N), Record, \ 1765 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1766 else \ 1767 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1768 continue; 1769 #include "llvm/IR/Metadata.def" 1770 } 1771 } 1772 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1773 } 1774 } 1775 1776 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1777 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1778 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1781 return Stream.EmitAbbrev(std::move(Abbv)); 1782 } 1783 1784 void DXILBitcodeWriter::writeMetadataStrings( 1785 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1786 for (const Metadata *MD : Strings) { 1787 const MDString *MDS = cast<MDString>(MD); 1788 // Code: [strchar x N] 1789 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1790 1791 // Emit the finished record. 1792 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, 1793 createMetadataStringsAbbrev()); 1794 Record.clear(); 1795 } 1796 } 1797 1798 void DXILBitcodeWriter::writeModuleMetadata() { 1799 if (!VE.hasMDs() && M.named_metadata_empty()) 1800 return; 1801 1802 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1803 1804 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1805 // block and load any metadata. 1806 std::vector<unsigned> MDAbbrevs; 1807 1808 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1809 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1810 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1811 createGenericDINodeAbbrev(); 1812 1813 unsigned NameAbbrev = 0; 1814 if (!M.named_metadata_empty()) { 1815 // Abbrev for METADATA_NAME. 1816 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1817 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1820 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1821 } 1822 1823 SmallVector<uint64_t, 64> Record; 1824 writeMetadataStrings(VE.getMDStrings(), Record); 1825 1826 std::vector<uint64_t> IndexPos; 1827 IndexPos.reserve(VE.getNonMDStrings().size()); 1828 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1829 1830 // Write named metadata. 1831 for (const NamedMDNode &NMD : M.named_metadata()) { 1832 // Write name. 1833 StringRef Str = NMD.getName(); 1834 Record.append(Str.bytes_begin(), Str.bytes_end()); 1835 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1836 Record.clear(); 1837 1838 // Write named metadata operands. 1839 for (const MDNode *N : NMD.operands()) 1840 Record.push_back(VE.getMetadataID(N)); 1841 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1842 Record.clear(); 1843 } 1844 1845 Stream.ExitBlock(); 1846 } 1847 1848 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1849 if (!VE.hasMDs()) 1850 return; 1851 1852 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1853 SmallVector<uint64_t, 64> Record; 1854 writeMetadataStrings(VE.getMDStrings(), Record); 1855 writeMetadataRecords(VE.getNonMDStrings(), Record); 1856 Stream.ExitBlock(); 1857 } 1858 1859 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1860 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1861 1862 SmallVector<uint64_t, 64> Record; 1863 1864 // Write metadata attachments 1865 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1866 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1867 F.getAllMetadata(MDs); 1868 if (!MDs.empty()) { 1869 for (const auto &I : MDs) { 1870 Record.push_back(I.first); 1871 Record.push_back(VE.getMetadataID(I.second)); 1872 } 1873 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1874 Record.clear(); 1875 } 1876 1877 for (const BasicBlock &BB : F) 1878 for (const Instruction &I : BB) { 1879 MDs.clear(); 1880 I.getAllMetadataOtherThanDebugLoc(MDs); 1881 1882 // If no metadata, ignore instruction. 1883 if (MDs.empty()) 1884 continue; 1885 1886 Record.push_back(VE.getInstructionID(&I)); 1887 1888 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1889 Record.push_back(MDs[i].first); 1890 Record.push_back(VE.getMetadataID(MDs[i].second)); 1891 } 1892 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1893 Record.clear(); 1894 } 1895 1896 Stream.ExitBlock(); 1897 } 1898 1899 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1900 SmallVector<uint64_t, 64> Record; 1901 1902 // Write metadata kinds 1903 // METADATA_KIND - [n x [id, name]] 1904 SmallVector<StringRef, 8> Names; 1905 M.getMDKindNames(Names); 1906 1907 if (Names.empty()) 1908 return; 1909 1910 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1911 1912 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1913 Record.push_back(MDKindID); 1914 StringRef KName = Names[MDKindID]; 1915 Record.append(KName.begin(), KName.end()); 1916 1917 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1918 Record.clear(); 1919 } 1920 1921 Stream.ExitBlock(); 1922 } 1923 1924 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1925 bool isGlobal) { 1926 if (FirstVal == LastVal) 1927 return; 1928 1929 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1930 1931 unsigned AggregateAbbrev = 0; 1932 unsigned String8Abbrev = 0; 1933 unsigned CString7Abbrev = 0; 1934 unsigned CString6Abbrev = 0; 1935 // If this is a constant pool for the module, emit module-specific abbrevs. 1936 if (isGlobal) { 1937 // Abbrev for CST_CODE_AGGREGATE. 1938 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1939 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1941 Abbv->Add( 1942 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1943 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1944 1945 // Abbrev for CST_CODE_STRING. 1946 Abbv = std::make_shared<BitCodeAbbrev>(); 1947 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1950 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1951 // Abbrev for CST_CODE_CSTRING. 1952 Abbv = std::make_shared<BitCodeAbbrev>(); 1953 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1956 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1957 // Abbrev for CST_CODE_CSTRING. 1958 Abbv = std::make_shared<BitCodeAbbrev>(); 1959 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1962 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1963 } 1964 1965 SmallVector<uint64_t, 64> Record; 1966 1967 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1968 Type *LastTy = nullptr; 1969 for (unsigned i = FirstVal; i != LastVal; ++i) { 1970 const Value *V = Vals[i].first; 1971 // If we need to switch types, do so now. 1972 if (V->getType() != LastTy) { 1973 LastTy = V->getType(); 1974 Record.push_back(getTypeID(LastTy)); 1975 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1976 CONSTANTS_SETTYPE_ABBREV); 1977 Record.clear(); 1978 } 1979 1980 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1981 Record.push_back(unsigned(IA->hasSideEffects()) | 1982 unsigned(IA->isAlignStack()) << 1 | 1983 unsigned(IA->getDialect() & 1) << 2); 1984 1985 // Add the asm string. 1986 const std::string &AsmStr = IA->getAsmString(); 1987 Record.push_back(AsmStr.size()); 1988 Record.append(AsmStr.begin(), AsmStr.end()); 1989 1990 // Add the constraint string. 1991 const std::string &ConstraintStr = IA->getConstraintString(); 1992 Record.push_back(ConstraintStr.size()); 1993 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1994 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1995 Record.clear(); 1996 continue; 1997 } 1998 const Constant *C = cast<Constant>(V); 1999 unsigned Code = -1U; 2000 unsigned AbbrevToUse = 0; 2001 if (C->isNullValue()) { 2002 Code = bitc::CST_CODE_NULL; 2003 } else if (isa<UndefValue>(C)) { 2004 Code = bitc::CST_CODE_UNDEF; 2005 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2006 if (IV->getBitWidth() <= 64) { 2007 uint64_t V = IV->getSExtValue(); 2008 emitSignedInt64(Record, V); 2009 Code = bitc::CST_CODE_INTEGER; 2010 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2011 } else { // Wide integers, > 64 bits in size. 2012 // We have an arbitrary precision integer value to write whose 2013 // bit width is > 64. However, in canonical unsigned integer 2014 // format it is likely that the high bits are going to be zero. 2015 // So, we only write the number of active words. 2016 unsigned NWords = IV->getValue().getActiveWords(); 2017 const uint64_t *RawWords = IV->getValue().getRawData(); 2018 for (unsigned i = 0; i != NWords; ++i) { 2019 emitSignedInt64(Record, RawWords[i]); 2020 } 2021 Code = bitc::CST_CODE_WIDE_INTEGER; 2022 } 2023 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2024 Code = bitc::CST_CODE_FLOAT; 2025 Type *Ty = CFP->getType(); 2026 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2027 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2028 } else if (Ty->isX86_FP80Ty()) { 2029 // api needed to prevent premature destruction 2030 // bits are not in the same order as a normal i80 APInt, compensate. 2031 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2032 const uint64_t *p = api.getRawData(); 2033 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2034 Record.push_back(p[0] & 0xffffLL); 2035 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2036 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2037 const uint64_t *p = api.getRawData(); 2038 Record.push_back(p[0]); 2039 Record.push_back(p[1]); 2040 } else { 2041 assert(0 && "Unknown FP type!"); 2042 } 2043 } else if (isa<ConstantDataSequential>(C) && 2044 cast<ConstantDataSequential>(C)->isString()) { 2045 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2046 // Emit constant strings specially. 2047 unsigned NumElts = Str->getNumElements(); 2048 // If this is a null-terminated string, use the denser CSTRING encoding. 2049 if (Str->isCString()) { 2050 Code = bitc::CST_CODE_CSTRING; 2051 --NumElts; // Don't encode the null, which isn't allowed by char6. 2052 } else { 2053 Code = bitc::CST_CODE_STRING; 2054 AbbrevToUse = String8Abbrev; 2055 } 2056 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2057 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2058 for (unsigned i = 0; i != NumElts; ++i) { 2059 unsigned char V = Str->getElementAsInteger(i); 2060 Record.push_back(V); 2061 isCStr7 &= (V & 128) == 0; 2062 if (isCStrChar6) 2063 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2064 } 2065 2066 if (isCStrChar6) 2067 AbbrevToUse = CString6Abbrev; 2068 else if (isCStr7) 2069 AbbrevToUse = CString7Abbrev; 2070 } else if (const ConstantDataSequential *CDS = 2071 dyn_cast<ConstantDataSequential>(C)) { 2072 Code = bitc::CST_CODE_DATA; 2073 Type *EltTy = CDS->getType()->getArrayElementType(); 2074 if (isa<IntegerType>(EltTy)) { 2075 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2076 Record.push_back(CDS->getElementAsInteger(i)); 2077 } else if (EltTy->isFloatTy()) { 2078 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2079 union { 2080 float F; 2081 uint32_t I; 2082 }; 2083 F = CDS->getElementAsFloat(i); 2084 Record.push_back(I); 2085 } 2086 } else { 2087 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2088 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2089 union { 2090 double F; 2091 uint64_t I; 2092 }; 2093 F = CDS->getElementAsDouble(i); 2094 Record.push_back(I); 2095 } 2096 } 2097 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2098 isa<ConstantVector>(C)) { 2099 Code = bitc::CST_CODE_AGGREGATE; 2100 for (const Value *Op : C->operands()) 2101 Record.push_back(VE.getValueID(Op)); 2102 AbbrevToUse = AggregateAbbrev; 2103 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2104 switch (CE->getOpcode()) { 2105 default: 2106 if (Instruction::isCast(CE->getOpcode())) { 2107 Code = bitc::CST_CODE_CE_CAST; 2108 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2109 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2110 Record.push_back(VE.getValueID(C->getOperand(0))); 2111 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2112 } else { 2113 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2114 Code = bitc::CST_CODE_CE_BINOP; 2115 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2116 Record.push_back(VE.getValueID(C->getOperand(0))); 2117 Record.push_back(VE.getValueID(C->getOperand(1))); 2118 uint64_t Flags = getOptimizationFlags(CE); 2119 if (Flags != 0) 2120 Record.push_back(Flags); 2121 } 2122 break; 2123 case Instruction::GetElementPtr: { 2124 Code = bitc::CST_CODE_CE_GEP; 2125 const auto *GO = cast<GEPOperator>(C); 2126 if (GO->isInBounds()) 2127 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2128 Record.push_back(getTypeID(GO->getSourceElementType())); 2129 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2130 Record.push_back(getTypeID(C->getOperand(i)->getType())); 2131 Record.push_back(VE.getValueID(C->getOperand(i))); 2132 } 2133 break; 2134 } 2135 case Instruction::Select: 2136 Code = bitc::CST_CODE_CE_SELECT; 2137 Record.push_back(VE.getValueID(C->getOperand(0))); 2138 Record.push_back(VE.getValueID(C->getOperand(1))); 2139 Record.push_back(VE.getValueID(C->getOperand(2))); 2140 break; 2141 case Instruction::ExtractElement: 2142 Code = bitc::CST_CODE_CE_EXTRACTELT; 2143 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2144 Record.push_back(VE.getValueID(C->getOperand(0))); 2145 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2146 Record.push_back(VE.getValueID(C->getOperand(1))); 2147 break; 2148 case Instruction::InsertElement: 2149 Code = bitc::CST_CODE_CE_INSERTELT; 2150 Record.push_back(VE.getValueID(C->getOperand(0))); 2151 Record.push_back(VE.getValueID(C->getOperand(1))); 2152 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2153 Record.push_back(VE.getValueID(C->getOperand(2))); 2154 break; 2155 case Instruction::ShuffleVector: 2156 // If the return type and argument types are the same, this is a 2157 // standard shufflevector instruction. If the types are different, 2158 // then the shuffle is widening or truncating the input vectors, and 2159 // the argument type must also be encoded. 2160 if (C->getType() == C->getOperand(0)->getType()) { 2161 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2162 } else { 2163 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2164 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2165 } 2166 Record.push_back(VE.getValueID(C->getOperand(0))); 2167 Record.push_back(VE.getValueID(C->getOperand(1))); 2168 Record.push_back(VE.getValueID(C->getOperand(2))); 2169 break; 2170 case Instruction::ICmp: 2171 case Instruction::FCmp: 2172 Code = bitc::CST_CODE_CE_CMP; 2173 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2174 Record.push_back(VE.getValueID(C->getOperand(0))); 2175 Record.push_back(VE.getValueID(C->getOperand(1))); 2176 Record.push_back(CE->getPredicate()); 2177 break; 2178 } 2179 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2180 Code = bitc::CST_CODE_BLOCKADDRESS; 2181 Record.push_back(getTypeID(BA->getFunction()->getType())); 2182 Record.push_back(VE.getValueID(BA->getFunction())); 2183 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2184 } else { 2185 #ifndef NDEBUG 2186 C->dump(); 2187 #endif 2188 llvm_unreachable("Unknown constant!"); 2189 } 2190 Stream.EmitRecord(Code, Record, AbbrevToUse); 2191 Record.clear(); 2192 } 2193 2194 Stream.ExitBlock(); 2195 } 2196 2197 void DXILBitcodeWriter::writeModuleConstants() { 2198 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2199 2200 // Find the first constant to emit, which is the first non-globalvalue value. 2201 // We know globalvalues have been emitted by WriteModuleInfo. 2202 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2203 if (!isa<GlobalValue>(Vals[i].first)) { 2204 writeConstants(i, Vals.size(), true); 2205 return; 2206 } 2207 } 2208 } 2209 2210 /// pushValueAndType - The file has to encode both the value and type id for 2211 /// many values, because we need to know what type to create for forward 2212 /// references. However, most operands are not forward references, so this type 2213 /// field is not needed. 2214 /// 2215 /// This function adds V's value ID to Vals. If the value ID is higher than the 2216 /// instruction ID, then it is a forward reference, and it also includes the 2217 /// type ID. The value ID that is written is encoded relative to the InstID. 2218 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2219 SmallVectorImpl<unsigned> &Vals) { 2220 unsigned ValID = VE.getValueID(V); 2221 // Make encoding relative to the InstID. 2222 Vals.push_back(InstID - ValID); 2223 if (ValID >= InstID) { 2224 Vals.push_back(getTypeID(V->getType(), V)); 2225 return true; 2226 } 2227 return false; 2228 } 2229 2230 /// pushValue - Like pushValueAndType, but where the type of the value is 2231 /// omitted (perhaps it was already encoded in an earlier operand). 2232 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2233 SmallVectorImpl<unsigned> &Vals) { 2234 unsigned ValID = VE.getValueID(V); 2235 Vals.push_back(InstID - ValID); 2236 } 2237 2238 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2239 SmallVectorImpl<uint64_t> &Vals) { 2240 unsigned ValID = VE.getValueID(V); 2241 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2242 emitSignedInt64(Vals, diff); 2243 } 2244 2245 /// WriteInstruction - Emit an instruction 2246 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2247 SmallVectorImpl<unsigned> &Vals) { 2248 unsigned Code = 0; 2249 unsigned AbbrevToUse = 0; 2250 VE.setInstructionID(&I); 2251 switch (I.getOpcode()) { 2252 default: 2253 if (Instruction::isCast(I.getOpcode())) { 2254 Code = bitc::FUNC_CODE_INST_CAST; 2255 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2256 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2257 Vals.push_back(getTypeID(I.getType(), &I)); 2258 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2259 } else { 2260 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2261 Code = bitc::FUNC_CODE_INST_BINOP; 2262 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2263 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2264 pushValue(I.getOperand(1), InstID, Vals); 2265 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2266 uint64_t Flags = getOptimizationFlags(&I); 2267 if (Flags != 0) { 2268 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2269 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2270 Vals.push_back(Flags); 2271 } 2272 } 2273 break; 2274 2275 case Instruction::GetElementPtr: { 2276 Code = bitc::FUNC_CODE_INST_GEP; 2277 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2278 auto &GEPInst = cast<GetElementPtrInst>(I); 2279 Vals.push_back(GEPInst.isInBounds()); 2280 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2281 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2282 pushValueAndType(I.getOperand(i), InstID, Vals); 2283 break; 2284 } 2285 case Instruction::ExtractValue: { 2286 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2287 pushValueAndType(I.getOperand(0), InstID, Vals); 2288 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2289 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2290 break; 2291 } 2292 case Instruction::InsertValue: { 2293 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2294 pushValueAndType(I.getOperand(0), InstID, Vals); 2295 pushValueAndType(I.getOperand(1), InstID, Vals); 2296 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2297 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2298 break; 2299 } 2300 case Instruction::Select: 2301 Code = bitc::FUNC_CODE_INST_VSELECT; 2302 pushValueAndType(I.getOperand(1), InstID, Vals); 2303 pushValue(I.getOperand(2), InstID, Vals); 2304 pushValueAndType(I.getOperand(0), InstID, Vals); 2305 break; 2306 case Instruction::ExtractElement: 2307 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2308 pushValueAndType(I.getOperand(0), InstID, Vals); 2309 pushValueAndType(I.getOperand(1), InstID, Vals); 2310 break; 2311 case Instruction::InsertElement: 2312 Code = bitc::FUNC_CODE_INST_INSERTELT; 2313 pushValueAndType(I.getOperand(0), InstID, Vals); 2314 pushValue(I.getOperand(1), InstID, Vals); 2315 pushValueAndType(I.getOperand(2), InstID, Vals); 2316 break; 2317 case Instruction::ShuffleVector: 2318 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2319 pushValueAndType(I.getOperand(0), InstID, Vals); 2320 pushValue(I.getOperand(1), InstID, Vals); 2321 pushValue(I.getOperand(2), InstID, Vals); 2322 break; 2323 case Instruction::ICmp: 2324 case Instruction::FCmp: { 2325 // compare returning Int1Ty or vector of Int1Ty 2326 Code = bitc::FUNC_CODE_INST_CMP2; 2327 pushValueAndType(I.getOperand(0), InstID, Vals); 2328 pushValue(I.getOperand(1), InstID, Vals); 2329 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2330 uint64_t Flags = getOptimizationFlags(&I); 2331 if (Flags != 0) 2332 Vals.push_back(Flags); 2333 break; 2334 } 2335 2336 case Instruction::Ret: { 2337 Code = bitc::FUNC_CODE_INST_RET; 2338 unsigned NumOperands = I.getNumOperands(); 2339 if (NumOperands == 0) 2340 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2341 else if (NumOperands == 1) { 2342 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2343 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2344 } else { 2345 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2346 pushValueAndType(I.getOperand(i), InstID, Vals); 2347 } 2348 } break; 2349 case Instruction::Br: { 2350 Code = bitc::FUNC_CODE_INST_BR; 2351 const BranchInst &II = cast<BranchInst>(I); 2352 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2353 if (II.isConditional()) { 2354 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2355 pushValue(II.getCondition(), InstID, Vals); 2356 } 2357 } break; 2358 case Instruction::Switch: { 2359 Code = bitc::FUNC_CODE_INST_SWITCH; 2360 const SwitchInst &SI = cast<SwitchInst>(I); 2361 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2362 pushValue(SI.getCondition(), InstID, Vals); 2363 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2364 for (auto Case : SI.cases()) { 2365 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2366 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2367 } 2368 } break; 2369 case Instruction::IndirectBr: 2370 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2371 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2372 // Encode the address operand as relative, but not the basic blocks. 2373 pushValue(I.getOperand(0), InstID, Vals); 2374 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2375 Vals.push_back(VE.getValueID(I.getOperand(i))); 2376 break; 2377 2378 case Instruction::Invoke: { 2379 const InvokeInst *II = cast<InvokeInst>(&I); 2380 const Value *Callee = II->getCalledOperand(); 2381 FunctionType *FTy = II->getFunctionType(); 2382 Code = bitc::FUNC_CODE_INST_INVOKE; 2383 2384 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2385 Vals.push_back(II->getCallingConv() | 1 << 13); 2386 Vals.push_back(VE.getValueID(II->getNormalDest())); 2387 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2388 Vals.push_back(getTypeID(FTy)); 2389 pushValueAndType(Callee, InstID, Vals); 2390 2391 // Emit value #'s for the fixed parameters. 2392 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2393 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2394 2395 // Emit type/value pairs for varargs params. 2396 if (FTy->isVarArg()) { 2397 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2398 ++i) 2399 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2400 } 2401 break; 2402 } 2403 case Instruction::Resume: 2404 Code = bitc::FUNC_CODE_INST_RESUME; 2405 pushValueAndType(I.getOperand(0), InstID, Vals); 2406 break; 2407 case Instruction::Unreachable: 2408 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2409 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2410 break; 2411 2412 case Instruction::PHI: { 2413 const PHINode &PN = cast<PHINode>(I); 2414 Code = bitc::FUNC_CODE_INST_PHI; 2415 // With the newer instruction encoding, forward references could give 2416 // negative valued IDs. This is most common for PHIs, so we use 2417 // signed VBRs. 2418 SmallVector<uint64_t, 128> Vals64; 2419 Vals64.push_back(getTypeID(PN.getType())); 2420 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2421 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2422 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2423 } 2424 // Emit a Vals64 vector and exit. 2425 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2426 Vals64.clear(); 2427 return; 2428 } 2429 2430 case Instruction::LandingPad: { 2431 const LandingPadInst &LP = cast<LandingPadInst>(I); 2432 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2433 Vals.push_back(getTypeID(LP.getType())); 2434 Vals.push_back(LP.isCleanup()); 2435 Vals.push_back(LP.getNumClauses()); 2436 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2437 if (LP.isCatch(I)) 2438 Vals.push_back(LandingPadInst::Catch); 2439 else 2440 Vals.push_back(LandingPadInst::Filter); 2441 pushValueAndType(LP.getClause(I), InstID, Vals); 2442 } 2443 break; 2444 } 2445 2446 case Instruction::Alloca: { 2447 Code = bitc::FUNC_CODE_INST_ALLOCA; 2448 const AllocaInst &AI = cast<AllocaInst>(I); 2449 Vals.push_back(getTypeID(AI.getAllocatedType())); 2450 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2451 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2452 using APV = AllocaPackedValues; 2453 unsigned Record = 0; 2454 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 2455 Bitfield::set<APV::AlignLower>( 2456 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 2457 Bitfield::set<APV::AlignUpper>(Record, 2458 EncodedAlign >> APV::AlignLower::Bits); 2459 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 2460 Vals.push_back(Record); 2461 break; 2462 } 2463 2464 case Instruction::Load: 2465 if (cast<LoadInst>(I).isAtomic()) { 2466 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2467 pushValueAndType(I.getOperand(0), InstID, Vals); 2468 } else { 2469 Code = bitc::FUNC_CODE_INST_LOAD; 2470 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2471 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2472 } 2473 Vals.push_back(getTypeID(I.getType())); 2474 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2475 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2476 if (cast<LoadInst>(I).isAtomic()) { 2477 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2478 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2479 } 2480 break; 2481 case Instruction::Store: 2482 if (cast<StoreInst>(I).isAtomic()) 2483 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2484 else 2485 Code = bitc::FUNC_CODE_INST_STORE; 2486 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2487 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2488 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2489 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2490 if (cast<StoreInst>(I).isAtomic()) { 2491 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2492 Vals.push_back( 2493 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2494 } 2495 break; 2496 case Instruction::AtomicCmpXchg: 2497 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2498 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2499 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2500 pushValue(I.getOperand(2), InstID, Vals); // newval. 2501 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2502 Vals.push_back( 2503 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2504 Vals.push_back( 2505 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2506 Vals.push_back( 2507 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2508 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2509 break; 2510 case Instruction::AtomicRMW: 2511 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2512 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2513 pushValue(I.getOperand(1), InstID, Vals); // val. 2514 Vals.push_back( 2515 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2516 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2517 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2518 Vals.push_back( 2519 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2520 break; 2521 case Instruction::Fence: 2522 Code = bitc::FUNC_CODE_INST_FENCE; 2523 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2524 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2525 break; 2526 case Instruction::Call: { 2527 const CallInst &CI = cast<CallInst>(I); 2528 FunctionType *FTy = CI.getFunctionType(); 2529 2530 Code = bitc::FUNC_CODE_INST_CALL; 2531 2532 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2533 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2534 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2535 Vals.push_back(getTypeID(FTy, CI.getCalledFunction())); 2536 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2537 2538 // Emit value #'s for the fixed parameters. 2539 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2540 // Check for labels (can happen with asm labels). 2541 if (FTy->getParamType(i)->isLabelTy()) 2542 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2543 else 2544 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2545 } 2546 2547 // Emit type/value pairs for varargs params. 2548 if (FTy->isVarArg()) { 2549 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2550 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2551 } 2552 break; 2553 } 2554 case Instruction::VAArg: 2555 Code = bitc::FUNC_CODE_INST_VAARG; 2556 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2557 pushValue(I.getOperand(0), InstID, Vals); // valist. 2558 Vals.push_back(getTypeID(I.getType())); // restype. 2559 break; 2560 } 2561 2562 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2563 Vals.clear(); 2564 } 2565 2566 // Emit names for globals/functions etc. 2567 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2568 const ValueSymbolTable &VST) { 2569 if (VST.empty()) 2570 return; 2571 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2572 2573 SmallVector<unsigned, 64> NameVals; 2574 2575 // HLSL Change 2576 // Read the named values from a sorted list instead of the original list 2577 // to ensure the binary is the same no matter what values ever existed. 2578 SmallVector<const ValueName *, 16> SortedTable; 2579 2580 for (auto &VI : VST) { 2581 SortedTable.push_back(VI.second->getValueName()); 2582 } 2583 // The keys are unique, so there shouldn't be stability issues. 2584 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2585 return A->first() < B->first(); 2586 }); 2587 2588 for (const ValueName *SI : SortedTable) { 2589 auto &Name = *SI; 2590 2591 // Figure out the encoding to use for the name. 2592 bool is7Bit = true; 2593 bool isChar6 = true; 2594 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2595 C != E; ++C) { 2596 if (isChar6) 2597 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2598 if ((unsigned char)*C & 128) { 2599 is7Bit = false; 2600 break; // don't bother scanning the rest. 2601 } 2602 } 2603 2604 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2605 2606 // VST_ENTRY: [valueid, namechar x N] 2607 // VST_BBENTRY: [bbid, namechar x N] 2608 unsigned Code; 2609 if (isa<BasicBlock>(SI->getValue())) { 2610 Code = bitc::VST_CODE_BBENTRY; 2611 if (isChar6) 2612 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2613 } else { 2614 Code = bitc::VST_CODE_ENTRY; 2615 if (isChar6) 2616 AbbrevToUse = VST_ENTRY_6_ABBREV; 2617 else if (is7Bit) 2618 AbbrevToUse = VST_ENTRY_7_ABBREV; 2619 } 2620 2621 NameVals.push_back(VE.getValueID(SI->getValue())); 2622 for (const char *P = Name.getKeyData(), 2623 *E = Name.getKeyData() + Name.getKeyLength(); 2624 P != E; ++P) 2625 NameVals.push_back((unsigned char)*P); 2626 2627 // Emit the finished record. 2628 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2629 NameVals.clear(); 2630 } 2631 Stream.ExitBlock(); 2632 } 2633 2634 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) { 2635 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2636 unsigned Code; 2637 if (isa<BasicBlock>(Order.V)) 2638 Code = bitc::USELIST_CODE_BB; 2639 else 2640 Code = bitc::USELIST_CODE_DEFAULT; 2641 2642 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2643 Record.push_back(VE.getValueID(Order.V)); 2644 Stream.EmitRecord(Code, Record); 2645 } 2646 2647 void DXILBitcodeWriter::writeUseListBlock(const Function *F) { 2648 auto hasMore = [&]() { 2649 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2650 }; 2651 if (!hasMore()) 2652 // Nothing to do. 2653 return; 2654 2655 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2656 while (hasMore()) { 2657 writeUseList(std::move(VE.UseListOrders.back())); 2658 VE.UseListOrders.pop_back(); 2659 } 2660 Stream.ExitBlock(); 2661 } 2662 2663 /// Emit a function body to the module stream. 2664 void DXILBitcodeWriter::writeFunction(const Function &F) { 2665 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2666 VE.incorporateFunction(F); 2667 2668 SmallVector<unsigned, 64> Vals; 2669 2670 // Emit the number of basic blocks, so the reader can create them ahead of 2671 // time. 2672 Vals.push_back(VE.getBasicBlocks().size()); 2673 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2674 Vals.clear(); 2675 2676 // If there are function-local constants, emit them now. 2677 unsigned CstStart, CstEnd; 2678 VE.getFunctionConstantRange(CstStart, CstEnd); 2679 writeConstants(CstStart, CstEnd, false); 2680 2681 // If there is function-local metadata, emit it now. 2682 writeFunctionMetadata(F); 2683 2684 // Keep a running idea of what the instruction ID is. 2685 unsigned InstID = CstEnd; 2686 2687 bool NeedsMetadataAttachment = F.hasMetadata(); 2688 2689 DILocation *LastDL = nullptr; 2690 2691 // Finally, emit all the instructions, in order. 2692 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2693 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2694 ++I) { 2695 writeInstruction(*I, InstID, Vals); 2696 2697 if (!I->getType()->isVoidTy()) 2698 ++InstID; 2699 2700 // If the instruction has metadata, write a metadata attachment later. 2701 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2702 2703 // If the instruction has a debug location, emit it. 2704 DILocation *DL = I->getDebugLoc(); 2705 if (!DL) 2706 continue; 2707 2708 if (DL == LastDL) { 2709 // Just repeat the same debug loc as last time. 2710 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2711 continue; 2712 } 2713 2714 Vals.push_back(DL->getLine()); 2715 Vals.push_back(DL->getColumn()); 2716 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2717 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2718 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2719 Vals.clear(); 2720 2721 LastDL = DL; 2722 } 2723 2724 // Emit names for all the instructions etc. 2725 if (auto *Symtab = F.getValueSymbolTable()) 2726 writeFunctionLevelValueSymbolTable(*Symtab); 2727 2728 if (NeedsMetadataAttachment) 2729 writeFunctionMetadataAttachment(F); 2730 2731 writeUseListBlock(&F); 2732 VE.purgeFunction(); 2733 Stream.ExitBlock(); 2734 } 2735 2736 // Emit blockinfo, which defines the standard abbreviations etc. 2737 void DXILBitcodeWriter::writeBlockInfo() { 2738 // We only want to emit block info records for blocks that have multiple 2739 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2740 // Other blocks can define their abbrevs inline. 2741 Stream.EnterBlockInfoBlock(); 2742 2743 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2744 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2749 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2750 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2751 assert(false && "Unexpected abbrev ordering!"); 2752 } 2753 2754 { // 7-bit fixed width VST_ENTRY strings. 2755 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2756 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2760 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2761 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2762 assert(false && "Unexpected abbrev ordering!"); 2763 } 2764 { // 6-bit char6 VST_ENTRY strings. 2765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2766 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2770 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2771 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2772 assert(false && "Unexpected abbrev ordering!"); 2773 } 2774 { // 6-bit char6 VST_BBENTRY strings. 2775 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2776 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2780 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2781 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2782 assert(false && "Unexpected abbrev ordering!"); 2783 } 2784 2785 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2786 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2787 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2789 VE.computeBitsRequiredForTypeIndicies())); 2790 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2791 CONSTANTS_SETTYPE_ABBREV) 2792 assert(false && "Unexpected abbrev ordering!"); 2793 } 2794 2795 { // INTEGER abbrev for CONSTANTS_BLOCK. 2796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2797 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2799 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2800 CONSTANTS_INTEGER_ABBREV) 2801 assert(false && "Unexpected abbrev ordering!"); 2802 } 2803 2804 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2805 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2806 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2809 VE.computeBitsRequiredForTypeIndicies())); 2810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2811 2812 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2813 CONSTANTS_CE_CAST_Abbrev) 2814 assert(false && "Unexpected abbrev ordering!"); 2815 } 2816 { // NULL abbrev for CONSTANTS_BLOCK. 2817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2818 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2819 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2820 CONSTANTS_NULL_Abbrev) 2821 assert(false && "Unexpected abbrev ordering!"); 2822 } 2823 2824 // FIXME: This should only use space for first class types! 2825 2826 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2828 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2831 VE.computeBitsRequiredForTypeIndicies())); 2832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2834 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2835 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2836 assert(false && "Unexpected abbrev ordering!"); 2837 } 2838 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2839 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2840 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2845 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2846 assert(false && "Unexpected abbrev ordering!"); 2847 } 2848 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2850 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2855 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2856 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2857 assert(false && "Unexpected abbrev ordering!"); 2858 } 2859 { // INST_CAST abbrev for FUNCTION_BLOCK. 2860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2861 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2864 VE.computeBitsRequiredForTypeIndicies())); 2865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2866 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2867 (unsigned)FUNCTION_INST_CAST_ABBREV) 2868 assert(false && "Unexpected abbrev ordering!"); 2869 } 2870 2871 { // INST_RET abbrev for FUNCTION_BLOCK. 2872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2874 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2875 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2876 assert(false && "Unexpected abbrev ordering!"); 2877 } 2878 { // INST_RET abbrev for FUNCTION_BLOCK. 2879 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2880 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2882 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2883 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2884 assert(false && "Unexpected abbrev ordering!"); 2885 } 2886 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2887 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2888 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2889 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2890 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2891 assert(false && "Unexpected abbrev ordering!"); 2892 } 2893 { 2894 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2895 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2898 Log2_32_Ceil(VE.getTypes().size() + 1))); 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2901 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2902 (unsigned)FUNCTION_INST_GEP_ABBREV) 2903 assert(false && "Unexpected abbrev ordering!"); 2904 } 2905 2906 Stream.ExitBlock(); 2907 } 2908 2909 void DXILBitcodeWriter::writeModuleVersion() { 2910 // VERSION: [version#] 2911 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2912 } 2913 2914 /// WriteModule - Emit the specified module to the bitstream. 2915 void DXILBitcodeWriter::write() { 2916 // The identification block is new since llvm-3.7, but the old bitcode reader 2917 // will skip it. 2918 // writeIdentificationBlock(Stream); 2919 2920 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2921 2922 // It is redundant to fully-specify this here, but nice to make it explicit 2923 // so that it is clear the DXIL module version is different. 2924 DXILBitcodeWriter::writeModuleVersion(); 2925 2926 // Emit blockinfo, which defines the standard abbreviations etc. 2927 writeBlockInfo(); 2928 2929 // Emit information about attribute groups. 2930 writeAttributeGroupTable(); 2931 2932 // Emit information about parameter attributes. 2933 writeAttributeTable(); 2934 2935 // Emit information describing all of the types in the module. 2936 writeTypeTable(); 2937 2938 writeComdats(); 2939 2940 // Emit top-level description of module, including target triple, inline asm, 2941 // descriptors for global variables, and function prototype info. 2942 writeModuleInfo(); 2943 2944 // Emit constants. 2945 writeModuleConstants(); 2946 2947 // Emit metadata. 2948 writeModuleMetadataKinds(); 2949 2950 // Emit metadata. 2951 writeModuleMetadata(); 2952 2953 // Emit names for globals/functions etc. 2954 // DXIL uses the same format for module-level value symbol table as for the 2955 // function level table. 2956 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2957 2958 // Emit module-level use-lists. 2959 writeUseListBlock(nullptr); 2960 2961 // Emit function bodies. 2962 for (const Function &F : M) 2963 if (!F.isDeclaration()) 2964 writeFunction(F); 2965 2966 Stream.ExitBlock(); 2967 } 2968