1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "DirectXIRPasses/PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Bitcode/BitcodeCommon.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/Bitstream/BitCodes.h" 21 #include "llvm/Bitstream/BitstreamWriter.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/UseListOrder.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Object/IRSymtab.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/ModRef.h" 52 #include "llvm/Support/SHA1.h" 53 #include "llvm/TargetParser/Triple.h" 54 55 namespace llvm { 56 namespace dxil { 57 58 // Generates an enum to use as an index in the Abbrev array of Metadata record. 59 enum MetadataAbbrev : unsigned { 60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 61 #include "llvm/IR/Metadata.def" 62 LastPlusOne 63 }; 64 65 class DXILBitcodeWriter { 66 67 /// These are manifest constants used by the bitcode writer. They do not need 68 /// to be kept in sync with the reader, but need to be consistent within this 69 /// file. 70 enum { 71 // VALUE_SYMTAB_BLOCK abbrev id's. 72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 73 VST_ENTRY_7_ABBREV, 74 VST_ENTRY_6_ABBREV, 75 VST_BBENTRY_6_ABBREV, 76 77 // CONSTANTS_BLOCK abbrev id's. 78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 79 CONSTANTS_INTEGER_ABBREV, 80 CONSTANTS_CE_CAST_Abbrev, 81 CONSTANTS_NULL_Abbrev, 82 83 // FUNCTION_BLOCK abbrev id's. 84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 85 FUNCTION_INST_BINOP_ABBREV, 86 FUNCTION_INST_BINOP_FLAGS_ABBREV, 87 FUNCTION_INST_CAST_ABBREV, 88 FUNCTION_INST_RET_VOID_ABBREV, 89 FUNCTION_INST_RET_VAL_ABBREV, 90 FUNCTION_INST_UNREACHABLE_ABBREV, 91 FUNCTION_INST_GEP_ABBREV, 92 }; 93 94 // Cache some types 95 Type *I8Ty; 96 Type *I8PtrTy; 97 98 /// The stream created and owned by the client. 99 BitstreamWriter &Stream; 100 101 StringTableBuilder &StrtabBuilder; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 /// Saves the offset of the VSTOffset record that must eventually be 118 /// backpatched with the offset of the actual VST. 119 uint64_t VSTOffsetPlaceholder = 0; 120 121 /// Pointer to the buffer allocated by caller for bitcode writing. 122 const SmallVectorImpl<char> &Buffer; 123 124 /// The start bit of the identification block. 125 uint64_t BitcodeStartBit; 126 127 /// This maps values to their typed pointers 128 PointerTypeMap PointerMap; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 135 : I8Ty(Type::getInt8Ty(M.getContext())), 136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 138 BitcodeStartBit(Stream.GetCurrentBitNo()), 139 PointerMap(PointerTypeAnalysis::run(M)) { 140 GlobalValueId = VE.getValues().size(); 141 // Enumerate the typed pointers 142 for (auto El : PointerMap) 143 VE.EnumerateType(El.second); 144 } 145 146 /// Emit the current module to the bitstream. 147 void write(); 148 149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 151 StringRef Str, unsigned AbbrevToUse); 152 static void writeIdentificationBlock(BitstreamWriter &Stream); 153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 155 156 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 158 static unsigned getEncodedLinkage(const GlobalValue &GV); 159 static unsigned getEncodedVisibility(const GlobalValue &GV); 160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 162 static unsigned getEncodedCastOpcode(unsigned Opcode); 163 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 164 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 166 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 167 static uint64_t getOptimizationFlags(const Value *V); 168 169 private: 170 void writeModuleVersion(); 171 void writePerModuleGlobalValueSummary(); 172 173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 174 GlobalValueSummary *Summary, 175 unsigned ValueID, 176 unsigned FSCallsAbbrev, 177 unsigned FSCallsProfileAbbrev, 178 const Function &F); 179 void writeModuleLevelReferences(const GlobalVariable &V, 180 SmallVector<uint64_t, 64> &NameVals, 181 unsigned FSModRefsAbbrev, 182 unsigned FSModVTableRefsAbbrev); 183 184 void assignValueId(GlobalValue::GUID ValGUID) { 185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 186 } 187 188 unsigned getValueId(GlobalValue::GUID ValGUID) { 189 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 190 // Expect that any GUID value had a value Id assigned by an 191 // earlier call to assignValueId. 192 assert(VMI != GUIDToValueIdMap.end() && 193 "GUID does not have assigned value Id"); 194 return VMI->second; 195 } 196 197 // Helper to get the valueId for the type of value recorded in VI. 198 unsigned getValueId(ValueInfo VI) { 199 if (!VI.haveGVs() || !VI.getValue()) 200 return getValueId(VI.getGUID()); 201 return VE.getValueID(VI.getValue()); 202 } 203 204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 205 206 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 207 208 size_t addToStrtab(StringRef Str); 209 210 unsigned createDILocationAbbrev(); 211 unsigned createGenericDINodeAbbrev(); 212 213 void writeAttributeGroupTable(); 214 void writeAttributeTable(); 215 void writeTypeTable(); 216 void writeComdats(); 217 void writeValueSymbolTableForwardDecl(); 218 void writeModuleInfo(); 219 void writeValueAsMetadata(const ValueAsMetadata *MD, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned &Abbrev); 225 void writeGenericDINode(const GenericDINode *N, 226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 227 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 228 } 229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGenericSubrange(const DIGenericSubrange *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev) { 234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 235 } 236 void writeDIEnumerator(const DIEnumerator *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIStringType(const DIStringType *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 242 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 243 } 244 void writeDIDerivedType(const DIDerivedType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDICompositeType(const DICompositeType *N, 247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 248 void writeDISubroutineType(const DISubroutineType *N, 249 SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 252 unsigned Abbrev); 253 void writeDICompileUnit(const DICompileUnit *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDISubprogram(const DISubprogram *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlock(const DILexicalBlock *N, 258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 259 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 260 SmallVectorImpl<uint64_t> &Record, 261 unsigned Abbrev); 262 void writeDICommonBlock(const DICommonBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 265 } 266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev); 268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 269 unsigned Abbrev) { 270 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 271 } 272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 273 unsigned Abbrev) { 274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 275 } 276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev) { 278 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 279 } 280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev) { 282 // DIAssignID is experimental feature to track variable location in IR.. 283 // FIXME: translate DIAssignID to debug info DXIL supports. 284 // See https://github.com/llvm/llvm-project/issues/58989 285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); 286 } 287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 290 SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 293 SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 void writeDIGlobalVariable(const DIGlobalVariable *N, 296 SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDILocalVariable(const DILocalVariable *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev) { 302 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 303 } 304 void writeDIExpression(const DIExpression *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev) { 309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 310 } 311 void writeDIObjCProperty(const DIObjCProperty *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIImportedEntity(const DIImportedEntity *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 unsigned createNamedMetadataAbbrev(); 317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 318 unsigned createMetadataStringsAbbrev(); 319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 320 SmallVectorImpl<uint64_t> &Record); 321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 322 SmallVectorImpl<uint64_t> &Record, 323 std::vector<unsigned> *MDAbbrevs = nullptr, 324 std::vector<uint64_t> *IndexPos = nullptr); 325 void writeModuleMetadata(); 326 void writeFunctionMetadata(const Function &F); 327 void writeFunctionMetadataAttachment(const Function &F); 328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 329 const GlobalObject &GO); 330 void writeModuleMetadataKinds(); 331 void writeOperandBundleTags(); 332 void writeSyncScopeNames(); 333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 334 void writeModuleConstants(); 335 bool pushValueAndType(const Value *V, unsigned InstID, 336 SmallVectorImpl<unsigned> &Vals); 337 void writeOperandBundles(const CallBase &CB, unsigned InstID); 338 void pushValue(const Value *V, unsigned InstID, 339 SmallVectorImpl<unsigned> &Vals); 340 void pushValueSigned(const Value *V, unsigned InstID, 341 SmallVectorImpl<uint64_t> &Vals); 342 void writeInstruction(const Instruction &I, unsigned InstID, 343 SmallVectorImpl<unsigned> &Vals); 344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 345 void writeGlobalValueSymbolTable( 346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 347 void writeFunction(const Function &F); 348 void writeBlockInfo(); 349 350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 351 352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 353 354 unsigned getTypeID(Type *T, const Value *V = nullptr); 355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 356 /// 357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 358 /// GlobalObject, but in the bitcode writer we need the pointer element type. 359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 360 }; 361 362 } // namespace dxil 363 } // namespace llvm 364 365 using namespace llvm; 366 using namespace llvm::dxil; 367 368 //////////////////////////////////////////////////////////////////////////////// 369 /// Begin dxil::BitcodeWriter Implementation 370 //////////////////////////////////////////////////////////////////////////////// 371 372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 373 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 374 // Emit the file header. 375 Stream->Emit((unsigned)'B', 8); 376 Stream->Emit((unsigned)'C', 8); 377 Stream->Emit(0x0, 4); 378 Stream->Emit(0xC, 4); 379 Stream->Emit(0xE, 4); 380 Stream->Emit(0xD, 4); 381 } 382 383 dxil::BitcodeWriter::~BitcodeWriter() { } 384 385 /// Write the specified module to the specified output stream. 386 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 387 SmallVector<char, 0> Buffer; 388 Buffer.reserve(256 * 1024); 389 390 // If this is darwin or another generic macho target, reserve space for the 391 // header. 392 Triple TT(M.getTargetTriple()); 393 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 394 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 395 396 BitcodeWriter Writer(Buffer); 397 Writer.writeModule(M); 398 399 // Write the generated bitstream to "Out". 400 if (!Buffer.empty()) 401 Out.write((char *)&Buffer.front(), Buffer.size()); 402 } 403 404 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 405 Stream->EnterSubblock(Block, 3); 406 407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 408 Abbv->Add(BitCodeAbbrevOp(Record)); 409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 410 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 411 412 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 413 414 Stream->ExitBlock(); 415 } 416 417 void BitcodeWriter::writeModule(const Module &M) { 418 419 // The Mods vector is used by irsymtab::build, which requires non-const 420 // Modules in case it needs to materialize metadata. But the bitcode writer 421 // requires that the module is materialized, so we can cast to non-const here, 422 // after checking that it is in fact materialized. 423 assert(M.isMaterialized()); 424 Mods.push_back(const_cast<Module *>(&M)); 425 426 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 427 ModuleWriter.write(); 428 } 429 430 //////////////////////////////////////////////////////////////////////////////// 431 /// Begin dxil::BitcodeWriterBase Implementation 432 //////////////////////////////////////////////////////////////////////////////// 433 434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 435 switch (Opcode) { 436 default: 437 llvm_unreachable("Unknown cast instruction!"); 438 case Instruction::Trunc: 439 return bitc::CAST_TRUNC; 440 case Instruction::ZExt: 441 return bitc::CAST_ZEXT; 442 case Instruction::SExt: 443 return bitc::CAST_SEXT; 444 case Instruction::FPToUI: 445 return bitc::CAST_FPTOUI; 446 case Instruction::FPToSI: 447 return bitc::CAST_FPTOSI; 448 case Instruction::UIToFP: 449 return bitc::CAST_UITOFP; 450 case Instruction::SIToFP: 451 return bitc::CAST_SITOFP; 452 case Instruction::FPTrunc: 453 return bitc::CAST_FPTRUNC; 454 case Instruction::FPExt: 455 return bitc::CAST_FPEXT; 456 case Instruction::PtrToInt: 457 return bitc::CAST_PTRTOINT; 458 case Instruction::IntToPtr: 459 return bitc::CAST_INTTOPTR; 460 case Instruction::BitCast: 461 return bitc::CAST_BITCAST; 462 case Instruction::AddrSpaceCast: 463 return bitc::CAST_ADDRSPACECAST; 464 } 465 } 466 467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 468 switch (Opcode) { 469 default: 470 llvm_unreachable("Unknown binary instruction!"); 471 case Instruction::FNeg: 472 return bitc::UNOP_FNEG; 473 } 474 } 475 476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 477 switch (Opcode) { 478 default: 479 llvm_unreachable("Unknown binary instruction!"); 480 case Instruction::Add: 481 case Instruction::FAdd: 482 return bitc::BINOP_ADD; 483 case Instruction::Sub: 484 case Instruction::FSub: 485 return bitc::BINOP_SUB; 486 case Instruction::Mul: 487 case Instruction::FMul: 488 return bitc::BINOP_MUL; 489 case Instruction::UDiv: 490 return bitc::BINOP_UDIV; 491 case Instruction::FDiv: 492 case Instruction::SDiv: 493 return bitc::BINOP_SDIV; 494 case Instruction::URem: 495 return bitc::BINOP_UREM; 496 case Instruction::FRem: 497 case Instruction::SRem: 498 return bitc::BINOP_SREM; 499 case Instruction::Shl: 500 return bitc::BINOP_SHL; 501 case Instruction::LShr: 502 return bitc::BINOP_LSHR; 503 case Instruction::AShr: 504 return bitc::BINOP_ASHR; 505 case Instruction::And: 506 return bitc::BINOP_AND; 507 case Instruction::Or: 508 return bitc::BINOP_OR; 509 case Instruction::Xor: 510 return bitc::BINOP_XOR; 511 } 512 } 513 514 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 515 if (!T->isPointerTy() && 516 // For Constant, always check PointerMap to make sure OpaquePointer in 517 // things like constant struct/array works. 518 (!V || !isa<Constant>(V))) 519 return VE.getTypeID(T); 520 auto It = PointerMap.find(V); 521 if (It != PointerMap.end()) 522 return VE.getTypeID(It->second); 523 // For Constant, return T when cannot find in PointerMap. 524 // FIXME: support ConstantPointerNull which could map to more than one 525 // TypedPointerType. 526 // See https://github.com/llvm/llvm-project/issues/57942. 527 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 528 return VE.getTypeID(T); 529 return VE.getTypeID(I8PtrTy); 530 } 531 532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 533 const GlobalObject *G) { 534 auto It = PointerMap.find(G); 535 if (It != PointerMap.end()) { 536 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 537 return VE.getTypeID(PtrTy->getElementType()); 538 } 539 return VE.getTypeID(T); 540 } 541 542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 543 switch (Op) { 544 default: 545 llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: 547 return bitc::RMW_XCHG; 548 case AtomicRMWInst::Add: 549 return bitc::RMW_ADD; 550 case AtomicRMWInst::Sub: 551 return bitc::RMW_SUB; 552 case AtomicRMWInst::And: 553 return bitc::RMW_AND; 554 case AtomicRMWInst::Nand: 555 return bitc::RMW_NAND; 556 case AtomicRMWInst::Or: 557 return bitc::RMW_OR; 558 case AtomicRMWInst::Xor: 559 return bitc::RMW_XOR; 560 case AtomicRMWInst::Max: 561 return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: 563 return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: 565 return bitc::RMW_UMAX; 566 case AtomicRMWInst::UMin: 567 return bitc::RMW_UMIN; 568 case AtomicRMWInst::FAdd: 569 return bitc::RMW_FADD; 570 case AtomicRMWInst::FSub: 571 return bitc::RMW_FSUB; 572 case AtomicRMWInst::FMax: 573 return bitc::RMW_FMAX; 574 case AtomicRMWInst::FMin: 575 return bitc::RMW_FMIN; 576 } 577 } 578 579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 580 switch (Ordering) { 581 case AtomicOrdering::NotAtomic: 582 return bitc::ORDERING_NOTATOMIC; 583 case AtomicOrdering::Unordered: 584 return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: 586 return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: 588 return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: 590 return bitc::ORDERING_RELEASE; 591 case AtomicOrdering::AcquireRelease: 592 return bitc::ORDERING_ACQREL; 593 case AtomicOrdering::SequentiallyConsistent: 594 return bitc::ORDERING_SEQCST; 595 } 596 llvm_unreachable("Invalid ordering"); 597 } 598 599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 600 unsigned Code, StringRef Str, 601 unsigned AbbrevToUse) { 602 SmallVector<unsigned, 64> Vals; 603 604 // Code: [strchar x N] 605 for (char C : Str) { 606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 607 AbbrevToUse = 0; 608 Vals.push_back(C); 609 } 610 611 // Emit the finished record. 612 Stream.EmitRecord(Code, Vals, AbbrevToUse); 613 } 614 615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 616 switch (Kind) { 617 case Attribute::Alignment: 618 return bitc::ATTR_KIND_ALIGNMENT; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::InlineHint: 632 return bitc::ATTR_KIND_INLINE_HINT; 633 case Attribute::InReg: 634 return bitc::ATTR_KIND_IN_REG; 635 case Attribute::JumpTable: 636 return bitc::ATTR_KIND_JUMP_TABLE; 637 case Attribute::MinSize: 638 return bitc::ATTR_KIND_MIN_SIZE; 639 case Attribute::Naked: 640 return bitc::ATTR_KIND_NAKED; 641 case Attribute::Nest: 642 return bitc::ATTR_KIND_NEST; 643 case Attribute::NoAlias: 644 return bitc::ATTR_KIND_NO_ALIAS; 645 case Attribute::NoBuiltin: 646 return bitc::ATTR_KIND_NO_BUILTIN; 647 case Attribute::NoCapture: 648 return bitc::ATTR_KIND_NO_CAPTURE; 649 case Attribute::NoDuplicate: 650 return bitc::ATTR_KIND_NO_DUPLICATE; 651 case Attribute::NoImplicitFloat: 652 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 653 case Attribute::NoInline: 654 return bitc::ATTR_KIND_NO_INLINE; 655 case Attribute::NonLazyBind: 656 return bitc::ATTR_KIND_NON_LAZY_BIND; 657 case Attribute::NonNull: 658 return bitc::ATTR_KIND_NON_NULL; 659 case Attribute::Dereferenceable: 660 return bitc::ATTR_KIND_DEREFERENCEABLE; 661 case Attribute::DereferenceableOrNull: 662 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 663 case Attribute::NoRedZone: 664 return bitc::ATTR_KIND_NO_RED_ZONE; 665 case Attribute::NoReturn: 666 return bitc::ATTR_KIND_NO_RETURN; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptimizeForSize: 670 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 671 case Attribute::OptimizeNone: 672 return bitc::ATTR_KIND_OPTIMIZE_NONE; 673 case Attribute::ReadNone: 674 return bitc::ATTR_KIND_READ_NONE; 675 case Attribute::ReadOnly: 676 return bitc::ATTR_KIND_READ_ONLY; 677 case Attribute::Returned: 678 return bitc::ATTR_KIND_RETURNED; 679 case Attribute::ReturnsTwice: 680 return bitc::ATTR_KIND_RETURNS_TWICE; 681 case Attribute::SExt: 682 return bitc::ATTR_KIND_S_EXT; 683 case Attribute::StackAlignment: 684 return bitc::ATTR_KIND_STACK_ALIGNMENT; 685 case Attribute::StackProtect: 686 return bitc::ATTR_KIND_STACK_PROTECT; 687 case Attribute::StackProtectReq: 688 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 689 case Attribute::StackProtectStrong: 690 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 691 case Attribute::SafeStack: 692 return bitc::ATTR_KIND_SAFESTACK; 693 case Attribute::StructRet: 694 return bitc::ATTR_KIND_STRUCT_RET; 695 case Attribute::SanitizeAddress: 696 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 697 case Attribute::SanitizeThread: 698 return bitc::ATTR_KIND_SANITIZE_THREAD; 699 case Attribute::SanitizeMemory: 700 return bitc::ATTR_KIND_SANITIZE_MEMORY; 701 case Attribute::UWTable: 702 return bitc::ATTR_KIND_UW_TABLE; 703 case Attribute::ZExt: 704 return bitc::ATTR_KIND_Z_EXT; 705 case Attribute::EndAttrKinds: 706 llvm_unreachable("Can not encode end-attribute kinds marker."); 707 case Attribute::None: 708 llvm_unreachable("Can not encode none-attribute."); 709 case Attribute::EmptyKey: 710 case Attribute::TombstoneKey: 711 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 712 default: 713 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 714 "should be stripped in DXILPrepare"); 715 } 716 717 llvm_unreachable("Trying to encode unknown attribute"); 718 } 719 720 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 721 uint64_t V) { 722 if ((int64_t)V >= 0) 723 Vals.push_back(V << 1); 724 else 725 Vals.push_back((-V << 1) | 1); 726 } 727 728 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 729 const APInt &A) { 730 // We have an arbitrary precision integer value to write whose 731 // bit width is > 64. However, in canonical unsigned integer 732 // format it is likely that the high bits are going to be zero. 733 // So, we only write the number of active words. 734 unsigned NumWords = A.getActiveWords(); 735 const uint64_t *RawData = A.getRawData(); 736 for (unsigned i = 0; i < NumWords; i++) 737 emitSignedInt64(Vals, RawData[i]); 738 } 739 740 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 741 uint64_t Flags = 0; 742 743 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 744 if (OBO->hasNoSignedWrap()) 745 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 746 if (OBO->hasNoUnsignedWrap()) 747 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 748 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 749 if (PEO->isExact()) 750 Flags |= 1 << bitc::PEO_EXACT; 751 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 752 if (FPMO->hasAllowReassoc()) 753 Flags |= bitc::AllowReassoc; 754 if (FPMO->hasNoNaNs()) 755 Flags |= bitc::NoNaNs; 756 if (FPMO->hasNoInfs()) 757 Flags |= bitc::NoInfs; 758 if (FPMO->hasNoSignedZeros()) 759 Flags |= bitc::NoSignedZeros; 760 if (FPMO->hasAllowReciprocal()) 761 Flags |= bitc::AllowReciprocal; 762 if (FPMO->hasAllowContract()) 763 Flags |= bitc::AllowContract; 764 if (FPMO->hasApproxFunc()) 765 Flags |= bitc::ApproxFunc; 766 } 767 768 return Flags; 769 } 770 771 unsigned 772 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 773 switch (Linkage) { 774 case GlobalValue::ExternalLinkage: 775 return 0; 776 case GlobalValue::WeakAnyLinkage: 777 return 16; 778 case GlobalValue::AppendingLinkage: 779 return 2; 780 case GlobalValue::InternalLinkage: 781 return 3; 782 case GlobalValue::LinkOnceAnyLinkage: 783 return 18; 784 case GlobalValue::ExternalWeakLinkage: 785 return 7; 786 case GlobalValue::CommonLinkage: 787 return 8; 788 case GlobalValue::PrivateLinkage: 789 return 9; 790 case GlobalValue::WeakODRLinkage: 791 return 17; 792 case GlobalValue::LinkOnceODRLinkage: 793 return 19; 794 case GlobalValue::AvailableExternallyLinkage: 795 return 12; 796 } 797 llvm_unreachable("Invalid linkage"); 798 } 799 800 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 801 return getEncodedLinkage(GV.getLinkage()); 802 } 803 804 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 805 switch (GV.getVisibility()) { 806 case GlobalValue::DefaultVisibility: 807 return 0; 808 case GlobalValue::HiddenVisibility: 809 return 1; 810 case GlobalValue::ProtectedVisibility: 811 return 2; 812 } 813 llvm_unreachable("Invalid visibility"); 814 } 815 816 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 817 switch (GV.getDLLStorageClass()) { 818 case GlobalValue::DefaultStorageClass: 819 return 0; 820 case GlobalValue::DLLImportStorageClass: 821 return 1; 822 case GlobalValue::DLLExportStorageClass: 823 return 2; 824 } 825 llvm_unreachable("Invalid DLL storage class"); 826 } 827 828 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 829 switch (GV.getThreadLocalMode()) { 830 case GlobalVariable::NotThreadLocal: 831 return 0; 832 case GlobalVariable::GeneralDynamicTLSModel: 833 return 1; 834 case GlobalVariable::LocalDynamicTLSModel: 835 return 2; 836 case GlobalVariable::InitialExecTLSModel: 837 return 3; 838 case GlobalVariable::LocalExecTLSModel: 839 return 4; 840 } 841 llvm_unreachable("Invalid TLS model"); 842 } 843 844 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 845 switch (C.getSelectionKind()) { 846 case Comdat::Any: 847 return bitc::COMDAT_SELECTION_KIND_ANY; 848 case Comdat::ExactMatch: 849 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 850 case Comdat::Largest: 851 return bitc::COMDAT_SELECTION_KIND_LARGEST; 852 case Comdat::NoDeduplicate: 853 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 854 case Comdat::SameSize: 855 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 856 } 857 llvm_unreachable("Invalid selection kind"); 858 } 859 860 //////////////////////////////////////////////////////////////////////////////// 861 /// Begin DXILBitcodeWriter Implementation 862 //////////////////////////////////////////////////////////////////////////////// 863 864 void DXILBitcodeWriter::writeAttributeGroupTable() { 865 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 866 VE.getAttributeGroups(); 867 if (AttrGrps.empty()) 868 return; 869 870 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 871 872 SmallVector<uint64_t, 64> Record; 873 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 874 unsigned AttrListIndex = Pair.first; 875 AttributeSet AS = Pair.second; 876 Record.push_back(VE.getAttributeGroupID(Pair)); 877 Record.push_back(AttrListIndex); 878 879 for (Attribute Attr : AS) { 880 if (Attr.isEnumAttribute()) { 881 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 882 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 883 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 884 Record.push_back(0); 885 Record.push_back(Val); 886 } else if (Attr.isIntAttribute()) { 887 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { 888 MemoryEffects ME = Attr.getMemoryEffects(); 889 if (ME.doesNotAccessMemory()) { 890 Record.push_back(0); 891 Record.push_back(bitc::ATTR_KIND_READ_NONE); 892 } else { 893 if (ME.onlyReadsMemory()) { 894 Record.push_back(0); 895 Record.push_back(bitc::ATTR_KIND_READ_ONLY); 896 } 897 if (ME.onlyAccessesArgPointees()) { 898 Record.push_back(0); 899 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); 900 } 901 } 902 } else { 903 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 904 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 905 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 906 Record.push_back(1); 907 Record.push_back(Val); 908 Record.push_back(Attr.getValueAsInt()); 909 } 910 } else { 911 StringRef Kind = Attr.getKindAsString(); 912 StringRef Val = Attr.getValueAsString(); 913 914 Record.push_back(Val.empty() ? 3 : 4); 915 Record.append(Kind.begin(), Kind.end()); 916 Record.push_back(0); 917 if (!Val.empty()) { 918 Record.append(Val.begin(), Val.end()); 919 Record.push_back(0); 920 } 921 } 922 } 923 924 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 925 Record.clear(); 926 } 927 928 Stream.ExitBlock(); 929 } 930 931 void DXILBitcodeWriter::writeAttributeTable() { 932 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 933 if (Attrs.empty()) 934 return; 935 936 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 937 938 SmallVector<uint64_t, 64> Record; 939 for (AttributeList AL : Attrs) { 940 for (unsigned i : AL.indexes()) { 941 AttributeSet AS = AL.getAttributes(i); 942 if (AS.hasAttributes()) 943 Record.push_back(VE.getAttributeGroupID({i, AS})); 944 } 945 946 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 947 Record.clear(); 948 } 949 950 Stream.ExitBlock(); 951 } 952 953 /// WriteTypeTable - Write out the type table for a module. 954 void DXILBitcodeWriter::writeTypeTable() { 955 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 956 957 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 958 SmallVector<uint64_t, 64> TypeVals; 959 960 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 961 962 // Abbrev for TYPE_CODE_POINTER. 963 auto Abbv = std::make_shared<BitCodeAbbrev>(); 964 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 966 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 967 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 968 969 // Abbrev for TYPE_CODE_FUNCTION. 970 Abbv = std::make_shared<BitCodeAbbrev>(); 971 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 975 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 976 977 // Abbrev for TYPE_CODE_STRUCT_ANON. 978 Abbv = std::make_shared<BitCodeAbbrev>(); 979 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 983 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 984 985 // Abbrev for TYPE_CODE_STRUCT_NAME. 986 Abbv = std::make_shared<BitCodeAbbrev>(); 987 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 990 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 991 992 // Abbrev for TYPE_CODE_STRUCT_NAMED. 993 Abbv = std::make_shared<BitCodeAbbrev>(); 994 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 998 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 999 1000 // Abbrev for TYPE_CODE_ARRAY. 1001 Abbv = std::make_shared<BitCodeAbbrev>(); 1002 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1005 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1006 1007 // Emit an entry count so the reader can reserve space. 1008 TypeVals.push_back(TypeList.size()); 1009 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1010 TypeVals.clear(); 1011 1012 // Loop over all of the types, emitting each in turn. 1013 for (Type *T : TypeList) { 1014 int AbbrevToUse = 0; 1015 unsigned Code = 0; 1016 1017 switch (T->getTypeID()) { 1018 case Type::BFloatTyID: 1019 case Type::X86_AMXTyID: 1020 case Type::TokenTyID: 1021 case Type::TargetExtTyID: 1022 llvm_unreachable("These should never be used!!!"); 1023 break; 1024 case Type::VoidTyID: 1025 Code = bitc::TYPE_CODE_VOID; 1026 break; 1027 case Type::HalfTyID: 1028 Code = bitc::TYPE_CODE_HALF; 1029 break; 1030 case Type::FloatTyID: 1031 Code = bitc::TYPE_CODE_FLOAT; 1032 break; 1033 case Type::DoubleTyID: 1034 Code = bitc::TYPE_CODE_DOUBLE; 1035 break; 1036 case Type::X86_FP80TyID: 1037 Code = bitc::TYPE_CODE_X86_FP80; 1038 break; 1039 case Type::FP128TyID: 1040 Code = bitc::TYPE_CODE_FP128; 1041 break; 1042 case Type::PPC_FP128TyID: 1043 Code = bitc::TYPE_CODE_PPC_FP128; 1044 break; 1045 case Type::LabelTyID: 1046 Code = bitc::TYPE_CODE_LABEL; 1047 break; 1048 case Type::MetadataTyID: 1049 Code = bitc::TYPE_CODE_METADATA; 1050 break; 1051 case Type::X86_MMXTyID: 1052 Code = bitc::TYPE_CODE_X86_MMX; 1053 break; 1054 case Type::IntegerTyID: 1055 // INTEGER: [width] 1056 Code = bitc::TYPE_CODE_INTEGER; 1057 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1058 break; 1059 case Type::TypedPointerTyID: { 1060 TypedPointerType *PTy = cast<TypedPointerType>(T); 1061 // POINTER: [pointee type, address space] 1062 Code = bitc::TYPE_CODE_POINTER; 1063 TypeVals.push_back(getTypeID(PTy->getElementType())); 1064 unsigned AddressSpace = PTy->getAddressSpace(); 1065 TypeVals.push_back(AddressSpace); 1066 if (AddressSpace == 0) 1067 AbbrevToUse = PtrAbbrev; 1068 break; 1069 } 1070 case Type::PointerTyID: { 1071 // POINTER: [pointee type, address space] 1072 // Emitting an empty struct type for the pointer's type allows this to be 1073 // order-independent. Non-struct types must be emitted in bitcode before 1074 // they can be referenced. 1075 TypeVals.push_back(false); 1076 Code = bitc::TYPE_CODE_OPAQUE; 1077 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1078 "dxilOpaquePtrReservedName", StructNameAbbrev); 1079 break; 1080 } 1081 case Type::FunctionTyID: { 1082 FunctionType *FT = cast<FunctionType>(T); 1083 // FUNCTION: [isvararg, retty, paramty x N] 1084 Code = bitc::TYPE_CODE_FUNCTION; 1085 TypeVals.push_back(FT->isVarArg()); 1086 TypeVals.push_back(getTypeID(FT->getReturnType())); 1087 for (Type *PTy : FT->params()) 1088 TypeVals.push_back(getTypeID(PTy)); 1089 AbbrevToUse = FunctionAbbrev; 1090 break; 1091 } 1092 case Type::StructTyID: { 1093 StructType *ST = cast<StructType>(T); 1094 // STRUCT: [ispacked, eltty x N] 1095 TypeVals.push_back(ST->isPacked()); 1096 // Output all of the element types. 1097 for (Type *ElTy : ST->elements()) 1098 TypeVals.push_back(getTypeID(ElTy)); 1099 1100 if (ST->isLiteral()) { 1101 Code = bitc::TYPE_CODE_STRUCT_ANON; 1102 AbbrevToUse = StructAnonAbbrev; 1103 } else { 1104 if (ST->isOpaque()) { 1105 Code = bitc::TYPE_CODE_OPAQUE; 1106 } else { 1107 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1108 AbbrevToUse = StructNamedAbbrev; 1109 } 1110 1111 // Emit the name if it is present. 1112 if (!ST->getName().empty()) 1113 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1114 StructNameAbbrev); 1115 } 1116 break; 1117 } 1118 case Type::ArrayTyID: { 1119 ArrayType *AT = cast<ArrayType>(T); 1120 // ARRAY: [numelts, eltty] 1121 Code = bitc::TYPE_CODE_ARRAY; 1122 TypeVals.push_back(AT->getNumElements()); 1123 TypeVals.push_back(getTypeID(AT->getElementType())); 1124 AbbrevToUse = ArrayAbbrev; 1125 break; 1126 } 1127 case Type::FixedVectorTyID: 1128 case Type::ScalableVectorTyID: { 1129 VectorType *VT = cast<VectorType>(T); 1130 // VECTOR [numelts, eltty] 1131 Code = bitc::TYPE_CODE_VECTOR; 1132 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1133 TypeVals.push_back(getTypeID(VT->getElementType())); 1134 break; 1135 } 1136 } 1137 1138 // Emit the finished record. 1139 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1140 TypeVals.clear(); 1141 } 1142 1143 Stream.ExitBlock(); 1144 } 1145 1146 void DXILBitcodeWriter::writeComdats() { 1147 SmallVector<uint16_t, 64> Vals; 1148 for (const Comdat *C : VE.getComdats()) { 1149 // COMDAT: [selection_kind, name] 1150 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1151 size_t Size = C->getName().size(); 1152 assert(isUInt<16>(Size)); 1153 Vals.push_back(Size); 1154 for (char Chr : C->getName()) 1155 Vals.push_back((unsigned char)Chr); 1156 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1157 Vals.clear(); 1158 } 1159 } 1160 1161 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1162 1163 /// Emit top-level description of module, including target triple, inline asm, 1164 /// descriptors for global variables, and function prototype info. 1165 /// Returns the bit offset to backpatch with the location of the real VST. 1166 void DXILBitcodeWriter::writeModuleInfo() { 1167 // Emit various pieces of data attached to a module. 1168 if (!M.getTargetTriple().empty()) 1169 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1170 0 /*TODO*/); 1171 const std::string &DL = M.getDataLayoutStr(); 1172 if (!DL.empty()) 1173 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1174 if (!M.getModuleInlineAsm().empty()) 1175 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1176 0 /*TODO*/); 1177 1178 // Emit information about sections and GC, computing how many there are. Also 1179 // compute the maximum alignment value. 1180 std::map<std::string, unsigned> SectionMap; 1181 std::map<std::string, unsigned> GCMap; 1182 MaybeAlign MaxAlignment; 1183 unsigned MaxGlobalType = 0; 1184 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1185 if (A) 1186 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1187 }; 1188 for (const GlobalVariable &GV : M.globals()) { 1189 UpdateMaxAlignment(GV.getAlign()); 1190 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1191 // Global Variable types. 1192 MaxGlobalType = std::max( 1193 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1194 if (GV.hasSection()) { 1195 // Give section names unique ID's. 1196 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1197 if (!Entry) { 1198 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1199 GV.getSection(), 0 /*TODO*/); 1200 Entry = SectionMap.size(); 1201 } 1202 } 1203 } 1204 for (const Function &F : M) { 1205 UpdateMaxAlignment(F.getAlign()); 1206 if (F.hasSection()) { 1207 // Give section names unique ID's. 1208 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1209 if (!Entry) { 1210 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1211 0 /*TODO*/); 1212 Entry = SectionMap.size(); 1213 } 1214 } 1215 if (F.hasGC()) { 1216 // Same for GC names. 1217 unsigned &Entry = GCMap[F.getGC()]; 1218 if (!Entry) { 1219 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1220 0 /*TODO*/); 1221 Entry = GCMap.size(); 1222 } 1223 } 1224 } 1225 1226 // Emit abbrev for globals, now that we know # sections and max alignment. 1227 unsigned SimpleGVarAbbrev = 0; 1228 if (!M.global_empty()) { 1229 // Add an abbrev for common globals with no visibility or thread 1230 // localness. 1231 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1232 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1234 Log2_32_Ceil(MaxGlobalType + 1))); 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1236 //| explicitType << 1 1237 //| constant 1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1240 if (!MaxAlignment) // Alignment. 1241 Abbv->Add(BitCodeAbbrevOp(0)); 1242 else { 1243 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1245 Log2_32_Ceil(MaxEncAlignment + 1))); 1246 } 1247 if (SectionMap.empty()) // Section. 1248 Abbv->Add(BitCodeAbbrevOp(0)); 1249 else 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1251 Log2_32_Ceil(SectionMap.size() + 1))); 1252 // Don't bother emitting vis + thread local. 1253 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1254 } 1255 1256 // Emit the global variable information. 1257 SmallVector<unsigned, 64> Vals; 1258 for (const GlobalVariable &GV : M.globals()) { 1259 unsigned AbbrevToUse = 0; 1260 1261 // GLOBALVAR: [type, isconst, initid, 1262 // linkage, alignment, section, visibility, threadlocal, 1263 // unnamed_addr, externally_initialized, dllstorageclass, 1264 // comdat] 1265 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1266 Vals.push_back( 1267 GV.getType()->getAddressSpace() << 2 | 2 | 1268 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1269 // unsigned int and bool 1270 Vals.push_back( 1271 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1272 Vals.push_back(getEncodedLinkage(GV)); 1273 Vals.push_back(getEncodedAlign(GV.getAlign())); 1274 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1275 : 0); 1276 if (GV.isThreadLocal() || 1277 GV.getVisibility() != GlobalValue::DefaultVisibility || 1278 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1279 GV.isExternallyInitialized() || 1280 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1281 GV.hasComdat()) { 1282 Vals.push_back(getEncodedVisibility(GV)); 1283 Vals.push_back(getEncodedThreadLocalMode(GV)); 1284 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1285 Vals.push_back(GV.isExternallyInitialized()); 1286 Vals.push_back(getEncodedDLLStorageClass(GV)); 1287 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1288 } else { 1289 AbbrevToUse = SimpleGVarAbbrev; 1290 } 1291 1292 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1293 Vals.clear(); 1294 } 1295 1296 // Emit the function proto information. 1297 for (const Function &F : M) { 1298 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1299 // section, visibility, gc, unnamed_addr, prologuedata, 1300 // dllstorageclass, comdat, prefixdata, personalityfn] 1301 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1302 Vals.push_back(F.getCallingConv()); 1303 Vals.push_back(F.isDeclaration()); 1304 Vals.push_back(getEncodedLinkage(F)); 1305 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1306 Vals.push_back(getEncodedAlign(F.getAlign())); 1307 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1308 : 0); 1309 Vals.push_back(getEncodedVisibility(F)); 1310 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1311 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1312 Vals.push_back( 1313 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1314 Vals.push_back(getEncodedDLLStorageClass(F)); 1315 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1316 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1317 : 0); 1318 Vals.push_back( 1319 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1320 1321 unsigned AbbrevToUse = 0; 1322 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1323 Vals.clear(); 1324 } 1325 1326 // Emit the alias information. 1327 for (const GlobalAlias &A : M.aliases()) { 1328 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1329 Vals.push_back(getTypeID(A.getValueType(), &A)); 1330 Vals.push_back(VE.getValueID(A.getAliasee())); 1331 Vals.push_back(getEncodedLinkage(A)); 1332 Vals.push_back(getEncodedVisibility(A)); 1333 Vals.push_back(getEncodedDLLStorageClass(A)); 1334 Vals.push_back(getEncodedThreadLocalMode(A)); 1335 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1336 unsigned AbbrevToUse = 0; 1337 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1338 Vals.clear(); 1339 } 1340 } 1341 1342 void DXILBitcodeWriter::writeValueAsMetadata( 1343 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1344 // Mimic an MDNode with a value as one operand. 1345 Value *V = MD->getValue(); 1346 Type *Ty = V->getType(); 1347 if (Function *F = dyn_cast<Function>(V)) 1348 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1349 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1350 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1351 Record.push_back(getTypeID(Ty)); 1352 Record.push_back(VE.getValueID(V)); 1353 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1354 Record.clear(); 1355 } 1356 1357 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1358 SmallVectorImpl<uint64_t> &Record, 1359 unsigned Abbrev) { 1360 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1361 Metadata *MD = N->getOperand(i); 1362 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1363 "Unexpected function-local metadata"); 1364 Record.push_back(VE.getMetadataOrNullID(MD)); 1365 } 1366 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1367 : bitc::METADATA_NODE, 1368 Record, Abbrev); 1369 Record.clear(); 1370 } 1371 1372 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1373 SmallVectorImpl<uint64_t> &Record, 1374 unsigned &Abbrev) { 1375 if (!Abbrev) 1376 Abbrev = createDILocationAbbrev(); 1377 Record.push_back(N->isDistinct()); 1378 Record.push_back(N->getLine()); 1379 Record.push_back(N->getColumn()); 1380 Record.push_back(VE.getMetadataID(N->getScope())); 1381 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1382 1383 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1384 Record.clear(); 1385 } 1386 1387 static uint64_t rotateSign(APInt Val) { 1388 int64_t I = Val.getSExtValue(); 1389 uint64_t U = I; 1390 return I < 0 ? ~(U << 1) : U << 1; 1391 } 1392 1393 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1394 SmallVectorImpl<uint64_t> &Record, 1395 unsigned Abbrev) { 1396 Record.push_back(N->isDistinct()); 1397 1398 // TODO: Do we need to handle DIExpression here? What about cases where Count 1399 // isn't specified but UpperBound and such are? 1400 ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>(); 1401 assert(Count && "Count is missing or not ConstantInt"); 1402 Record.push_back(Count->getValue().getSExtValue()); 1403 1404 // TODO: Similarly, DIExpression is allowed here now 1405 DISubrange::BoundType LowerBound = N->getLowerBound(); 1406 assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) && 1407 "Lower bound provided but not ConstantInt"); 1408 Record.push_back( 1409 LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0); 1410 1411 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1412 Record.clear(); 1413 } 1414 1415 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1416 SmallVectorImpl<uint64_t> &Record, 1417 unsigned Abbrev) { 1418 Record.push_back(N->isDistinct()); 1419 Record.push_back(rotateSign(N->getValue())); 1420 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1421 1422 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1423 Record.clear(); 1424 } 1425 1426 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1427 SmallVectorImpl<uint64_t> &Record, 1428 unsigned Abbrev) { 1429 Record.push_back(N->isDistinct()); 1430 Record.push_back(N->getTag()); 1431 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1432 Record.push_back(N->getSizeInBits()); 1433 Record.push_back(N->getAlignInBits()); 1434 Record.push_back(N->getEncoding()); 1435 1436 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1437 Record.clear(); 1438 } 1439 1440 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1441 SmallVectorImpl<uint64_t> &Record, 1442 unsigned Abbrev) { 1443 Record.push_back(N->isDistinct()); 1444 Record.push_back(N->getTag()); 1445 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1446 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1447 Record.push_back(N->getLine()); 1448 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1449 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1450 Record.push_back(N->getSizeInBits()); 1451 Record.push_back(N->getAlignInBits()); 1452 Record.push_back(N->getOffsetInBits()); 1453 Record.push_back(N->getFlags()); 1454 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1455 1456 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned Abbrev) { 1463 Record.push_back(N->isDistinct()); 1464 Record.push_back(N->getTag()); 1465 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1466 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1467 Record.push_back(N->getLine()); 1468 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1470 Record.push_back(N->getSizeInBits()); 1471 Record.push_back(N->getAlignInBits()); 1472 Record.push_back(N->getOffsetInBits()); 1473 Record.push_back(N->getFlags()); 1474 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1475 Record.push_back(N->getRuntimeLang()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1479 1480 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1481 Record.clear(); 1482 } 1483 1484 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1485 SmallVectorImpl<uint64_t> &Record, 1486 unsigned Abbrev) { 1487 Record.push_back(N->isDistinct()); 1488 Record.push_back(N->getFlags()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1490 1491 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1492 Record.clear(); 1493 } 1494 1495 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1496 SmallVectorImpl<uint64_t> &Record, 1497 unsigned Abbrev) { 1498 Record.push_back(N->isDistinct()); 1499 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1501 1502 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1503 Record.clear(); 1504 } 1505 1506 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1507 SmallVectorImpl<uint64_t> &Record, 1508 unsigned Abbrev) { 1509 Record.push_back(N->isDistinct()); 1510 Record.push_back(N->getSourceLanguage()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1513 Record.push_back(N->isOptimized()); 1514 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1515 Record.push_back(N->getRuntimeVersion()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1517 Record.push_back(N->getEmissionKind()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1520 Record.push_back(/* subprograms */ 0); 1521 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1522 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1523 Record.push_back(N->getDWOId()); 1524 1525 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1526 Record.clear(); 1527 } 1528 1529 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1530 SmallVectorImpl<uint64_t> &Record, 1531 unsigned Abbrev) { 1532 Record.push_back(N->isDistinct()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1536 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1539 Record.push_back(N->isLocalToUnit()); 1540 Record.push_back(N->isDefinition()); 1541 Record.push_back(N->getScopeLine()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1543 Record.push_back(N->getVirtuality()); 1544 Record.push_back(N->getVirtualIndex()); 1545 Record.push_back(N->getFlags()); 1546 Record.push_back(N->isOptimized()); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1549 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1550 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1551 1552 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1553 Record.clear(); 1554 } 1555 1556 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1557 SmallVectorImpl<uint64_t> &Record, 1558 unsigned Abbrev) { 1559 Record.push_back(N->isDistinct()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1562 Record.push_back(N->getLine()); 1563 Record.push_back(N->getColumn()); 1564 1565 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1566 Record.clear(); 1567 } 1568 1569 void DXILBitcodeWriter::writeDILexicalBlockFile( 1570 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1571 unsigned Abbrev) { 1572 Record.push_back(N->isDistinct()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1575 Record.push_back(N->getDiscriminator()); 1576 1577 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1578 Record.clear(); 1579 } 1580 1581 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1582 SmallVectorImpl<uint64_t> &Record, 1583 unsigned Abbrev) { 1584 Record.push_back(N->isDistinct()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1588 Record.push_back(/* line number */ 0); 1589 1590 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1591 Record.clear(); 1592 } 1593 1594 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1595 SmallVectorImpl<uint64_t> &Record, 1596 unsigned Abbrev) { 1597 Record.push_back(N->isDistinct()); 1598 for (auto &I : N->operands()) 1599 Record.push_back(VE.getMetadataOrNullID(I)); 1600 1601 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1606 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 Record.push_back(N->isDistinct()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1611 1612 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void DXILBitcodeWriter::writeDITemplateValueParameter( 1617 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 Record.push_back(N->isDistinct()); 1620 Record.push_back(N->getTag()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1624 1625 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1626 Record.clear(); 1627 } 1628 1629 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1630 SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 Record.push_back(N->isDistinct()); 1633 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1637 Record.push_back(N->getLine()); 1638 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1639 Record.push_back(N->isLocalToUnit()); 1640 Record.push_back(N->isDefinition()); 1641 Record.push_back(/* N->getRawVariable() */ 0); 1642 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1643 1644 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1645 Record.clear(); 1646 } 1647 1648 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1649 SmallVectorImpl<uint64_t> &Record, 1650 unsigned Abbrev) { 1651 Record.push_back(N->isDistinct()); 1652 Record.push_back(N->getTag()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1656 Record.push_back(N->getLine()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1658 Record.push_back(N->getArg()); 1659 Record.push_back(N->getFlags()); 1660 1661 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1662 Record.clear(); 1663 } 1664 1665 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1666 SmallVectorImpl<uint64_t> &Record, 1667 unsigned Abbrev) { 1668 Record.reserve(N->getElements().size() + 1); 1669 1670 Record.push_back(N->isDistinct()); 1671 Record.append(N->elements_begin(), N->elements_end()); 1672 1673 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1674 Record.clear(); 1675 } 1676 1677 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1678 SmallVectorImpl<uint64_t> &Record, 1679 unsigned Abbrev) { 1680 llvm_unreachable("DXIL does not support objc!!!"); 1681 } 1682 1683 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1684 SmallVectorImpl<uint64_t> &Record, 1685 unsigned Abbrev) { 1686 Record.push_back(N->isDistinct()); 1687 Record.push_back(N->getTag()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1690 Record.push_back(N->getLine()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1692 1693 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1698 // Abbrev for METADATA_LOCATION. 1699 // 1700 // Assume the column is usually under 128, and always output the inlined-at 1701 // location (it's never more expensive than building an array size 1). 1702 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1703 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1709 return Stream.EmitAbbrev(std::move(Abbv)); 1710 } 1711 1712 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1713 // Abbrev for METADATA_GENERIC_DEBUG. 1714 // 1715 // Assume the column is usually under 128, and always output the inlined-at 1716 // location (it's never more expensive than building an array size 1). 1717 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1718 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1725 return Stream.EmitAbbrev(std::move(Abbv)); 1726 } 1727 1728 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1729 SmallVectorImpl<uint64_t> &Record, 1730 std::vector<unsigned> *MDAbbrevs, 1731 std::vector<uint64_t> *IndexPos) { 1732 if (MDs.empty()) 1733 return; 1734 1735 // Initialize MDNode abbreviations. 1736 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1737 #include "llvm/IR/Metadata.def" 1738 1739 for (const Metadata *MD : MDs) { 1740 if (IndexPos) 1741 IndexPos->push_back(Stream.GetCurrentBitNo()); 1742 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1743 assert(N->isResolved() && "Expected forward references to be resolved"); 1744 1745 switch (N->getMetadataID()) { 1746 default: 1747 llvm_unreachable("Invalid MDNode subclass"); 1748 #define HANDLE_MDNODE_LEAF(CLASS) \ 1749 case Metadata::CLASS##Kind: \ 1750 if (MDAbbrevs) \ 1751 write##CLASS(cast<CLASS>(N), Record, \ 1752 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1753 else \ 1754 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1755 continue; 1756 #include "llvm/IR/Metadata.def" 1757 } 1758 } 1759 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1760 } 1761 } 1762 1763 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1765 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1768 return Stream.EmitAbbrev(std::move(Abbv)); 1769 } 1770 1771 void DXILBitcodeWriter::writeMetadataStrings( 1772 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1773 if (Strings.empty()) 1774 return; 1775 1776 unsigned MDSAbbrev = createMetadataStringsAbbrev(); 1777 1778 for (const Metadata *MD : Strings) { 1779 const MDString *MDS = cast<MDString>(MD); 1780 // Code: [strchar x N] 1781 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1782 1783 // Emit the finished record. 1784 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev); 1785 Record.clear(); 1786 } 1787 } 1788 1789 void DXILBitcodeWriter::writeModuleMetadata() { 1790 if (!VE.hasMDs() && M.named_metadata_empty()) 1791 return; 1792 1793 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1794 1795 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1796 // block and load any metadata. 1797 std::vector<unsigned> MDAbbrevs; 1798 1799 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1800 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1801 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1802 createGenericDINodeAbbrev(); 1803 1804 unsigned NameAbbrev = 0; 1805 if (!M.named_metadata_empty()) { 1806 // Abbrev for METADATA_NAME. 1807 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1808 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1811 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1812 } 1813 1814 SmallVector<uint64_t, 64> Record; 1815 writeMetadataStrings(VE.getMDStrings(), Record); 1816 1817 std::vector<uint64_t> IndexPos; 1818 IndexPos.reserve(VE.getNonMDStrings().size()); 1819 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1820 1821 // Write named metadata. 1822 for (const NamedMDNode &NMD : M.named_metadata()) { 1823 // Write name. 1824 StringRef Str = NMD.getName(); 1825 Record.append(Str.bytes_begin(), Str.bytes_end()); 1826 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1827 Record.clear(); 1828 1829 // Write named metadata operands. 1830 for (const MDNode *N : NMD.operands()) 1831 Record.push_back(VE.getMetadataID(N)); 1832 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1833 Record.clear(); 1834 } 1835 1836 Stream.ExitBlock(); 1837 } 1838 1839 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1840 if (!VE.hasMDs()) 1841 return; 1842 1843 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1844 SmallVector<uint64_t, 64> Record; 1845 writeMetadataStrings(VE.getMDStrings(), Record); 1846 writeMetadataRecords(VE.getNonMDStrings(), Record); 1847 Stream.ExitBlock(); 1848 } 1849 1850 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1851 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1852 1853 SmallVector<uint64_t, 64> Record; 1854 1855 // Write metadata attachments 1856 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1857 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1858 F.getAllMetadata(MDs); 1859 if (!MDs.empty()) { 1860 for (const auto &I : MDs) { 1861 Record.push_back(I.first); 1862 Record.push_back(VE.getMetadataID(I.second)); 1863 } 1864 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1865 Record.clear(); 1866 } 1867 1868 for (const BasicBlock &BB : F) 1869 for (const Instruction &I : BB) { 1870 MDs.clear(); 1871 I.getAllMetadataOtherThanDebugLoc(MDs); 1872 1873 // If no metadata, ignore instruction. 1874 if (MDs.empty()) 1875 continue; 1876 1877 Record.push_back(VE.getInstructionID(&I)); 1878 1879 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1880 Record.push_back(MDs[i].first); 1881 Record.push_back(VE.getMetadataID(MDs[i].second)); 1882 } 1883 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1884 Record.clear(); 1885 } 1886 1887 Stream.ExitBlock(); 1888 } 1889 1890 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1891 SmallVector<uint64_t, 64> Record; 1892 1893 // Write metadata kinds 1894 // METADATA_KIND - [n x [id, name]] 1895 SmallVector<StringRef, 8> Names; 1896 M.getMDKindNames(Names); 1897 1898 if (Names.empty()) 1899 return; 1900 1901 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1902 1903 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1904 Record.push_back(MDKindID); 1905 StringRef KName = Names[MDKindID]; 1906 Record.append(KName.begin(), KName.end()); 1907 1908 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1909 Record.clear(); 1910 } 1911 1912 Stream.ExitBlock(); 1913 } 1914 1915 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1916 bool isGlobal) { 1917 if (FirstVal == LastVal) 1918 return; 1919 1920 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1921 1922 unsigned AggregateAbbrev = 0; 1923 unsigned String8Abbrev = 0; 1924 unsigned CString7Abbrev = 0; 1925 unsigned CString6Abbrev = 0; 1926 // If this is a constant pool for the module, emit module-specific abbrevs. 1927 if (isGlobal) { 1928 // Abbrev for CST_CODE_AGGREGATE. 1929 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1930 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1932 Abbv->Add( 1933 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1934 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1935 1936 // Abbrev for CST_CODE_STRING. 1937 Abbv = std::make_shared<BitCodeAbbrev>(); 1938 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1941 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1942 // Abbrev for CST_CODE_CSTRING. 1943 Abbv = std::make_shared<BitCodeAbbrev>(); 1944 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1947 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1948 // Abbrev for CST_CODE_CSTRING. 1949 Abbv = std::make_shared<BitCodeAbbrev>(); 1950 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1953 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1954 } 1955 1956 SmallVector<uint64_t, 64> Record; 1957 1958 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1959 Type *LastTy = nullptr; 1960 for (unsigned i = FirstVal; i != LastVal; ++i) { 1961 const Value *V = Vals[i].first; 1962 // If we need to switch types, do so now. 1963 if (V->getType() != LastTy) { 1964 LastTy = V->getType(); 1965 Record.push_back(getTypeID(LastTy, V)); 1966 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1967 CONSTANTS_SETTYPE_ABBREV); 1968 Record.clear(); 1969 } 1970 1971 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1972 Record.push_back(unsigned(IA->hasSideEffects()) | 1973 unsigned(IA->isAlignStack()) << 1 | 1974 unsigned(IA->getDialect() & 1) << 2); 1975 1976 // Add the asm string. 1977 const std::string &AsmStr = IA->getAsmString(); 1978 Record.push_back(AsmStr.size()); 1979 Record.append(AsmStr.begin(), AsmStr.end()); 1980 1981 // Add the constraint string. 1982 const std::string &ConstraintStr = IA->getConstraintString(); 1983 Record.push_back(ConstraintStr.size()); 1984 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1985 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1986 Record.clear(); 1987 continue; 1988 } 1989 const Constant *C = cast<Constant>(V); 1990 unsigned Code = -1U; 1991 unsigned AbbrevToUse = 0; 1992 if (C->isNullValue()) { 1993 Code = bitc::CST_CODE_NULL; 1994 } else if (isa<UndefValue>(C)) { 1995 Code = bitc::CST_CODE_UNDEF; 1996 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1997 if (IV->getBitWidth() <= 64) { 1998 uint64_t V = IV->getSExtValue(); 1999 emitSignedInt64(Record, V); 2000 Code = bitc::CST_CODE_INTEGER; 2001 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2002 } else { // Wide integers, > 64 bits in size. 2003 // We have an arbitrary precision integer value to write whose 2004 // bit width is > 64. However, in canonical unsigned integer 2005 // format it is likely that the high bits are going to be zero. 2006 // So, we only write the number of active words. 2007 unsigned NWords = IV->getValue().getActiveWords(); 2008 const uint64_t *RawWords = IV->getValue().getRawData(); 2009 for (unsigned i = 0; i != NWords; ++i) { 2010 emitSignedInt64(Record, RawWords[i]); 2011 } 2012 Code = bitc::CST_CODE_WIDE_INTEGER; 2013 } 2014 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2015 Code = bitc::CST_CODE_FLOAT; 2016 Type *Ty = CFP->getType(); 2017 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2018 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2019 } else if (Ty->isX86_FP80Ty()) { 2020 // api needed to prevent premature destruction 2021 // bits are not in the same order as a normal i80 APInt, compensate. 2022 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2023 const uint64_t *p = api.getRawData(); 2024 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2025 Record.push_back(p[0] & 0xffffLL); 2026 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2027 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2028 const uint64_t *p = api.getRawData(); 2029 Record.push_back(p[0]); 2030 Record.push_back(p[1]); 2031 } else { 2032 assert(0 && "Unknown FP type!"); 2033 } 2034 } else if (isa<ConstantDataSequential>(C) && 2035 cast<ConstantDataSequential>(C)->isString()) { 2036 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2037 // Emit constant strings specially. 2038 unsigned NumElts = Str->getNumElements(); 2039 // If this is a null-terminated string, use the denser CSTRING encoding. 2040 if (Str->isCString()) { 2041 Code = bitc::CST_CODE_CSTRING; 2042 --NumElts; // Don't encode the null, which isn't allowed by char6. 2043 } else { 2044 Code = bitc::CST_CODE_STRING; 2045 AbbrevToUse = String8Abbrev; 2046 } 2047 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2048 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2049 for (unsigned i = 0; i != NumElts; ++i) { 2050 unsigned char V = Str->getElementAsInteger(i); 2051 Record.push_back(V); 2052 isCStr7 &= (V & 128) == 0; 2053 if (isCStrChar6) 2054 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2055 } 2056 2057 if (isCStrChar6) 2058 AbbrevToUse = CString6Abbrev; 2059 else if (isCStr7) 2060 AbbrevToUse = CString7Abbrev; 2061 } else if (const ConstantDataSequential *CDS = 2062 dyn_cast<ConstantDataSequential>(C)) { 2063 Code = bitc::CST_CODE_DATA; 2064 Type *EltTy = CDS->getElementType(); 2065 if (isa<IntegerType>(EltTy)) { 2066 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2067 Record.push_back(CDS->getElementAsInteger(i)); 2068 } else if (EltTy->isFloatTy()) { 2069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2070 union { 2071 float F; 2072 uint32_t I; 2073 }; 2074 F = CDS->getElementAsFloat(i); 2075 Record.push_back(I); 2076 } 2077 } else { 2078 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2079 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2080 union { 2081 double F; 2082 uint64_t I; 2083 }; 2084 F = CDS->getElementAsDouble(i); 2085 Record.push_back(I); 2086 } 2087 } 2088 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2089 isa<ConstantVector>(C)) { 2090 Code = bitc::CST_CODE_AGGREGATE; 2091 for (const Value *Op : C->operands()) 2092 Record.push_back(VE.getValueID(Op)); 2093 AbbrevToUse = AggregateAbbrev; 2094 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2095 switch (CE->getOpcode()) { 2096 default: 2097 if (Instruction::isCast(CE->getOpcode())) { 2098 Code = bitc::CST_CODE_CE_CAST; 2099 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2100 Record.push_back( 2101 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2102 Record.push_back(VE.getValueID(C->getOperand(0))); 2103 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2104 } else { 2105 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2106 Code = bitc::CST_CODE_CE_BINOP; 2107 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2108 Record.push_back(VE.getValueID(C->getOperand(0))); 2109 Record.push_back(VE.getValueID(C->getOperand(1))); 2110 uint64_t Flags = getOptimizationFlags(CE); 2111 if (Flags != 0) 2112 Record.push_back(Flags); 2113 } 2114 break; 2115 case Instruction::GetElementPtr: { 2116 Code = bitc::CST_CODE_CE_GEP; 2117 const auto *GO = cast<GEPOperator>(C); 2118 if (GO->isInBounds()) 2119 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2120 Record.push_back(getTypeID(GO->getSourceElementType())); 2121 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2122 Record.push_back( 2123 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2124 Record.push_back(VE.getValueID(C->getOperand(i))); 2125 } 2126 break; 2127 } 2128 case Instruction::Select: 2129 Code = bitc::CST_CODE_CE_SELECT; 2130 Record.push_back(VE.getValueID(C->getOperand(0))); 2131 Record.push_back(VE.getValueID(C->getOperand(1))); 2132 Record.push_back(VE.getValueID(C->getOperand(2))); 2133 break; 2134 case Instruction::ExtractElement: 2135 Code = bitc::CST_CODE_CE_EXTRACTELT; 2136 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2137 Record.push_back(VE.getValueID(C->getOperand(0))); 2138 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2139 Record.push_back(VE.getValueID(C->getOperand(1))); 2140 break; 2141 case Instruction::InsertElement: 2142 Code = bitc::CST_CODE_CE_INSERTELT; 2143 Record.push_back(VE.getValueID(C->getOperand(0))); 2144 Record.push_back(VE.getValueID(C->getOperand(1))); 2145 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2146 Record.push_back(VE.getValueID(C->getOperand(2))); 2147 break; 2148 case Instruction::ShuffleVector: 2149 // If the return type and argument types are the same, this is a 2150 // standard shufflevector instruction. If the types are different, 2151 // then the shuffle is widening or truncating the input vectors, and 2152 // the argument type must also be encoded. 2153 if (C->getType() == C->getOperand(0)->getType()) { 2154 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2155 } else { 2156 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2157 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2158 } 2159 Record.push_back(VE.getValueID(C->getOperand(0))); 2160 Record.push_back(VE.getValueID(C->getOperand(1))); 2161 Record.push_back(VE.getValueID(C->getOperand(2))); 2162 break; 2163 } 2164 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2165 Code = bitc::CST_CODE_BLOCKADDRESS; 2166 Record.push_back(getTypeID(BA->getFunction()->getType())); 2167 Record.push_back(VE.getValueID(BA->getFunction())); 2168 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2169 } else { 2170 #ifndef NDEBUG 2171 C->dump(); 2172 #endif 2173 llvm_unreachable("Unknown constant!"); 2174 } 2175 Stream.EmitRecord(Code, Record, AbbrevToUse); 2176 Record.clear(); 2177 } 2178 2179 Stream.ExitBlock(); 2180 } 2181 2182 void DXILBitcodeWriter::writeModuleConstants() { 2183 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2184 2185 // Find the first constant to emit, which is the first non-globalvalue value. 2186 // We know globalvalues have been emitted by WriteModuleInfo. 2187 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2188 if (!isa<GlobalValue>(Vals[i].first)) { 2189 writeConstants(i, Vals.size(), true); 2190 return; 2191 } 2192 } 2193 } 2194 2195 /// pushValueAndType - The file has to encode both the value and type id for 2196 /// many values, because we need to know what type to create for forward 2197 /// references. However, most operands are not forward references, so this type 2198 /// field is not needed. 2199 /// 2200 /// This function adds V's value ID to Vals. If the value ID is higher than the 2201 /// instruction ID, then it is a forward reference, and it also includes the 2202 /// type ID. The value ID that is written is encoded relative to the InstID. 2203 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2204 SmallVectorImpl<unsigned> &Vals) { 2205 unsigned ValID = VE.getValueID(V); 2206 // Make encoding relative to the InstID. 2207 Vals.push_back(InstID - ValID); 2208 if (ValID >= InstID) { 2209 Vals.push_back(getTypeID(V->getType(), V)); 2210 return true; 2211 } 2212 return false; 2213 } 2214 2215 /// pushValue - Like pushValueAndType, but where the type of the value is 2216 /// omitted (perhaps it was already encoded in an earlier operand). 2217 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2218 SmallVectorImpl<unsigned> &Vals) { 2219 unsigned ValID = VE.getValueID(V); 2220 Vals.push_back(InstID - ValID); 2221 } 2222 2223 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2224 SmallVectorImpl<uint64_t> &Vals) { 2225 unsigned ValID = VE.getValueID(V); 2226 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2227 emitSignedInt64(Vals, diff); 2228 } 2229 2230 /// WriteInstruction - Emit an instruction 2231 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2232 SmallVectorImpl<unsigned> &Vals) { 2233 unsigned Code = 0; 2234 unsigned AbbrevToUse = 0; 2235 VE.setInstructionID(&I); 2236 switch (I.getOpcode()) { 2237 default: 2238 if (Instruction::isCast(I.getOpcode())) { 2239 Code = bitc::FUNC_CODE_INST_CAST; 2240 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2241 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2242 Vals.push_back(getTypeID(I.getType(), &I)); 2243 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2244 } else { 2245 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2246 Code = bitc::FUNC_CODE_INST_BINOP; 2247 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2248 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2249 pushValue(I.getOperand(1), InstID, Vals); 2250 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2251 uint64_t Flags = getOptimizationFlags(&I); 2252 if (Flags != 0) { 2253 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2254 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2255 Vals.push_back(Flags); 2256 } 2257 } 2258 break; 2259 2260 case Instruction::GetElementPtr: { 2261 Code = bitc::FUNC_CODE_INST_GEP; 2262 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2263 auto &GEPInst = cast<GetElementPtrInst>(I); 2264 Vals.push_back(GEPInst.isInBounds()); 2265 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2266 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2267 pushValueAndType(I.getOperand(i), InstID, Vals); 2268 break; 2269 } 2270 case Instruction::ExtractValue: { 2271 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2272 pushValueAndType(I.getOperand(0), InstID, Vals); 2273 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2274 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2275 break; 2276 } 2277 case Instruction::InsertValue: { 2278 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2279 pushValueAndType(I.getOperand(0), InstID, Vals); 2280 pushValueAndType(I.getOperand(1), InstID, Vals); 2281 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2282 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2283 break; 2284 } 2285 case Instruction::Select: 2286 Code = bitc::FUNC_CODE_INST_VSELECT; 2287 pushValueAndType(I.getOperand(1), InstID, Vals); 2288 pushValue(I.getOperand(2), InstID, Vals); 2289 pushValueAndType(I.getOperand(0), InstID, Vals); 2290 break; 2291 case Instruction::ExtractElement: 2292 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2293 pushValueAndType(I.getOperand(0), InstID, Vals); 2294 pushValueAndType(I.getOperand(1), InstID, Vals); 2295 break; 2296 case Instruction::InsertElement: 2297 Code = bitc::FUNC_CODE_INST_INSERTELT; 2298 pushValueAndType(I.getOperand(0), InstID, Vals); 2299 pushValue(I.getOperand(1), InstID, Vals); 2300 pushValueAndType(I.getOperand(2), InstID, Vals); 2301 break; 2302 case Instruction::ShuffleVector: 2303 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2304 pushValueAndType(I.getOperand(0), InstID, Vals); 2305 pushValue(I.getOperand(1), InstID, Vals); 2306 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2307 Vals); 2308 break; 2309 case Instruction::ICmp: 2310 case Instruction::FCmp: { 2311 // compare returning Int1Ty or vector of Int1Ty 2312 Code = bitc::FUNC_CODE_INST_CMP2; 2313 pushValueAndType(I.getOperand(0), InstID, Vals); 2314 pushValue(I.getOperand(1), InstID, Vals); 2315 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2316 uint64_t Flags = getOptimizationFlags(&I); 2317 if (Flags != 0) 2318 Vals.push_back(Flags); 2319 break; 2320 } 2321 2322 case Instruction::Ret: { 2323 Code = bitc::FUNC_CODE_INST_RET; 2324 unsigned NumOperands = I.getNumOperands(); 2325 if (NumOperands == 0) 2326 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2327 else if (NumOperands == 1) { 2328 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2329 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2330 } else { 2331 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2332 pushValueAndType(I.getOperand(i), InstID, Vals); 2333 } 2334 } break; 2335 case Instruction::Br: { 2336 Code = bitc::FUNC_CODE_INST_BR; 2337 const BranchInst &II = cast<BranchInst>(I); 2338 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2339 if (II.isConditional()) { 2340 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2341 pushValue(II.getCondition(), InstID, Vals); 2342 } 2343 } break; 2344 case Instruction::Switch: { 2345 Code = bitc::FUNC_CODE_INST_SWITCH; 2346 const SwitchInst &SI = cast<SwitchInst>(I); 2347 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2348 pushValue(SI.getCondition(), InstID, Vals); 2349 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2350 for (auto Case : SI.cases()) { 2351 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2352 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2353 } 2354 } break; 2355 case Instruction::IndirectBr: 2356 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2357 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2358 // Encode the address operand as relative, but not the basic blocks. 2359 pushValue(I.getOperand(0), InstID, Vals); 2360 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2361 Vals.push_back(VE.getValueID(I.getOperand(i))); 2362 break; 2363 2364 case Instruction::Invoke: { 2365 const InvokeInst *II = cast<InvokeInst>(&I); 2366 const Value *Callee = II->getCalledOperand(); 2367 FunctionType *FTy = II->getFunctionType(); 2368 Code = bitc::FUNC_CODE_INST_INVOKE; 2369 2370 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2371 Vals.push_back(II->getCallingConv() | 1 << 13); 2372 Vals.push_back(VE.getValueID(II->getNormalDest())); 2373 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2374 Vals.push_back(getTypeID(FTy)); 2375 pushValueAndType(Callee, InstID, Vals); 2376 2377 // Emit value #'s for the fixed parameters. 2378 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2379 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2380 2381 // Emit type/value pairs for varargs params. 2382 if (FTy->isVarArg()) { 2383 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2384 ++i) 2385 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2386 } 2387 break; 2388 } 2389 case Instruction::Resume: 2390 Code = bitc::FUNC_CODE_INST_RESUME; 2391 pushValueAndType(I.getOperand(0), InstID, Vals); 2392 break; 2393 case Instruction::Unreachable: 2394 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2395 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2396 break; 2397 2398 case Instruction::PHI: { 2399 const PHINode &PN = cast<PHINode>(I); 2400 Code = bitc::FUNC_CODE_INST_PHI; 2401 // With the newer instruction encoding, forward references could give 2402 // negative valued IDs. This is most common for PHIs, so we use 2403 // signed VBRs. 2404 SmallVector<uint64_t, 128> Vals64; 2405 Vals64.push_back(getTypeID(PN.getType())); 2406 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2407 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2408 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2409 } 2410 // Emit a Vals64 vector and exit. 2411 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2412 Vals64.clear(); 2413 return; 2414 } 2415 2416 case Instruction::LandingPad: { 2417 const LandingPadInst &LP = cast<LandingPadInst>(I); 2418 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2419 Vals.push_back(getTypeID(LP.getType())); 2420 Vals.push_back(LP.isCleanup()); 2421 Vals.push_back(LP.getNumClauses()); 2422 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2423 if (LP.isCatch(I)) 2424 Vals.push_back(LandingPadInst::Catch); 2425 else 2426 Vals.push_back(LandingPadInst::Filter); 2427 pushValueAndType(LP.getClause(I), InstID, Vals); 2428 } 2429 break; 2430 } 2431 2432 case Instruction::Alloca: { 2433 Code = bitc::FUNC_CODE_INST_ALLOCA; 2434 const AllocaInst &AI = cast<AllocaInst>(I); 2435 Vals.push_back(getTypeID(AI.getAllocatedType())); 2436 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2437 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2438 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2439 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2440 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2441 AlignRecord |= 1 << 6; 2442 Vals.push_back(AlignRecord); 2443 break; 2444 } 2445 2446 case Instruction::Load: 2447 if (cast<LoadInst>(I).isAtomic()) { 2448 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2449 pushValueAndType(I.getOperand(0), InstID, Vals); 2450 } else { 2451 Code = bitc::FUNC_CODE_INST_LOAD; 2452 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2453 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2454 } 2455 Vals.push_back(getTypeID(I.getType())); 2456 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2457 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2458 if (cast<LoadInst>(I).isAtomic()) { 2459 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2460 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2461 } 2462 break; 2463 case Instruction::Store: 2464 if (cast<StoreInst>(I).isAtomic()) 2465 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2466 else 2467 Code = bitc::FUNC_CODE_INST_STORE; 2468 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2469 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2470 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2471 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2472 if (cast<StoreInst>(I).isAtomic()) { 2473 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2474 Vals.push_back( 2475 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2476 } 2477 break; 2478 case Instruction::AtomicCmpXchg: 2479 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2480 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2481 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2482 pushValue(I.getOperand(2), InstID, Vals); // newval. 2483 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2484 Vals.push_back( 2485 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2486 Vals.push_back( 2487 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2488 Vals.push_back( 2489 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2490 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2491 break; 2492 case Instruction::AtomicRMW: 2493 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2494 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2495 pushValue(I.getOperand(1), InstID, Vals); // val. 2496 Vals.push_back( 2497 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2498 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2499 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2500 Vals.push_back( 2501 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2502 break; 2503 case Instruction::Fence: 2504 Code = bitc::FUNC_CODE_INST_FENCE; 2505 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2506 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2507 break; 2508 case Instruction::Call: { 2509 const CallInst &CI = cast<CallInst>(I); 2510 FunctionType *FTy = CI.getFunctionType(); 2511 2512 Code = bitc::FUNC_CODE_INST_CALL; 2513 2514 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2515 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2516 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2517 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2518 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2519 2520 // Emit value #'s for the fixed parameters. 2521 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2522 // Check for labels (can happen with asm labels). 2523 if (FTy->getParamType(i)->isLabelTy()) 2524 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2525 else 2526 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2527 } 2528 2529 // Emit type/value pairs for varargs params. 2530 if (FTy->isVarArg()) { 2531 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2532 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2533 } 2534 break; 2535 } 2536 case Instruction::VAArg: 2537 Code = bitc::FUNC_CODE_INST_VAARG; 2538 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2539 pushValue(I.getOperand(0), InstID, Vals); // valist. 2540 Vals.push_back(getTypeID(I.getType())); // restype. 2541 break; 2542 } 2543 2544 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2545 Vals.clear(); 2546 } 2547 2548 // Emit names for globals/functions etc. 2549 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2550 const ValueSymbolTable &VST) { 2551 if (VST.empty()) 2552 return; 2553 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2554 2555 SmallVector<unsigned, 64> NameVals; 2556 2557 // HLSL Change 2558 // Read the named values from a sorted list instead of the original list 2559 // to ensure the binary is the same no matter what values ever existed. 2560 SmallVector<const ValueName *, 16> SortedTable; 2561 2562 for (auto &VI : VST) { 2563 SortedTable.push_back(VI.second->getValueName()); 2564 } 2565 // The keys are unique, so there shouldn't be stability issues. 2566 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2567 return A->first() < B->first(); 2568 }); 2569 2570 for (const ValueName *SI : SortedTable) { 2571 auto &Name = *SI; 2572 2573 // Figure out the encoding to use for the name. 2574 bool is7Bit = true; 2575 bool isChar6 = true; 2576 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2577 C != E; ++C) { 2578 if (isChar6) 2579 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2580 if ((unsigned char)*C & 128) { 2581 is7Bit = false; 2582 break; // don't bother scanning the rest. 2583 } 2584 } 2585 2586 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2587 2588 // VST_ENTRY: [valueid, namechar x N] 2589 // VST_BBENTRY: [bbid, namechar x N] 2590 unsigned Code; 2591 if (isa<BasicBlock>(SI->getValue())) { 2592 Code = bitc::VST_CODE_BBENTRY; 2593 if (isChar6) 2594 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2595 } else { 2596 Code = bitc::VST_CODE_ENTRY; 2597 if (isChar6) 2598 AbbrevToUse = VST_ENTRY_6_ABBREV; 2599 else if (is7Bit) 2600 AbbrevToUse = VST_ENTRY_7_ABBREV; 2601 } 2602 2603 NameVals.push_back(VE.getValueID(SI->getValue())); 2604 for (const char *P = Name.getKeyData(), 2605 *E = Name.getKeyData() + Name.getKeyLength(); 2606 P != E; ++P) 2607 NameVals.push_back((unsigned char)*P); 2608 2609 // Emit the finished record. 2610 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2611 NameVals.clear(); 2612 } 2613 Stream.ExitBlock(); 2614 } 2615 2616 /// Emit a function body to the module stream. 2617 void DXILBitcodeWriter::writeFunction(const Function &F) { 2618 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2619 VE.incorporateFunction(F); 2620 2621 SmallVector<unsigned, 64> Vals; 2622 2623 // Emit the number of basic blocks, so the reader can create them ahead of 2624 // time. 2625 Vals.push_back(VE.getBasicBlocks().size()); 2626 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2627 Vals.clear(); 2628 2629 // If there are function-local constants, emit them now. 2630 unsigned CstStart, CstEnd; 2631 VE.getFunctionConstantRange(CstStart, CstEnd); 2632 writeConstants(CstStart, CstEnd, false); 2633 2634 // If there is function-local metadata, emit it now. 2635 writeFunctionMetadata(F); 2636 2637 // Keep a running idea of what the instruction ID is. 2638 unsigned InstID = CstEnd; 2639 2640 bool NeedsMetadataAttachment = F.hasMetadata(); 2641 2642 DILocation *LastDL = nullptr; 2643 2644 // Finally, emit all the instructions, in order. 2645 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2646 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2647 ++I) { 2648 writeInstruction(*I, InstID, Vals); 2649 2650 if (!I->getType()->isVoidTy()) 2651 ++InstID; 2652 2653 // If the instruction has metadata, write a metadata attachment later. 2654 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2655 2656 // If the instruction has a debug location, emit it. 2657 DILocation *DL = I->getDebugLoc(); 2658 if (!DL) 2659 continue; 2660 2661 if (DL == LastDL) { 2662 // Just repeat the same debug loc as last time. 2663 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2664 continue; 2665 } 2666 2667 Vals.push_back(DL->getLine()); 2668 Vals.push_back(DL->getColumn()); 2669 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2670 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2671 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2672 Vals.clear(); 2673 2674 LastDL = DL; 2675 } 2676 2677 // Emit names for all the instructions etc. 2678 if (auto *Symtab = F.getValueSymbolTable()) 2679 writeFunctionLevelValueSymbolTable(*Symtab); 2680 2681 if (NeedsMetadataAttachment) 2682 writeFunctionMetadataAttachment(F); 2683 2684 VE.purgeFunction(); 2685 Stream.ExitBlock(); 2686 } 2687 2688 // Emit blockinfo, which defines the standard abbreviations etc. 2689 void DXILBitcodeWriter::writeBlockInfo() { 2690 // We only want to emit block info records for blocks that have multiple 2691 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2692 // Other blocks can define their abbrevs inline. 2693 Stream.EnterBlockInfoBlock(); 2694 2695 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2696 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2701 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2702 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2703 assert(false && "Unexpected abbrev ordering!"); 2704 } 2705 2706 { // 7-bit fixed width VST_ENTRY strings. 2707 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2708 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2712 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2713 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2714 assert(false && "Unexpected abbrev ordering!"); 2715 } 2716 { // 6-bit char6 VST_ENTRY strings. 2717 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2718 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2722 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2723 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2724 assert(false && "Unexpected abbrev ordering!"); 2725 } 2726 { // 6-bit char6 VST_BBENTRY strings. 2727 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2728 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2732 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2733 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2734 assert(false && "Unexpected abbrev ordering!"); 2735 } 2736 2737 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2738 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2739 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2741 VE.computeBitsRequiredForTypeIndices())); 2742 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2743 CONSTANTS_SETTYPE_ABBREV) 2744 assert(false && "Unexpected abbrev ordering!"); 2745 } 2746 2747 { // INTEGER abbrev for CONSTANTS_BLOCK. 2748 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2749 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2751 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2752 CONSTANTS_INTEGER_ABBREV) 2753 assert(false && "Unexpected abbrev ordering!"); 2754 } 2755 2756 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2758 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2761 VE.computeBitsRequiredForTypeIndices())); 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2763 2764 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2765 CONSTANTS_CE_CAST_Abbrev) 2766 assert(false && "Unexpected abbrev ordering!"); 2767 } 2768 { // NULL abbrev for CONSTANTS_BLOCK. 2769 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2770 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2771 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2772 CONSTANTS_NULL_Abbrev) 2773 assert(false && "Unexpected abbrev ordering!"); 2774 } 2775 2776 // FIXME: This should only use space for first class types! 2777 2778 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2779 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2780 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2783 VE.computeBitsRequiredForTypeIndices())); 2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2786 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2787 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2788 assert(false && "Unexpected abbrev ordering!"); 2789 } 2790 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2791 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2792 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2796 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2797 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2798 assert(false && "Unexpected abbrev ordering!"); 2799 } 2800 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2801 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2802 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2807 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2808 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2809 assert(false && "Unexpected abbrev ordering!"); 2810 } 2811 { // INST_CAST abbrev for FUNCTION_BLOCK. 2812 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2813 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2816 VE.computeBitsRequiredForTypeIndices())); 2817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2818 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2819 (unsigned)FUNCTION_INST_CAST_ABBREV) 2820 assert(false && "Unexpected abbrev ordering!"); 2821 } 2822 2823 { // INST_RET abbrev for FUNCTION_BLOCK. 2824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2825 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2826 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2827 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2828 assert(false && "Unexpected abbrev ordering!"); 2829 } 2830 { // INST_RET abbrev for FUNCTION_BLOCK. 2831 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2832 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2834 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2835 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2836 assert(false && "Unexpected abbrev ordering!"); 2837 } 2838 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2839 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2840 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2841 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2842 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2843 assert(false && "Unexpected abbrev ordering!"); 2844 } 2845 { 2846 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2847 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2850 Log2_32_Ceil(VE.getTypes().size() + 1))); 2851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2853 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2854 (unsigned)FUNCTION_INST_GEP_ABBREV) 2855 assert(false && "Unexpected abbrev ordering!"); 2856 } 2857 2858 Stream.ExitBlock(); 2859 } 2860 2861 void DXILBitcodeWriter::writeModuleVersion() { 2862 // VERSION: [version#] 2863 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2864 } 2865 2866 /// WriteModule - Emit the specified module to the bitstream. 2867 void DXILBitcodeWriter::write() { 2868 // The identification block is new since llvm-3.7, but the old bitcode reader 2869 // will skip it. 2870 // writeIdentificationBlock(Stream); 2871 2872 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2873 2874 // It is redundant to fully-specify this here, but nice to make it explicit 2875 // so that it is clear the DXIL module version is different. 2876 DXILBitcodeWriter::writeModuleVersion(); 2877 2878 // Emit blockinfo, which defines the standard abbreviations etc. 2879 writeBlockInfo(); 2880 2881 // Emit information about attribute groups. 2882 writeAttributeGroupTable(); 2883 2884 // Emit information about parameter attributes. 2885 writeAttributeTable(); 2886 2887 // Emit information describing all of the types in the module. 2888 writeTypeTable(); 2889 2890 writeComdats(); 2891 2892 // Emit top-level description of module, including target triple, inline asm, 2893 // descriptors for global variables, and function prototype info. 2894 writeModuleInfo(); 2895 2896 // Emit constants. 2897 writeModuleConstants(); 2898 2899 // Emit metadata. 2900 writeModuleMetadataKinds(); 2901 2902 // Emit metadata. 2903 writeModuleMetadata(); 2904 2905 // Emit names for globals/functions etc. 2906 // DXIL uses the same format for module-level value symbol table as for the 2907 // function level table. 2908 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2909 2910 // Emit function bodies. 2911 for (const Function &F : M) 2912 if (!F.isDeclaration()) 2913 writeFunction(F); 2914 2915 Stream.ExitBlock(); 2916 } 2917