xref: /freebsd/contrib/llvm-project/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "DirectXIRPasses/PointerTypeAnalysis.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Bitcode/BitcodeCommon.h"
18 #include "llvm/Bitcode/BitcodeReader.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Bitstream/BitstreamWriter.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/UseListOrder.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/IR/ValueSymbolTable.h"
49 #include "llvm/Object/IRSymtab.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/ModRef.h"
52 #include "llvm/Support/SHA1.h"
53 #include "llvm/TargetParser/Triple.h"
54 
55 namespace llvm {
56 namespace dxil {
57 
58 // Generates an enum to use as an index in the Abbrev array of Metadata record.
59 enum MetadataAbbrev : unsigned {
60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61 #include "llvm/IR/Metadata.def"
62   LastPlusOne
63 };
64 
65 class DXILBitcodeWriter {
66 
67   /// These are manifest constants used by the bitcode writer. They do not need
68   /// to be kept in sync with the reader, but need to be consistent within this
69   /// file.
70   enum {
71     // VALUE_SYMTAB_BLOCK abbrev id's.
72     VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
73     VST_ENTRY_7_ABBREV,
74     VST_ENTRY_6_ABBREV,
75     VST_BBENTRY_6_ABBREV,
76 
77     // CONSTANTS_BLOCK abbrev id's.
78     CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
79     CONSTANTS_INTEGER_ABBREV,
80     CONSTANTS_CE_CAST_Abbrev,
81     CONSTANTS_NULL_Abbrev,
82 
83     // FUNCTION_BLOCK abbrev id's.
84     FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
85     FUNCTION_INST_BINOP_ABBREV,
86     FUNCTION_INST_BINOP_FLAGS_ABBREV,
87     FUNCTION_INST_CAST_ABBREV,
88     FUNCTION_INST_RET_VOID_ABBREV,
89     FUNCTION_INST_RET_VAL_ABBREV,
90     FUNCTION_INST_UNREACHABLE_ABBREV,
91     FUNCTION_INST_GEP_ABBREV,
92   };
93 
94   // Cache some types
95   Type *I8Ty;
96   Type *I8PtrTy;
97 
98   /// The stream created and owned by the client.
99   BitstreamWriter &Stream;
100 
101   StringTableBuilder &StrtabBuilder;
102 
103   /// The Module to write to bitcode.
104   const Module &M;
105 
106   /// Enumerates ids for all values in the module.
107   ValueEnumerator VE;
108 
109   /// Map that holds the correspondence between GUIDs in the summary index,
110   /// that came from indirect call profiles, and a value id generated by this
111   /// class to use in the VST and summary block records.
112   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
113 
114   /// Tracks the last value id recorded in the GUIDToValueMap.
115   unsigned GlobalValueId;
116 
117   /// Saves the offset of the VSTOffset record that must eventually be
118   /// backpatched with the offset of the actual VST.
119   uint64_t VSTOffsetPlaceholder = 0;
120 
121   /// Pointer to the buffer allocated by caller for bitcode writing.
122   const SmallVectorImpl<char> &Buffer;
123 
124   /// The start bit of the identification block.
125   uint64_t BitcodeStartBit;
126 
127   /// This maps values to their typed pointers
128   PointerTypeMap PointerMap;
129 
130 public:
131   /// Constructs a ModuleBitcodeWriter object for the given Module,
132   /// writing to the provided \p Buffer.
133   DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
134                     StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
135       : I8Ty(Type::getInt8Ty(M.getContext())),
136         I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
137         StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
138         BitcodeStartBit(Stream.GetCurrentBitNo()),
139         PointerMap(PointerTypeAnalysis::run(M)) {
140     GlobalValueId = VE.getValues().size();
141     // Enumerate the typed pointers
142     for (auto El : PointerMap)
143       VE.EnumerateType(El.second);
144   }
145 
146   /// Emit the current module to the bitstream.
147   void write();
148 
149   static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
150   static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
151                                 StringRef Str, unsigned AbbrevToUse);
152   static void writeIdentificationBlock(BitstreamWriter &Stream);
153   static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
154   static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
155 
156   static unsigned getEncodedComdatSelectionKind(const Comdat &C);
157   static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
158   static unsigned getEncodedLinkage(const GlobalValue &GV);
159   static unsigned getEncodedVisibility(const GlobalValue &GV);
160   static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
161   static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
162   static unsigned getEncodedCastOpcode(unsigned Opcode);
163   static unsigned getEncodedUnaryOpcode(unsigned Opcode);
164   static unsigned getEncodedBinaryOpcode(unsigned Opcode);
165   static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
166   static unsigned getEncodedOrdering(AtomicOrdering Ordering);
167   static uint64_t getOptimizationFlags(const Value *V);
168 
169 private:
170   void writeModuleVersion();
171   void writePerModuleGlobalValueSummary();
172 
173   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
174                                            GlobalValueSummary *Summary,
175                                            unsigned ValueID,
176                                            unsigned FSCallsAbbrev,
177                                            unsigned FSCallsProfileAbbrev,
178                                            const Function &F);
179   void writeModuleLevelReferences(const GlobalVariable &V,
180                                   SmallVector<uint64_t, 64> &NameVals,
181                                   unsigned FSModRefsAbbrev,
182                                   unsigned FSModVTableRefsAbbrev);
183 
184   void assignValueId(GlobalValue::GUID ValGUID) {
185     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
186   }
187 
188   unsigned getValueId(GlobalValue::GUID ValGUID) {
189     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
190     // Expect that any GUID value had a value Id assigned by an
191     // earlier call to assignValueId.
192     assert(VMI != GUIDToValueIdMap.end() &&
193            "GUID does not have assigned value Id");
194     return VMI->second;
195   }
196 
197   // Helper to get the valueId for the type of value recorded in VI.
198   unsigned getValueId(ValueInfo VI) {
199     if (!VI.haveGVs() || !VI.getValue())
200       return getValueId(VI.getGUID());
201     return VE.getValueID(VI.getValue());
202   }
203 
204   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
205 
206   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
207 
208   size_t addToStrtab(StringRef Str);
209 
210   unsigned createDILocationAbbrev();
211   unsigned createGenericDINodeAbbrev();
212 
213   void writeAttributeGroupTable();
214   void writeAttributeTable();
215   void writeTypeTable();
216   void writeComdats();
217   void writeValueSymbolTableForwardDecl();
218   void writeModuleInfo();
219   void writeValueAsMetadata(const ValueAsMetadata *MD,
220                             SmallVectorImpl<uint64_t> &Record);
221   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
222                     unsigned Abbrev);
223   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
224                        unsigned &Abbrev);
225   void writeGenericDINode(const GenericDINode *N,
226                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
227     llvm_unreachable("DXIL cannot contain GenericDI Nodes");
228   }
229   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
230                        unsigned Abbrev);
231   void writeDIGenericSubrange(const DIGenericSubrange *N,
232                               SmallVectorImpl<uint64_t> &Record,
233                               unsigned Abbrev) {
234     llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
235   }
236   void writeDIEnumerator(const DIEnumerator *N,
237                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
238   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
239                         unsigned Abbrev);
240   void writeDIStringType(const DIStringType *N,
241                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
242     llvm_unreachable("DXIL cannot contain DIStringType Nodes");
243   }
244   void writeDIDerivedType(const DIDerivedType *N,
245                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246   void writeDICompositeType(const DICompositeType *N,
247                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
248   void writeDISubroutineType(const DISubroutineType *N,
249                              SmallVectorImpl<uint64_t> &Record,
250                              unsigned Abbrev);
251   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
252                    unsigned Abbrev);
253   void writeDICompileUnit(const DICompileUnit *N,
254                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255   void writeDISubprogram(const DISubprogram *N,
256                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257   void writeDILexicalBlock(const DILexicalBlock *N,
258                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
259   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
260                                SmallVectorImpl<uint64_t> &Record,
261                                unsigned Abbrev);
262   void writeDICommonBlock(const DICommonBlock *N,
263                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
264     llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
265   }
266   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
267                         unsigned Abbrev);
268   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
269                     unsigned Abbrev) {
270     llvm_unreachable("DXIL cannot contain DIMacro Nodes");
271   }
272   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
273                         unsigned Abbrev) {
274     llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
275   }
276   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
277                       unsigned Abbrev) {
278     llvm_unreachable("DXIL cannot contain DIArgList Nodes");
279   }
280   void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
281                        unsigned Abbrev) {
282     // DIAssignID is experimental feature to track variable location in IR..
283     // FIXME: translate DIAssignID to debug info DXIL supports.
284     //   See https://github.com/llvm/llvm-project/issues/58989
285     llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
286   }
287   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
288                      unsigned Abbrev);
289   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
290                                     SmallVectorImpl<uint64_t> &Record,
291                                     unsigned Abbrev);
292   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
293                                      SmallVectorImpl<uint64_t> &Record,
294                                      unsigned Abbrev);
295   void writeDIGlobalVariable(const DIGlobalVariable *N,
296                              SmallVectorImpl<uint64_t> &Record,
297                              unsigned Abbrev);
298   void writeDILocalVariable(const DILocalVariable *N,
299                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
300   void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
301                     unsigned Abbrev) {
302     llvm_unreachable("DXIL cannot contain DILabel Nodes");
303   }
304   void writeDIExpression(const DIExpression *N,
305                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
307                                        SmallVectorImpl<uint64_t> &Record,
308                                        unsigned Abbrev) {
309     llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
310   }
311   void writeDIObjCProperty(const DIObjCProperty *N,
312                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDIImportedEntity(const DIImportedEntity *N,
314                              SmallVectorImpl<uint64_t> &Record,
315                              unsigned Abbrev);
316   unsigned createNamedMetadataAbbrev();
317   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
318   unsigned createMetadataStringsAbbrev();
319   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
320                             SmallVectorImpl<uint64_t> &Record);
321   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
322                             SmallVectorImpl<uint64_t> &Record,
323                             std::vector<unsigned> *MDAbbrevs = nullptr,
324                             std::vector<uint64_t> *IndexPos = nullptr);
325   void writeModuleMetadata();
326   void writeFunctionMetadata(const Function &F);
327   void writeFunctionMetadataAttachment(const Function &F);
328   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
329                                     const GlobalObject &GO);
330   void writeModuleMetadataKinds();
331   void writeOperandBundleTags();
332   void writeSyncScopeNames();
333   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
334   void writeModuleConstants();
335   bool pushValueAndType(const Value *V, unsigned InstID,
336                         SmallVectorImpl<unsigned> &Vals);
337   void writeOperandBundles(const CallBase &CB, unsigned InstID);
338   void pushValue(const Value *V, unsigned InstID,
339                  SmallVectorImpl<unsigned> &Vals);
340   void pushValueSigned(const Value *V, unsigned InstID,
341                        SmallVectorImpl<uint64_t> &Vals);
342   void writeInstruction(const Instruction &I, unsigned InstID,
343                         SmallVectorImpl<unsigned> &Vals);
344   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
345   void writeGlobalValueSymbolTable(
346       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
347   void writeFunction(const Function &F);
348   void writeBlockInfo();
349 
350   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
351 
352   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
353 
354   unsigned getTypeID(Type *T, const Value *V = nullptr);
355   /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
356   ///
357   /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358   /// GlobalObject, but in the bitcode writer we need the pointer element type.
359   unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G);
360 };
361 
362 } // namespace dxil
363 } // namespace llvm
364 
365 using namespace llvm;
366 using namespace llvm::dxil;
367 
368 ////////////////////////////////////////////////////////////////////////////////
369 /// Begin dxil::BitcodeWriter Implementation
370 ////////////////////////////////////////////////////////////////////////////////
371 
372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
373     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
374   // Emit the file header.
375   Stream->Emit((unsigned)'B', 8);
376   Stream->Emit((unsigned)'C', 8);
377   Stream->Emit(0x0, 4);
378   Stream->Emit(0xC, 4);
379   Stream->Emit(0xE, 4);
380   Stream->Emit(0xD, 4);
381 }
382 
383 dxil::BitcodeWriter::~BitcodeWriter() { }
384 
385 /// Write the specified module to the specified output stream.
386 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
387   SmallVector<char, 0> Buffer;
388   Buffer.reserve(256 * 1024);
389 
390   // If this is darwin or another generic macho target, reserve space for the
391   // header.
392   Triple TT(M.getTargetTriple());
393   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
394     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
395 
396   BitcodeWriter Writer(Buffer);
397   Writer.writeModule(M);
398 
399   // Write the generated bitstream to "Out".
400   if (!Buffer.empty())
401     Out.write((char *)&Buffer.front(), Buffer.size());
402 }
403 
404 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
405   Stream->EnterSubblock(Block, 3);
406 
407   auto Abbv = std::make_shared<BitCodeAbbrev>();
408   Abbv->Add(BitCodeAbbrevOp(Record));
409   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
410   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
411 
412   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
413 
414   Stream->ExitBlock();
415 }
416 
417 void BitcodeWriter::writeModule(const Module &M) {
418 
419   // The Mods vector is used by irsymtab::build, which requires non-const
420   // Modules in case it needs to materialize metadata. But the bitcode writer
421   // requires that the module is materialized, so we can cast to non-const here,
422   // after checking that it is in fact materialized.
423   assert(M.isMaterialized());
424   Mods.push_back(const_cast<Module *>(&M));
425 
426   DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
427   ModuleWriter.write();
428 }
429 
430 ////////////////////////////////////////////////////////////////////////////////
431 /// Begin dxil::BitcodeWriterBase Implementation
432 ////////////////////////////////////////////////////////////////////////////////
433 
434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
435   switch (Opcode) {
436   default:
437     llvm_unreachable("Unknown cast instruction!");
438   case Instruction::Trunc:
439     return bitc::CAST_TRUNC;
440   case Instruction::ZExt:
441     return bitc::CAST_ZEXT;
442   case Instruction::SExt:
443     return bitc::CAST_SEXT;
444   case Instruction::FPToUI:
445     return bitc::CAST_FPTOUI;
446   case Instruction::FPToSI:
447     return bitc::CAST_FPTOSI;
448   case Instruction::UIToFP:
449     return bitc::CAST_UITOFP;
450   case Instruction::SIToFP:
451     return bitc::CAST_SITOFP;
452   case Instruction::FPTrunc:
453     return bitc::CAST_FPTRUNC;
454   case Instruction::FPExt:
455     return bitc::CAST_FPEXT;
456   case Instruction::PtrToInt:
457     return bitc::CAST_PTRTOINT;
458   case Instruction::IntToPtr:
459     return bitc::CAST_INTTOPTR;
460   case Instruction::BitCast:
461     return bitc::CAST_BITCAST;
462   case Instruction::AddrSpaceCast:
463     return bitc::CAST_ADDRSPACECAST;
464   }
465 }
466 
467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
468   switch (Opcode) {
469   default:
470     llvm_unreachable("Unknown binary instruction!");
471   case Instruction::FNeg:
472     return bitc::UNOP_FNEG;
473   }
474 }
475 
476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
477   switch (Opcode) {
478   default:
479     llvm_unreachable("Unknown binary instruction!");
480   case Instruction::Add:
481   case Instruction::FAdd:
482     return bitc::BINOP_ADD;
483   case Instruction::Sub:
484   case Instruction::FSub:
485     return bitc::BINOP_SUB;
486   case Instruction::Mul:
487   case Instruction::FMul:
488     return bitc::BINOP_MUL;
489   case Instruction::UDiv:
490     return bitc::BINOP_UDIV;
491   case Instruction::FDiv:
492   case Instruction::SDiv:
493     return bitc::BINOP_SDIV;
494   case Instruction::URem:
495     return bitc::BINOP_UREM;
496   case Instruction::FRem:
497   case Instruction::SRem:
498     return bitc::BINOP_SREM;
499   case Instruction::Shl:
500     return bitc::BINOP_SHL;
501   case Instruction::LShr:
502     return bitc::BINOP_LSHR;
503   case Instruction::AShr:
504     return bitc::BINOP_ASHR;
505   case Instruction::And:
506     return bitc::BINOP_AND;
507   case Instruction::Or:
508     return bitc::BINOP_OR;
509   case Instruction::Xor:
510     return bitc::BINOP_XOR;
511   }
512 }
513 
514 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
515   if (!T->isPointerTy() &&
516       // For Constant, always check PointerMap to make sure OpaquePointer in
517       // things like constant struct/array works.
518       (!V || !isa<Constant>(V)))
519     return VE.getTypeID(T);
520   auto It = PointerMap.find(V);
521   if (It != PointerMap.end())
522     return VE.getTypeID(It->second);
523   // For Constant, return T when cannot find in PointerMap.
524   // FIXME: support ConstantPointerNull which could map to more than one
525   // TypedPointerType.
526   // See https://github.com/llvm/llvm-project/issues/57942.
527   if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V))
528     return VE.getTypeID(T);
529   return VE.getTypeID(I8PtrTy);
530 }
531 
532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T,
533                                                        const GlobalObject *G) {
534   auto It = PointerMap.find(G);
535   if (It != PointerMap.end()) {
536     TypedPointerType *PtrTy = cast<TypedPointerType>(It->second);
537     return VE.getTypeID(PtrTy->getElementType());
538   }
539   return VE.getTypeID(T);
540 }
541 
542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
543   switch (Op) {
544   default:
545     llvm_unreachable("Unknown RMW operation!");
546   case AtomicRMWInst::Xchg:
547     return bitc::RMW_XCHG;
548   case AtomicRMWInst::Add:
549     return bitc::RMW_ADD;
550   case AtomicRMWInst::Sub:
551     return bitc::RMW_SUB;
552   case AtomicRMWInst::And:
553     return bitc::RMW_AND;
554   case AtomicRMWInst::Nand:
555     return bitc::RMW_NAND;
556   case AtomicRMWInst::Or:
557     return bitc::RMW_OR;
558   case AtomicRMWInst::Xor:
559     return bitc::RMW_XOR;
560   case AtomicRMWInst::Max:
561     return bitc::RMW_MAX;
562   case AtomicRMWInst::Min:
563     return bitc::RMW_MIN;
564   case AtomicRMWInst::UMax:
565     return bitc::RMW_UMAX;
566   case AtomicRMWInst::UMin:
567     return bitc::RMW_UMIN;
568   case AtomicRMWInst::FAdd:
569     return bitc::RMW_FADD;
570   case AtomicRMWInst::FSub:
571     return bitc::RMW_FSUB;
572   case AtomicRMWInst::FMax:
573     return bitc::RMW_FMAX;
574   case AtomicRMWInst::FMin:
575     return bitc::RMW_FMIN;
576   }
577 }
578 
579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
580   switch (Ordering) {
581   case AtomicOrdering::NotAtomic:
582     return bitc::ORDERING_NOTATOMIC;
583   case AtomicOrdering::Unordered:
584     return bitc::ORDERING_UNORDERED;
585   case AtomicOrdering::Monotonic:
586     return bitc::ORDERING_MONOTONIC;
587   case AtomicOrdering::Acquire:
588     return bitc::ORDERING_ACQUIRE;
589   case AtomicOrdering::Release:
590     return bitc::ORDERING_RELEASE;
591   case AtomicOrdering::AcquireRelease:
592     return bitc::ORDERING_ACQREL;
593   case AtomicOrdering::SequentiallyConsistent:
594     return bitc::ORDERING_SEQCST;
595   }
596   llvm_unreachable("Invalid ordering");
597 }
598 
599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
600                                           unsigned Code, StringRef Str,
601                                           unsigned AbbrevToUse) {
602   SmallVector<unsigned, 64> Vals;
603 
604   // Code: [strchar x N]
605   for (char C : Str) {
606     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
607       AbbrevToUse = 0;
608     Vals.push_back(C);
609   }
610 
611   // Emit the finished record.
612   Stream.EmitRecord(Code, Vals, AbbrevToUse);
613 }
614 
615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
616   switch (Kind) {
617   case Attribute::Alignment:
618     return bitc::ATTR_KIND_ALIGNMENT;
619   case Attribute::AlwaysInline:
620     return bitc::ATTR_KIND_ALWAYS_INLINE;
621   case Attribute::Builtin:
622     return bitc::ATTR_KIND_BUILTIN;
623   case Attribute::ByVal:
624     return bitc::ATTR_KIND_BY_VAL;
625   case Attribute::Convergent:
626     return bitc::ATTR_KIND_CONVERGENT;
627   case Attribute::InAlloca:
628     return bitc::ATTR_KIND_IN_ALLOCA;
629   case Attribute::Cold:
630     return bitc::ATTR_KIND_COLD;
631   case Attribute::InlineHint:
632     return bitc::ATTR_KIND_INLINE_HINT;
633   case Attribute::InReg:
634     return bitc::ATTR_KIND_IN_REG;
635   case Attribute::JumpTable:
636     return bitc::ATTR_KIND_JUMP_TABLE;
637   case Attribute::MinSize:
638     return bitc::ATTR_KIND_MIN_SIZE;
639   case Attribute::Naked:
640     return bitc::ATTR_KIND_NAKED;
641   case Attribute::Nest:
642     return bitc::ATTR_KIND_NEST;
643   case Attribute::NoAlias:
644     return bitc::ATTR_KIND_NO_ALIAS;
645   case Attribute::NoBuiltin:
646     return bitc::ATTR_KIND_NO_BUILTIN;
647   case Attribute::NoCapture:
648     return bitc::ATTR_KIND_NO_CAPTURE;
649   case Attribute::NoDuplicate:
650     return bitc::ATTR_KIND_NO_DUPLICATE;
651   case Attribute::NoImplicitFloat:
652     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
653   case Attribute::NoInline:
654     return bitc::ATTR_KIND_NO_INLINE;
655   case Attribute::NonLazyBind:
656     return bitc::ATTR_KIND_NON_LAZY_BIND;
657   case Attribute::NonNull:
658     return bitc::ATTR_KIND_NON_NULL;
659   case Attribute::Dereferenceable:
660     return bitc::ATTR_KIND_DEREFERENCEABLE;
661   case Attribute::DereferenceableOrNull:
662     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
663   case Attribute::NoRedZone:
664     return bitc::ATTR_KIND_NO_RED_ZONE;
665   case Attribute::NoReturn:
666     return bitc::ATTR_KIND_NO_RETURN;
667   case Attribute::NoUnwind:
668     return bitc::ATTR_KIND_NO_UNWIND;
669   case Attribute::OptimizeForSize:
670     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
671   case Attribute::OptimizeNone:
672     return bitc::ATTR_KIND_OPTIMIZE_NONE;
673   case Attribute::ReadNone:
674     return bitc::ATTR_KIND_READ_NONE;
675   case Attribute::ReadOnly:
676     return bitc::ATTR_KIND_READ_ONLY;
677   case Attribute::Returned:
678     return bitc::ATTR_KIND_RETURNED;
679   case Attribute::ReturnsTwice:
680     return bitc::ATTR_KIND_RETURNS_TWICE;
681   case Attribute::SExt:
682     return bitc::ATTR_KIND_S_EXT;
683   case Attribute::StackAlignment:
684     return bitc::ATTR_KIND_STACK_ALIGNMENT;
685   case Attribute::StackProtect:
686     return bitc::ATTR_KIND_STACK_PROTECT;
687   case Attribute::StackProtectReq:
688     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
689   case Attribute::StackProtectStrong:
690     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
691   case Attribute::SafeStack:
692     return bitc::ATTR_KIND_SAFESTACK;
693   case Attribute::StructRet:
694     return bitc::ATTR_KIND_STRUCT_RET;
695   case Attribute::SanitizeAddress:
696     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
697   case Attribute::SanitizeThread:
698     return bitc::ATTR_KIND_SANITIZE_THREAD;
699   case Attribute::SanitizeMemory:
700     return bitc::ATTR_KIND_SANITIZE_MEMORY;
701   case Attribute::UWTable:
702     return bitc::ATTR_KIND_UW_TABLE;
703   case Attribute::ZExt:
704     return bitc::ATTR_KIND_Z_EXT;
705   case Attribute::EndAttrKinds:
706     llvm_unreachable("Can not encode end-attribute kinds marker.");
707   case Attribute::None:
708     llvm_unreachable("Can not encode none-attribute.");
709   case Attribute::EmptyKey:
710   case Attribute::TombstoneKey:
711     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
712   default:
713     llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
714                      "should be stripped in DXILPrepare");
715   }
716 
717   llvm_unreachable("Trying to encode unknown attribute");
718 }
719 
720 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
721                                         uint64_t V) {
722   if ((int64_t)V >= 0)
723     Vals.push_back(V << 1);
724   else
725     Vals.push_back((-V << 1) | 1);
726 }
727 
728 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
729                                       const APInt &A) {
730   // We have an arbitrary precision integer value to write whose
731   // bit width is > 64. However, in canonical unsigned integer
732   // format it is likely that the high bits are going to be zero.
733   // So, we only write the number of active words.
734   unsigned NumWords = A.getActiveWords();
735   const uint64_t *RawData = A.getRawData();
736   for (unsigned i = 0; i < NumWords; i++)
737     emitSignedInt64(Vals, RawData[i]);
738 }
739 
740 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
741   uint64_t Flags = 0;
742 
743   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
744     if (OBO->hasNoSignedWrap())
745       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
746     if (OBO->hasNoUnsignedWrap())
747       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
748   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
749     if (PEO->isExact())
750       Flags |= 1 << bitc::PEO_EXACT;
751   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
752     if (FPMO->hasAllowReassoc())
753       Flags |= bitc::AllowReassoc;
754     if (FPMO->hasNoNaNs())
755       Flags |= bitc::NoNaNs;
756     if (FPMO->hasNoInfs())
757       Flags |= bitc::NoInfs;
758     if (FPMO->hasNoSignedZeros())
759       Flags |= bitc::NoSignedZeros;
760     if (FPMO->hasAllowReciprocal())
761       Flags |= bitc::AllowReciprocal;
762     if (FPMO->hasAllowContract())
763       Flags |= bitc::AllowContract;
764     if (FPMO->hasApproxFunc())
765       Flags |= bitc::ApproxFunc;
766   }
767 
768   return Flags;
769 }
770 
771 unsigned
772 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
773   switch (Linkage) {
774   case GlobalValue::ExternalLinkage:
775     return 0;
776   case GlobalValue::WeakAnyLinkage:
777     return 16;
778   case GlobalValue::AppendingLinkage:
779     return 2;
780   case GlobalValue::InternalLinkage:
781     return 3;
782   case GlobalValue::LinkOnceAnyLinkage:
783     return 18;
784   case GlobalValue::ExternalWeakLinkage:
785     return 7;
786   case GlobalValue::CommonLinkage:
787     return 8;
788   case GlobalValue::PrivateLinkage:
789     return 9;
790   case GlobalValue::WeakODRLinkage:
791     return 17;
792   case GlobalValue::LinkOnceODRLinkage:
793     return 19;
794   case GlobalValue::AvailableExternallyLinkage:
795     return 12;
796   }
797   llvm_unreachable("Invalid linkage");
798 }
799 
800 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
801   return getEncodedLinkage(GV.getLinkage());
802 }
803 
804 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
805   switch (GV.getVisibility()) {
806   case GlobalValue::DefaultVisibility:
807     return 0;
808   case GlobalValue::HiddenVisibility:
809     return 1;
810   case GlobalValue::ProtectedVisibility:
811     return 2;
812   }
813   llvm_unreachable("Invalid visibility");
814 }
815 
816 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
817   switch (GV.getDLLStorageClass()) {
818   case GlobalValue::DefaultStorageClass:
819     return 0;
820   case GlobalValue::DLLImportStorageClass:
821     return 1;
822   case GlobalValue::DLLExportStorageClass:
823     return 2;
824   }
825   llvm_unreachable("Invalid DLL storage class");
826 }
827 
828 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
829   switch (GV.getThreadLocalMode()) {
830   case GlobalVariable::NotThreadLocal:
831     return 0;
832   case GlobalVariable::GeneralDynamicTLSModel:
833     return 1;
834   case GlobalVariable::LocalDynamicTLSModel:
835     return 2;
836   case GlobalVariable::InitialExecTLSModel:
837     return 3;
838   case GlobalVariable::LocalExecTLSModel:
839     return 4;
840   }
841   llvm_unreachable("Invalid TLS model");
842 }
843 
844 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
845   switch (C.getSelectionKind()) {
846   case Comdat::Any:
847     return bitc::COMDAT_SELECTION_KIND_ANY;
848   case Comdat::ExactMatch:
849     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
850   case Comdat::Largest:
851     return bitc::COMDAT_SELECTION_KIND_LARGEST;
852   case Comdat::NoDeduplicate:
853     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
854   case Comdat::SameSize:
855     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
856   }
857   llvm_unreachable("Invalid selection kind");
858 }
859 
860 ////////////////////////////////////////////////////////////////////////////////
861 /// Begin DXILBitcodeWriter Implementation
862 ////////////////////////////////////////////////////////////////////////////////
863 
864 void DXILBitcodeWriter::writeAttributeGroupTable() {
865   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
866       VE.getAttributeGroups();
867   if (AttrGrps.empty())
868     return;
869 
870   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
871 
872   SmallVector<uint64_t, 64> Record;
873   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
874     unsigned AttrListIndex = Pair.first;
875     AttributeSet AS = Pair.second;
876     Record.push_back(VE.getAttributeGroupID(Pair));
877     Record.push_back(AttrListIndex);
878 
879     for (Attribute Attr : AS) {
880       if (Attr.isEnumAttribute()) {
881         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
882         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
883                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
884         Record.push_back(0);
885         Record.push_back(Val);
886       } else if (Attr.isIntAttribute()) {
887         if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) {
888           MemoryEffects ME = Attr.getMemoryEffects();
889           if (ME.doesNotAccessMemory()) {
890             Record.push_back(0);
891             Record.push_back(bitc::ATTR_KIND_READ_NONE);
892           } else {
893             if (ME.onlyReadsMemory()) {
894               Record.push_back(0);
895               Record.push_back(bitc::ATTR_KIND_READ_ONLY);
896             }
897             if (ME.onlyAccessesArgPointees()) {
898               Record.push_back(0);
899               Record.push_back(bitc::ATTR_KIND_ARGMEMONLY);
900             }
901           }
902         } else {
903           uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
904           assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
905                  "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
906           Record.push_back(1);
907           Record.push_back(Val);
908           Record.push_back(Attr.getValueAsInt());
909         }
910       } else {
911         StringRef Kind = Attr.getKindAsString();
912         StringRef Val = Attr.getValueAsString();
913 
914         Record.push_back(Val.empty() ? 3 : 4);
915         Record.append(Kind.begin(), Kind.end());
916         Record.push_back(0);
917         if (!Val.empty()) {
918           Record.append(Val.begin(), Val.end());
919           Record.push_back(0);
920         }
921       }
922     }
923 
924     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
925     Record.clear();
926   }
927 
928   Stream.ExitBlock();
929 }
930 
931 void DXILBitcodeWriter::writeAttributeTable() {
932   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
933   if (Attrs.empty())
934     return;
935 
936   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
937 
938   SmallVector<uint64_t, 64> Record;
939   for (AttributeList AL : Attrs) {
940     for (unsigned i : AL.indexes()) {
941       AttributeSet AS = AL.getAttributes(i);
942       if (AS.hasAttributes())
943         Record.push_back(VE.getAttributeGroupID({i, AS}));
944     }
945 
946     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
947     Record.clear();
948   }
949 
950   Stream.ExitBlock();
951 }
952 
953 /// WriteTypeTable - Write out the type table for a module.
954 void DXILBitcodeWriter::writeTypeTable() {
955   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
956 
957   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
958   SmallVector<uint64_t, 64> TypeVals;
959 
960   uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
961 
962   // Abbrev for TYPE_CODE_POINTER.
963   auto Abbv = std::make_shared<BitCodeAbbrev>();
964   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
965   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
966   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
967   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
968 
969   // Abbrev for TYPE_CODE_FUNCTION.
970   Abbv = std::make_shared<BitCodeAbbrev>();
971   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
974   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
975   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
976 
977   // Abbrev for TYPE_CODE_STRUCT_ANON.
978   Abbv = std::make_shared<BitCodeAbbrev>();
979   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
980   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
981   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
982   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
983   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
984 
985   // Abbrev for TYPE_CODE_STRUCT_NAME.
986   Abbv = std::make_shared<BitCodeAbbrev>();
987   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
988   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
989   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
990   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
991 
992   // Abbrev for TYPE_CODE_STRUCT_NAMED.
993   Abbv = std::make_shared<BitCodeAbbrev>();
994   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
995   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
996   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
997   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
998   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
999 
1000   // Abbrev for TYPE_CODE_ARRAY.
1001   Abbv = std::make_shared<BitCodeAbbrev>();
1002   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1003   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1004   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1005   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1006 
1007   // Emit an entry count so the reader can reserve space.
1008   TypeVals.push_back(TypeList.size());
1009   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1010   TypeVals.clear();
1011 
1012   // Loop over all of the types, emitting each in turn.
1013   for (Type *T : TypeList) {
1014     int AbbrevToUse = 0;
1015     unsigned Code = 0;
1016 
1017     switch (T->getTypeID()) {
1018     case Type::BFloatTyID:
1019     case Type::X86_AMXTyID:
1020     case Type::TokenTyID:
1021     case Type::TargetExtTyID:
1022       llvm_unreachable("These should never be used!!!");
1023       break;
1024     case Type::VoidTyID:
1025       Code = bitc::TYPE_CODE_VOID;
1026       break;
1027     case Type::HalfTyID:
1028       Code = bitc::TYPE_CODE_HALF;
1029       break;
1030     case Type::FloatTyID:
1031       Code = bitc::TYPE_CODE_FLOAT;
1032       break;
1033     case Type::DoubleTyID:
1034       Code = bitc::TYPE_CODE_DOUBLE;
1035       break;
1036     case Type::X86_FP80TyID:
1037       Code = bitc::TYPE_CODE_X86_FP80;
1038       break;
1039     case Type::FP128TyID:
1040       Code = bitc::TYPE_CODE_FP128;
1041       break;
1042     case Type::PPC_FP128TyID:
1043       Code = bitc::TYPE_CODE_PPC_FP128;
1044       break;
1045     case Type::LabelTyID:
1046       Code = bitc::TYPE_CODE_LABEL;
1047       break;
1048     case Type::MetadataTyID:
1049       Code = bitc::TYPE_CODE_METADATA;
1050       break;
1051     case Type::X86_MMXTyID:
1052       Code = bitc::TYPE_CODE_X86_MMX;
1053       break;
1054     case Type::IntegerTyID:
1055       // INTEGER: [width]
1056       Code = bitc::TYPE_CODE_INTEGER;
1057       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1058       break;
1059     case Type::TypedPointerTyID: {
1060       TypedPointerType *PTy = cast<TypedPointerType>(T);
1061       // POINTER: [pointee type, address space]
1062       Code = bitc::TYPE_CODE_POINTER;
1063       TypeVals.push_back(getTypeID(PTy->getElementType()));
1064       unsigned AddressSpace = PTy->getAddressSpace();
1065       TypeVals.push_back(AddressSpace);
1066       if (AddressSpace == 0)
1067         AbbrevToUse = PtrAbbrev;
1068       break;
1069     }
1070     case Type::PointerTyID: {
1071       // POINTER: [pointee type, address space]
1072       // Emitting an empty struct type for the pointer's type allows this to be
1073       // order-independent. Non-struct types must be emitted in bitcode before
1074       // they can be referenced.
1075       TypeVals.push_back(false);
1076       Code = bitc::TYPE_CODE_OPAQUE;
1077       writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1078                         "dxilOpaquePtrReservedName", StructNameAbbrev);
1079       break;
1080     }
1081     case Type::FunctionTyID: {
1082       FunctionType *FT = cast<FunctionType>(T);
1083       // FUNCTION: [isvararg, retty, paramty x N]
1084       Code = bitc::TYPE_CODE_FUNCTION;
1085       TypeVals.push_back(FT->isVarArg());
1086       TypeVals.push_back(getTypeID(FT->getReturnType()));
1087       for (Type *PTy : FT->params())
1088         TypeVals.push_back(getTypeID(PTy));
1089       AbbrevToUse = FunctionAbbrev;
1090       break;
1091     }
1092     case Type::StructTyID: {
1093       StructType *ST = cast<StructType>(T);
1094       // STRUCT: [ispacked, eltty x N]
1095       TypeVals.push_back(ST->isPacked());
1096       // Output all of the element types.
1097       for (Type *ElTy : ST->elements())
1098         TypeVals.push_back(getTypeID(ElTy));
1099 
1100       if (ST->isLiteral()) {
1101         Code = bitc::TYPE_CODE_STRUCT_ANON;
1102         AbbrevToUse = StructAnonAbbrev;
1103       } else {
1104         if (ST->isOpaque()) {
1105           Code = bitc::TYPE_CODE_OPAQUE;
1106         } else {
1107           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1108           AbbrevToUse = StructNamedAbbrev;
1109         }
1110 
1111         // Emit the name if it is present.
1112         if (!ST->getName().empty())
1113           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1114                             StructNameAbbrev);
1115       }
1116       break;
1117     }
1118     case Type::ArrayTyID: {
1119       ArrayType *AT = cast<ArrayType>(T);
1120       // ARRAY: [numelts, eltty]
1121       Code = bitc::TYPE_CODE_ARRAY;
1122       TypeVals.push_back(AT->getNumElements());
1123       TypeVals.push_back(getTypeID(AT->getElementType()));
1124       AbbrevToUse = ArrayAbbrev;
1125       break;
1126     }
1127     case Type::FixedVectorTyID:
1128     case Type::ScalableVectorTyID: {
1129       VectorType *VT = cast<VectorType>(T);
1130       // VECTOR [numelts, eltty]
1131       Code = bitc::TYPE_CODE_VECTOR;
1132       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1133       TypeVals.push_back(getTypeID(VT->getElementType()));
1134       break;
1135     }
1136     }
1137 
1138     // Emit the finished record.
1139     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1140     TypeVals.clear();
1141   }
1142 
1143   Stream.ExitBlock();
1144 }
1145 
1146 void DXILBitcodeWriter::writeComdats() {
1147   SmallVector<uint16_t, 64> Vals;
1148   for (const Comdat *C : VE.getComdats()) {
1149     // COMDAT: [selection_kind, name]
1150     Vals.push_back(getEncodedComdatSelectionKind(*C));
1151     size_t Size = C->getName().size();
1152     assert(isUInt<16>(Size));
1153     Vals.push_back(Size);
1154     for (char Chr : C->getName())
1155       Vals.push_back((unsigned char)Chr);
1156     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1157     Vals.clear();
1158   }
1159 }
1160 
1161 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1162 
1163 /// Emit top-level description of module, including target triple, inline asm,
1164 /// descriptors for global variables, and function prototype info.
1165 /// Returns the bit offset to backpatch with the location of the real VST.
1166 void DXILBitcodeWriter::writeModuleInfo() {
1167   // Emit various pieces of data attached to a module.
1168   if (!M.getTargetTriple().empty())
1169     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1170                       0 /*TODO*/);
1171   const std::string &DL = M.getDataLayoutStr();
1172   if (!DL.empty())
1173     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1174   if (!M.getModuleInlineAsm().empty())
1175     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1176                       0 /*TODO*/);
1177 
1178   // Emit information about sections and GC, computing how many there are. Also
1179   // compute the maximum alignment value.
1180   std::map<std::string, unsigned> SectionMap;
1181   std::map<std::string, unsigned> GCMap;
1182   MaybeAlign MaxAlignment;
1183   unsigned MaxGlobalType = 0;
1184   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1185     if (A)
1186       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1187   };
1188   for (const GlobalVariable &GV : M.globals()) {
1189     UpdateMaxAlignment(GV.getAlign());
1190     // Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1191     // Global Variable types.
1192     MaxGlobalType = std::max(
1193         MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1194     if (GV.hasSection()) {
1195       // Give section names unique ID's.
1196       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1197       if (!Entry) {
1198         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1199                           GV.getSection(), 0 /*TODO*/);
1200         Entry = SectionMap.size();
1201       }
1202     }
1203   }
1204   for (const Function &F : M) {
1205     UpdateMaxAlignment(F.getAlign());
1206     if (F.hasSection()) {
1207       // Give section names unique ID's.
1208       unsigned &Entry = SectionMap[std::string(F.getSection())];
1209       if (!Entry) {
1210         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1211                           0 /*TODO*/);
1212         Entry = SectionMap.size();
1213       }
1214     }
1215     if (F.hasGC()) {
1216       // Same for GC names.
1217       unsigned &Entry = GCMap[F.getGC()];
1218       if (!Entry) {
1219         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1220                           0 /*TODO*/);
1221         Entry = GCMap.size();
1222       }
1223     }
1224   }
1225 
1226   // Emit abbrev for globals, now that we know # sections and max alignment.
1227   unsigned SimpleGVarAbbrev = 0;
1228   if (!M.global_empty()) {
1229     // Add an abbrev for common globals with no visibility or thread
1230     // localness.
1231     auto Abbv = std::make_shared<BitCodeAbbrev>();
1232     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1234                               Log2_32_Ceil(MaxGlobalType + 1)));
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1236                                                            //| explicitType << 1
1237                                                            //| constant
1238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1240     if (!MaxAlignment)                                     // Alignment.
1241       Abbv->Add(BitCodeAbbrevOp(0));
1242     else {
1243       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1244       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1245                                 Log2_32_Ceil(MaxEncAlignment + 1)));
1246     }
1247     if (SectionMap.empty()) // Section.
1248       Abbv->Add(BitCodeAbbrevOp(0));
1249     else
1250       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1251                                 Log2_32_Ceil(SectionMap.size() + 1)));
1252     // Don't bother emitting vis + thread local.
1253     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1254   }
1255 
1256   // Emit the global variable information.
1257   SmallVector<unsigned, 64> Vals;
1258   for (const GlobalVariable &GV : M.globals()) {
1259     unsigned AbbrevToUse = 0;
1260 
1261     // GLOBALVAR: [type, isconst, initid,
1262     //             linkage, alignment, section, visibility, threadlocal,
1263     //             unnamed_addr, externally_initialized, dllstorageclass,
1264     //             comdat]
1265     Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1266     Vals.push_back(
1267         GV.getType()->getAddressSpace() << 2 | 2 |
1268         (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1269                                     // unsigned int and bool
1270     Vals.push_back(
1271         GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1272     Vals.push_back(getEncodedLinkage(GV));
1273     Vals.push_back(getEncodedAlign(GV.getAlign()));
1274     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1275                                    : 0);
1276     if (GV.isThreadLocal() ||
1277         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1278         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1279         GV.isExternallyInitialized() ||
1280         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1281         GV.hasComdat()) {
1282       Vals.push_back(getEncodedVisibility(GV));
1283       Vals.push_back(getEncodedThreadLocalMode(GV));
1284       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1285       Vals.push_back(GV.isExternallyInitialized());
1286       Vals.push_back(getEncodedDLLStorageClass(GV));
1287       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1288     } else {
1289       AbbrevToUse = SimpleGVarAbbrev;
1290     }
1291 
1292     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1293     Vals.clear();
1294   }
1295 
1296   // Emit the function proto information.
1297   for (const Function &F : M) {
1298     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1299     //             section, visibility, gc, unnamed_addr, prologuedata,
1300     //             dllstorageclass, comdat, prefixdata, personalityfn]
1301     Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F));
1302     Vals.push_back(F.getCallingConv());
1303     Vals.push_back(F.isDeclaration());
1304     Vals.push_back(getEncodedLinkage(F));
1305     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1306     Vals.push_back(getEncodedAlign(F.getAlign()));
1307     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1308                                   : 0);
1309     Vals.push_back(getEncodedVisibility(F));
1310     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1311     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1312     Vals.push_back(
1313         F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1314     Vals.push_back(getEncodedDLLStorageClass(F));
1315     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1316     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1317                                      : 0);
1318     Vals.push_back(
1319         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1320 
1321     unsigned AbbrevToUse = 0;
1322     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1323     Vals.clear();
1324   }
1325 
1326   // Emit the alias information.
1327   for (const GlobalAlias &A : M.aliases()) {
1328     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1329     Vals.push_back(getTypeID(A.getValueType(), &A));
1330     Vals.push_back(VE.getValueID(A.getAliasee()));
1331     Vals.push_back(getEncodedLinkage(A));
1332     Vals.push_back(getEncodedVisibility(A));
1333     Vals.push_back(getEncodedDLLStorageClass(A));
1334     Vals.push_back(getEncodedThreadLocalMode(A));
1335     Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1336     unsigned AbbrevToUse = 0;
1337     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1338     Vals.clear();
1339   }
1340 }
1341 
1342 void DXILBitcodeWriter::writeValueAsMetadata(
1343     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1344   // Mimic an MDNode with a value as one operand.
1345   Value *V = MD->getValue();
1346   Type *Ty = V->getType();
1347   if (Function *F = dyn_cast<Function>(V))
1348     Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1349   else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1350     Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1351   Record.push_back(getTypeID(Ty));
1352   Record.push_back(VE.getValueID(V));
1353   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1354   Record.clear();
1355 }
1356 
1357 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1358                                      SmallVectorImpl<uint64_t> &Record,
1359                                      unsigned Abbrev) {
1360   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1361     Metadata *MD = N->getOperand(i);
1362     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1363            "Unexpected function-local metadata");
1364     Record.push_back(VE.getMetadataOrNullID(MD));
1365   }
1366   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1367                                     : bitc::METADATA_NODE,
1368                     Record, Abbrev);
1369   Record.clear();
1370 }
1371 
1372 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1373                                         SmallVectorImpl<uint64_t> &Record,
1374                                         unsigned &Abbrev) {
1375   if (!Abbrev)
1376     Abbrev = createDILocationAbbrev();
1377   Record.push_back(N->isDistinct());
1378   Record.push_back(N->getLine());
1379   Record.push_back(N->getColumn());
1380   Record.push_back(VE.getMetadataID(N->getScope()));
1381   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1382 
1383   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1384   Record.clear();
1385 }
1386 
1387 static uint64_t rotateSign(APInt Val) {
1388   int64_t I = Val.getSExtValue();
1389   uint64_t U = I;
1390   return I < 0 ? ~(U << 1) : U << 1;
1391 }
1392 
1393 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1394                                         SmallVectorImpl<uint64_t> &Record,
1395                                         unsigned Abbrev) {
1396   Record.push_back(N->isDistinct());
1397 
1398   // TODO: Do we need to handle DIExpression here? What about cases where Count
1399   // isn't specified but UpperBound and such are?
1400   ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>();
1401   assert(Count && "Count is missing or not ConstantInt");
1402   Record.push_back(Count->getValue().getSExtValue());
1403 
1404   // TODO: Similarly, DIExpression is allowed here now
1405   DISubrange::BoundType LowerBound = N->getLowerBound();
1406   assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) &&
1407          "Lower bound provided but not ConstantInt");
1408   Record.push_back(
1409       LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0);
1410 
1411   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1412   Record.clear();
1413 }
1414 
1415 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1416                                           SmallVectorImpl<uint64_t> &Record,
1417                                           unsigned Abbrev) {
1418   Record.push_back(N->isDistinct());
1419   Record.push_back(rotateSign(N->getValue()));
1420   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1421 
1422   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1423   Record.clear();
1424 }
1425 
1426 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1427                                          SmallVectorImpl<uint64_t> &Record,
1428                                          unsigned Abbrev) {
1429   Record.push_back(N->isDistinct());
1430   Record.push_back(N->getTag());
1431   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1432   Record.push_back(N->getSizeInBits());
1433   Record.push_back(N->getAlignInBits());
1434   Record.push_back(N->getEncoding());
1435 
1436   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1437   Record.clear();
1438 }
1439 
1440 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1441                                            SmallVectorImpl<uint64_t> &Record,
1442                                            unsigned Abbrev) {
1443   Record.push_back(N->isDistinct());
1444   Record.push_back(N->getTag());
1445   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1446   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1447   Record.push_back(N->getLine());
1448   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1449   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1450   Record.push_back(N->getSizeInBits());
1451   Record.push_back(N->getAlignInBits());
1452   Record.push_back(N->getOffsetInBits());
1453   Record.push_back(N->getFlags());
1454   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1455 
1456   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1457   Record.clear();
1458 }
1459 
1460 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1461                                              SmallVectorImpl<uint64_t> &Record,
1462                                              unsigned Abbrev) {
1463   Record.push_back(N->isDistinct());
1464   Record.push_back(N->getTag());
1465   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1466   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1467   Record.push_back(N->getLine());
1468   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1469   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1470   Record.push_back(N->getSizeInBits());
1471   Record.push_back(N->getAlignInBits());
1472   Record.push_back(N->getOffsetInBits());
1473   Record.push_back(N->getFlags());
1474   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1475   Record.push_back(N->getRuntimeLang());
1476   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1477   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1478   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1479 
1480   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1481   Record.clear();
1482 }
1483 
1484 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1485                                               SmallVectorImpl<uint64_t> &Record,
1486                                               unsigned Abbrev) {
1487   Record.push_back(N->isDistinct());
1488   Record.push_back(N->getFlags());
1489   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1490 
1491   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1492   Record.clear();
1493 }
1494 
1495 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1496                                     SmallVectorImpl<uint64_t> &Record,
1497                                     unsigned Abbrev) {
1498   Record.push_back(N->isDistinct());
1499   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1500   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1501 
1502   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1503   Record.clear();
1504 }
1505 
1506 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1507                                            SmallVectorImpl<uint64_t> &Record,
1508                                            unsigned Abbrev) {
1509   Record.push_back(N->isDistinct());
1510   Record.push_back(N->getSourceLanguage());
1511   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1512   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1513   Record.push_back(N->isOptimized());
1514   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1515   Record.push_back(N->getRuntimeVersion());
1516   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1517   Record.push_back(N->getEmissionKind());
1518   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1519   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1520   Record.push_back(/* subprograms */ 0);
1521   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1522   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1523   Record.push_back(N->getDWOId());
1524 
1525   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1526   Record.clear();
1527 }
1528 
1529 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1530                                           SmallVectorImpl<uint64_t> &Record,
1531                                           unsigned Abbrev) {
1532   Record.push_back(N->isDistinct());
1533   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1534   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1535   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1536   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1537   Record.push_back(N->getLine());
1538   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1539   Record.push_back(N->isLocalToUnit());
1540   Record.push_back(N->isDefinition());
1541   Record.push_back(N->getScopeLine());
1542   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1543   Record.push_back(N->getVirtuality());
1544   Record.push_back(N->getVirtualIndex());
1545   Record.push_back(N->getFlags());
1546   Record.push_back(N->isOptimized());
1547   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1548   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1549   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1550   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1551 
1552   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1553   Record.clear();
1554 }
1555 
1556 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1557                                             SmallVectorImpl<uint64_t> &Record,
1558                                             unsigned Abbrev) {
1559   Record.push_back(N->isDistinct());
1560   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1561   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1562   Record.push_back(N->getLine());
1563   Record.push_back(N->getColumn());
1564 
1565   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1566   Record.clear();
1567 }
1568 
1569 void DXILBitcodeWriter::writeDILexicalBlockFile(
1570     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1571     unsigned Abbrev) {
1572   Record.push_back(N->isDistinct());
1573   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1574   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1575   Record.push_back(N->getDiscriminator());
1576 
1577   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1578   Record.clear();
1579 }
1580 
1581 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1582                                          SmallVectorImpl<uint64_t> &Record,
1583                                          unsigned Abbrev) {
1584   Record.push_back(N->isDistinct());
1585   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1586   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1587   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1588   Record.push_back(/* line number */ 0);
1589 
1590   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1591   Record.clear();
1592 }
1593 
1594 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1595                                       SmallVectorImpl<uint64_t> &Record,
1596                                       unsigned Abbrev) {
1597   Record.push_back(N->isDistinct());
1598   for (auto &I : N->operands())
1599     Record.push_back(VE.getMetadataOrNullID(I));
1600 
1601   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1602   Record.clear();
1603 }
1604 
1605 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1606     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1607     unsigned Abbrev) {
1608   Record.push_back(N->isDistinct());
1609   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1610   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1611 
1612   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1613   Record.clear();
1614 }
1615 
1616 void DXILBitcodeWriter::writeDITemplateValueParameter(
1617     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1618     unsigned Abbrev) {
1619   Record.push_back(N->isDistinct());
1620   Record.push_back(N->getTag());
1621   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1622   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1623   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1624 
1625   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1626   Record.clear();
1627 }
1628 
1629 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1630                                               SmallVectorImpl<uint64_t> &Record,
1631                                               unsigned Abbrev) {
1632   Record.push_back(N->isDistinct());
1633   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1634   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1635   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1636   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1637   Record.push_back(N->getLine());
1638   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1639   Record.push_back(N->isLocalToUnit());
1640   Record.push_back(N->isDefinition());
1641   Record.push_back(/* N->getRawVariable() */ 0);
1642   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1643 
1644   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1645   Record.clear();
1646 }
1647 
1648 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1649                                              SmallVectorImpl<uint64_t> &Record,
1650                                              unsigned Abbrev) {
1651   Record.push_back(N->isDistinct());
1652   Record.push_back(N->getTag());
1653   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1654   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1655   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1656   Record.push_back(N->getLine());
1657   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1658   Record.push_back(N->getArg());
1659   Record.push_back(N->getFlags());
1660 
1661   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1662   Record.clear();
1663 }
1664 
1665 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1666                                           SmallVectorImpl<uint64_t> &Record,
1667                                           unsigned Abbrev) {
1668   Record.reserve(N->getElements().size() + 1);
1669 
1670   Record.push_back(N->isDistinct());
1671   Record.append(N->elements_begin(), N->elements_end());
1672 
1673   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1674   Record.clear();
1675 }
1676 
1677 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1678                                             SmallVectorImpl<uint64_t> &Record,
1679                                             unsigned Abbrev) {
1680   llvm_unreachable("DXIL does not support objc!!!");
1681 }
1682 
1683 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1684                                               SmallVectorImpl<uint64_t> &Record,
1685                                               unsigned Abbrev) {
1686   Record.push_back(N->isDistinct());
1687   Record.push_back(N->getTag());
1688   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1689   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1690   Record.push_back(N->getLine());
1691   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1692 
1693   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1694   Record.clear();
1695 }
1696 
1697 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1698   // Abbrev for METADATA_LOCATION.
1699   //
1700   // Assume the column is usually under 128, and always output the inlined-at
1701   // location (it's never more expensive than building an array size 1).
1702   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1703   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1704   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1705   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1706   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1707   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1708   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1709   return Stream.EmitAbbrev(std::move(Abbv));
1710 }
1711 
1712 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1713   // Abbrev for METADATA_GENERIC_DEBUG.
1714   //
1715   // Assume the column is usually under 128, and always output the inlined-at
1716   // location (it's never more expensive than building an array size 1).
1717   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1718   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1719   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1720   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1721   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1722   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1723   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1724   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1725   return Stream.EmitAbbrev(std::move(Abbv));
1726 }
1727 
1728 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1729                                              SmallVectorImpl<uint64_t> &Record,
1730                                              std::vector<unsigned> *MDAbbrevs,
1731                                              std::vector<uint64_t> *IndexPos) {
1732   if (MDs.empty())
1733     return;
1734 
1735     // Initialize MDNode abbreviations.
1736 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1737 #include "llvm/IR/Metadata.def"
1738 
1739   for (const Metadata *MD : MDs) {
1740     if (IndexPos)
1741       IndexPos->push_back(Stream.GetCurrentBitNo());
1742     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1743       assert(N->isResolved() && "Expected forward references to be resolved");
1744 
1745       switch (N->getMetadataID()) {
1746       default:
1747         llvm_unreachable("Invalid MDNode subclass");
1748 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1749   case Metadata::CLASS##Kind:                                                  \
1750     if (MDAbbrevs)                                                             \
1751       write##CLASS(cast<CLASS>(N), Record,                                     \
1752                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1753     else                                                                       \
1754       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1755     continue;
1756 #include "llvm/IR/Metadata.def"
1757       }
1758     }
1759     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1760   }
1761 }
1762 
1763 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1764   auto Abbv = std::make_shared<BitCodeAbbrev>();
1765   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1766   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1767   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1768   return Stream.EmitAbbrev(std::move(Abbv));
1769 }
1770 
1771 void DXILBitcodeWriter::writeMetadataStrings(
1772     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1773   if (Strings.empty())
1774     return;
1775 
1776   unsigned MDSAbbrev = createMetadataStringsAbbrev();
1777 
1778   for (const Metadata *MD : Strings) {
1779     const MDString *MDS = cast<MDString>(MD);
1780     // Code: [strchar x N]
1781     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1782 
1783     // Emit the finished record.
1784     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
1785     Record.clear();
1786   }
1787 }
1788 
1789 void DXILBitcodeWriter::writeModuleMetadata() {
1790   if (!VE.hasMDs() && M.named_metadata_empty())
1791     return;
1792 
1793   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1794 
1795   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1796   // block and load any metadata.
1797   std::vector<unsigned> MDAbbrevs;
1798 
1799   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1800   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1801   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1802       createGenericDINodeAbbrev();
1803 
1804   unsigned NameAbbrev = 0;
1805   if (!M.named_metadata_empty()) {
1806     // Abbrev for METADATA_NAME.
1807     std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1808     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1809     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1810     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1811     NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1812   }
1813 
1814   SmallVector<uint64_t, 64> Record;
1815   writeMetadataStrings(VE.getMDStrings(), Record);
1816 
1817   std::vector<uint64_t> IndexPos;
1818   IndexPos.reserve(VE.getNonMDStrings().size());
1819   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1820 
1821   // Write named metadata.
1822   for (const NamedMDNode &NMD : M.named_metadata()) {
1823     // Write name.
1824     StringRef Str = NMD.getName();
1825     Record.append(Str.bytes_begin(), Str.bytes_end());
1826     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1827     Record.clear();
1828 
1829     // Write named metadata operands.
1830     for (const MDNode *N : NMD.operands())
1831       Record.push_back(VE.getMetadataID(N));
1832     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1833     Record.clear();
1834   }
1835 
1836   Stream.ExitBlock();
1837 }
1838 
1839 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1840   if (!VE.hasMDs())
1841     return;
1842 
1843   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1844   SmallVector<uint64_t, 64> Record;
1845   writeMetadataStrings(VE.getMDStrings(), Record);
1846   writeMetadataRecords(VE.getNonMDStrings(), Record);
1847   Stream.ExitBlock();
1848 }
1849 
1850 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1851   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1852 
1853   SmallVector<uint64_t, 64> Record;
1854 
1855   // Write metadata attachments
1856   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1857   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1858   F.getAllMetadata(MDs);
1859   if (!MDs.empty()) {
1860     for (const auto &I : MDs) {
1861       Record.push_back(I.first);
1862       Record.push_back(VE.getMetadataID(I.second));
1863     }
1864     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1865     Record.clear();
1866   }
1867 
1868   for (const BasicBlock &BB : F)
1869     for (const Instruction &I : BB) {
1870       MDs.clear();
1871       I.getAllMetadataOtherThanDebugLoc(MDs);
1872 
1873       // If no metadata, ignore instruction.
1874       if (MDs.empty())
1875         continue;
1876 
1877       Record.push_back(VE.getInstructionID(&I));
1878 
1879       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1880         Record.push_back(MDs[i].first);
1881         Record.push_back(VE.getMetadataID(MDs[i].second));
1882       }
1883       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1884       Record.clear();
1885     }
1886 
1887   Stream.ExitBlock();
1888 }
1889 
1890 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1891   SmallVector<uint64_t, 64> Record;
1892 
1893   // Write metadata kinds
1894   // METADATA_KIND - [n x [id, name]]
1895   SmallVector<StringRef, 8> Names;
1896   M.getMDKindNames(Names);
1897 
1898   if (Names.empty())
1899     return;
1900 
1901   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1902 
1903   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1904     Record.push_back(MDKindID);
1905     StringRef KName = Names[MDKindID];
1906     Record.append(KName.begin(), KName.end());
1907 
1908     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1909     Record.clear();
1910   }
1911 
1912   Stream.ExitBlock();
1913 }
1914 
1915 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1916                                        bool isGlobal) {
1917   if (FirstVal == LastVal)
1918     return;
1919 
1920   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1921 
1922   unsigned AggregateAbbrev = 0;
1923   unsigned String8Abbrev = 0;
1924   unsigned CString7Abbrev = 0;
1925   unsigned CString6Abbrev = 0;
1926   // If this is a constant pool for the module, emit module-specific abbrevs.
1927   if (isGlobal) {
1928     // Abbrev for CST_CODE_AGGREGATE.
1929     auto Abbv = std::make_shared<BitCodeAbbrev>();
1930     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1931     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1932     Abbv->Add(
1933         BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1934     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1935 
1936     // Abbrev for CST_CODE_STRING.
1937     Abbv = std::make_shared<BitCodeAbbrev>();
1938     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1939     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1940     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1941     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1942     // Abbrev for CST_CODE_CSTRING.
1943     Abbv = std::make_shared<BitCodeAbbrev>();
1944     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1947     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1948     // Abbrev for CST_CODE_CSTRING.
1949     Abbv = std::make_shared<BitCodeAbbrev>();
1950     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1951     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1952     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1953     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1954   }
1955 
1956   SmallVector<uint64_t, 64> Record;
1957 
1958   const ValueEnumerator::ValueList &Vals = VE.getValues();
1959   Type *LastTy = nullptr;
1960   for (unsigned i = FirstVal; i != LastVal; ++i) {
1961     const Value *V = Vals[i].first;
1962     // If we need to switch types, do so now.
1963     if (V->getType() != LastTy) {
1964       LastTy = V->getType();
1965       Record.push_back(getTypeID(LastTy, V));
1966       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1967                         CONSTANTS_SETTYPE_ABBREV);
1968       Record.clear();
1969     }
1970 
1971     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1972       Record.push_back(unsigned(IA->hasSideEffects()) |
1973                        unsigned(IA->isAlignStack()) << 1 |
1974                        unsigned(IA->getDialect() & 1) << 2);
1975 
1976       // Add the asm string.
1977       const std::string &AsmStr = IA->getAsmString();
1978       Record.push_back(AsmStr.size());
1979       Record.append(AsmStr.begin(), AsmStr.end());
1980 
1981       // Add the constraint string.
1982       const std::string &ConstraintStr = IA->getConstraintString();
1983       Record.push_back(ConstraintStr.size());
1984       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1985       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1986       Record.clear();
1987       continue;
1988     }
1989     const Constant *C = cast<Constant>(V);
1990     unsigned Code = -1U;
1991     unsigned AbbrevToUse = 0;
1992     if (C->isNullValue()) {
1993       Code = bitc::CST_CODE_NULL;
1994     } else if (isa<UndefValue>(C)) {
1995       Code = bitc::CST_CODE_UNDEF;
1996     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1997       if (IV->getBitWidth() <= 64) {
1998         uint64_t V = IV->getSExtValue();
1999         emitSignedInt64(Record, V);
2000         Code = bitc::CST_CODE_INTEGER;
2001         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2002       } else { // Wide integers, > 64 bits in size.
2003         // We have an arbitrary precision integer value to write whose
2004         // bit width is > 64. However, in canonical unsigned integer
2005         // format it is likely that the high bits are going to be zero.
2006         // So, we only write the number of active words.
2007         unsigned NWords = IV->getValue().getActiveWords();
2008         const uint64_t *RawWords = IV->getValue().getRawData();
2009         for (unsigned i = 0; i != NWords; ++i) {
2010           emitSignedInt64(Record, RawWords[i]);
2011         }
2012         Code = bitc::CST_CODE_WIDE_INTEGER;
2013       }
2014     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2015       Code = bitc::CST_CODE_FLOAT;
2016       Type *Ty = CFP->getType();
2017       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2018         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2019       } else if (Ty->isX86_FP80Ty()) {
2020         // api needed to prevent premature destruction
2021         // bits are not in the same order as a normal i80 APInt, compensate.
2022         APInt api = CFP->getValueAPF().bitcastToAPInt();
2023         const uint64_t *p = api.getRawData();
2024         Record.push_back((p[1] << 48) | (p[0] >> 16));
2025         Record.push_back(p[0] & 0xffffLL);
2026       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2027         APInt api = CFP->getValueAPF().bitcastToAPInt();
2028         const uint64_t *p = api.getRawData();
2029         Record.push_back(p[0]);
2030         Record.push_back(p[1]);
2031       } else {
2032         assert(0 && "Unknown FP type!");
2033       }
2034     } else if (isa<ConstantDataSequential>(C) &&
2035                cast<ConstantDataSequential>(C)->isString()) {
2036       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2037       // Emit constant strings specially.
2038       unsigned NumElts = Str->getNumElements();
2039       // If this is a null-terminated string, use the denser CSTRING encoding.
2040       if (Str->isCString()) {
2041         Code = bitc::CST_CODE_CSTRING;
2042         --NumElts; // Don't encode the null, which isn't allowed by char6.
2043       } else {
2044         Code = bitc::CST_CODE_STRING;
2045         AbbrevToUse = String8Abbrev;
2046       }
2047       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2048       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2049       for (unsigned i = 0; i != NumElts; ++i) {
2050         unsigned char V = Str->getElementAsInteger(i);
2051         Record.push_back(V);
2052         isCStr7 &= (V & 128) == 0;
2053         if (isCStrChar6)
2054           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2055       }
2056 
2057       if (isCStrChar6)
2058         AbbrevToUse = CString6Abbrev;
2059       else if (isCStr7)
2060         AbbrevToUse = CString7Abbrev;
2061     } else if (const ConstantDataSequential *CDS =
2062                    dyn_cast<ConstantDataSequential>(C)) {
2063       Code = bitc::CST_CODE_DATA;
2064       Type *EltTy = CDS->getElementType();
2065       if (isa<IntegerType>(EltTy)) {
2066         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2067           Record.push_back(CDS->getElementAsInteger(i));
2068       } else if (EltTy->isFloatTy()) {
2069         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2070           union {
2071             float F;
2072             uint32_t I;
2073           };
2074           F = CDS->getElementAsFloat(i);
2075           Record.push_back(I);
2076         }
2077       } else {
2078         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2079         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2080           union {
2081             double F;
2082             uint64_t I;
2083           };
2084           F = CDS->getElementAsDouble(i);
2085           Record.push_back(I);
2086         }
2087       }
2088     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2089                isa<ConstantVector>(C)) {
2090       Code = bitc::CST_CODE_AGGREGATE;
2091       for (const Value *Op : C->operands())
2092         Record.push_back(VE.getValueID(Op));
2093       AbbrevToUse = AggregateAbbrev;
2094     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2095       switch (CE->getOpcode()) {
2096       default:
2097         if (Instruction::isCast(CE->getOpcode())) {
2098           Code = bitc::CST_CODE_CE_CAST;
2099           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2100           Record.push_back(
2101               getTypeID(C->getOperand(0)->getType(), C->getOperand(0)));
2102           Record.push_back(VE.getValueID(C->getOperand(0)));
2103           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2104         } else {
2105           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2106           Code = bitc::CST_CODE_CE_BINOP;
2107           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2108           Record.push_back(VE.getValueID(C->getOperand(0)));
2109           Record.push_back(VE.getValueID(C->getOperand(1)));
2110           uint64_t Flags = getOptimizationFlags(CE);
2111           if (Flags != 0)
2112             Record.push_back(Flags);
2113         }
2114         break;
2115       case Instruction::GetElementPtr: {
2116         Code = bitc::CST_CODE_CE_GEP;
2117         const auto *GO = cast<GEPOperator>(C);
2118         if (GO->isInBounds())
2119           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2120         Record.push_back(getTypeID(GO->getSourceElementType()));
2121         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2122           Record.push_back(
2123               getTypeID(C->getOperand(i)->getType(), C->getOperand(i)));
2124           Record.push_back(VE.getValueID(C->getOperand(i)));
2125         }
2126         break;
2127       }
2128       case Instruction::Select:
2129         Code = bitc::CST_CODE_CE_SELECT;
2130         Record.push_back(VE.getValueID(C->getOperand(0)));
2131         Record.push_back(VE.getValueID(C->getOperand(1)));
2132         Record.push_back(VE.getValueID(C->getOperand(2)));
2133         break;
2134       case Instruction::ExtractElement:
2135         Code = bitc::CST_CODE_CE_EXTRACTELT;
2136         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2137         Record.push_back(VE.getValueID(C->getOperand(0)));
2138         Record.push_back(getTypeID(C->getOperand(1)->getType()));
2139         Record.push_back(VE.getValueID(C->getOperand(1)));
2140         break;
2141       case Instruction::InsertElement:
2142         Code = bitc::CST_CODE_CE_INSERTELT;
2143         Record.push_back(VE.getValueID(C->getOperand(0)));
2144         Record.push_back(VE.getValueID(C->getOperand(1)));
2145         Record.push_back(getTypeID(C->getOperand(2)->getType()));
2146         Record.push_back(VE.getValueID(C->getOperand(2)));
2147         break;
2148       case Instruction::ShuffleVector:
2149         // If the return type and argument types are the same, this is a
2150         // standard shufflevector instruction.  If the types are different,
2151         // then the shuffle is widening or truncating the input vectors, and
2152         // the argument type must also be encoded.
2153         if (C->getType() == C->getOperand(0)->getType()) {
2154           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2155         } else {
2156           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2157           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2158         }
2159         Record.push_back(VE.getValueID(C->getOperand(0)));
2160         Record.push_back(VE.getValueID(C->getOperand(1)));
2161         Record.push_back(VE.getValueID(C->getOperand(2)));
2162         break;
2163       }
2164     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2165       Code = bitc::CST_CODE_BLOCKADDRESS;
2166       Record.push_back(getTypeID(BA->getFunction()->getType()));
2167       Record.push_back(VE.getValueID(BA->getFunction()));
2168       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2169     } else {
2170 #ifndef NDEBUG
2171       C->dump();
2172 #endif
2173       llvm_unreachable("Unknown constant!");
2174     }
2175     Stream.EmitRecord(Code, Record, AbbrevToUse);
2176     Record.clear();
2177   }
2178 
2179   Stream.ExitBlock();
2180 }
2181 
2182 void DXILBitcodeWriter::writeModuleConstants() {
2183   const ValueEnumerator::ValueList &Vals = VE.getValues();
2184 
2185   // Find the first constant to emit, which is the first non-globalvalue value.
2186   // We know globalvalues have been emitted by WriteModuleInfo.
2187   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2188     if (!isa<GlobalValue>(Vals[i].first)) {
2189       writeConstants(i, Vals.size(), true);
2190       return;
2191     }
2192   }
2193 }
2194 
2195 /// pushValueAndType - The file has to encode both the value and type id for
2196 /// many values, because we need to know what type to create for forward
2197 /// references.  However, most operands are not forward references, so this type
2198 /// field is not needed.
2199 ///
2200 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2201 /// instruction ID, then it is a forward reference, and it also includes the
2202 /// type ID.  The value ID that is written is encoded relative to the InstID.
2203 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2204                                          SmallVectorImpl<unsigned> &Vals) {
2205   unsigned ValID = VE.getValueID(V);
2206   // Make encoding relative to the InstID.
2207   Vals.push_back(InstID - ValID);
2208   if (ValID >= InstID) {
2209     Vals.push_back(getTypeID(V->getType(), V));
2210     return true;
2211   }
2212   return false;
2213 }
2214 
2215 /// pushValue - Like pushValueAndType, but where the type of the value is
2216 /// omitted (perhaps it was already encoded in an earlier operand).
2217 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2218                                   SmallVectorImpl<unsigned> &Vals) {
2219   unsigned ValID = VE.getValueID(V);
2220   Vals.push_back(InstID - ValID);
2221 }
2222 
2223 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2224                                         SmallVectorImpl<uint64_t> &Vals) {
2225   unsigned ValID = VE.getValueID(V);
2226   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2227   emitSignedInt64(Vals, diff);
2228 }
2229 
2230 /// WriteInstruction - Emit an instruction
2231 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2232                                          SmallVectorImpl<unsigned> &Vals) {
2233   unsigned Code = 0;
2234   unsigned AbbrevToUse = 0;
2235   VE.setInstructionID(&I);
2236   switch (I.getOpcode()) {
2237   default:
2238     if (Instruction::isCast(I.getOpcode())) {
2239       Code = bitc::FUNC_CODE_INST_CAST;
2240       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2241         AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2242       Vals.push_back(getTypeID(I.getType(), &I));
2243       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2244     } else {
2245       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2246       Code = bitc::FUNC_CODE_INST_BINOP;
2247       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2248         AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2249       pushValue(I.getOperand(1), InstID, Vals);
2250       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2251       uint64_t Flags = getOptimizationFlags(&I);
2252       if (Flags != 0) {
2253         if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2254           AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2255         Vals.push_back(Flags);
2256       }
2257     }
2258     break;
2259 
2260   case Instruction::GetElementPtr: {
2261     Code = bitc::FUNC_CODE_INST_GEP;
2262     AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2263     auto &GEPInst = cast<GetElementPtrInst>(I);
2264     Vals.push_back(GEPInst.isInBounds());
2265     Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2266     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2267       pushValueAndType(I.getOperand(i), InstID, Vals);
2268     break;
2269   }
2270   case Instruction::ExtractValue: {
2271     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2272     pushValueAndType(I.getOperand(0), InstID, Vals);
2273     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2274     Vals.append(EVI->idx_begin(), EVI->idx_end());
2275     break;
2276   }
2277   case Instruction::InsertValue: {
2278     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2279     pushValueAndType(I.getOperand(0), InstID, Vals);
2280     pushValueAndType(I.getOperand(1), InstID, Vals);
2281     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2282     Vals.append(IVI->idx_begin(), IVI->idx_end());
2283     break;
2284   }
2285   case Instruction::Select:
2286     Code = bitc::FUNC_CODE_INST_VSELECT;
2287     pushValueAndType(I.getOperand(1), InstID, Vals);
2288     pushValue(I.getOperand(2), InstID, Vals);
2289     pushValueAndType(I.getOperand(0), InstID, Vals);
2290     break;
2291   case Instruction::ExtractElement:
2292     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2293     pushValueAndType(I.getOperand(0), InstID, Vals);
2294     pushValueAndType(I.getOperand(1), InstID, Vals);
2295     break;
2296   case Instruction::InsertElement:
2297     Code = bitc::FUNC_CODE_INST_INSERTELT;
2298     pushValueAndType(I.getOperand(0), InstID, Vals);
2299     pushValue(I.getOperand(1), InstID, Vals);
2300     pushValueAndType(I.getOperand(2), InstID, Vals);
2301     break;
2302   case Instruction::ShuffleVector:
2303     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2304     pushValueAndType(I.getOperand(0), InstID, Vals);
2305     pushValue(I.getOperand(1), InstID, Vals);
2306     pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID,
2307               Vals);
2308     break;
2309   case Instruction::ICmp:
2310   case Instruction::FCmp: {
2311     // compare returning Int1Ty or vector of Int1Ty
2312     Code = bitc::FUNC_CODE_INST_CMP2;
2313     pushValueAndType(I.getOperand(0), InstID, Vals);
2314     pushValue(I.getOperand(1), InstID, Vals);
2315     Vals.push_back(cast<CmpInst>(I).getPredicate());
2316     uint64_t Flags = getOptimizationFlags(&I);
2317     if (Flags != 0)
2318       Vals.push_back(Flags);
2319     break;
2320   }
2321 
2322   case Instruction::Ret: {
2323     Code = bitc::FUNC_CODE_INST_RET;
2324     unsigned NumOperands = I.getNumOperands();
2325     if (NumOperands == 0)
2326       AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2327     else if (NumOperands == 1) {
2328       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2329         AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2330     } else {
2331       for (unsigned i = 0, e = NumOperands; i != e; ++i)
2332         pushValueAndType(I.getOperand(i), InstID, Vals);
2333     }
2334   } break;
2335   case Instruction::Br: {
2336     Code = bitc::FUNC_CODE_INST_BR;
2337     const BranchInst &II = cast<BranchInst>(I);
2338     Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2339     if (II.isConditional()) {
2340       Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2341       pushValue(II.getCondition(), InstID, Vals);
2342     }
2343   } break;
2344   case Instruction::Switch: {
2345     Code = bitc::FUNC_CODE_INST_SWITCH;
2346     const SwitchInst &SI = cast<SwitchInst>(I);
2347     Vals.push_back(getTypeID(SI.getCondition()->getType()));
2348     pushValue(SI.getCondition(), InstID, Vals);
2349     Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2350     for (auto Case : SI.cases()) {
2351       Vals.push_back(VE.getValueID(Case.getCaseValue()));
2352       Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2353     }
2354   } break;
2355   case Instruction::IndirectBr:
2356     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2357     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2358     // Encode the address operand as relative, but not the basic blocks.
2359     pushValue(I.getOperand(0), InstID, Vals);
2360     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2361       Vals.push_back(VE.getValueID(I.getOperand(i)));
2362     break;
2363 
2364   case Instruction::Invoke: {
2365     const InvokeInst *II = cast<InvokeInst>(&I);
2366     const Value *Callee = II->getCalledOperand();
2367     FunctionType *FTy = II->getFunctionType();
2368     Code = bitc::FUNC_CODE_INST_INVOKE;
2369 
2370     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2371     Vals.push_back(II->getCallingConv() | 1 << 13);
2372     Vals.push_back(VE.getValueID(II->getNormalDest()));
2373     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2374     Vals.push_back(getTypeID(FTy));
2375     pushValueAndType(Callee, InstID, Vals);
2376 
2377     // Emit value #'s for the fixed parameters.
2378     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2379       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2380 
2381     // Emit type/value pairs for varargs params.
2382     if (FTy->isVarArg()) {
2383       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2384            ++i)
2385         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2386     }
2387     break;
2388   }
2389   case Instruction::Resume:
2390     Code = bitc::FUNC_CODE_INST_RESUME;
2391     pushValueAndType(I.getOperand(0), InstID, Vals);
2392     break;
2393   case Instruction::Unreachable:
2394     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2395     AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2396     break;
2397 
2398   case Instruction::PHI: {
2399     const PHINode &PN = cast<PHINode>(I);
2400     Code = bitc::FUNC_CODE_INST_PHI;
2401     // With the newer instruction encoding, forward references could give
2402     // negative valued IDs.  This is most common for PHIs, so we use
2403     // signed VBRs.
2404     SmallVector<uint64_t, 128> Vals64;
2405     Vals64.push_back(getTypeID(PN.getType()));
2406     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2407       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2408       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2409     }
2410     // Emit a Vals64 vector and exit.
2411     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2412     Vals64.clear();
2413     return;
2414   }
2415 
2416   case Instruction::LandingPad: {
2417     const LandingPadInst &LP = cast<LandingPadInst>(I);
2418     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2419     Vals.push_back(getTypeID(LP.getType()));
2420     Vals.push_back(LP.isCleanup());
2421     Vals.push_back(LP.getNumClauses());
2422     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2423       if (LP.isCatch(I))
2424         Vals.push_back(LandingPadInst::Catch);
2425       else
2426         Vals.push_back(LandingPadInst::Filter);
2427       pushValueAndType(LP.getClause(I), InstID, Vals);
2428     }
2429     break;
2430   }
2431 
2432   case Instruction::Alloca: {
2433     Code = bitc::FUNC_CODE_INST_ALLOCA;
2434     const AllocaInst &AI = cast<AllocaInst>(I);
2435     Vals.push_back(getTypeID(AI.getAllocatedType()));
2436     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2437     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2438     unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1;
2439     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2440     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2441     AlignRecord |= 1 << 6;
2442     Vals.push_back(AlignRecord);
2443     break;
2444   }
2445 
2446   case Instruction::Load:
2447     if (cast<LoadInst>(I).isAtomic()) {
2448       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2449       pushValueAndType(I.getOperand(0), InstID, Vals);
2450     } else {
2451       Code = bitc::FUNC_CODE_INST_LOAD;
2452       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2453         AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2454     }
2455     Vals.push_back(getTypeID(I.getType()));
2456     Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2457     Vals.push_back(cast<LoadInst>(I).isVolatile());
2458     if (cast<LoadInst>(I).isAtomic()) {
2459       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2460       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2461     }
2462     break;
2463   case Instruction::Store:
2464     if (cast<StoreInst>(I).isAtomic())
2465       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2466     else
2467       Code = bitc::FUNC_CODE_INST_STORE;
2468     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2469     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2470     Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2471     Vals.push_back(cast<StoreInst>(I).isVolatile());
2472     if (cast<StoreInst>(I).isAtomic()) {
2473       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2474       Vals.push_back(
2475           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2476     }
2477     break;
2478   case Instruction::AtomicCmpXchg:
2479     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2480     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2481     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2482     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2483     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2484     Vals.push_back(
2485         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2486     Vals.push_back(
2487         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2488     Vals.push_back(
2489         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2490     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2491     break;
2492   case Instruction::AtomicRMW:
2493     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2494     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2495     pushValue(I.getOperand(1), InstID, Vals);        // val.
2496     Vals.push_back(
2497         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2498     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2499     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2500     Vals.push_back(
2501         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2502     break;
2503   case Instruction::Fence:
2504     Code = bitc::FUNC_CODE_INST_FENCE;
2505     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2506     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2507     break;
2508   case Instruction::Call: {
2509     const CallInst &CI = cast<CallInst>(I);
2510     FunctionType *FTy = CI.getFunctionType();
2511 
2512     Code = bitc::FUNC_CODE_INST_CALL;
2513 
2514     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2515     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2516                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2517     Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction()));
2518     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2519 
2520     // Emit value #'s for the fixed parameters.
2521     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2522       // Check for labels (can happen with asm labels).
2523       if (FTy->getParamType(i)->isLabelTy())
2524         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2525       else
2526         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2527     }
2528 
2529     // Emit type/value pairs for varargs params.
2530     if (FTy->isVarArg()) {
2531       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2532         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2533     }
2534     break;
2535   }
2536   case Instruction::VAArg:
2537     Code = bitc::FUNC_CODE_INST_VAARG;
2538     Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2539     pushValue(I.getOperand(0), InstID, Vals);              // valist.
2540     Vals.push_back(getTypeID(I.getType()));                // restype.
2541     break;
2542   }
2543 
2544   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2545   Vals.clear();
2546 }
2547 
2548 // Emit names for globals/functions etc.
2549 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2550     const ValueSymbolTable &VST) {
2551   if (VST.empty())
2552     return;
2553   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2554 
2555   SmallVector<unsigned, 64> NameVals;
2556 
2557   // HLSL Change
2558   // Read the named values from a sorted list instead of the original list
2559   // to ensure the binary is the same no matter what values ever existed.
2560   SmallVector<const ValueName *, 16> SortedTable;
2561 
2562   for (auto &VI : VST) {
2563     SortedTable.push_back(VI.second->getValueName());
2564   }
2565   // The keys are unique, so there shouldn't be stability issues.
2566   llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2567     return A->first() < B->first();
2568   });
2569 
2570   for (const ValueName *SI : SortedTable) {
2571     auto &Name = *SI;
2572 
2573     // Figure out the encoding to use for the name.
2574     bool is7Bit = true;
2575     bool isChar6 = true;
2576     for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2577          C != E; ++C) {
2578       if (isChar6)
2579         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2580       if ((unsigned char)*C & 128) {
2581         is7Bit = false;
2582         break; // don't bother scanning the rest.
2583       }
2584     }
2585 
2586     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2587 
2588     // VST_ENTRY:   [valueid, namechar x N]
2589     // VST_BBENTRY: [bbid, namechar x N]
2590     unsigned Code;
2591     if (isa<BasicBlock>(SI->getValue())) {
2592       Code = bitc::VST_CODE_BBENTRY;
2593       if (isChar6)
2594         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2595     } else {
2596       Code = bitc::VST_CODE_ENTRY;
2597       if (isChar6)
2598         AbbrevToUse = VST_ENTRY_6_ABBREV;
2599       else if (is7Bit)
2600         AbbrevToUse = VST_ENTRY_7_ABBREV;
2601     }
2602 
2603     NameVals.push_back(VE.getValueID(SI->getValue()));
2604     for (const char *P = Name.getKeyData(),
2605                     *E = Name.getKeyData() + Name.getKeyLength();
2606          P != E; ++P)
2607       NameVals.push_back((unsigned char)*P);
2608 
2609     // Emit the finished record.
2610     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2611     NameVals.clear();
2612   }
2613   Stream.ExitBlock();
2614 }
2615 
2616 /// Emit a function body to the module stream.
2617 void DXILBitcodeWriter::writeFunction(const Function &F) {
2618   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2619   VE.incorporateFunction(F);
2620 
2621   SmallVector<unsigned, 64> Vals;
2622 
2623   // Emit the number of basic blocks, so the reader can create them ahead of
2624   // time.
2625   Vals.push_back(VE.getBasicBlocks().size());
2626   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2627   Vals.clear();
2628 
2629   // If there are function-local constants, emit them now.
2630   unsigned CstStart, CstEnd;
2631   VE.getFunctionConstantRange(CstStart, CstEnd);
2632   writeConstants(CstStart, CstEnd, false);
2633 
2634   // If there is function-local metadata, emit it now.
2635   writeFunctionMetadata(F);
2636 
2637   // Keep a running idea of what the instruction ID is.
2638   unsigned InstID = CstEnd;
2639 
2640   bool NeedsMetadataAttachment = F.hasMetadata();
2641 
2642   DILocation *LastDL = nullptr;
2643 
2644   // Finally, emit all the instructions, in order.
2645   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2646     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2647          ++I) {
2648       writeInstruction(*I, InstID, Vals);
2649 
2650       if (!I->getType()->isVoidTy())
2651         ++InstID;
2652 
2653       // If the instruction has metadata, write a metadata attachment later.
2654       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2655 
2656       // If the instruction has a debug location, emit it.
2657       DILocation *DL = I->getDebugLoc();
2658       if (!DL)
2659         continue;
2660 
2661       if (DL == LastDL) {
2662         // Just repeat the same debug loc as last time.
2663         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2664         continue;
2665       }
2666 
2667       Vals.push_back(DL->getLine());
2668       Vals.push_back(DL->getColumn());
2669       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2670       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2671       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2672       Vals.clear();
2673 
2674       LastDL = DL;
2675     }
2676 
2677   // Emit names for all the instructions etc.
2678   if (auto *Symtab = F.getValueSymbolTable())
2679     writeFunctionLevelValueSymbolTable(*Symtab);
2680 
2681   if (NeedsMetadataAttachment)
2682     writeFunctionMetadataAttachment(F);
2683 
2684   VE.purgeFunction();
2685   Stream.ExitBlock();
2686 }
2687 
2688 // Emit blockinfo, which defines the standard abbreviations etc.
2689 void DXILBitcodeWriter::writeBlockInfo() {
2690   // We only want to emit block info records for blocks that have multiple
2691   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2692   // Other blocks can define their abbrevs inline.
2693   Stream.EnterBlockInfoBlock();
2694 
2695   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2696     auto Abbv = std::make_shared<BitCodeAbbrev>();
2697     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2698     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2699     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2700     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2701     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2702                                    std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2703       assert(false && "Unexpected abbrev ordering!");
2704   }
2705 
2706   { // 7-bit fixed width VST_ENTRY strings.
2707     auto Abbv = std::make_shared<BitCodeAbbrev>();
2708     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2711     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2712     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2713                                    std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2714       assert(false && "Unexpected abbrev ordering!");
2715   }
2716   { // 6-bit char6 VST_ENTRY strings.
2717     auto Abbv = std::make_shared<BitCodeAbbrev>();
2718     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2719     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2720     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2721     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2722     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2723                                    std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2724       assert(false && "Unexpected abbrev ordering!");
2725   }
2726   { // 6-bit char6 VST_BBENTRY strings.
2727     auto Abbv = std::make_shared<BitCodeAbbrev>();
2728     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2729     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2730     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2731     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2732     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2733                                    std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2734       assert(false && "Unexpected abbrev ordering!");
2735   }
2736 
2737   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2738     auto Abbv = std::make_shared<BitCodeAbbrev>();
2739     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2740     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2741                               VE.computeBitsRequiredForTypeIndices()));
2742     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2743         CONSTANTS_SETTYPE_ABBREV)
2744       assert(false && "Unexpected abbrev ordering!");
2745   }
2746 
2747   { // INTEGER abbrev for CONSTANTS_BLOCK.
2748     auto Abbv = std::make_shared<BitCodeAbbrev>();
2749     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2750     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2751     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2752         CONSTANTS_INTEGER_ABBREV)
2753       assert(false && "Unexpected abbrev ordering!");
2754   }
2755 
2756   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2757     auto Abbv = std::make_shared<BitCodeAbbrev>();
2758     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2759     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2760     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2761                               VE.computeBitsRequiredForTypeIndices()));
2762     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2763 
2764     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2765         CONSTANTS_CE_CAST_Abbrev)
2766       assert(false && "Unexpected abbrev ordering!");
2767   }
2768   { // NULL abbrev for CONSTANTS_BLOCK.
2769     auto Abbv = std::make_shared<BitCodeAbbrev>();
2770     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2771     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2772         CONSTANTS_NULL_Abbrev)
2773       assert(false && "Unexpected abbrev ordering!");
2774   }
2775 
2776   // FIXME: This should only use space for first class types!
2777 
2778   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2779     auto Abbv = std::make_shared<BitCodeAbbrev>();
2780     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2781     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2783                               VE.computeBitsRequiredForTypeIndices()));
2784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2785     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2786     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2787         (unsigned)FUNCTION_INST_LOAD_ABBREV)
2788       assert(false && "Unexpected abbrev ordering!");
2789   }
2790   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2791     auto Abbv = std::make_shared<BitCodeAbbrev>();
2792     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2793     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2795     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2796     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2797         (unsigned)FUNCTION_INST_BINOP_ABBREV)
2798       assert(false && "Unexpected abbrev ordering!");
2799   }
2800   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2801     auto Abbv = std::make_shared<BitCodeAbbrev>();
2802     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2804     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2805     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2806     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2807     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2808         (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2809       assert(false && "Unexpected abbrev ordering!");
2810   }
2811   { // INST_CAST abbrev for FUNCTION_BLOCK.
2812     auto Abbv = std::make_shared<BitCodeAbbrev>();
2813     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2814     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2815     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2816                               VE.computeBitsRequiredForTypeIndices()));
2817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2818     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2819         (unsigned)FUNCTION_INST_CAST_ABBREV)
2820       assert(false && "Unexpected abbrev ordering!");
2821   }
2822 
2823   { // INST_RET abbrev for FUNCTION_BLOCK.
2824     auto Abbv = std::make_shared<BitCodeAbbrev>();
2825     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2826     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2827         (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2828       assert(false && "Unexpected abbrev ordering!");
2829   }
2830   { // INST_RET abbrev for FUNCTION_BLOCK.
2831     auto Abbv = std::make_shared<BitCodeAbbrev>();
2832     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2833     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2834     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2835         (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2836       assert(false && "Unexpected abbrev ordering!");
2837   }
2838   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2839     auto Abbv = std::make_shared<BitCodeAbbrev>();
2840     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2841     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2842         (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2843       assert(false && "Unexpected abbrev ordering!");
2844   }
2845   {
2846     auto Abbv = std::make_shared<BitCodeAbbrev>();
2847     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2848     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2849     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2850                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2851     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2852     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2853     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2854         (unsigned)FUNCTION_INST_GEP_ABBREV)
2855       assert(false && "Unexpected abbrev ordering!");
2856   }
2857 
2858   Stream.ExitBlock();
2859 }
2860 
2861 void DXILBitcodeWriter::writeModuleVersion() {
2862   // VERSION: [version#]
2863   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2864 }
2865 
2866 /// WriteModule - Emit the specified module to the bitstream.
2867 void DXILBitcodeWriter::write() {
2868   // The identification block is new since llvm-3.7, but the old bitcode reader
2869   // will skip it.
2870   // writeIdentificationBlock(Stream);
2871 
2872   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2873 
2874   // It is redundant to fully-specify this here, but nice to make it explicit
2875   // so that it is clear the DXIL module version is different.
2876   DXILBitcodeWriter::writeModuleVersion();
2877 
2878   // Emit blockinfo, which defines the standard abbreviations etc.
2879   writeBlockInfo();
2880 
2881   // Emit information about attribute groups.
2882   writeAttributeGroupTable();
2883 
2884   // Emit information about parameter attributes.
2885   writeAttributeTable();
2886 
2887   // Emit information describing all of the types in the module.
2888   writeTypeTable();
2889 
2890   writeComdats();
2891 
2892   // Emit top-level description of module, including target triple, inline asm,
2893   // descriptors for global variables, and function prototype info.
2894   writeModuleInfo();
2895 
2896   // Emit constants.
2897   writeModuleConstants();
2898 
2899   // Emit metadata.
2900   writeModuleMetadataKinds();
2901 
2902   // Emit metadata.
2903   writeModuleMetadata();
2904 
2905   // Emit names for globals/functions etc.
2906   // DXIL uses the same format for module-level value symbol table as for the
2907   // function level table.
2908   writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2909 
2910   // Emit function bodies.
2911   for (const Function &F : M)
2912     if (!F.isDeclaration())
2913       writeFunction(F);
2914 
2915   Stream.ExitBlock();
2916 }
2917