1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "DirectXIRPasses/PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitcodeCommon.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/Bitcode/LLVMBitCodes.h" 21 #include "llvm/Bitstream/BitCodes.h" 22 #include "llvm/Bitstream/BitstreamWriter.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalIFunc.h" 34 #include "llvm/IR/GlobalObject.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/UseListOrder.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Object/IRSymtab.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/ModRef.h" 53 #include "llvm/Support/SHA1.h" 54 55 namespace llvm { 56 namespace dxil { 57 58 // Generates an enum to use as an index in the Abbrev array of Metadata record. 59 enum MetadataAbbrev : unsigned { 60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 61 #include "llvm/IR/Metadata.def" 62 LastPlusOne 63 }; 64 65 class DXILBitcodeWriter { 66 67 /// These are manifest constants used by the bitcode writer. They do not need 68 /// to be kept in sync with the reader, but need to be consistent within this 69 /// file. 70 enum { 71 // VALUE_SYMTAB_BLOCK abbrev id's. 72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 73 VST_ENTRY_7_ABBREV, 74 VST_ENTRY_6_ABBREV, 75 VST_BBENTRY_6_ABBREV, 76 77 // CONSTANTS_BLOCK abbrev id's. 78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 79 CONSTANTS_INTEGER_ABBREV, 80 CONSTANTS_CE_CAST_Abbrev, 81 CONSTANTS_NULL_Abbrev, 82 83 // FUNCTION_BLOCK abbrev id's. 84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 85 FUNCTION_INST_BINOP_ABBREV, 86 FUNCTION_INST_BINOP_FLAGS_ABBREV, 87 FUNCTION_INST_CAST_ABBREV, 88 FUNCTION_INST_RET_VOID_ABBREV, 89 FUNCTION_INST_RET_VAL_ABBREV, 90 FUNCTION_INST_UNREACHABLE_ABBREV, 91 FUNCTION_INST_GEP_ABBREV, 92 }; 93 94 // Cache some types 95 Type *I8Ty; 96 Type *I8PtrTy; 97 98 /// The stream created and owned by the client. 99 BitstreamWriter &Stream; 100 101 StringTableBuilder &StrtabBuilder; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 /// Saves the offset of the VSTOffset record that must eventually be 118 /// backpatched with the offset of the actual VST. 119 uint64_t VSTOffsetPlaceholder = 0; 120 121 /// Pointer to the buffer allocated by caller for bitcode writing. 122 const SmallVectorImpl<char> &Buffer; 123 124 /// The start bit of the identification block. 125 uint64_t BitcodeStartBit; 126 127 /// This maps values to their typed pointers 128 PointerTypeMap PointerMap; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 135 : I8Ty(Type::getInt8Ty(M.getContext())), 136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 138 BitcodeStartBit(Stream.GetCurrentBitNo()), 139 PointerMap(PointerTypeAnalysis::run(M)) { 140 GlobalValueId = VE.getValues().size(); 141 // Enumerate the typed pointers 142 for (auto El : PointerMap) 143 VE.EnumerateType(El.second); 144 } 145 146 /// Emit the current module to the bitstream. 147 void write(); 148 149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 151 StringRef Str, unsigned AbbrevToUse); 152 static void writeIdentificationBlock(BitstreamWriter &Stream); 153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 155 156 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 158 static unsigned getEncodedLinkage(const GlobalValue &GV); 159 static unsigned getEncodedVisibility(const GlobalValue &GV); 160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 162 static unsigned getEncodedCastOpcode(unsigned Opcode); 163 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 164 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 166 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 167 static uint64_t getOptimizationFlags(const Value *V); 168 169 private: 170 void writeModuleVersion(); 171 void writePerModuleGlobalValueSummary(); 172 173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 174 GlobalValueSummary *Summary, 175 unsigned ValueID, 176 unsigned FSCallsAbbrev, 177 unsigned FSCallsProfileAbbrev, 178 const Function &F); 179 void writeModuleLevelReferences(const GlobalVariable &V, 180 SmallVector<uint64_t, 64> &NameVals, 181 unsigned FSModRefsAbbrev, 182 unsigned FSModVTableRefsAbbrev); 183 184 void assignValueId(GlobalValue::GUID ValGUID) { 185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 186 } 187 188 unsigned getValueId(GlobalValue::GUID ValGUID) { 189 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 190 // Expect that any GUID value had a value Id assigned by an 191 // earlier call to assignValueId. 192 assert(VMI != GUIDToValueIdMap.end() && 193 "GUID does not have assigned value Id"); 194 return VMI->second; 195 } 196 197 // Helper to get the valueId for the type of value recorded in VI. 198 unsigned getValueId(ValueInfo VI) { 199 if (!VI.haveGVs() || !VI.getValue()) 200 return getValueId(VI.getGUID()); 201 return VE.getValueID(VI.getValue()); 202 } 203 204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 205 206 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 207 208 size_t addToStrtab(StringRef Str); 209 210 unsigned createDILocationAbbrev(); 211 unsigned createGenericDINodeAbbrev(); 212 213 void writeAttributeGroupTable(); 214 void writeAttributeTable(); 215 void writeTypeTable(); 216 void writeComdats(); 217 void writeValueSymbolTableForwardDecl(); 218 void writeModuleInfo(); 219 void writeValueAsMetadata(const ValueAsMetadata *MD, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned &Abbrev); 225 void writeGenericDINode(const GenericDINode *N, 226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 227 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 228 } 229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGenericSubrange(const DIGenericSubrange *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev) { 234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 235 } 236 void writeDIEnumerator(const DIEnumerator *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIStringType(const DIStringType *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 242 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 243 } 244 void writeDIDerivedType(const DIDerivedType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDICompositeType(const DICompositeType *N, 247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 248 void writeDISubroutineType(const DISubroutineType *N, 249 SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 252 unsigned Abbrev); 253 void writeDICompileUnit(const DICompileUnit *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDISubprogram(const DISubprogram *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlock(const DILexicalBlock *N, 258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 259 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 260 SmallVectorImpl<uint64_t> &Record, 261 unsigned Abbrev); 262 void writeDICommonBlock(const DICommonBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 265 } 266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev); 268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 269 unsigned Abbrev) { 270 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 271 } 272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 273 unsigned Abbrev) { 274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 275 } 276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev) { 278 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 279 } 280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev) { 282 // DIAssignID is experimental feature to track variable location in IR.. 283 // FIXME: translate DIAssignID to debug info DXIL supports. 284 // See https://github.com/llvm/llvm-project/issues/58989 285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); 286 } 287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 290 SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 293 SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 void writeDIGlobalVariable(const DIGlobalVariable *N, 296 SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDILocalVariable(const DILocalVariable *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev) { 302 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 303 } 304 void writeDIExpression(const DIExpression *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev) { 309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 310 } 311 void writeDIObjCProperty(const DIObjCProperty *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIImportedEntity(const DIImportedEntity *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 unsigned createNamedMetadataAbbrev(); 317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 318 unsigned createMetadataStringsAbbrev(); 319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 320 SmallVectorImpl<uint64_t> &Record); 321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 322 SmallVectorImpl<uint64_t> &Record, 323 std::vector<unsigned> *MDAbbrevs = nullptr, 324 std::vector<uint64_t> *IndexPos = nullptr); 325 void writeModuleMetadata(); 326 void writeFunctionMetadata(const Function &F); 327 void writeFunctionMetadataAttachment(const Function &F); 328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 329 const GlobalObject &GO); 330 void writeModuleMetadataKinds(); 331 void writeOperandBundleTags(); 332 void writeSyncScopeNames(); 333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 334 void writeModuleConstants(); 335 bool pushValueAndType(const Value *V, unsigned InstID, 336 SmallVectorImpl<unsigned> &Vals); 337 void writeOperandBundles(const CallBase &CB, unsigned InstID); 338 void pushValue(const Value *V, unsigned InstID, 339 SmallVectorImpl<unsigned> &Vals); 340 void pushValueSigned(const Value *V, unsigned InstID, 341 SmallVectorImpl<uint64_t> &Vals); 342 void writeInstruction(const Instruction &I, unsigned InstID, 343 SmallVectorImpl<unsigned> &Vals); 344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 345 void writeGlobalValueSymbolTable( 346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 347 void writeFunction(const Function &F); 348 void writeBlockInfo(); 349 350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 351 352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 353 354 unsigned getTypeID(Type *T, const Value *V = nullptr); 355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 356 /// 357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 358 /// GlobalObject, but in the bitcode writer we need the pointer element type. 359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 360 }; 361 362 } // namespace dxil 363 } // namespace llvm 364 365 using namespace llvm; 366 using namespace llvm::dxil; 367 368 //////////////////////////////////////////////////////////////////////////////// 369 /// Begin dxil::BitcodeWriter Implementation 370 //////////////////////////////////////////////////////////////////////////////// 371 372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 373 raw_fd_stream *FS) 374 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 375 // Emit the file header. 376 Stream->Emit((unsigned)'B', 8); 377 Stream->Emit((unsigned)'C', 8); 378 Stream->Emit(0x0, 4); 379 Stream->Emit(0xC, 4); 380 Stream->Emit(0xE, 4); 381 Stream->Emit(0xD, 4); 382 } 383 384 dxil::BitcodeWriter::~BitcodeWriter() { } 385 386 /// Write the specified module to the specified output stream. 387 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 388 SmallVector<char, 0> Buffer; 389 Buffer.reserve(256 * 1024); 390 391 // If this is darwin or another generic macho target, reserve space for the 392 // header. 393 Triple TT(M.getTargetTriple()); 394 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 395 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 396 397 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 398 Writer.writeModule(M); 399 400 // Write the generated bitstream to "Out". 401 if (!Buffer.empty()) 402 Out.write((char *)&Buffer.front(), Buffer.size()); 403 } 404 405 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 406 Stream->EnterSubblock(Block, 3); 407 408 auto Abbv = std::make_shared<BitCodeAbbrev>(); 409 Abbv->Add(BitCodeAbbrevOp(Record)); 410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 411 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 412 413 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 414 415 Stream->ExitBlock(); 416 } 417 418 void BitcodeWriter::writeModule(const Module &M) { 419 420 // The Mods vector is used by irsymtab::build, which requires non-const 421 // Modules in case it needs to materialize metadata. But the bitcode writer 422 // requires that the module is materialized, so we can cast to non-const here, 423 // after checking that it is in fact materialized. 424 assert(M.isMaterialized()); 425 Mods.push_back(const_cast<Module *>(&M)); 426 427 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 428 ModuleWriter.write(); 429 } 430 431 //////////////////////////////////////////////////////////////////////////////// 432 /// Begin dxil::BitcodeWriterBase Implementation 433 //////////////////////////////////////////////////////////////////////////////// 434 435 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 436 switch (Opcode) { 437 default: 438 llvm_unreachable("Unknown cast instruction!"); 439 case Instruction::Trunc: 440 return bitc::CAST_TRUNC; 441 case Instruction::ZExt: 442 return bitc::CAST_ZEXT; 443 case Instruction::SExt: 444 return bitc::CAST_SEXT; 445 case Instruction::FPToUI: 446 return bitc::CAST_FPTOUI; 447 case Instruction::FPToSI: 448 return bitc::CAST_FPTOSI; 449 case Instruction::UIToFP: 450 return bitc::CAST_UITOFP; 451 case Instruction::SIToFP: 452 return bitc::CAST_SITOFP; 453 case Instruction::FPTrunc: 454 return bitc::CAST_FPTRUNC; 455 case Instruction::FPExt: 456 return bitc::CAST_FPEXT; 457 case Instruction::PtrToInt: 458 return bitc::CAST_PTRTOINT; 459 case Instruction::IntToPtr: 460 return bitc::CAST_INTTOPTR; 461 case Instruction::BitCast: 462 return bitc::CAST_BITCAST; 463 case Instruction::AddrSpaceCast: 464 return bitc::CAST_ADDRSPACECAST; 465 } 466 } 467 468 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 llvm_unreachable("Unknown binary instruction!"); 472 case Instruction::FNeg: 473 return bitc::UNOP_FNEG; 474 } 475 } 476 477 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 478 switch (Opcode) { 479 default: 480 llvm_unreachable("Unknown binary instruction!"); 481 case Instruction::Add: 482 case Instruction::FAdd: 483 return bitc::BINOP_ADD; 484 case Instruction::Sub: 485 case Instruction::FSub: 486 return bitc::BINOP_SUB; 487 case Instruction::Mul: 488 case Instruction::FMul: 489 return bitc::BINOP_MUL; 490 case Instruction::UDiv: 491 return bitc::BINOP_UDIV; 492 case Instruction::FDiv: 493 case Instruction::SDiv: 494 return bitc::BINOP_SDIV; 495 case Instruction::URem: 496 return bitc::BINOP_UREM; 497 case Instruction::FRem: 498 case Instruction::SRem: 499 return bitc::BINOP_SREM; 500 case Instruction::Shl: 501 return bitc::BINOP_SHL; 502 case Instruction::LShr: 503 return bitc::BINOP_LSHR; 504 case Instruction::AShr: 505 return bitc::BINOP_ASHR; 506 case Instruction::And: 507 return bitc::BINOP_AND; 508 case Instruction::Or: 509 return bitc::BINOP_OR; 510 case Instruction::Xor: 511 return bitc::BINOP_XOR; 512 } 513 } 514 515 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 516 if (!T->isOpaquePointerTy() && 517 // For Constant, always check PointerMap to make sure OpaquePointer in 518 // things like constant struct/array works. 519 (!V || !isa<Constant>(V))) 520 return VE.getTypeID(T); 521 auto It = PointerMap.find(V); 522 if (It != PointerMap.end()) 523 return VE.getTypeID(It->second); 524 // For Constant, return T when cannot find in PointerMap. 525 // FIXME: support ConstantPointerNull which could map to more than one 526 // TypedPointerType. 527 // See https://github.com/llvm/llvm-project/issues/57942. 528 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 529 return VE.getTypeID(T); 530 return VE.getTypeID(I8PtrTy); 531 } 532 533 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 534 const GlobalObject *G) { 535 auto It = PointerMap.find(G); 536 if (It != PointerMap.end()) { 537 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 538 return VE.getTypeID(PtrTy->getElementType()); 539 } 540 return VE.getTypeID(T); 541 } 542 543 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 544 switch (Op) { 545 default: 546 llvm_unreachable("Unknown RMW operation!"); 547 case AtomicRMWInst::Xchg: 548 return bitc::RMW_XCHG; 549 case AtomicRMWInst::Add: 550 return bitc::RMW_ADD; 551 case AtomicRMWInst::Sub: 552 return bitc::RMW_SUB; 553 case AtomicRMWInst::And: 554 return bitc::RMW_AND; 555 case AtomicRMWInst::Nand: 556 return bitc::RMW_NAND; 557 case AtomicRMWInst::Or: 558 return bitc::RMW_OR; 559 case AtomicRMWInst::Xor: 560 return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: 562 return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: 564 return bitc::RMW_MIN; 565 case AtomicRMWInst::UMax: 566 return bitc::RMW_UMAX; 567 case AtomicRMWInst::UMin: 568 return bitc::RMW_UMIN; 569 case AtomicRMWInst::FAdd: 570 return bitc::RMW_FADD; 571 case AtomicRMWInst::FSub: 572 return bitc::RMW_FSUB; 573 case AtomicRMWInst::FMax: 574 return bitc::RMW_FMAX; 575 case AtomicRMWInst::FMin: 576 return bitc::RMW_FMIN; 577 } 578 } 579 580 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 581 switch (Ordering) { 582 case AtomicOrdering::NotAtomic: 583 return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: 585 return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: 587 return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: 589 return bitc::ORDERING_ACQUIRE; 590 case AtomicOrdering::Release: 591 return bitc::ORDERING_RELEASE; 592 case AtomicOrdering::AcquireRelease: 593 return bitc::ORDERING_ACQREL; 594 case AtomicOrdering::SequentiallyConsistent: 595 return bitc::ORDERING_SEQCST; 596 } 597 llvm_unreachable("Invalid ordering"); 598 } 599 600 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 601 unsigned Code, StringRef Str, 602 unsigned AbbrevToUse) { 603 SmallVector<unsigned, 64> Vals; 604 605 // Code: [strchar x N] 606 for (char C : Str) { 607 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 608 AbbrevToUse = 0; 609 Vals.push_back(C); 610 } 611 612 // Emit the finished record. 613 Stream.EmitRecord(Code, Vals, AbbrevToUse); 614 } 615 616 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 617 switch (Kind) { 618 case Attribute::Alignment: 619 return bitc::ATTR_KIND_ALIGNMENT; 620 case Attribute::AlwaysInline: 621 return bitc::ATTR_KIND_ALWAYS_INLINE; 622 case Attribute::Builtin: 623 return bitc::ATTR_KIND_BUILTIN; 624 case Attribute::ByVal: 625 return bitc::ATTR_KIND_BY_VAL; 626 case Attribute::Convergent: 627 return bitc::ATTR_KIND_CONVERGENT; 628 case Attribute::InAlloca: 629 return bitc::ATTR_KIND_IN_ALLOCA; 630 case Attribute::Cold: 631 return bitc::ATTR_KIND_COLD; 632 case Attribute::InlineHint: 633 return bitc::ATTR_KIND_INLINE_HINT; 634 case Attribute::InReg: 635 return bitc::ATTR_KIND_IN_REG; 636 case Attribute::JumpTable: 637 return bitc::ATTR_KIND_JUMP_TABLE; 638 case Attribute::MinSize: 639 return bitc::ATTR_KIND_MIN_SIZE; 640 case Attribute::Naked: 641 return bitc::ATTR_KIND_NAKED; 642 case Attribute::Nest: 643 return bitc::ATTR_KIND_NEST; 644 case Attribute::NoAlias: 645 return bitc::ATTR_KIND_NO_ALIAS; 646 case Attribute::NoBuiltin: 647 return bitc::ATTR_KIND_NO_BUILTIN; 648 case Attribute::NoCapture: 649 return bitc::ATTR_KIND_NO_CAPTURE; 650 case Attribute::NoDuplicate: 651 return bitc::ATTR_KIND_NO_DUPLICATE; 652 case Attribute::NoImplicitFloat: 653 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 654 case Attribute::NoInline: 655 return bitc::ATTR_KIND_NO_INLINE; 656 case Attribute::NonLazyBind: 657 return bitc::ATTR_KIND_NON_LAZY_BIND; 658 case Attribute::NonNull: 659 return bitc::ATTR_KIND_NON_NULL; 660 case Attribute::Dereferenceable: 661 return bitc::ATTR_KIND_DEREFERENCEABLE; 662 case Attribute::DereferenceableOrNull: 663 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 664 case Attribute::NoRedZone: 665 return bitc::ATTR_KIND_NO_RED_ZONE; 666 case Attribute::NoReturn: 667 return bitc::ATTR_KIND_NO_RETURN; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::StackAlignment: 685 return bitc::ATTR_KIND_STACK_ALIGNMENT; 686 case Attribute::StackProtect: 687 return bitc::ATTR_KIND_STACK_PROTECT; 688 case Attribute::StackProtectReq: 689 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 690 case Attribute::StackProtectStrong: 691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 692 case Attribute::SafeStack: 693 return bitc::ATTR_KIND_SAFESTACK; 694 case Attribute::StructRet: 695 return bitc::ATTR_KIND_STRUCT_RET; 696 case Attribute::SanitizeAddress: 697 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 698 case Attribute::SanitizeThread: 699 return bitc::ATTR_KIND_SANITIZE_THREAD; 700 case Attribute::SanitizeMemory: 701 return bitc::ATTR_KIND_SANITIZE_MEMORY; 702 case Attribute::UWTable: 703 return bitc::ATTR_KIND_UW_TABLE; 704 case Attribute::ZExt: 705 return bitc::ATTR_KIND_Z_EXT; 706 case Attribute::EndAttrKinds: 707 llvm_unreachable("Can not encode end-attribute kinds marker."); 708 case Attribute::None: 709 llvm_unreachable("Can not encode none-attribute."); 710 case Attribute::EmptyKey: 711 case Attribute::TombstoneKey: 712 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 713 default: 714 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 715 "should be stripped in DXILPrepare"); 716 } 717 718 llvm_unreachable("Trying to encode unknown attribute"); 719 } 720 721 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 722 uint64_t V) { 723 if ((int64_t)V >= 0) 724 Vals.push_back(V << 1); 725 else 726 Vals.push_back((-V << 1) | 1); 727 } 728 729 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 730 const APInt &A) { 731 // We have an arbitrary precision integer value to write whose 732 // bit width is > 64. However, in canonical unsigned integer 733 // format it is likely that the high bits are going to be zero. 734 // So, we only write the number of active words. 735 unsigned NumWords = A.getActiveWords(); 736 const uint64_t *RawData = A.getRawData(); 737 for (unsigned i = 0; i < NumWords; i++) 738 emitSignedInt64(Vals, RawData[i]); 739 } 740 741 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 742 uint64_t Flags = 0; 743 744 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 745 if (OBO->hasNoSignedWrap()) 746 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 747 if (OBO->hasNoUnsignedWrap()) 748 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 749 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 750 if (PEO->isExact()) 751 Flags |= 1 << bitc::PEO_EXACT; 752 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 753 if (FPMO->hasAllowReassoc()) 754 Flags |= bitc::AllowReassoc; 755 if (FPMO->hasNoNaNs()) 756 Flags |= bitc::NoNaNs; 757 if (FPMO->hasNoInfs()) 758 Flags |= bitc::NoInfs; 759 if (FPMO->hasNoSignedZeros()) 760 Flags |= bitc::NoSignedZeros; 761 if (FPMO->hasAllowReciprocal()) 762 Flags |= bitc::AllowReciprocal; 763 if (FPMO->hasAllowContract()) 764 Flags |= bitc::AllowContract; 765 if (FPMO->hasApproxFunc()) 766 Flags |= bitc::ApproxFunc; 767 } 768 769 return Flags; 770 } 771 772 unsigned 773 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 774 switch (Linkage) { 775 case GlobalValue::ExternalLinkage: 776 return 0; 777 case GlobalValue::WeakAnyLinkage: 778 return 16; 779 case GlobalValue::AppendingLinkage: 780 return 2; 781 case GlobalValue::InternalLinkage: 782 return 3; 783 case GlobalValue::LinkOnceAnyLinkage: 784 return 18; 785 case GlobalValue::ExternalWeakLinkage: 786 return 7; 787 case GlobalValue::CommonLinkage: 788 return 8; 789 case GlobalValue::PrivateLinkage: 790 return 9; 791 case GlobalValue::WeakODRLinkage: 792 return 17; 793 case GlobalValue::LinkOnceODRLinkage: 794 return 19; 795 case GlobalValue::AvailableExternallyLinkage: 796 return 12; 797 } 798 llvm_unreachable("Invalid linkage"); 799 } 800 801 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 802 return getEncodedLinkage(GV.getLinkage()); 803 } 804 805 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 806 switch (GV.getVisibility()) { 807 case GlobalValue::DefaultVisibility: 808 return 0; 809 case GlobalValue::HiddenVisibility: 810 return 1; 811 case GlobalValue::ProtectedVisibility: 812 return 2; 813 } 814 llvm_unreachable("Invalid visibility"); 815 } 816 817 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 818 switch (GV.getDLLStorageClass()) { 819 case GlobalValue::DefaultStorageClass: 820 return 0; 821 case GlobalValue::DLLImportStorageClass: 822 return 1; 823 case GlobalValue::DLLExportStorageClass: 824 return 2; 825 } 826 llvm_unreachable("Invalid DLL storage class"); 827 } 828 829 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 830 switch (GV.getThreadLocalMode()) { 831 case GlobalVariable::NotThreadLocal: 832 return 0; 833 case GlobalVariable::GeneralDynamicTLSModel: 834 return 1; 835 case GlobalVariable::LocalDynamicTLSModel: 836 return 2; 837 case GlobalVariable::InitialExecTLSModel: 838 return 3; 839 case GlobalVariable::LocalExecTLSModel: 840 return 4; 841 } 842 llvm_unreachable("Invalid TLS model"); 843 } 844 845 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 846 switch (C.getSelectionKind()) { 847 case Comdat::Any: 848 return bitc::COMDAT_SELECTION_KIND_ANY; 849 case Comdat::ExactMatch: 850 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 851 case Comdat::Largest: 852 return bitc::COMDAT_SELECTION_KIND_LARGEST; 853 case Comdat::NoDeduplicate: 854 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 855 case Comdat::SameSize: 856 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 857 } 858 llvm_unreachable("Invalid selection kind"); 859 } 860 861 //////////////////////////////////////////////////////////////////////////////// 862 /// Begin DXILBitcodeWriter Implementation 863 //////////////////////////////////////////////////////////////////////////////// 864 865 void DXILBitcodeWriter::writeAttributeGroupTable() { 866 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 867 VE.getAttributeGroups(); 868 if (AttrGrps.empty()) 869 return; 870 871 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 872 873 SmallVector<uint64_t, 64> Record; 874 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 875 unsigned AttrListIndex = Pair.first; 876 AttributeSet AS = Pair.second; 877 Record.push_back(VE.getAttributeGroupID(Pair)); 878 Record.push_back(AttrListIndex); 879 880 for (Attribute Attr : AS) { 881 if (Attr.isEnumAttribute()) { 882 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 883 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 884 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 885 Record.push_back(0); 886 Record.push_back(Val); 887 } else if (Attr.isIntAttribute()) { 888 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { 889 MemoryEffects ME = Attr.getMemoryEffects(); 890 if (ME.doesNotAccessMemory()) { 891 Record.push_back(0); 892 Record.push_back(bitc::ATTR_KIND_READ_NONE); 893 } else { 894 if (ME.onlyReadsMemory()) { 895 Record.push_back(0); 896 Record.push_back(bitc::ATTR_KIND_READ_ONLY); 897 } 898 if (ME.onlyAccessesArgPointees()) { 899 Record.push_back(0); 900 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); 901 } 902 } 903 } else { 904 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 905 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 906 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 907 Record.push_back(1); 908 Record.push_back(Val); 909 Record.push_back(Attr.getValueAsInt()); 910 } 911 } else { 912 StringRef Kind = Attr.getKindAsString(); 913 StringRef Val = Attr.getValueAsString(); 914 915 Record.push_back(Val.empty() ? 3 : 4); 916 Record.append(Kind.begin(), Kind.end()); 917 Record.push_back(0); 918 if (!Val.empty()) { 919 Record.append(Val.begin(), Val.end()); 920 Record.push_back(0); 921 } 922 } 923 } 924 925 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 926 Record.clear(); 927 } 928 929 Stream.ExitBlock(); 930 } 931 932 void DXILBitcodeWriter::writeAttributeTable() { 933 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 934 if (Attrs.empty()) 935 return; 936 937 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 938 939 SmallVector<uint64_t, 64> Record; 940 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 941 AttributeList AL = Attrs[i]; 942 for (unsigned i : AL.indexes()) { 943 AttributeSet AS = AL.getAttributes(i); 944 if (AS.hasAttributes()) 945 Record.push_back(VE.getAttributeGroupID({i, AS})); 946 } 947 948 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 949 Record.clear(); 950 } 951 952 Stream.ExitBlock(); 953 } 954 955 /// WriteTypeTable - Write out the type table for a module. 956 void DXILBitcodeWriter::writeTypeTable() { 957 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 958 959 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 960 SmallVector<uint64_t, 64> TypeVals; 961 962 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 963 964 // Abbrev for TYPE_CODE_POINTER. 965 auto Abbv = std::make_shared<BitCodeAbbrev>(); 966 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 968 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 969 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 970 971 // Abbrev for TYPE_CODE_FUNCTION. 972 Abbv = std::make_shared<BitCodeAbbrev>(); 973 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 977 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 978 979 // Abbrev for TYPE_CODE_STRUCT_ANON. 980 Abbv = std::make_shared<BitCodeAbbrev>(); 981 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 985 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 986 987 // Abbrev for TYPE_CODE_STRUCT_NAME. 988 Abbv = std::make_shared<BitCodeAbbrev>(); 989 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 992 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 993 994 // Abbrev for TYPE_CODE_STRUCT_NAMED. 995 Abbv = std::make_shared<BitCodeAbbrev>(); 996 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1000 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1001 1002 // Abbrev for TYPE_CODE_ARRAY. 1003 Abbv = std::make_shared<BitCodeAbbrev>(); 1004 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1007 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1008 1009 // Emit an entry count so the reader can reserve space. 1010 TypeVals.push_back(TypeList.size()); 1011 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1012 TypeVals.clear(); 1013 1014 // Loop over all of the types, emitting each in turn. 1015 for (Type *T : TypeList) { 1016 int AbbrevToUse = 0; 1017 unsigned Code = 0; 1018 1019 switch (T->getTypeID()) { 1020 case Type::BFloatTyID: 1021 case Type::X86_AMXTyID: 1022 case Type::TokenTyID: 1023 case Type::TargetExtTyID: 1024 llvm_unreachable("These should never be used!!!"); 1025 break; 1026 case Type::VoidTyID: 1027 Code = bitc::TYPE_CODE_VOID; 1028 break; 1029 case Type::HalfTyID: 1030 Code = bitc::TYPE_CODE_HALF; 1031 break; 1032 case Type::FloatTyID: 1033 Code = bitc::TYPE_CODE_FLOAT; 1034 break; 1035 case Type::DoubleTyID: 1036 Code = bitc::TYPE_CODE_DOUBLE; 1037 break; 1038 case Type::X86_FP80TyID: 1039 Code = bitc::TYPE_CODE_X86_FP80; 1040 break; 1041 case Type::FP128TyID: 1042 Code = bitc::TYPE_CODE_FP128; 1043 break; 1044 case Type::PPC_FP128TyID: 1045 Code = bitc::TYPE_CODE_PPC_FP128; 1046 break; 1047 case Type::LabelTyID: 1048 Code = bitc::TYPE_CODE_LABEL; 1049 break; 1050 case Type::MetadataTyID: 1051 Code = bitc::TYPE_CODE_METADATA; 1052 break; 1053 case Type::X86_MMXTyID: 1054 Code = bitc::TYPE_CODE_X86_MMX; 1055 break; 1056 case Type::IntegerTyID: 1057 // INTEGER: [width] 1058 Code = bitc::TYPE_CODE_INTEGER; 1059 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1060 break; 1061 case Type::TypedPointerTyID: { 1062 TypedPointerType *PTy = cast<TypedPointerType>(T); 1063 // POINTER: [pointee type, address space] 1064 Code = bitc::TYPE_CODE_POINTER; 1065 TypeVals.push_back(getTypeID(PTy->getElementType())); 1066 unsigned AddressSpace = PTy->getAddressSpace(); 1067 TypeVals.push_back(AddressSpace); 1068 if (AddressSpace == 0) 1069 AbbrevToUse = PtrAbbrev; 1070 break; 1071 } 1072 case Type::PointerTyID: { 1073 PointerType *PTy = cast<PointerType>(T); 1074 // POINTER: [pointee type, address space] 1075 Code = bitc::TYPE_CODE_POINTER; 1076 // Emitting an empty struct type for the opaque pointer's type allows 1077 // this to be order-independent. Non-struct types must be emitted in 1078 // bitcode before they can be referenced. 1079 if (PTy->isOpaquePointerTy()) { 1080 TypeVals.push_back(false); 1081 Code = bitc::TYPE_CODE_OPAQUE; 1082 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1083 "dxilOpaquePtrReservedName", StructNameAbbrev); 1084 } else { 1085 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); 1086 unsigned AddressSpace = PTy->getAddressSpace(); 1087 TypeVals.push_back(AddressSpace); 1088 if (AddressSpace == 0) 1089 AbbrevToUse = PtrAbbrev; 1090 } 1091 break; 1092 } 1093 case Type::FunctionTyID: { 1094 FunctionType *FT = cast<FunctionType>(T); 1095 // FUNCTION: [isvararg, retty, paramty x N] 1096 Code = bitc::TYPE_CODE_FUNCTION; 1097 TypeVals.push_back(FT->isVarArg()); 1098 TypeVals.push_back(getTypeID(FT->getReturnType())); 1099 for (Type *PTy : FT->params()) 1100 TypeVals.push_back(getTypeID(PTy)); 1101 AbbrevToUse = FunctionAbbrev; 1102 break; 1103 } 1104 case Type::StructTyID: { 1105 StructType *ST = cast<StructType>(T); 1106 // STRUCT: [ispacked, eltty x N] 1107 TypeVals.push_back(ST->isPacked()); 1108 // Output all of the element types. 1109 for (Type *ElTy : ST->elements()) 1110 TypeVals.push_back(getTypeID(ElTy)); 1111 1112 if (ST->isLiteral()) { 1113 Code = bitc::TYPE_CODE_STRUCT_ANON; 1114 AbbrevToUse = StructAnonAbbrev; 1115 } else { 1116 if (ST->isOpaque()) { 1117 Code = bitc::TYPE_CODE_OPAQUE; 1118 } else { 1119 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1120 AbbrevToUse = StructNamedAbbrev; 1121 } 1122 1123 // Emit the name if it is present. 1124 if (!ST->getName().empty()) 1125 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1126 StructNameAbbrev); 1127 } 1128 break; 1129 } 1130 case Type::ArrayTyID: { 1131 ArrayType *AT = cast<ArrayType>(T); 1132 // ARRAY: [numelts, eltty] 1133 Code = bitc::TYPE_CODE_ARRAY; 1134 TypeVals.push_back(AT->getNumElements()); 1135 TypeVals.push_back(getTypeID(AT->getElementType())); 1136 AbbrevToUse = ArrayAbbrev; 1137 break; 1138 } 1139 case Type::FixedVectorTyID: 1140 case Type::ScalableVectorTyID: { 1141 VectorType *VT = cast<VectorType>(T); 1142 // VECTOR [numelts, eltty] 1143 Code = bitc::TYPE_CODE_VECTOR; 1144 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1145 TypeVals.push_back(getTypeID(VT->getElementType())); 1146 break; 1147 } 1148 } 1149 1150 // Emit the finished record. 1151 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1152 TypeVals.clear(); 1153 } 1154 1155 Stream.ExitBlock(); 1156 } 1157 1158 void DXILBitcodeWriter::writeComdats() { 1159 SmallVector<uint16_t, 64> Vals; 1160 for (const Comdat *C : VE.getComdats()) { 1161 // COMDAT: [selection_kind, name] 1162 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1163 size_t Size = C->getName().size(); 1164 assert(isUInt<16>(Size)); 1165 Vals.push_back(Size); 1166 for (char Chr : C->getName()) 1167 Vals.push_back((unsigned char)Chr); 1168 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1169 Vals.clear(); 1170 } 1171 } 1172 1173 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1174 1175 /// Emit top-level description of module, including target triple, inline asm, 1176 /// descriptors for global variables, and function prototype info. 1177 /// Returns the bit offset to backpatch with the location of the real VST. 1178 void DXILBitcodeWriter::writeModuleInfo() { 1179 // Emit various pieces of data attached to a module. 1180 if (!M.getTargetTriple().empty()) 1181 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1182 0 /*TODO*/); 1183 const std::string &DL = M.getDataLayoutStr(); 1184 if (!DL.empty()) 1185 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1186 if (!M.getModuleInlineAsm().empty()) 1187 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1188 0 /*TODO*/); 1189 1190 // Emit information about sections and GC, computing how many there are. Also 1191 // compute the maximum alignment value. 1192 std::map<std::string, unsigned> SectionMap; 1193 std::map<std::string, unsigned> GCMap; 1194 MaybeAlign MaxAlignment; 1195 unsigned MaxGlobalType = 0; 1196 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1197 if (A) 1198 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1199 }; 1200 for (const GlobalVariable &GV : M.globals()) { 1201 UpdateMaxAlignment(GV.getAlign()); 1202 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1203 // Global Variable types. 1204 MaxGlobalType = std::max( 1205 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1206 if (GV.hasSection()) { 1207 // Give section names unique ID's. 1208 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1209 if (!Entry) { 1210 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1211 GV.getSection(), 0 /*TODO*/); 1212 Entry = SectionMap.size(); 1213 } 1214 } 1215 } 1216 for (const Function &F : M) { 1217 UpdateMaxAlignment(F.getAlign()); 1218 if (F.hasSection()) { 1219 // Give section names unique ID's. 1220 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1221 if (!Entry) { 1222 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1223 0 /*TODO*/); 1224 Entry = SectionMap.size(); 1225 } 1226 } 1227 if (F.hasGC()) { 1228 // Same for GC names. 1229 unsigned &Entry = GCMap[F.getGC()]; 1230 if (!Entry) { 1231 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1232 0 /*TODO*/); 1233 Entry = GCMap.size(); 1234 } 1235 } 1236 } 1237 1238 // Emit abbrev for globals, now that we know # sections and max alignment. 1239 unsigned SimpleGVarAbbrev = 0; 1240 if (!M.global_empty()) { 1241 // Add an abbrev for common globals with no visibility or thread 1242 // localness. 1243 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1244 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1246 Log2_32_Ceil(MaxGlobalType + 1))); 1247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1248 //| explicitType << 1 1249 //| constant 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1252 if (!MaxAlignment) // Alignment. 1253 Abbv->Add(BitCodeAbbrevOp(0)); 1254 else { 1255 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1257 Log2_32_Ceil(MaxEncAlignment + 1))); 1258 } 1259 if (SectionMap.empty()) // Section. 1260 Abbv->Add(BitCodeAbbrevOp(0)); 1261 else 1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1263 Log2_32_Ceil(SectionMap.size() + 1))); 1264 // Don't bother emitting vis + thread local. 1265 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1266 } 1267 1268 // Emit the global variable information. 1269 SmallVector<unsigned, 64> Vals; 1270 for (const GlobalVariable &GV : M.globals()) { 1271 unsigned AbbrevToUse = 0; 1272 1273 // GLOBALVAR: [type, isconst, initid, 1274 // linkage, alignment, section, visibility, threadlocal, 1275 // unnamed_addr, externally_initialized, dllstorageclass, 1276 // comdat] 1277 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1278 Vals.push_back( 1279 GV.getType()->getAddressSpace() << 2 | 2 | 1280 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1281 // unsigned int and bool 1282 Vals.push_back( 1283 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1284 Vals.push_back(getEncodedLinkage(GV)); 1285 Vals.push_back(getEncodedAlign(GV.getAlign())); 1286 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1287 : 0); 1288 if (GV.isThreadLocal() || 1289 GV.getVisibility() != GlobalValue::DefaultVisibility || 1290 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1291 GV.isExternallyInitialized() || 1292 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1293 GV.hasComdat()) { 1294 Vals.push_back(getEncodedVisibility(GV)); 1295 Vals.push_back(getEncodedThreadLocalMode(GV)); 1296 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1297 Vals.push_back(GV.isExternallyInitialized()); 1298 Vals.push_back(getEncodedDLLStorageClass(GV)); 1299 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1300 } else { 1301 AbbrevToUse = SimpleGVarAbbrev; 1302 } 1303 1304 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1305 Vals.clear(); 1306 } 1307 1308 // Emit the function proto information. 1309 for (const Function &F : M) { 1310 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1311 // section, visibility, gc, unnamed_addr, prologuedata, 1312 // dllstorageclass, comdat, prefixdata, personalityfn] 1313 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1314 Vals.push_back(F.getCallingConv()); 1315 Vals.push_back(F.isDeclaration()); 1316 Vals.push_back(getEncodedLinkage(F)); 1317 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1318 Vals.push_back(getEncodedAlign(F.getAlign())); 1319 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1320 : 0); 1321 Vals.push_back(getEncodedVisibility(F)); 1322 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1323 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1324 Vals.push_back( 1325 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1326 Vals.push_back(getEncodedDLLStorageClass(F)); 1327 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1328 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1329 : 0); 1330 Vals.push_back( 1331 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1332 1333 unsigned AbbrevToUse = 0; 1334 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1335 Vals.clear(); 1336 } 1337 1338 // Emit the alias information. 1339 for (const GlobalAlias &A : M.aliases()) { 1340 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1341 Vals.push_back(getTypeID(A.getValueType(), &A)); 1342 Vals.push_back(VE.getValueID(A.getAliasee())); 1343 Vals.push_back(getEncodedLinkage(A)); 1344 Vals.push_back(getEncodedVisibility(A)); 1345 Vals.push_back(getEncodedDLLStorageClass(A)); 1346 Vals.push_back(getEncodedThreadLocalMode(A)); 1347 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1348 unsigned AbbrevToUse = 0; 1349 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1350 Vals.clear(); 1351 } 1352 } 1353 1354 void DXILBitcodeWriter::writeValueAsMetadata( 1355 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1356 // Mimic an MDNode with a value as one operand. 1357 Value *V = MD->getValue(); 1358 Type *Ty = V->getType(); 1359 if (Function *F = dyn_cast<Function>(V)) 1360 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1361 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1362 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1363 Record.push_back(getTypeID(Ty)); 1364 Record.push_back(VE.getValueID(V)); 1365 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1366 Record.clear(); 1367 } 1368 1369 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1370 SmallVectorImpl<uint64_t> &Record, 1371 unsigned Abbrev) { 1372 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1373 Metadata *MD = N->getOperand(i); 1374 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1375 "Unexpected function-local metadata"); 1376 Record.push_back(VE.getMetadataOrNullID(MD)); 1377 } 1378 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1379 : bitc::METADATA_NODE, 1380 Record, Abbrev); 1381 Record.clear(); 1382 } 1383 1384 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1385 SmallVectorImpl<uint64_t> &Record, 1386 unsigned &Abbrev) { 1387 if (!Abbrev) 1388 Abbrev = createDILocationAbbrev(); 1389 Record.push_back(N->isDistinct()); 1390 Record.push_back(N->getLine()); 1391 Record.push_back(N->getColumn()); 1392 Record.push_back(VE.getMetadataID(N->getScope())); 1393 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1394 1395 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1396 Record.clear(); 1397 } 1398 1399 static uint64_t rotateSign(APInt Val) { 1400 int64_t I = Val.getSExtValue(); 1401 uint64_t U = I; 1402 return I < 0 ? ~(U << 1) : U << 1; 1403 } 1404 1405 static uint64_t rotateSign(DISubrange::BoundType Val) { 1406 return rotateSign(Val.get<ConstantInt *>()->getValue()); 1407 } 1408 1409 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1410 SmallVectorImpl<uint64_t> &Record, 1411 unsigned Abbrev) { 1412 Record.push_back(N->isDistinct()); 1413 Record.push_back( 1414 N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); 1415 Record.push_back(rotateSign(N->getLowerBound())); 1416 1417 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1418 Record.clear(); 1419 } 1420 1421 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1422 SmallVectorImpl<uint64_t> &Record, 1423 unsigned Abbrev) { 1424 Record.push_back(N->isDistinct()); 1425 Record.push_back(rotateSign(N->getValue())); 1426 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1427 1428 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1429 Record.clear(); 1430 } 1431 1432 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1433 SmallVectorImpl<uint64_t> &Record, 1434 unsigned Abbrev) { 1435 Record.push_back(N->isDistinct()); 1436 Record.push_back(N->getTag()); 1437 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1438 Record.push_back(N->getSizeInBits()); 1439 Record.push_back(N->getAlignInBits()); 1440 Record.push_back(N->getEncoding()); 1441 1442 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1443 Record.clear(); 1444 } 1445 1446 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(N->getTag()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1452 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1453 Record.push_back(N->getLine()); 1454 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1455 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1456 Record.push_back(N->getSizeInBits()); 1457 Record.push_back(N->getAlignInBits()); 1458 Record.push_back(N->getOffsetInBits()); 1459 Record.push_back(N->getFlags()); 1460 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1461 1462 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1463 Record.clear(); 1464 } 1465 1466 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1467 SmallVectorImpl<uint64_t> &Record, 1468 unsigned Abbrev) { 1469 Record.push_back(N->isDistinct()); 1470 Record.push_back(N->getTag()); 1471 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1472 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1473 Record.push_back(N->getLine()); 1474 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1475 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1476 Record.push_back(N->getSizeInBits()); 1477 Record.push_back(N->getAlignInBits()); 1478 Record.push_back(N->getOffsetInBits()); 1479 Record.push_back(N->getFlags()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1481 Record.push_back(N->getRuntimeLang()); 1482 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1483 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1485 1486 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1487 Record.clear(); 1488 } 1489 1490 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1491 SmallVectorImpl<uint64_t> &Record, 1492 unsigned Abbrev) { 1493 Record.push_back(N->isDistinct()); 1494 Record.push_back(N->getFlags()); 1495 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1496 1497 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1498 Record.clear(); 1499 } 1500 1501 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 Record.push_back(N->isDistinct()); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1506 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1507 1508 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1509 Record.clear(); 1510 } 1511 1512 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1513 SmallVectorImpl<uint64_t> &Record, 1514 unsigned Abbrev) { 1515 Record.push_back(N->isDistinct()); 1516 Record.push_back(N->getSourceLanguage()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1518 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1519 Record.push_back(N->isOptimized()); 1520 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1521 Record.push_back(N->getRuntimeVersion()); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1523 Record.push_back(N->getEmissionKind()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1526 Record.push_back(/* subprograms */ 0); 1527 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1529 Record.push_back(N->getDWOId()); 1530 1531 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1532 Record.clear(); 1533 } 1534 1535 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1536 SmallVectorImpl<uint64_t> &Record, 1537 unsigned Abbrev) { 1538 Record.push_back(N->isDistinct()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1543 Record.push_back(N->getLine()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1545 Record.push_back(N->isLocalToUnit()); 1546 Record.push_back(N->isDefinition()); 1547 Record.push_back(N->getScopeLine()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1549 Record.push_back(N->getVirtuality()); 1550 Record.push_back(N->getVirtualIndex()); 1551 Record.push_back(N->getFlags()); 1552 Record.push_back(N->isOptimized()); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1557 1558 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1559 Record.clear(); 1560 } 1561 1562 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1563 SmallVectorImpl<uint64_t> &Record, 1564 unsigned Abbrev) { 1565 Record.push_back(N->isDistinct()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1568 Record.push_back(N->getLine()); 1569 Record.push_back(N->getColumn()); 1570 1571 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void DXILBitcodeWriter::writeDILexicalBlockFile( 1576 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 Record.push_back(N->isDistinct()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1581 Record.push_back(N->getDiscriminator()); 1582 1583 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1584 Record.clear(); 1585 } 1586 1587 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1588 SmallVectorImpl<uint64_t> &Record, 1589 unsigned Abbrev) { 1590 Record.push_back(N->isDistinct()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1594 Record.push_back(/* line number */ 0); 1595 1596 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1601 SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back(N->isDistinct()); 1604 for (auto &I : N->operands()) 1605 Record.push_back(VE.getMetadataOrNullID(I)); 1606 1607 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1612 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 Record.push_back(N->isDistinct()); 1615 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1617 1618 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1619 Record.clear(); 1620 } 1621 1622 void DXILBitcodeWriter::writeDITemplateValueParameter( 1623 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1624 unsigned Abbrev) { 1625 Record.push_back(N->isDistinct()); 1626 Record.push_back(N->getTag()); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1630 1631 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1632 Record.clear(); 1633 } 1634 1635 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1636 SmallVectorImpl<uint64_t> &Record, 1637 unsigned Abbrev) { 1638 Record.push_back(N->isDistinct()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1643 Record.push_back(N->getLine()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1645 Record.push_back(N->isLocalToUnit()); 1646 Record.push_back(N->isDefinition()); 1647 Record.push_back(/* N->getRawVariable() */ 0); 1648 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1649 1650 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getTag()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1662 Record.push_back(N->getLine()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1664 Record.push_back(N->getArg()); 1665 Record.push_back(N->getFlags()); 1666 1667 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1672 SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.reserve(N->getElements().size() + 1); 1675 1676 Record.push_back(N->isDistinct()); 1677 Record.append(N->elements_begin(), N->elements_end()); 1678 1679 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1680 Record.clear(); 1681 } 1682 1683 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1684 SmallVectorImpl<uint64_t> &Record, 1685 unsigned Abbrev) { 1686 llvm_unreachable("DXIL does not support objc!!!"); 1687 } 1688 1689 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1690 SmallVectorImpl<uint64_t> &Record, 1691 unsigned Abbrev) { 1692 Record.push_back(N->isDistinct()); 1693 Record.push_back(N->getTag()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1696 Record.push_back(N->getLine()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1698 1699 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1704 // Abbrev for METADATA_LOCATION. 1705 // 1706 // Assume the column is usually under 128, and always output the inlined-at 1707 // location (it's never more expensive than building an array size 1). 1708 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1709 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1715 return Stream.EmitAbbrev(std::move(Abbv)); 1716 } 1717 1718 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1719 // Abbrev for METADATA_GENERIC_DEBUG. 1720 // 1721 // Assume the column is usually under 128, and always output the inlined-at 1722 // location (it's never more expensive than building an array size 1). 1723 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1724 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1731 return Stream.EmitAbbrev(std::move(Abbv)); 1732 } 1733 1734 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1735 SmallVectorImpl<uint64_t> &Record, 1736 std::vector<unsigned> *MDAbbrevs, 1737 std::vector<uint64_t> *IndexPos) { 1738 if (MDs.empty()) 1739 return; 1740 1741 // Initialize MDNode abbreviations. 1742 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1743 #include "llvm/IR/Metadata.def" 1744 1745 for (const Metadata *MD : MDs) { 1746 if (IndexPos) 1747 IndexPos->push_back(Stream.GetCurrentBitNo()); 1748 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1749 assert(N->isResolved() && "Expected forward references to be resolved"); 1750 1751 switch (N->getMetadataID()) { 1752 default: 1753 llvm_unreachable("Invalid MDNode subclass"); 1754 #define HANDLE_MDNODE_LEAF(CLASS) \ 1755 case Metadata::CLASS##Kind: \ 1756 if (MDAbbrevs) \ 1757 write##CLASS(cast<CLASS>(N), Record, \ 1758 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1759 else \ 1760 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1761 continue; 1762 #include "llvm/IR/Metadata.def" 1763 } 1764 } 1765 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1766 } 1767 } 1768 1769 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1770 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1771 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1774 return Stream.EmitAbbrev(std::move(Abbv)); 1775 } 1776 1777 void DXILBitcodeWriter::writeMetadataStrings( 1778 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1779 for (const Metadata *MD : Strings) { 1780 const MDString *MDS = cast<MDString>(MD); 1781 // Code: [strchar x N] 1782 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1783 1784 // Emit the finished record. 1785 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, 1786 createMetadataStringsAbbrev()); 1787 Record.clear(); 1788 } 1789 } 1790 1791 void DXILBitcodeWriter::writeModuleMetadata() { 1792 if (!VE.hasMDs() && M.named_metadata_empty()) 1793 return; 1794 1795 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1796 1797 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1798 // block and load any metadata. 1799 std::vector<unsigned> MDAbbrevs; 1800 1801 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1802 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1803 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1804 createGenericDINodeAbbrev(); 1805 1806 unsigned NameAbbrev = 0; 1807 if (!M.named_metadata_empty()) { 1808 // Abbrev for METADATA_NAME. 1809 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1810 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1813 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1814 } 1815 1816 SmallVector<uint64_t, 64> Record; 1817 writeMetadataStrings(VE.getMDStrings(), Record); 1818 1819 std::vector<uint64_t> IndexPos; 1820 IndexPos.reserve(VE.getNonMDStrings().size()); 1821 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1822 1823 // Write named metadata. 1824 for (const NamedMDNode &NMD : M.named_metadata()) { 1825 // Write name. 1826 StringRef Str = NMD.getName(); 1827 Record.append(Str.bytes_begin(), Str.bytes_end()); 1828 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1829 Record.clear(); 1830 1831 // Write named metadata operands. 1832 for (const MDNode *N : NMD.operands()) 1833 Record.push_back(VE.getMetadataID(N)); 1834 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1835 Record.clear(); 1836 } 1837 1838 Stream.ExitBlock(); 1839 } 1840 1841 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1842 if (!VE.hasMDs()) 1843 return; 1844 1845 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1846 SmallVector<uint64_t, 64> Record; 1847 writeMetadataStrings(VE.getMDStrings(), Record); 1848 writeMetadataRecords(VE.getNonMDStrings(), Record); 1849 Stream.ExitBlock(); 1850 } 1851 1852 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1853 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1854 1855 SmallVector<uint64_t, 64> Record; 1856 1857 // Write metadata attachments 1858 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1859 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1860 F.getAllMetadata(MDs); 1861 if (!MDs.empty()) { 1862 for (const auto &I : MDs) { 1863 Record.push_back(I.first); 1864 Record.push_back(VE.getMetadataID(I.second)); 1865 } 1866 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1867 Record.clear(); 1868 } 1869 1870 for (const BasicBlock &BB : F) 1871 for (const Instruction &I : BB) { 1872 MDs.clear(); 1873 I.getAllMetadataOtherThanDebugLoc(MDs); 1874 1875 // If no metadata, ignore instruction. 1876 if (MDs.empty()) 1877 continue; 1878 1879 Record.push_back(VE.getInstructionID(&I)); 1880 1881 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1882 Record.push_back(MDs[i].first); 1883 Record.push_back(VE.getMetadataID(MDs[i].second)); 1884 } 1885 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1886 Record.clear(); 1887 } 1888 1889 Stream.ExitBlock(); 1890 } 1891 1892 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1893 SmallVector<uint64_t, 64> Record; 1894 1895 // Write metadata kinds 1896 // METADATA_KIND - [n x [id, name]] 1897 SmallVector<StringRef, 8> Names; 1898 M.getMDKindNames(Names); 1899 1900 if (Names.empty()) 1901 return; 1902 1903 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1904 1905 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1906 Record.push_back(MDKindID); 1907 StringRef KName = Names[MDKindID]; 1908 Record.append(KName.begin(), KName.end()); 1909 1910 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1911 Record.clear(); 1912 } 1913 1914 Stream.ExitBlock(); 1915 } 1916 1917 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1918 bool isGlobal) { 1919 if (FirstVal == LastVal) 1920 return; 1921 1922 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1923 1924 unsigned AggregateAbbrev = 0; 1925 unsigned String8Abbrev = 0; 1926 unsigned CString7Abbrev = 0; 1927 unsigned CString6Abbrev = 0; 1928 // If this is a constant pool for the module, emit module-specific abbrevs. 1929 if (isGlobal) { 1930 // Abbrev for CST_CODE_AGGREGATE. 1931 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1932 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1934 Abbv->Add( 1935 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1936 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1937 1938 // Abbrev for CST_CODE_STRING. 1939 Abbv = std::make_shared<BitCodeAbbrev>(); 1940 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1943 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1944 // Abbrev for CST_CODE_CSTRING. 1945 Abbv = std::make_shared<BitCodeAbbrev>(); 1946 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1949 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1950 // Abbrev for CST_CODE_CSTRING. 1951 Abbv = std::make_shared<BitCodeAbbrev>(); 1952 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1955 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1956 } 1957 1958 SmallVector<uint64_t, 64> Record; 1959 1960 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1961 Type *LastTy = nullptr; 1962 for (unsigned i = FirstVal; i != LastVal; ++i) { 1963 const Value *V = Vals[i].first; 1964 // If we need to switch types, do so now. 1965 if (V->getType() != LastTy) { 1966 LastTy = V->getType(); 1967 Record.push_back(getTypeID(LastTy, V)); 1968 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1969 CONSTANTS_SETTYPE_ABBREV); 1970 Record.clear(); 1971 } 1972 1973 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1974 Record.push_back(unsigned(IA->hasSideEffects()) | 1975 unsigned(IA->isAlignStack()) << 1 | 1976 unsigned(IA->getDialect() & 1) << 2); 1977 1978 // Add the asm string. 1979 const std::string &AsmStr = IA->getAsmString(); 1980 Record.push_back(AsmStr.size()); 1981 Record.append(AsmStr.begin(), AsmStr.end()); 1982 1983 // Add the constraint string. 1984 const std::string &ConstraintStr = IA->getConstraintString(); 1985 Record.push_back(ConstraintStr.size()); 1986 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1987 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1988 Record.clear(); 1989 continue; 1990 } 1991 const Constant *C = cast<Constant>(V); 1992 unsigned Code = -1U; 1993 unsigned AbbrevToUse = 0; 1994 if (C->isNullValue()) { 1995 Code = bitc::CST_CODE_NULL; 1996 } else if (isa<UndefValue>(C)) { 1997 Code = bitc::CST_CODE_UNDEF; 1998 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1999 if (IV->getBitWidth() <= 64) { 2000 uint64_t V = IV->getSExtValue(); 2001 emitSignedInt64(Record, V); 2002 Code = bitc::CST_CODE_INTEGER; 2003 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2004 } else { // Wide integers, > 64 bits in size. 2005 // We have an arbitrary precision integer value to write whose 2006 // bit width is > 64. However, in canonical unsigned integer 2007 // format it is likely that the high bits are going to be zero. 2008 // So, we only write the number of active words. 2009 unsigned NWords = IV->getValue().getActiveWords(); 2010 const uint64_t *RawWords = IV->getValue().getRawData(); 2011 for (unsigned i = 0; i != NWords; ++i) { 2012 emitSignedInt64(Record, RawWords[i]); 2013 } 2014 Code = bitc::CST_CODE_WIDE_INTEGER; 2015 } 2016 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2017 Code = bitc::CST_CODE_FLOAT; 2018 Type *Ty = CFP->getType(); 2019 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2020 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2021 } else if (Ty->isX86_FP80Ty()) { 2022 // api needed to prevent premature destruction 2023 // bits are not in the same order as a normal i80 APInt, compensate. 2024 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2025 const uint64_t *p = api.getRawData(); 2026 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2027 Record.push_back(p[0] & 0xffffLL); 2028 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2029 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2030 const uint64_t *p = api.getRawData(); 2031 Record.push_back(p[0]); 2032 Record.push_back(p[1]); 2033 } else { 2034 assert(0 && "Unknown FP type!"); 2035 } 2036 } else if (isa<ConstantDataSequential>(C) && 2037 cast<ConstantDataSequential>(C)->isString()) { 2038 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2039 // Emit constant strings specially. 2040 unsigned NumElts = Str->getNumElements(); 2041 // If this is a null-terminated string, use the denser CSTRING encoding. 2042 if (Str->isCString()) { 2043 Code = bitc::CST_CODE_CSTRING; 2044 --NumElts; // Don't encode the null, which isn't allowed by char6. 2045 } else { 2046 Code = bitc::CST_CODE_STRING; 2047 AbbrevToUse = String8Abbrev; 2048 } 2049 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2050 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2051 for (unsigned i = 0; i != NumElts; ++i) { 2052 unsigned char V = Str->getElementAsInteger(i); 2053 Record.push_back(V); 2054 isCStr7 &= (V & 128) == 0; 2055 if (isCStrChar6) 2056 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2057 } 2058 2059 if (isCStrChar6) 2060 AbbrevToUse = CString6Abbrev; 2061 else if (isCStr7) 2062 AbbrevToUse = CString7Abbrev; 2063 } else if (const ConstantDataSequential *CDS = 2064 dyn_cast<ConstantDataSequential>(C)) { 2065 Code = bitc::CST_CODE_DATA; 2066 Type *EltTy = CDS->getElementType(); 2067 if (isa<IntegerType>(EltTy)) { 2068 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2069 Record.push_back(CDS->getElementAsInteger(i)); 2070 } else if (EltTy->isFloatTy()) { 2071 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2072 union { 2073 float F; 2074 uint32_t I; 2075 }; 2076 F = CDS->getElementAsFloat(i); 2077 Record.push_back(I); 2078 } 2079 } else { 2080 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2081 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2082 union { 2083 double F; 2084 uint64_t I; 2085 }; 2086 F = CDS->getElementAsDouble(i); 2087 Record.push_back(I); 2088 } 2089 } 2090 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2091 isa<ConstantVector>(C)) { 2092 Code = bitc::CST_CODE_AGGREGATE; 2093 for (const Value *Op : C->operands()) 2094 Record.push_back(VE.getValueID(Op)); 2095 AbbrevToUse = AggregateAbbrev; 2096 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2097 switch (CE->getOpcode()) { 2098 default: 2099 if (Instruction::isCast(CE->getOpcode())) { 2100 Code = bitc::CST_CODE_CE_CAST; 2101 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2102 Record.push_back( 2103 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2104 Record.push_back(VE.getValueID(C->getOperand(0))); 2105 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2106 } else { 2107 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2108 Code = bitc::CST_CODE_CE_BINOP; 2109 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2110 Record.push_back(VE.getValueID(C->getOperand(0))); 2111 Record.push_back(VE.getValueID(C->getOperand(1))); 2112 uint64_t Flags = getOptimizationFlags(CE); 2113 if (Flags != 0) 2114 Record.push_back(Flags); 2115 } 2116 break; 2117 case Instruction::GetElementPtr: { 2118 Code = bitc::CST_CODE_CE_GEP; 2119 const auto *GO = cast<GEPOperator>(C); 2120 if (GO->isInBounds()) 2121 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2122 Record.push_back(getTypeID(GO->getSourceElementType())); 2123 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2124 Record.push_back( 2125 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2126 Record.push_back(VE.getValueID(C->getOperand(i))); 2127 } 2128 break; 2129 } 2130 case Instruction::Select: 2131 Code = bitc::CST_CODE_CE_SELECT; 2132 Record.push_back(VE.getValueID(C->getOperand(0))); 2133 Record.push_back(VE.getValueID(C->getOperand(1))); 2134 Record.push_back(VE.getValueID(C->getOperand(2))); 2135 break; 2136 case Instruction::ExtractElement: 2137 Code = bitc::CST_CODE_CE_EXTRACTELT; 2138 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2139 Record.push_back(VE.getValueID(C->getOperand(0))); 2140 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2141 Record.push_back(VE.getValueID(C->getOperand(1))); 2142 break; 2143 case Instruction::InsertElement: 2144 Code = bitc::CST_CODE_CE_INSERTELT; 2145 Record.push_back(VE.getValueID(C->getOperand(0))); 2146 Record.push_back(VE.getValueID(C->getOperand(1))); 2147 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2148 Record.push_back(VE.getValueID(C->getOperand(2))); 2149 break; 2150 case Instruction::ShuffleVector: 2151 // If the return type and argument types are the same, this is a 2152 // standard shufflevector instruction. If the types are different, 2153 // then the shuffle is widening or truncating the input vectors, and 2154 // the argument type must also be encoded. 2155 if (C->getType() == C->getOperand(0)->getType()) { 2156 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2157 } else { 2158 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2159 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2160 } 2161 Record.push_back(VE.getValueID(C->getOperand(0))); 2162 Record.push_back(VE.getValueID(C->getOperand(1))); 2163 Record.push_back(VE.getValueID(C->getOperand(2))); 2164 break; 2165 case Instruction::ICmp: 2166 case Instruction::FCmp: 2167 Code = bitc::CST_CODE_CE_CMP; 2168 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2169 Record.push_back(VE.getValueID(C->getOperand(0))); 2170 Record.push_back(VE.getValueID(C->getOperand(1))); 2171 Record.push_back(CE->getPredicate()); 2172 break; 2173 } 2174 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2175 Code = bitc::CST_CODE_BLOCKADDRESS; 2176 Record.push_back(getTypeID(BA->getFunction()->getType())); 2177 Record.push_back(VE.getValueID(BA->getFunction())); 2178 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2179 } else { 2180 #ifndef NDEBUG 2181 C->dump(); 2182 #endif 2183 llvm_unreachable("Unknown constant!"); 2184 } 2185 Stream.EmitRecord(Code, Record, AbbrevToUse); 2186 Record.clear(); 2187 } 2188 2189 Stream.ExitBlock(); 2190 } 2191 2192 void DXILBitcodeWriter::writeModuleConstants() { 2193 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2194 2195 // Find the first constant to emit, which is the first non-globalvalue value. 2196 // We know globalvalues have been emitted by WriteModuleInfo. 2197 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2198 if (!isa<GlobalValue>(Vals[i].first)) { 2199 writeConstants(i, Vals.size(), true); 2200 return; 2201 } 2202 } 2203 } 2204 2205 /// pushValueAndType - The file has to encode both the value and type id for 2206 /// many values, because we need to know what type to create for forward 2207 /// references. However, most operands are not forward references, so this type 2208 /// field is not needed. 2209 /// 2210 /// This function adds V's value ID to Vals. If the value ID is higher than the 2211 /// instruction ID, then it is a forward reference, and it also includes the 2212 /// type ID. The value ID that is written is encoded relative to the InstID. 2213 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2214 SmallVectorImpl<unsigned> &Vals) { 2215 unsigned ValID = VE.getValueID(V); 2216 // Make encoding relative to the InstID. 2217 Vals.push_back(InstID - ValID); 2218 if (ValID >= InstID) { 2219 Vals.push_back(getTypeID(V->getType(), V)); 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 /// pushValue - Like pushValueAndType, but where the type of the value is 2226 /// omitted (perhaps it was already encoded in an earlier operand). 2227 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2228 SmallVectorImpl<unsigned> &Vals) { 2229 unsigned ValID = VE.getValueID(V); 2230 Vals.push_back(InstID - ValID); 2231 } 2232 2233 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2234 SmallVectorImpl<uint64_t> &Vals) { 2235 unsigned ValID = VE.getValueID(V); 2236 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2237 emitSignedInt64(Vals, diff); 2238 } 2239 2240 /// WriteInstruction - Emit an instruction 2241 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2242 SmallVectorImpl<unsigned> &Vals) { 2243 unsigned Code = 0; 2244 unsigned AbbrevToUse = 0; 2245 VE.setInstructionID(&I); 2246 switch (I.getOpcode()) { 2247 default: 2248 if (Instruction::isCast(I.getOpcode())) { 2249 Code = bitc::FUNC_CODE_INST_CAST; 2250 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2251 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2252 Vals.push_back(getTypeID(I.getType(), &I)); 2253 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2254 } else { 2255 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2256 Code = bitc::FUNC_CODE_INST_BINOP; 2257 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2258 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2259 pushValue(I.getOperand(1), InstID, Vals); 2260 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2261 uint64_t Flags = getOptimizationFlags(&I); 2262 if (Flags != 0) { 2263 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2264 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2265 Vals.push_back(Flags); 2266 } 2267 } 2268 break; 2269 2270 case Instruction::GetElementPtr: { 2271 Code = bitc::FUNC_CODE_INST_GEP; 2272 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2273 auto &GEPInst = cast<GetElementPtrInst>(I); 2274 Vals.push_back(GEPInst.isInBounds()); 2275 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2276 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2277 pushValueAndType(I.getOperand(i), InstID, Vals); 2278 break; 2279 } 2280 case Instruction::ExtractValue: { 2281 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2282 pushValueAndType(I.getOperand(0), InstID, Vals); 2283 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2284 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2285 break; 2286 } 2287 case Instruction::InsertValue: { 2288 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2289 pushValueAndType(I.getOperand(0), InstID, Vals); 2290 pushValueAndType(I.getOperand(1), InstID, Vals); 2291 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2292 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2293 break; 2294 } 2295 case Instruction::Select: 2296 Code = bitc::FUNC_CODE_INST_VSELECT; 2297 pushValueAndType(I.getOperand(1), InstID, Vals); 2298 pushValue(I.getOperand(2), InstID, Vals); 2299 pushValueAndType(I.getOperand(0), InstID, Vals); 2300 break; 2301 case Instruction::ExtractElement: 2302 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2303 pushValueAndType(I.getOperand(0), InstID, Vals); 2304 pushValueAndType(I.getOperand(1), InstID, Vals); 2305 break; 2306 case Instruction::InsertElement: 2307 Code = bitc::FUNC_CODE_INST_INSERTELT; 2308 pushValueAndType(I.getOperand(0), InstID, Vals); 2309 pushValue(I.getOperand(1), InstID, Vals); 2310 pushValueAndType(I.getOperand(2), InstID, Vals); 2311 break; 2312 case Instruction::ShuffleVector: 2313 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2314 pushValueAndType(I.getOperand(0), InstID, Vals); 2315 pushValue(I.getOperand(1), InstID, Vals); 2316 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2317 Vals); 2318 break; 2319 case Instruction::ICmp: 2320 case Instruction::FCmp: { 2321 // compare returning Int1Ty or vector of Int1Ty 2322 Code = bitc::FUNC_CODE_INST_CMP2; 2323 pushValueAndType(I.getOperand(0), InstID, Vals); 2324 pushValue(I.getOperand(1), InstID, Vals); 2325 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2326 uint64_t Flags = getOptimizationFlags(&I); 2327 if (Flags != 0) 2328 Vals.push_back(Flags); 2329 break; 2330 } 2331 2332 case Instruction::Ret: { 2333 Code = bitc::FUNC_CODE_INST_RET; 2334 unsigned NumOperands = I.getNumOperands(); 2335 if (NumOperands == 0) 2336 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2337 else if (NumOperands == 1) { 2338 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2339 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2340 } else { 2341 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2342 pushValueAndType(I.getOperand(i), InstID, Vals); 2343 } 2344 } break; 2345 case Instruction::Br: { 2346 Code = bitc::FUNC_CODE_INST_BR; 2347 const BranchInst &II = cast<BranchInst>(I); 2348 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2349 if (II.isConditional()) { 2350 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2351 pushValue(II.getCondition(), InstID, Vals); 2352 } 2353 } break; 2354 case Instruction::Switch: { 2355 Code = bitc::FUNC_CODE_INST_SWITCH; 2356 const SwitchInst &SI = cast<SwitchInst>(I); 2357 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2358 pushValue(SI.getCondition(), InstID, Vals); 2359 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2360 for (auto Case : SI.cases()) { 2361 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2362 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2363 } 2364 } break; 2365 case Instruction::IndirectBr: 2366 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2367 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2368 // Encode the address operand as relative, but not the basic blocks. 2369 pushValue(I.getOperand(0), InstID, Vals); 2370 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2371 Vals.push_back(VE.getValueID(I.getOperand(i))); 2372 break; 2373 2374 case Instruction::Invoke: { 2375 const InvokeInst *II = cast<InvokeInst>(&I); 2376 const Value *Callee = II->getCalledOperand(); 2377 FunctionType *FTy = II->getFunctionType(); 2378 Code = bitc::FUNC_CODE_INST_INVOKE; 2379 2380 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2381 Vals.push_back(II->getCallingConv() | 1 << 13); 2382 Vals.push_back(VE.getValueID(II->getNormalDest())); 2383 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2384 Vals.push_back(getTypeID(FTy)); 2385 pushValueAndType(Callee, InstID, Vals); 2386 2387 // Emit value #'s for the fixed parameters. 2388 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2389 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2390 2391 // Emit type/value pairs for varargs params. 2392 if (FTy->isVarArg()) { 2393 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2394 ++i) 2395 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2396 } 2397 break; 2398 } 2399 case Instruction::Resume: 2400 Code = bitc::FUNC_CODE_INST_RESUME; 2401 pushValueAndType(I.getOperand(0), InstID, Vals); 2402 break; 2403 case Instruction::Unreachable: 2404 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2405 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2406 break; 2407 2408 case Instruction::PHI: { 2409 const PHINode &PN = cast<PHINode>(I); 2410 Code = bitc::FUNC_CODE_INST_PHI; 2411 // With the newer instruction encoding, forward references could give 2412 // negative valued IDs. This is most common for PHIs, so we use 2413 // signed VBRs. 2414 SmallVector<uint64_t, 128> Vals64; 2415 Vals64.push_back(getTypeID(PN.getType())); 2416 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2417 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2418 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2419 } 2420 // Emit a Vals64 vector and exit. 2421 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2422 Vals64.clear(); 2423 return; 2424 } 2425 2426 case Instruction::LandingPad: { 2427 const LandingPadInst &LP = cast<LandingPadInst>(I); 2428 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2429 Vals.push_back(getTypeID(LP.getType())); 2430 Vals.push_back(LP.isCleanup()); 2431 Vals.push_back(LP.getNumClauses()); 2432 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2433 if (LP.isCatch(I)) 2434 Vals.push_back(LandingPadInst::Catch); 2435 else 2436 Vals.push_back(LandingPadInst::Filter); 2437 pushValueAndType(LP.getClause(I), InstID, Vals); 2438 } 2439 break; 2440 } 2441 2442 case Instruction::Alloca: { 2443 Code = bitc::FUNC_CODE_INST_ALLOCA; 2444 const AllocaInst &AI = cast<AllocaInst>(I); 2445 Vals.push_back(getTypeID(AI.getAllocatedType())); 2446 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2447 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2448 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2449 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2450 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2451 AlignRecord |= 1 << 6; 2452 Vals.push_back(AlignRecord); 2453 break; 2454 } 2455 2456 case Instruction::Load: 2457 if (cast<LoadInst>(I).isAtomic()) { 2458 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2459 pushValueAndType(I.getOperand(0), InstID, Vals); 2460 } else { 2461 Code = bitc::FUNC_CODE_INST_LOAD; 2462 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2463 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2464 } 2465 Vals.push_back(getTypeID(I.getType())); 2466 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2467 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2468 if (cast<LoadInst>(I).isAtomic()) { 2469 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2470 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2471 } 2472 break; 2473 case Instruction::Store: 2474 if (cast<StoreInst>(I).isAtomic()) 2475 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2476 else 2477 Code = bitc::FUNC_CODE_INST_STORE; 2478 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2479 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2480 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2481 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2482 if (cast<StoreInst>(I).isAtomic()) { 2483 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2484 Vals.push_back( 2485 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2486 } 2487 break; 2488 case Instruction::AtomicCmpXchg: 2489 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2490 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2491 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2492 pushValue(I.getOperand(2), InstID, Vals); // newval. 2493 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2494 Vals.push_back( 2495 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2496 Vals.push_back( 2497 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2498 Vals.push_back( 2499 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2500 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2501 break; 2502 case Instruction::AtomicRMW: 2503 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2504 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2505 pushValue(I.getOperand(1), InstID, Vals); // val. 2506 Vals.push_back( 2507 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2508 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2509 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2510 Vals.push_back( 2511 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2512 break; 2513 case Instruction::Fence: 2514 Code = bitc::FUNC_CODE_INST_FENCE; 2515 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2516 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2517 break; 2518 case Instruction::Call: { 2519 const CallInst &CI = cast<CallInst>(I); 2520 FunctionType *FTy = CI.getFunctionType(); 2521 2522 Code = bitc::FUNC_CODE_INST_CALL; 2523 2524 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2525 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2526 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2527 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2528 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2529 2530 // Emit value #'s for the fixed parameters. 2531 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2532 // Check for labels (can happen with asm labels). 2533 if (FTy->getParamType(i)->isLabelTy()) 2534 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2535 else 2536 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2537 } 2538 2539 // Emit type/value pairs for varargs params. 2540 if (FTy->isVarArg()) { 2541 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2542 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2543 } 2544 break; 2545 } 2546 case Instruction::VAArg: 2547 Code = bitc::FUNC_CODE_INST_VAARG; 2548 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2549 pushValue(I.getOperand(0), InstID, Vals); // valist. 2550 Vals.push_back(getTypeID(I.getType())); // restype. 2551 break; 2552 } 2553 2554 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2555 Vals.clear(); 2556 } 2557 2558 // Emit names for globals/functions etc. 2559 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2560 const ValueSymbolTable &VST) { 2561 if (VST.empty()) 2562 return; 2563 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2564 2565 SmallVector<unsigned, 64> NameVals; 2566 2567 // HLSL Change 2568 // Read the named values from a sorted list instead of the original list 2569 // to ensure the binary is the same no matter what values ever existed. 2570 SmallVector<const ValueName *, 16> SortedTable; 2571 2572 for (auto &VI : VST) { 2573 SortedTable.push_back(VI.second->getValueName()); 2574 } 2575 // The keys are unique, so there shouldn't be stability issues. 2576 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2577 return A->first() < B->first(); 2578 }); 2579 2580 for (const ValueName *SI : SortedTable) { 2581 auto &Name = *SI; 2582 2583 // Figure out the encoding to use for the name. 2584 bool is7Bit = true; 2585 bool isChar6 = true; 2586 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2587 C != E; ++C) { 2588 if (isChar6) 2589 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2590 if ((unsigned char)*C & 128) { 2591 is7Bit = false; 2592 break; // don't bother scanning the rest. 2593 } 2594 } 2595 2596 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2597 2598 // VST_ENTRY: [valueid, namechar x N] 2599 // VST_BBENTRY: [bbid, namechar x N] 2600 unsigned Code; 2601 if (isa<BasicBlock>(SI->getValue())) { 2602 Code = bitc::VST_CODE_BBENTRY; 2603 if (isChar6) 2604 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2605 } else { 2606 Code = bitc::VST_CODE_ENTRY; 2607 if (isChar6) 2608 AbbrevToUse = VST_ENTRY_6_ABBREV; 2609 else if (is7Bit) 2610 AbbrevToUse = VST_ENTRY_7_ABBREV; 2611 } 2612 2613 NameVals.push_back(VE.getValueID(SI->getValue())); 2614 for (const char *P = Name.getKeyData(), 2615 *E = Name.getKeyData() + Name.getKeyLength(); 2616 P != E; ++P) 2617 NameVals.push_back((unsigned char)*P); 2618 2619 // Emit the finished record. 2620 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2621 NameVals.clear(); 2622 } 2623 Stream.ExitBlock(); 2624 } 2625 2626 /// Emit a function body to the module stream. 2627 void DXILBitcodeWriter::writeFunction(const Function &F) { 2628 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2629 VE.incorporateFunction(F); 2630 2631 SmallVector<unsigned, 64> Vals; 2632 2633 // Emit the number of basic blocks, so the reader can create them ahead of 2634 // time. 2635 Vals.push_back(VE.getBasicBlocks().size()); 2636 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2637 Vals.clear(); 2638 2639 // If there are function-local constants, emit them now. 2640 unsigned CstStart, CstEnd; 2641 VE.getFunctionConstantRange(CstStart, CstEnd); 2642 writeConstants(CstStart, CstEnd, false); 2643 2644 // If there is function-local metadata, emit it now. 2645 writeFunctionMetadata(F); 2646 2647 // Keep a running idea of what the instruction ID is. 2648 unsigned InstID = CstEnd; 2649 2650 bool NeedsMetadataAttachment = F.hasMetadata(); 2651 2652 DILocation *LastDL = nullptr; 2653 2654 // Finally, emit all the instructions, in order. 2655 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2656 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2657 ++I) { 2658 writeInstruction(*I, InstID, Vals); 2659 2660 if (!I->getType()->isVoidTy()) 2661 ++InstID; 2662 2663 // If the instruction has metadata, write a metadata attachment later. 2664 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2665 2666 // If the instruction has a debug location, emit it. 2667 DILocation *DL = I->getDebugLoc(); 2668 if (!DL) 2669 continue; 2670 2671 if (DL == LastDL) { 2672 // Just repeat the same debug loc as last time. 2673 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2674 continue; 2675 } 2676 2677 Vals.push_back(DL->getLine()); 2678 Vals.push_back(DL->getColumn()); 2679 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2680 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2681 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2682 Vals.clear(); 2683 2684 LastDL = DL; 2685 } 2686 2687 // Emit names for all the instructions etc. 2688 if (auto *Symtab = F.getValueSymbolTable()) 2689 writeFunctionLevelValueSymbolTable(*Symtab); 2690 2691 if (NeedsMetadataAttachment) 2692 writeFunctionMetadataAttachment(F); 2693 2694 VE.purgeFunction(); 2695 Stream.ExitBlock(); 2696 } 2697 2698 // Emit blockinfo, which defines the standard abbreviations etc. 2699 void DXILBitcodeWriter::writeBlockInfo() { 2700 // We only want to emit block info records for blocks that have multiple 2701 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2702 // Other blocks can define their abbrevs inline. 2703 Stream.EnterBlockInfoBlock(); 2704 2705 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2706 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2711 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2712 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2713 assert(false && "Unexpected abbrev ordering!"); 2714 } 2715 2716 { // 7-bit fixed width VST_ENTRY strings. 2717 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2718 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2722 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2723 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2724 assert(false && "Unexpected abbrev ordering!"); 2725 } 2726 { // 6-bit char6 VST_ENTRY strings. 2727 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2728 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2732 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2733 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2734 assert(false && "Unexpected abbrev ordering!"); 2735 } 2736 { // 6-bit char6 VST_BBENTRY strings. 2737 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2738 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2742 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2743 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2744 assert(false && "Unexpected abbrev ordering!"); 2745 } 2746 2747 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2748 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2749 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2751 VE.computeBitsRequiredForTypeIndicies())); 2752 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2753 CONSTANTS_SETTYPE_ABBREV) 2754 assert(false && "Unexpected abbrev ordering!"); 2755 } 2756 2757 { // INTEGER abbrev for CONSTANTS_BLOCK. 2758 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2759 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2761 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2762 CONSTANTS_INTEGER_ABBREV) 2763 assert(false && "Unexpected abbrev ordering!"); 2764 } 2765 2766 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2767 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2768 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2771 VE.computeBitsRequiredForTypeIndicies())); 2772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2773 2774 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2775 CONSTANTS_CE_CAST_Abbrev) 2776 assert(false && "Unexpected abbrev ordering!"); 2777 } 2778 { // NULL abbrev for CONSTANTS_BLOCK. 2779 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2780 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2781 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2782 CONSTANTS_NULL_Abbrev) 2783 assert(false && "Unexpected abbrev ordering!"); 2784 } 2785 2786 // FIXME: This should only use space for first class types! 2787 2788 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2790 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2793 VE.computeBitsRequiredForTypeIndicies())); 2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2796 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2797 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2798 assert(false && "Unexpected abbrev ordering!"); 2799 } 2800 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2801 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2802 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2806 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2807 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2808 assert(false && "Unexpected abbrev ordering!"); 2809 } 2810 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2811 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2812 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2818 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2819 assert(false && "Unexpected abbrev ordering!"); 2820 } 2821 { // INST_CAST abbrev for FUNCTION_BLOCK. 2822 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2823 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2826 VE.computeBitsRequiredForTypeIndicies())); 2827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2828 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2829 (unsigned)FUNCTION_INST_CAST_ABBREV) 2830 assert(false && "Unexpected abbrev ordering!"); 2831 } 2832 2833 { // INST_RET abbrev for FUNCTION_BLOCK. 2834 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2835 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2836 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2837 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2838 assert(false && "Unexpected abbrev ordering!"); 2839 } 2840 { // INST_RET abbrev for FUNCTION_BLOCK. 2841 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2842 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2845 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2846 assert(false && "Unexpected abbrev ordering!"); 2847 } 2848 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2850 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2851 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2852 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2853 assert(false && "Unexpected abbrev ordering!"); 2854 } 2855 { 2856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2857 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2860 Log2_32_Ceil(VE.getTypes().size() + 1))); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2863 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2864 (unsigned)FUNCTION_INST_GEP_ABBREV) 2865 assert(false && "Unexpected abbrev ordering!"); 2866 } 2867 2868 Stream.ExitBlock(); 2869 } 2870 2871 void DXILBitcodeWriter::writeModuleVersion() { 2872 // VERSION: [version#] 2873 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2874 } 2875 2876 /// WriteModule - Emit the specified module to the bitstream. 2877 void DXILBitcodeWriter::write() { 2878 // The identification block is new since llvm-3.7, but the old bitcode reader 2879 // will skip it. 2880 // writeIdentificationBlock(Stream); 2881 2882 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2883 2884 // It is redundant to fully-specify this here, but nice to make it explicit 2885 // so that it is clear the DXIL module version is different. 2886 DXILBitcodeWriter::writeModuleVersion(); 2887 2888 // Emit blockinfo, which defines the standard abbreviations etc. 2889 writeBlockInfo(); 2890 2891 // Emit information about attribute groups. 2892 writeAttributeGroupTable(); 2893 2894 // Emit information about parameter attributes. 2895 writeAttributeTable(); 2896 2897 // Emit information describing all of the types in the module. 2898 writeTypeTable(); 2899 2900 writeComdats(); 2901 2902 // Emit top-level description of module, including target triple, inline asm, 2903 // descriptors for global variables, and function prototype info. 2904 writeModuleInfo(); 2905 2906 // Emit constants. 2907 writeModuleConstants(); 2908 2909 // Emit metadata. 2910 writeModuleMetadataKinds(); 2911 2912 // Emit metadata. 2913 writeModuleMetadata(); 2914 2915 // Emit names for globals/functions etc. 2916 // DXIL uses the same format for module-level value symbol table as for the 2917 // function level table. 2918 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2919 2920 // Emit function bodies. 2921 for (const Function &F : M) 2922 if (!F.isDeclaration()) 2923 writeFunction(F); 2924 2925 Stream.ExitBlock(); 2926 } 2927