1 //===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 // Loading constants inline is expensive on CSKY and it's in general better 11 // to place the constant nearby in code space and then it can be loaded with a 12 // simple 16/32 bit load instruction like lrw. 13 // 14 // The constants can be not just numbers but addresses of functions and labels. 15 // This can be particularly helpful in static relocation mode for embedded 16 // non-linux targets. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CSKY.h" 21 #include "CSKYConstantPoolValue.h" 22 #include "CSKYMachineFunctionInfo.h" 23 #include "CSKYSubtarget.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "CSKY-constant-islands" 61 62 STATISTIC(NumCPEs, "Number of constpool entries"); 63 STATISTIC(NumSplit, "Number of uncond branches inserted"); 64 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 66 67 namespace { 68 69 using Iter = MachineBasicBlock::iterator; 70 using ReverseIter = MachineBasicBlock::reverse_iterator; 71 72 /// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY 73 /// requires constant pool entries to be scattered among the instructions 74 /// inside a function. To do this, it completely ignores the normal LLVM 75 /// constant pool; instead, it places constants wherever it feels like with 76 /// special instructions. 77 /// 78 /// The terminology used in this pass includes: 79 /// Islands - Clumps of constants placed in the function. 80 /// Water - Potential places where an island could be formed. 81 /// CPE - A constant pool entry that has been placed somewhere, which 82 /// tracks a list of users. 83 84 class CSKYConstantIslands : public MachineFunctionPass { 85 /// BasicBlockInfo - Information about the offset and size of a single 86 /// basic block. 87 struct BasicBlockInfo { 88 /// Offset - Distance from the beginning of the function to the beginning 89 /// of this basic block. 90 /// 91 /// Offsets are computed assuming worst case padding before an aligned 92 /// block. This means that subtracting basic block offsets always gives a 93 /// conservative estimate of the real distance which may be smaller. 94 /// 95 /// Because worst case padding is used, the computed offset of an aligned 96 /// block may not actually be aligned. 97 unsigned Offset = 0; 98 99 /// Size - Size of the basic block in bytes. If the block contains 100 /// inline assembly, this is a worst case estimate. 101 /// 102 /// The size does not include any alignment padding whether from the 103 /// beginning of the block, or from an aligned jump table at the end. 104 unsigned Size = 0; 105 106 BasicBlockInfo() = default; 107 108 unsigned postOffset() const { return Offset + Size; } 109 }; 110 111 std::vector<BasicBlockInfo> BBInfo; 112 113 /// WaterList - A sorted list of basic blocks where islands could be placed 114 /// (i.e. blocks that don't fall through to the following block, due 115 /// to a return, unreachable, or unconditional branch). 116 std::vector<MachineBasicBlock *> WaterList; 117 118 /// NewWaterList - The subset of WaterList that was created since the 119 /// previous iteration by inserting unconditional branches. 120 SmallSet<MachineBasicBlock *, 4> NewWaterList; 121 122 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 123 124 /// CPUser - One user of a constant pool, keeping the machine instruction 125 /// pointer, the constant pool being referenced, and the max displacement 126 /// allowed from the instruction to the CP. The HighWaterMark records the 127 /// highest basic block where a new CPEntry can be placed. To ensure this 128 /// pass terminates, the CP entries are initially placed at the end of the 129 /// function and then move monotonically to lower addresses. The 130 /// exception to this rule is when the current CP entry for a particular 131 /// CPUser is out of range, but there is another CP entry for the same 132 /// constant value in range. We want to use the existing in-range CP 133 /// entry, but if it later moves out of range, the search for new water 134 /// should resume where it left off. The HighWaterMark is used to record 135 /// that point. 136 struct CPUser { 137 MachineInstr *MI; 138 MachineInstr *CPEMI; 139 MachineBasicBlock *HighWaterMark; 140 141 private: 142 unsigned MaxDisp; 143 144 public: 145 bool NegOk; 146 147 CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg) 148 : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) { 149 HighWaterMark = CPEMI->getParent(); 150 } 151 152 /// getMaxDisp - Returns the maximum displacement supported by MI. 153 unsigned getMaxDisp() const { return MaxDisp - 16; } 154 155 void setMaxDisp(unsigned Val) { MaxDisp = Val; } 156 }; 157 158 /// CPUsers - Keep track of all of the machine instructions that use various 159 /// constant pools and their max displacement. 160 std::vector<CPUser> CPUsers; 161 162 /// CPEntry - One per constant pool entry, keeping the machine instruction 163 /// pointer, the constpool index, and the number of CPUser's which 164 /// reference this entry. 165 struct CPEntry { 166 MachineInstr *CPEMI; 167 unsigned CPI; 168 unsigned RefCount; 169 170 CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0) 171 : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {} 172 }; 173 174 /// CPEntries - Keep track of all of the constant pool entry machine 175 /// instructions. For each original constpool index (i.e. those that 176 /// existed upon entry to this pass), it keeps a vector of entries. 177 /// Original elements are cloned as we go along; the clones are 178 /// put in the vector of the original element, but have distinct CPIs. 179 std::vector<std::vector<CPEntry>> CPEntries; 180 181 /// ImmBranch - One per immediate branch, keeping the machine instruction 182 /// pointer, conditional or unconditional, the max displacement, 183 /// and (if isCond is true) the corresponding unconditional branch 184 /// opcode. 185 struct ImmBranch { 186 MachineInstr *MI; 187 unsigned MaxDisp : 31; 188 bool IsCond : 1; 189 int UncondBr; 190 191 ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr) 192 : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {} 193 }; 194 195 /// ImmBranches - Keep track of all the immediate branch instructions. 196 /// 197 std::vector<ImmBranch> ImmBranches; 198 199 const CSKYSubtarget *STI = nullptr; 200 const CSKYInstrInfo *TII; 201 CSKYMachineFunctionInfo *MFI; 202 MachineFunction *MF = nullptr; 203 MachineConstantPool *MCP = nullptr; 204 205 unsigned PICLabelUId; 206 207 void initPICLabelUId(unsigned UId) { PICLabelUId = UId; } 208 209 unsigned createPICLabelUId() { return PICLabelUId++; } 210 211 public: 212 static char ID; 213 214 CSKYConstantIslands() : MachineFunctionPass(ID) {} 215 216 StringRef getPassName() const override { return "CSKY Constant Islands"; } 217 218 bool runOnMachineFunction(MachineFunction &F) override; 219 220 void getAnalysisUsage(AnalysisUsage &AU) const override { 221 AU.addRequired<MachineDominatorTree>(); 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 MachineFunctionProperties getRequiredProperties() const override { 226 return MachineFunctionProperties().set( 227 MachineFunctionProperties::Property::NoVRegs); 228 } 229 230 void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs); 231 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 232 Align getCPEAlign(const MachineInstr &CPEMI); 233 void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs); 234 unsigned getOffsetOf(MachineInstr *MI) const; 235 unsigned getUserOffset(CPUser &) const; 236 void dumpBBs(); 237 238 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, 239 bool NegativeOK); 240 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 241 const CPUser &U); 242 243 void computeBlockSize(MachineBasicBlock *MBB); 244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 246 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 247 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI); 248 int findInRangeCPEntry(CPUser &U, unsigned UserOffset); 249 bool findAvailableWater(CPUser &U, unsigned UserOffset, 250 water_iterator &WaterIter); 251 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 252 MachineBasicBlock *&NewMBB); 253 bool handleConstantPoolUser(unsigned CPUserIndex); 254 void removeDeadCPEMI(MachineInstr *CPEMI); 255 bool removeUnusedCPEntries(); 256 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 257 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 258 bool DoDump = false); 259 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, 260 unsigned &Growth); 261 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 262 bool fixupImmediateBr(ImmBranch &Br); 263 bool fixupConditionalBr(ImmBranch &Br); 264 bool fixupUnconditionalBr(ImmBranch &Br); 265 }; 266 } // end anonymous namespace 267 268 char CSKYConstantIslands::ID = 0; 269 270 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 271 unsigned TrialOffset, 272 const CPUser &U) { 273 return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk); 274 } 275 276 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 277 /// print block size and offset information - debugging 278 LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() { 279 for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) { 280 const BasicBlockInfo &BBI = BBInfo[J]; 281 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 282 << format(" size=%#x\n", BBInfo[J].Size); 283 } 284 } 285 #endif 286 287 bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) { 288 MF = &Mf; 289 MCP = Mf.getConstantPool(); 290 STI = &Mf.getSubtarget<CSKYSubtarget>(); 291 292 LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: " 293 << MCP->getConstants().size() << " CP entries, aligned to " 294 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 295 296 TII = STI->getInstrInfo(); 297 MFI = MF->getInfo<CSKYMachineFunctionInfo>(); 298 299 // This pass invalidates liveness information when it splits basic blocks. 300 MF->getRegInfo().invalidateLiveness(); 301 302 // Renumber all of the machine basic blocks in the function, guaranteeing that 303 // the numbers agree with the position of the block in the function. 304 MF->RenumberBlocks(); 305 306 bool MadeChange = false; 307 308 // Perform the initial placement of the constant pool entries. To start with, 309 // we put them all at the end of the function. 310 std::vector<MachineInstr *> CPEMIs; 311 if (!MCP->isEmpty()) 312 doInitialPlacement(CPEMIs); 313 314 /// The next UID to take is the first unused one. 315 initPICLabelUId(CPEMIs.size()); 316 317 // Do the initial scan of the function, building up information about the 318 // sizes of each block, the location of all the water, and finding all of the 319 // constant pool users. 320 initializeFunctionInfo(CPEMIs); 321 CPEMIs.clear(); 322 LLVM_DEBUG(dumpBBs()); 323 324 /// Remove dead constant pool entries. 325 MadeChange |= removeUnusedCPEntries(); 326 327 // Iteratively place constant pool entries and fix up branches until there 328 // is no change. 329 unsigned NoCPIters = 0, NoBRIters = 0; 330 (void)NoBRIters; 331 while (true) { 332 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 333 bool CPChange = false; 334 for (unsigned I = 0, E = CPUsers.size(); I != E; ++I) 335 CPChange |= handleConstantPoolUser(I); 336 if (CPChange && ++NoCPIters > 30) 337 report_fatal_error("Constant Island pass failed to converge!"); 338 LLVM_DEBUG(dumpBBs()); 339 340 // Clear NewWaterList now. If we split a block for branches, it should 341 // appear as "new water" for the next iteration of constant pool placement. 342 NewWaterList.clear(); 343 344 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 345 bool BRChange = false; 346 for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I) 347 BRChange |= fixupImmediateBr(ImmBranches[I]); 348 if (BRChange && ++NoBRIters > 30) 349 report_fatal_error("Branch Fix Up pass failed to converge!"); 350 LLVM_DEBUG(dumpBBs()); 351 if (!CPChange && !BRChange) 352 break; 353 MadeChange = true; 354 } 355 356 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 357 358 BBInfo.clear(); 359 WaterList.clear(); 360 CPUsers.clear(); 361 CPEntries.clear(); 362 ImmBranches.clear(); 363 return MadeChange; 364 } 365 366 /// doInitialPlacement - Perform the initial placement of the constant pool 367 /// entries. To start with, we put them all at the end of the function. 368 void CSKYConstantIslands::doInitialPlacement( 369 std::vector<MachineInstr *> &CPEMIs) { 370 // Create the basic block to hold the CPE's. 371 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 372 MF->push_back(BB); 373 374 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 375 const Align MaxAlign = MCP->getConstantPoolAlign(); 376 377 // Mark the basic block as required by the const-pool. 378 BB->setAlignment(Align(2)); 379 380 // The function needs to be as aligned as the basic blocks. The linker may 381 // move functions around based on their alignment. 382 MF->ensureAlignment(BB->getAlignment()); 383 384 // Order the entries in BB by descending alignment. That ensures correct 385 // alignment of all entries as long as BB is sufficiently aligned. Keep 386 // track of the insertion point for each alignment. We are going to bucket 387 // sort the entries as they are created. 388 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1, 389 BB->end()); 390 391 // Add all of the constants from the constant pool to the end block, use an 392 // identity mapping of CPI's to CPE's. 393 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 394 395 const DataLayout &TD = MF->getDataLayout(); 396 for (unsigned I = 0, E = CPs.size(); I != E; ++I) { 397 unsigned Size = CPs[I].getSizeInBytes(TD); 398 assert(Size >= 4 && "Too small constant pool entry"); 399 Align Alignment = CPs[I].getAlign(); 400 // Verify that all constant pool entries are a multiple of their alignment. 401 // If not, we would have to pad them out so that instructions stay aligned. 402 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 403 404 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 405 unsigned LogAlign = Log2(Alignment); 406 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 407 408 MachineInstr *CPEMI = 409 BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 410 .addImm(I) 411 .addConstantPoolIndex(I) 412 .addImm(Size); 413 414 CPEMIs.push_back(CPEMI); 415 416 // Ensure that future entries with higher alignment get inserted before 417 // CPEMI. This is bucket sort with iterators. 418 for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A) 419 if (InsPoint[A] == InsAt) 420 InsPoint[A] = CPEMI; 421 // Add a new CPEntry, but no corresponding CPUser yet. 422 CPEntries.emplace_back(1, CPEntry(CPEMI, I)); 423 ++NumCPEs; 424 LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = " 425 << Size << ", align = " << Alignment.value() << '\n'); 426 } 427 LLVM_DEBUG(BB->dump()); 428 } 429 430 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 431 /// into the block immediately after it. 432 static bool bbHasFallthrough(MachineBasicBlock *MBB) { 433 // Get the next machine basic block in the function. 434 MachineFunction::iterator MBBI = MBB->getIterator(); 435 // Can't fall off end of function. 436 if (std::next(MBBI) == MBB->getParent()->end()) 437 return false; 438 439 MachineBasicBlock *NextBB = &*std::next(MBBI); 440 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 441 E = MBB->succ_end(); 442 I != E; ++I) 443 if (*I == NextBB) 444 return true; 445 446 return false; 447 } 448 449 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 450 /// look up the corresponding CPEntry. 451 CSKYConstantIslands::CPEntry * 452 CSKYConstantIslands::findConstPoolEntry(unsigned CPI, 453 const MachineInstr *CPEMI) { 454 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 455 // Number of entries per constpool index should be small, just do a 456 // linear search. 457 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 458 if (CPEs[I].CPEMI == CPEMI) 459 return &CPEs[I]; 460 } 461 return nullptr; 462 } 463 464 /// getCPEAlign - Returns the required alignment of the constant pool entry 465 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 466 Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { 467 assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY); 468 469 unsigned CPI = CPEMI.getOperand(1).getIndex(); 470 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 471 return MCP->getConstants()[CPI].getAlign(); 472 } 473 474 /// initializeFunctionInfo - Do the initial scan of the function, building up 475 /// information about the sizes of each block, the location of all the water, 476 /// and finding all of the constant pool users. 477 void CSKYConstantIslands::initializeFunctionInfo( 478 const std::vector<MachineInstr *> &CPEMIs) { 479 BBInfo.clear(); 480 BBInfo.resize(MF->getNumBlockIDs()); 481 482 // First thing, compute the size of all basic blocks, and see if the function 483 // has any inline assembly in it. If so, we have to be conservative about 484 // alignment assumptions, as we don't know for sure the size of any 485 // instructions in the inline assembly. 486 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 487 computeBlockSize(&*I); 488 489 // Compute block offsets. 490 adjustBBOffsetsAfter(&MF->front()); 491 492 // Now go back through the instructions and build up our data structures. 493 for (MachineBasicBlock &MBB : *MF) { 494 // If this block doesn't fall through into the next MBB, then this is 495 // 'water' that a constant pool island could be placed. 496 if (!bbHasFallthrough(&MBB)) 497 WaterList.push_back(&MBB); 498 for (MachineInstr &MI : MBB) { 499 if (MI.isDebugInstr()) 500 continue; 501 502 int Opc = MI.getOpcode(); 503 if (MI.isBranch() && !MI.isIndirectBranch()) { 504 bool IsCond = MI.isConditionalBranch(); 505 unsigned Bits = 0; 506 unsigned Scale = 1; 507 int UOpc = CSKY::BR32; 508 509 switch (MI.getOpcode()) { 510 case CSKY::BR16: 511 case CSKY::BF16: 512 case CSKY::BT16: 513 Bits = 10; 514 Scale = 2; 515 break; 516 default: 517 Bits = 16; 518 Scale = 2; 519 break; 520 } 521 522 // Record this immediate branch. 523 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 524 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc)); 525 } 526 527 if (Opc == CSKY::CONSTPOOL_ENTRY) 528 continue; 529 530 // Scan the instructions for constant pool operands. 531 for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op) 532 if (MI.getOperand(Op).isCPI()) { 533 // We found one. The addressing mode tells us the max displacement 534 // from the PC that this instruction permits. 535 536 // Basic size info comes from the TSFlags field. 537 unsigned Bits = 0; 538 unsigned Scale = 1; 539 bool NegOk = false; 540 541 switch (Opc) { 542 default: 543 llvm_unreachable("Unknown addressing mode for CP reference!"); 544 case CSKY::MOVIH32: 545 case CSKY::ORI32: 546 continue; 547 case CSKY::PseudoTLSLA32: 548 case CSKY::JSRI32: 549 case CSKY::JMPI32: 550 case CSKY::LRW32: 551 case CSKY::LRW32_Gen: 552 Bits = 16; 553 Scale = 4; 554 break; 555 case CSKY::f2FLRW_S: 556 case CSKY::f2FLRW_D: 557 Bits = 8; 558 Scale = 4; 559 break; 560 case CSKY::GRS32: 561 Bits = 17; 562 Scale = 2; 563 NegOk = true; 564 break; 565 } 566 // Remember that this is a user of a CP entry. 567 unsigned CPI = MI.getOperand(Op).getIndex(); 568 MachineInstr *CPEMI = CPEMIs[CPI]; 569 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 570 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk)); 571 572 // Increment corresponding CPEntry reference count. 573 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 574 assert(CPE && "Cannot find a corresponding CPEntry!"); 575 CPE->RefCount++; 576 577 // Instructions can only use one CP entry, don't bother scanning the 578 // rest of the operands. 579 break; 580 } 581 } 582 } 583 } 584 585 /// computeBlockSize - Compute the size and some alignment information for MBB. 586 /// This function updates BBInfo directly. 587 void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 588 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 589 BBI.Size = 0; 590 591 for (const MachineInstr &MI : *MBB) 592 BBI.Size += TII->getInstSizeInBytes(MI); 593 } 594 595 /// getOffsetOf - Return the current offset of the specified machine instruction 596 /// from the start of the function. This offset changes as stuff is moved 597 /// around inside the function. 598 unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const { 599 MachineBasicBlock *MBB = MI->getParent(); 600 601 // The offset is composed of two things: the sum of the sizes of all MBB's 602 // before this instruction's block, and the offset from the start of the block 603 // it is in. 604 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 605 606 // Sum instructions before MI in MBB. 607 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 608 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 609 Offset += TII->getInstSizeInBytes(*I); 610 } 611 return Offset; 612 } 613 614 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 615 /// ID. 616 static bool compareMbbNumbers(const MachineBasicBlock *LHS, 617 const MachineBasicBlock *RHS) { 618 return LHS->getNumber() < RHS->getNumber(); 619 } 620 621 /// updateForInsertedWaterBlock - When a block is newly inserted into the 622 /// machine function, it upsets all of the block numbers. Renumber the blocks 623 /// and update the arrays that parallel this numbering. 624 void CSKYConstantIslands::updateForInsertedWaterBlock( 625 MachineBasicBlock *NewBB) { 626 // Renumber the MBB's to keep them consecutive. 627 NewBB->getParent()->RenumberBlocks(NewBB); 628 629 // Insert an entry into BBInfo to align it properly with the (newly 630 // renumbered) block numbers. 631 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 632 633 // Next, update WaterList. Specifically, we need to add NewMBB as having 634 // available water after it. 635 water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers); 636 WaterList.insert(IP, NewBB); 637 } 638 639 unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const { 640 unsigned UserOffset = getOffsetOf(U.MI); 641 642 UserOffset &= ~3u; 643 644 return UserOffset; 645 } 646 647 /// Split the basic block containing MI into two blocks, which are joined by 648 /// an unconditional branch. Update data structures and renumber blocks to 649 /// account for this change and returns the newly created block. 650 MachineBasicBlock * 651 CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { 652 MachineBasicBlock *OrigBB = MI.getParent(); 653 654 // Create a new MBB for the code after the OrigBB. 655 MachineBasicBlock *NewBB = 656 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 657 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 658 MF->insert(MBBI, NewBB); 659 660 // Splice the instructions starting with MI over to NewBB. 661 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 662 663 // Add an unconditional branch from OrigBB to NewBB. 664 // Note the new unconditional branch is not being recorded. 665 // There doesn't seem to be meaningful DebugInfo available; this doesn't 666 // correspond to anything in the source. 667 668 // TODO: Add support for 16bit instr. 669 BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB); 670 ++NumSplit; 671 672 // Update the CFG. All succs of OrigBB are now succs of NewBB. 673 NewBB->transferSuccessors(OrigBB); 674 675 // OrigBB branches to NewBB. 676 OrigBB->addSuccessor(NewBB); 677 678 // Update internal data structures to account for the newly inserted MBB. 679 // This is almost the same as updateForInsertedWaterBlock, except that 680 // the Water goes after OrigBB, not NewBB. 681 MF->RenumberBlocks(NewBB); 682 683 // Insert an entry into BBInfo to align it properly with the (newly 684 // renumbered) block numbers. 685 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 686 687 // Next, update WaterList. Specifically, we need to add OrigMBB as having 688 // available water after it (but not if it's already there, which happens 689 // when splitting before a conditional branch that is followed by an 690 // unconditional branch - in that case we want to insert NewBB). 691 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers); 692 MachineBasicBlock *WaterBB = *IP; 693 if (WaterBB == OrigBB) 694 WaterList.insert(std::next(IP), NewBB); 695 else 696 WaterList.insert(IP, OrigBB); 697 NewWaterList.insert(OrigBB); 698 699 // Figure out how large the OrigBB is. As the first half of the original 700 // block, it cannot contain a tablejump. The size includes 701 // the new jump we added. (It should be possible to do this without 702 // recounting everything, but it's very confusing, and this is rarely 703 // executed.) 704 computeBlockSize(OrigBB); 705 706 // Figure out how large the NewMBB is. As the second half of the original 707 // block, it may contain a tablejump. 708 computeBlockSize(NewBB); 709 710 // All BBOffsets following these blocks must be modified. 711 adjustBBOffsetsAfter(OrigBB); 712 713 return NewBB; 714 } 715 716 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 717 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 718 /// constant pool entry). 719 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 720 unsigned TrialOffset, 721 unsigned MaxDisp, bool NegativeOK) { 722 if (UserOffset <= TrialOffset) { 723 // User before the Trial. 724 if (TrialOffset - UserOffset <= MaxDisp) 725 return true; 726 } else if (NegativeOK) { 727 if (UserOffset - TrialOffset <= MaxDisp) 728 return true; 729 } 730 return false; 731 } 732 733 /// isWaterInRange - Returns true if a CPE placed after the specified 734 /// Water (a basic block) will be in range for the specific MI. 735 /// 736 /// Compute how much the function will grow by inserting a CPE after Water. 737 bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset, 738 MachineBasicBlock *Water, CPUser &U, 739 unsigned &Growth) { 740 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); 741 unsigned NextBlockOffset; 742 Align NextBlockAlignment; 743 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 744 if (NextBlock == MF->end()) { 745 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 746 NextBlockAlignment = Align(4); 747 } else { 748 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 749 NextBlockAlignment = NextBlock->getAlignment(); 750 } 751 unsigned Size = U.CPEMI->getOperand(2).getImm(); 752 unsigned CPEEnd = CPEOffset + Size; 753 754 // The CPE may be able to hide in the alignment padding before the next 755 // block. It may also cause more padding to be required if it is more aligned 756 // that the next block. 757 if (CPEEnd > NextBlockOffset) { 758 Growth = CPEEnd - NextBlockOffset; 759 // Compute the padding that would go at the end of the CPE to align the next 760 // block. 761 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 762 763 // If the CPE is to be inserted before the instruction, that will raise 764 // the offset of the instruction. Also account for unknown alignment padding 765 // in blocks between CPE and the user. 766 if (CPEOffset < UserOffset) 767 UserOffset += Growth; 768 } else 769 // CPE fits in existing padding. 770 Growth = 0; 771 772 return isOffsetInRange(UserOffset, CPEOffset, U); 773 } 774 775 /// isCPEntryInRange - Returns true if the distance between specific MI and 776 /// specific ConstPool entry instruction can fit in MI's displacement field. 777 bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI, 778 unsigned UserOffset, 779 MachineInstr *CPEMI, 780 unsigned MaxDisp, bool NegOk, 781 bool DoDump) { 782 unsigned CPEOffset = getOffsetOf(CPEMI); 783 784 if (DoDump) { 785 LLVM_DEBUG({ 786 unsigned Block = MI->getParent()->getNumber(); 787 const BasicBlockInfo &BBI = BBInfo[Block]; 788 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 789 << " max delta=" << MaxDisp 790 << format(" insn address=%#x", UserOffset) << " in " 791 << printMBBReference(*MI->getParent()) << ": " 792 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 793 << format("CPE address=%#x offset=%+d: ", CPEOffset, 794 int(CPEOffset - UserOffset)); 795 }); 796 } 797 798 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 799 } 800 801 #ifndef NDEBUG 802 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 803 /// unconditionally branches to its only successor. 804 static bool bbIsJumpedOver(MachineBasicBlock *MBB) { 805 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 806 return false; 807 MachineBasicBlock *Succ = *MBB->succ_begin(); 808 MachineBasicBlock *Pred = *MBB->pred_begin(); 809 MachineInstr *PredMI = &Pred->back(); 810 if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */) 811 return PredMI->getOperand(0).getMBB() == Succ; 812 return false; 813 } 814 #endif 815 816 void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 817 unsigned BBNum = BB->getNumber(); 818 for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) { 819 // Get the offset and known bits at the end of the layout predecessor. 820 // Include the alignment of the current block. 821 unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size; 822 BBInfo[I].Offset = Offset; 823 } 824 } 825 826 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 827 /// and instruction CPEMI, and decrement its refcount. If the refcount 828 /// becomes 0 remove the entry and instruction. Returns true if we removed 829 /// the entry, false if we didn't. 830 bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI, 831 MachineInstr *CPEMI) { 832 // Find the old entry. Eliminate it if it is no longer used. 833 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 834 assert(CPE && "Unexpected!"); 835 if (--CPE->RefCount == 0) { 836 removeDeadCPEMI(CPEMI); 837 CPE->CPEMI = nullptr; 838 --NumCPEs; 839 return true; 840 } 841 return false; 842 } 843 844 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 845 /// if not, see if an in-range clone of the CPE is in range, and if so, 846 /// change the data structures so the user references the clone. Returns: 847 /// 0 = no existing entry found 848 /// 1 = entry found, and there were no code insertions or deletions 849 /// 2 = entry found, and there were code insertions or deletions 850 int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) { 851 MachineInstr *UserMI = U.MI; 852 MachineInstr *CPEMI = U.CPEMI; 853 854 // Check to see if the CPE is already in-range. 855 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 856 true)) { 857 LLVM_DEBUG(dbgs() << "In range\n"); 858 return 1; 859 } 860 861 // No. Look for previously created clones of the CPE that are in range. 862 unsigned CPI = CPEMI->getOperand(1).getIndex(); 863 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 864 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 865 // We already tried this one 866 if (CPEs[I].CPEMI == CPEMI) 867 continue; 868 // Removing CPEs can leave empty entries, skip 869 if (CPEs[I].CPEMI == nullptr) 870 continue; 871 if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(), 872 U.NegOk)) { 873 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 874 << CPEs[I].CPI << "\n"); 875 // Point the CPUser node to the replacement 876 U.CPEMI = CPEs[I].CPEMI; 877 // Change the CPI in the instruction operand to refer to the clone. 878 for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J) 879 if (UserMI->getOperand(J).isCPI()) { 880 UserMI->getOperand(J).setIndex(CPEs[I].CPI); 881 break; 882 } 883 // Adjust the refcount of the clone... 884 CPEs[I].RefCount++; 885 // ...and the original. If we didn't remove the old entry, none of the 886 // addresses changed, so we don't need another pass. 887 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 888 } 889 } 890 return 0; 891 } 892 893 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 894 /// the specific unconditional branch instruction. 895 static inline unsigned getUnconditionalBrDisp(int Opc) { 896 unsigned Bits, Scale; 897 898 switch (Opc) { 899 case CSKY::BR16: 900 Bits = 10; 901 Scale = 2; 902 break; 903 case CSKY::BR32: 904 Bits = 16; 905 Scale = 2; 906 break; 907 default: 908 llvm_unreachable(""); 909 } 910 911 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 912 return MaxOffs; 913 } 914 915 /// findAvailableWater - Look for an existing entry in the WaterList in which 916 /// we can place the CPE referenced from U so it's within range of U's MI. 917 /// Returns true if found, false if not. If it returns true, WaterIter 918 /// is set to the WaterList entry. 919 /// To ensure that this pass 920 /// terminates, the CPE location for a particular CPUser is only allowed to 921 /// move to a lower address, so search backward from the end of the list and 922 /// prefer the first water that is in range. 923 bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 924 water_iterator &WaterIter) { 925 if (WaterList.empty()) 926 return false; 927 928 unsigned BestGrowth = ~0u; 929 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 930 --IP) { 931 MachineBasicBlock *WaterBB = *IP; 932 // Check if water is in range and is either at a lower address than the 933 // current "high water mark" or a new water block that was created since 934 // the previous iteration by inserting an unconditional branch. In the 935 // latter case, we want to allow resetting the high water mark back to 936 // this new water since we haven't seen it before. Inserting branches 937 // should be relatively uncommon and when it does happen, we want to be 938 // sure to take advantage of it for all the CPEs near that block, so that 939 // we don't insert more branches than necessary. 940 unsigned Growth; 941 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 942 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 943 NewWaterList.count(WaterBB)) && 944 Growth < BestGrowth) { 945 // This is the least amount of required padding seen so far. 946 BestGrowth = Growth; 947 WaterIter = IP; 948 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 949 << " Growth=" << Growth << '\n'); 950 951 // Keep looking unless it is perfect. 952 if (BestGrowth == 0) 953 return true; 954 } 955 if (IP == B) 956 break; 957 } 958 return BestGrowth != ~0u; 959 } 960 961 /// createNewWater - No existing WaterList entry will work for 962 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 963 /// block is used if in range, and the conditional branch munged so control 964 /// flow is correct. Otherwise the block is split to create a hole with an 965 /// unconditional branch around it. In either case NewMBB is set to a 966 /// block following which the new island can be inserted (the WaterList 967 /// is not adjusted). 968 void CSKYConstantIslands::createNewWater(unsigned CPUserIndex, 969 unsigned UserOffset, 970 MachineBasicBlock *&NewMBB) { 971 CPUser &U = CPUsers[CPUserIndex]; 972 MachineInstr *UserMI = U.MI; 973 MachineInstr *CPEMI = U.CPEMI; 974 MachineBasicBlock *UserMBB = UserMI->getParent(); 975 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 976 977 // If the block does not end in an unconditional branch already, and if the 978 // end of the block is within range, make new water there. 979 if (bbHasFallthrough(UserMBB)) { 980 // Size of branch to insert. 981 unsigned Delta = 4; 982 // Compute the offset where the CPE will begin. 983 unsigned CPEOffset = UserBBI.postOffset() + Delta; 984 985 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 986 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 987 << format(", expected CPE offset %#x\n", CPEOffset)); 988 NewMBB = &*++UserMBB->getIterator(); 989 // Add an unconditional branch from UserMBB to fallthrough block. Record 990 // it for branch lengthening; this new branch will not get out of range, 991 // but if the preceding conditional branch is out of range, the targets 992 // will be exchanged, and the altered branch may be out of range, so the 993 // machinery has to know about it. 994 995 // TODO: Add support for 16bit instr. 996 int UncondBr = CSKY::BR32; 997 auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 998 .addMBB(NewMBB) 999 .getInstr(); 1000 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1001 ImmBranches.push_back( 1002 ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); 1003 BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI); 1004 adjustBBOffsetsAfter(UserMBB); 1005 return; 1006 } 1007 } 1008 1009 // What a big block. Find a place within the block to split it. 1010 1011 // Try to split the block so it's fully aligned. Compute the latest split 1012 // point where we can add a 4-byte branch instruction, and then align to 1013 // Align which is the largest possible alignment in the function. 1014 const Align Align = MF->getAlignment(); 1015 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1016 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1017 BaseInsertOffset)); 1018 1019 // The 4 in the following is for the unconditional branch we'll be inserting 1020 // Alignment of the island is handled 1021 // inside isOffsetInRange. 1022 BaseInsertOffset -= 4; 1023 1024 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1025 << " la=" << Log2(Align) << '\n'); 1026 1027 // This could point off the end of the block if we've already got constant 1028 // pool entries following this block; only the last one is in the water list. 1029 // Back past any possible branches (allow for a conditional and a maximally 1030 // long unconditional). 1031 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1032 BaseInsertOffset = UserBBI.postOffset() - 8; 1033 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1034 } 1035 unsigned EndInsertOffset = 1036 BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm(); 1037 MachineBasicBlock::iterator MI = UserMI; 1038 ++MI; 1039 unsigned CPUIndex = CPUserIndex + 1; 1040 unsigned NumCPUsers = CPUsers.size(); 1041 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1042 Offset < BaseInsertOffset; 1043 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1044 assert(MI != UserMBB->end() && "Fell off end of block"); 1045 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1046 CPUser &U = CPUsers[CPUIndex]; 1047 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1048 // Shift intertion point by one unit of alignment so it is within reach. 1049 BaseInsertOffset -= Align.value(); 1050 EndInsertOffset -= Align.value(); 1051 } 1052 // This is overly conservative, as we don't account for CPEMIs being 1053 // reused within the block, but it doesn't matter much. Also assume CPEs 1054 // are added in order with alignment padding. We may eventually be able 1055 // to pack the aligned CPEs better. 1056 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1057 CPUIndex++; 1058 } 1059 } 1060 1061 NewMBB = splitBlockBeforeInstr(*--MI); 1062 } 1063 1064 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1065 /// is out-of-range. If so, pick up the constant pool value and move it some 1066 /// place in-range. Return true if we changed any addresses (thus must run 1067 /// another pass of branch lengthening), false otherwise. 1068 bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1069 CPUser &U = CPUsers[CPUserIndex]; 1070 MachineInstr *UserMI = U.MI; 1071 MachineInstr *CPEMI = U.CPEMI; 1072 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1073 unsigned Size = CPEMI->getOperand(2).getImm(); 1074 // Compute this only once, it's expensive. 1075 unsigned UserOffset = getUserOffset(U); 1076 1077 // See if the current entry is within range, or there is a clone of it 1078 // in range. 1079 int result = findInRangeCPEntry(U, UserOffset); 1080 if (result == 1) 1081 return false; 1082 if (result == 2) 1083 return true; 1084 1085 // Look for water where we can place this CPE. 1086 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1087 MachineBasicBlock *NewMBB; 1088 water_iterator IP; 1089 if (findAvailableWater(U, UserOffset, IP)) { 1090 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1091 MachineBasicBlock *WaterBB = *IP; 1092 1093 // If the original WaterList entry was "new water" on this iteration, 1094 // propagate that to the new island. This is just keeping NewWaterList 1095 // updated to match the WaterList, which will be updated below. 1096 if (NewWaterList.erase(WaterBB)) 1097 NewWaterList.insert(NewIsland); 1098 1099 // The new CPE goes before the following block (NewMBB). 1100 NewMBB = &*++WaterBB->getIterator(); 1101 } else { 1102 LLVM_DEBUG(dbgs() << "No water found\n"); 1103 createNewWater(CPUserIndex, UserOffset, NewMBB); 1104 1105 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1106 // called while handling branches so that the water will be seen on the 1107 // next iteration for constant pools, but in this context, we don't want 1108 // it. Check for this so it will be removed from the WaterList. 1109 // Also remove any entry from NewWaterList. 1110 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1111 IP = llvm::find(WaterList, WaterBB); 1112 if (IP != WaterList.end()) 1113 NewWaterList.erase(WaterBB); 1114 1115 // We are adding new water. Update NewWaterList. 1116 NewWaterList.insert(NewIsland); 1117 } 1118 1119 // Remove the original WaterList entry; we want subsequent insertions in 1120 // this vicinity to go after the one we're about to insert. This 1121 // considerably reduces the number of times we have to move the same CPE 1122 // more than once and is also important to ensure the algorithm terminates. 1123 if (IP != WaterList.end()) 1124 WaterList.erase(IP); 1125 1126 // Okay, we know we can put an island before NewMBB now, do it! 1127 MF->insert(NewMBB->getIterator(), NewIsland); 1128 1129 // Update internal data structures to account for the newly inserted MBB. 1130 updateForInsertedWaterBlock(NewIsland); 1131 1132 // Decrement the old entry, and remove it if refcount becomes 0. 1133 decrementCPEReferenceCount(CPI, CPEMI); 1134 1135 // No existing clone of this CPE is within range. 1136 // We will be generating a new clone. Get a UID for it. 1137 unsigned ID = createPICLabelUId(); 1138 1139 // Now that we have an island to add the CPE to, clone the original CPE and 1140 // add it to the island. 1141 U.HighWaterMark = NewIsland; 1142 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 1143 .addImm(ID) 1144 .addConstantPoolIndex(CPI) 1145 .addImm(Size); 1146 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1147 ++NumCPEs; 1148 1149 // Mark the basic block as aligned as required by the const-pool entry. 1150 NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); 1151 1152 // Increase the size of the island block to account for the new entry. 1153 BBInfo[NewIsland->getNumber()].Size += Size; 1154 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1155 1156 // Finally, change the CPI in the instruction operand to be ID. 1157 for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I) 1158 if (UserMI->getOperand(I).isCPI()) { 1159 UserMI->getOperand(I).setIndex(ID); 1160 break; 1161 } 1162 1163 LLVM_DEBUG( 1164 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1165 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1166 1167 return true; 1168 } 1169 1170 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1171 /// sizes and offsets of impacted basic blocks. 1172 void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1173 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1174 unsigned Size = CPEMI->getOperand(2).getImm(); 1175 CPEMI->eraseFromParent(); 1176 BBInfo[CPEBB->getNumber()].Size -= Size; 1177 // All succeeding offsets have the current size value added in, fix this. 1178 if (CPEBB->empty()) { 1179 BBInfo[CPEBB->getNumber()].Size = 0; 1180 1181 // This block no longer needs to be aligned. 1182 CPEBB->setAlignment(Align(4)); 1183 } else { 1184 // Entries are sorted by descending alignment, so realign from the front. 1185 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); 1186 } 1187 1188 adjustBBOffsetsAfter(CPEBB); 1189 // An island has only one predecessor BB and one successor BB. Check if 1190 // this BB's predecessor jumps directly to this BB's successor. This 1191 // shouldn't happen currently. 1192 assert(!bbIsJumpedOver(CPEBB) && "How did this happen?"); 1193 // FIXME: remove the empty blocks after all the work is done? 1194 } 1195 1196 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1197 /// are zero. 1198 bool CSKYConstantIslands::removeUnusedCPEntries() { 1199 unsigned MadeChange = false; 1200 for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) { 1201 std::vector<CPEntry> &CPEs = CPEntries[I]; 1202 for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) { 1203 if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) { 1204 removeDeadCPEMI(CPEs[J].CPEMI); 1205 CPEs[J].CPEMI = nullptr; 1206 MadeChange = true; 1207 } 1208 } 1209 } 1210 return MadeChange; 1211 } 1212 1213 /// isBBInRange - Returns true if the distance between specific MI and 1214 /// specific BB can fit in MI's displacement field. 1215 bool CSKYConstantIslands::isBBInRange(MachineInstr *MI, 1216 MachineBasicBlock *DestBB, 1217 unsigned MaxDisp) { 1218 unsigned BrOffset = getOffsetOf(MI); 1219 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1220 1221 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1222 << " from " << printMBBReference(*MI->getParent()) 1223 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1224 << " to " << DestOffset << " offset " 1225 << int(DestOffset - BrOffset) << "\t" << *MI); 1226 1227 if (BrOffset <= DestOffset) { 1228 // Branch before the Dest. 1229 if (DestOffset - BrOffset <= MaxDisp) 1230 return true; 1231 } else { 1232 if (BrOffset - DestOffset <= MaxDisp) 1233 return true; 1234 } 1235 return false; 1236 } 1237 1238 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1239 /// away to fit in its displacement field. 1240 bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1241 MachineInstr *MI = Br.MI; 1242 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1243 1244 // Check to see if the DestBB is already in-range. 1245 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1246 return false; 1247 1248 if (!Br.IsCond) 1249 return fixupUnconditionalBr(Br); 1250 return fixupConditionalBr(Br); 1251 } 1252 1253 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1254 /// too far away to fit in its displacement field. If the LR register has been 1255 /// spilled in the epilogue, then we can use BSR to implement a far jump. 1256 /// Otherwise, add an intermediate branch instruction to a branch. 1257 bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1258 MachineInstr *MI = Br.MI; 1259 MachineBasicBlock *MBB = MI->getParent(); 1260 1261 if (!MFI->isLRSpilled()) 1262 report_fatal_error("underestimated function size"); 1263 1264 // Use BSR to implement far jump. 1265 Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2; 1266 MI->setDesc(TII->get(CSKY::BSR32_BR)); 1267 BBInfo[MBB->getNumber()].Size += 4; 1268 adjustBBOffsetsAfter(MBB); 1269 ++NumUBrFixed; 1270 1271 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1272 1273 return true; 1274 } 1275 1276 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1277 /// far away to fit in its displacement field. It is converted to an inverse 1278 /// conditional branch + an unconditional branch to the destination. 1279 bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1280 MachineInstr *MI = Br.MI; 1281 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1282 1283 SmallVector<MachineOperand, 4> Cond; 1284 Cond.push_back(MachineOperand::CreateImm(MI->getOpcode())); 1285 Cond.push_back(MI->getOperand(0)); 1286 TII->reverseBranchCondition(Cond); 1287 1288 // Add an unconditional branch to the destination and invert the branch 1289 // condition to jump over it: 1290 // bteqz L1 1291 // => 1292 // bnez L2 1293 // b L1 1294 // L2: 1295 1296 // If the branch is at the end of its MBB and that has a fall-through block, 1297 // direct the updated conditional branch to the fall-through block. Otherwise, 1298 // split the MBB before the next instruction. 1299 MachineBasicBlock *MBB = MI->getParent(); 1300 MachineInstr *BMI = &MBB->back(); 1301 bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB); 1302 1303 ++NumCBrFixed; 1304 if (BMI != MI) { 1305 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1306 BMI->isUnconditionalBranch()) { 1307 // Last MI in the BB is an unconditional branch. Can we simply invert the 1308 // condition and swap destinations: 1309 // beqz L1 1310 // b L2 1311 // => 1312 // bnez L2 1313 // b L1 1314 MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI); 1315 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1316 LLVM_DEBUG( 1317 dbgs() << " Invert Bcc condition and swap its destination with " 1318 << *BMI); 1319 BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB); 1320 MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest); 1321 1322 MI->setDesc(TII->get(Cond[0].getImm())); 1323 return true; 1324 } 1325 } 1326 } 1327 1328 if (NeedSplit) { 1329 splitBlockBeforeInstr(*MI); 1330 // No need for the branch to the next block. We're adding an unconditional 1331 // branch to the destination. 1332 int Delta = TII->getInstSizeInBytes(MBB->back()); 1333 BBInfo[MBB->getNumber()].Size -= Delta; 1334 MBB->back().eraseFromParent(); 1335 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1336 1337 // The conditional successor will be swapped between the BBs after this, so 1338 // update CFG. 1339 MBB->addSuccessor(DestBB); 1340 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1341 } 1342 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1343 1344 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1345 << " also invert condition and change dest. to " 1346 << printMBBReference(*NextBB) << "\n"); 1347 1348 // Insert a new conditional branch and a new unconditional branch. 1349 // Also update the ImmBranch as well as adding a new entry for the new branch. 1350 1351 BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm())) 1352 .addReg(MI->getOperand(0).getReg()) 1353 .addMBB(NextBB); 1354 1355 Br.MI = &MBB->back(); 1356 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1357 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1358 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1359 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1360 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1361 1362 // Remove the old conditional branch. It may or may not still be in MBB. 1363 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1364 MI->eraseFromParent(); 1365 adjustBBOffsetsAfter(MBB); 1366 return true; 1367 } 1368 1369 /// Returns a pass that converts branches to long branches. 1370 FunctionPass *llvm::createCSKYConstantIslandPass() { 1371 return new CSKYConstantIslands(); 1372 } 1373 1374 INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE, 1375 "CSKY constant island placement and branch shortening pass", 1376 false, false) 1377