1 //===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 // Loading constants inline is expensive on CSKY and it's in general better 11 // to place the constant nearby in code space and then it can be loaded with a 12 // simple 16/32 bit load instruction like lrw. 13 // 14 // The constants can be not just numbers but addresses of functions and labels. 15 // This can be particularly helpful in static relocation mode for embedded 16 // non-linux targets. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CSKY.h" 21 #include "CSKYConstantPoolValue.h" 22 #include "CSKYMachineFunctionInfo.h" 23 #include "CSKYSubtarget.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "CSKY-constant-islands" 61 62 STATISTIC(NumCPEs, "Number of constpool entries"); 63 STATISTIC(NumSplit, "Number of uncond branches inserted"); 64 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 66 67 namespace { 68 69 using Iter = MachineBasicBlock::iterator; 70 using ReverseIter = MachineBasicBlock::reverse_iterator; 71 72 /// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY 73 /// requires constant pool entries to be scattered among the instructions 74 /// inside a function. To do this, it completely ignores the normal LLVM 75 /// constant pool; instead, it places constants wherever it feels like with 76 /// special instructions. 77 /// 78 /// The terminology used in this pass includes: 79 /// Islands - Clumps of constants placed in the function. 80 /// Water - Potential places where an island could be formed. 81 /// CPE - A constant pool entry that has been placed somewhere, which 82 /// tracks a list of users. 83 84 class CSKYConstantIslands : public MachineFunctionPass { 85 /// BasicBlockInfo - Information about the offset and size of a single 86 /// basic block. 87 struct BasicBlockInfo { 88 /// Offset - Distance from the beginning of the function to the beginning 89 /// of this basic block. 90 /// 91 /// Offsets are computed assuming worst case padding before an aligned 92 /// block. This means that subtracting basic block offsets always gives a 93 /// conservative estimate of the real distance which may be smaller. 94 /// 95 /// Because worst case padding is used, the computed offset of an aligned 96 /// block may not actually be aligned. 97 unsigned Offset = 0; 98 99 /// Size - Size of the basic block in bytes. If the block contains 100 /// inline assembly, this is a worst case estimate. 101 /// 102 /// The size does not include any alignment padding whether from the 103 /// beginning of the block, or from an aligned jump table at the end. 104 unsigned Size = 0; 105 106 BasicBlockInfo() = default; 107 108 unsigned postOffset() const { return Offset + Size; } 109 }; 110 111 std::vector<BasicBlockInfo> BBInfo; 112 113 /// WaterList - A sorted list of basic blocks where islands could be placed 114 /// (i.e. blocks that don't fall through to the following block, due 115 /// to a return, unreachable, or unconditional branch). 116 std::vector<MachineBasicBlock *> WaterList; 117 118 /// NewWaterList - The subset of WaterList that was created since the 119 /// previous iteration by inserting unconditional branches. 120 SmallSet<MachineBasicBlock *, 4> NewWaterList; 121 122 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 123 124 /// CPUser - One user of a constant pool, keeping the machine instruction 125 /// pointer, the constant pool being referenced, and the max displacement 126 /// allowed from the instruction to the CP. The HighWaterMark records the 127 /// highest basic block where a new CPEntry can be placed. To ensure this 128 /// pass terminates, the CP entries are initially placed at the end of the 129 /// function and then move monotonically to lower addresses. The 130 /// exception to this rule is when the current CP entry for a particular 131 /// CPUser is out of range, but there is another CP entry for the same 132 /// constant value in range. We want to use the existing in-range CP 133 /// entry, but if it later moves out of range, the search for new water 134 /// should resume where it left off. The HighWaterMark is used to record 135 /// that point. 136 struct CPUser { 137 MachineInstr *MI; 138 MachineInstr *CPEMI; 139 MachineBasicBlock *HighWaterMark; 140 141 private: 142 unsigned MaxDisp; 143 144 public: 145 bool NegOk; 146 147 CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg) 148 : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) { 149 HighWaterMark = CPEMI->getParent(); 150 } 151 152 /// getMaxDisp - Returns the maximum displacement supported by MI. 153 unsigned getMaxDisp() const { return MaxDisp - 16; } 154 155 void setMaxDisp(unsigned Val) { MaxDisp = Val; } 156 }; 157 158 /// CPUsers - Keep track of all of the machine instructions that use various 159 /// constant pools and their max displacement. 160 std::vector<CPUser> CPUsers; 161 162 /// CPEntry - One per constant pool entry, keeping the machine instruction 163 /// pointer, the constpool index, and the number of CPUser's which 164 /// reference this entry. 165 struct CPEntry { 166 MachineInstr *CPEMI; 167 unsigned CPI; 168 unsigned RefCount; 169 170 CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0) 171 : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {} 172 }; 173 174 /// CPEntries - Keep track of all of the constant pool entry machine 175 /// instructions. For each original constpool index (i.e. those that 176 /// existed upon entry to this pass), it keeps a vector of entries. 177 /// Original elements are cloned as we go along; the clones are 178 /// put in the vector of the original element, but have distinct CPIs. 179 std::vector<std::vector<CPEntry>> CPEntries; 180 181 /// ImmBranch - One per immediate branch, keeping the machine instruction 182 /// pointer, conditional or unconditional, the max displacement, 183 /// and (if isCond is true) the corresponding unconditional branch 184 /// opcode. 185 struct ImmBranch { 186 MachineInstr *MI; 187 unsigned MaxDisp : 31; 188 bool IsCond : 1; 189 int UncondBr; 190 191 ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr) 192 : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {} 193 }; 194 195 /// ImmBranches - Keep track of all the immediate branch instructions. 196 /// 197 std::vector<ImmBranch> ImmBranches; 198 199 const CSKYSubtarget *STI = nullptr; 200 const CSKYInstrInfo *TII; 201 CSKYMachineFunctionInfo *MFI; 202 MachineFunction *MF = nullptr; 203 MachineConstantPool *MCP = nullptr; 204 205 unsigned PICLabelUId; 206 207 void initPICLabelUId(unsigned UId) { PICLabelUId = UId; } 208 209 unsigned createPICLabelUId() { return PICLabelUId++; } 210 211 public: 212 static char ID; 213 214 CSKYConstantIslands() : MachineFunctionPass(ID) {} 215 216 StringRef getPassName() const override { return "CSKY Constant Islands"; } 217 218 bool runOnMachineFunction(MachineFunction &F) override; 219 220 void getAnalysisUsage(AnalysisUsage &AU) const override { 221 AU.addRequired<MachineDominatorTreeWrapperPass>(); 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 MachineFunctionProperties getRequiredProperties() const override { 226 return MachineFunctionProperties().set( 227 MachineFunctionProperties::Property::NoVRegs); 228 } 229 230 void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs); 231 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 232 Align getCPEAlign(const MachineInstr &CPEMI); 233 void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs); 234 unsigned getOffsetOf(MachineInstr *MI) const; 235 unsigned getUserOffset(CPUser &) const; 236 void dumpBBs(); 237 238 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, 239 bool NegativeOK); 240 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 241 const CPUser &U); 242 243 void computeBlockSize(MachineBasicBlock *MBB); 244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 246 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 247 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI); 248 int findInRangeCPEntry(CPUser &U, unsigned UserOffset); 249 bool findAvailableWater(CPUser &U, unsigned UserOffset, 250 water_iterator &WaterIter); 251 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 252 MachineBasicBlock *&NewMBB); 253 bool handleConstantPoolUser(unsigned CPUserIndex); 254 void removeDeadCPEMI(MachineInstr *CPEMI); 255 bool removeUnusedCPEntries(); 256 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 257 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 258 bool DoDump = false); 259 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, 260 unsigned &Growth); 261 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 262 bool fixupImmediateBr(ImmBranch &Br); 263 bool fixupConditionalBr(ImmBranch &Br); 264 bool fixupUnconditionalBr(ImmBranch &Br); 265 }; 266 } // end anonymous namespace 267 268 char CSKYConstantIslands::ID = 0; 269 270 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 271 unsigned TrialOffset, 272 const CPUser &U) { 273 return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk); 274 } 275 276 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 277 /// print block size and offset information - debugging 278 LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() { 279 for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) { 280 const BasicBlockInfo &BBI = BBInfo[J]; 281 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 282 << format(" size=%#x\n", BBInfo[J].Size); 283 } 284 } 285 #endif 286 287 bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) { 288 MF = &Mf; 289 MCP = Mf.getConstantPool(); 290 STI = &Mf.getSubtarget<CSKYSubtarget>(); 291 292 LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: " 293 << MCP->getConstants().size() << " CP entries, aligned to " 294 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 295 296 TII = STI->getInstrInfo(); 297 MFI = MF->getInfo<CSKYMachineFunctionInfo>(); 298 299 // This pass invalidates liveness information when it splits basic blocks. 300 MF->getRegInfo().invalidateLiveness(); 301 302 // Renumber all of the machine basic blocks in the function, guaranteeing that 303 // the numbers agree with the position of the block in the function. 304 MF->RenumberBlocks(); 305 306 bool MadeChange = false; 307 308 // Perform the initial placement of the constant pool entries. To start with, 309 // we put them all at the end of the function. 310 std::vector<MachineInstr *> CPEMIs; 311 if (!MCP->isEmpty()) 312 doInitialPlacement(CPEMIs); 313 314 /// The next UID to take is the first unused one. 315 initPICLabelUId(CPEMIs.size()); 316 317 // Do the initial scan of the function, building up information about the 318 // sizes of each block, the location of all the water, and finding all of the 319 // constant pool users. 320 initializeFunctionInfo(CPEMIs); 321 CPEMIs.clear(); 322 LLVM_DEBUG(dumpBBs()); 323 324 /// Remove dead constant pool entries. 325 MadeChange |= removeUnusedCPEntries(); 326 327 // Iteratively place constant pool entries and fix up branches until there 328 // is no change. 329 unsigned NoCPIters = 0, NoBRIters = 0; 330 (void)NoBRIters; 331 while (true) { 332 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 333 bool CPChange = false; 334 for (unsigned I = 0, E = CPUsers.size(); I != E; ++I) 335 CPChange |= handleConstantPoolUser(I); 336 if (CPChange && ++NoCPIters > 30) 337 report_fatal_error("Constant Island pass failed to converge!"); 338 LLVM_DEBUG(dumpBBs()); 339 340 // Clear NewWaterList now. If we split a block for branches, it should 341 // appear as "new water" for the next iteration of constant pool placement. 342 NewWaterList.clear(); 343 344 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 345 bool BRChange = false; 346 for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I) 347 BRChange |= fixupImmediateBr(ImmBranches[I]); 348 if (BRChange && ++NoBRIters > 30) 349 report_fatal_error("Branch Fix Up pass failed to converge!"); 350 LLVM_DEBUG(dumpBBs()); 351 if (!CPChange && !BRChange) 352 break; 353 MadeChange = true; 354 } 355 356 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 357 358 BBInfo.clear(); 359 WaterList.clear(); 360 CPUsers.clear(); 361 CPEntries.clear(); 362 ImmBranches.clear(); 363 return MadeChange; 364 } 365 366 /// doInitialPlacement - Perform the initial placement of the constant pool 367 /// entries. To start with, we put them all at the end of the function. 368 void CSKYConstantIslands::doInitialPlacement( 369 std::vector<MachineInstr *> &CPEMIs) { 370 // Create the basic block to hold the CPE's. 371 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 372 MF->push_back(BB); 373 374 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 375 const Align MaxAlign = MCP->getConstantPoolAlign(); 376 377 // Mark the basic block as required by the const-pool. 378 BB->setAlignment(Align(2)); 379 380 // The function needs to be as aligned as the basic blocks. The linker may 381 // move functions around based on their alignment. 382 MF->ensureAlignment(BB->getAlignment()); 383 384 // Order the entries in BB by descending alignment. That ensures correct 385 // alignment of all entries as long as BB is sufficiently aligned. Keep 386 // track of the insertion point for each alignment. We are going to bucket 387 // sort the entries as they are created. 388 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1, 389 BB->end()); 390 391 // Add all of the constants from the constant pool to the end block, use an 392 // identity mapping of CPI's to CPE's. 393 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 394 395 const DataLayout &TD = MF->getDataLayout(); 396 for (unsigned I = 0, E = CPs.size(); I != E; ++I) { 397 unsigned Size = CPs[I].getSizeInBytes(TD); 398 assert(Size >= 4 && "Too small constant pool entry"); 399 Align Alignment = CPs[I].getAlign(); 400 // Verify that all constant pool entries are a multiple of their alignment. 401 // If not, we would have to pad them out so that instructions stay aligned. 402 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 403 404 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 405 unsigned LogAlign = Log2(Alignment); 406 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 407 408 MachineInstr *CPEMI = 409 BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 410 .addImm(I) 411 .addConstantPoolIndex(I) 412 .addImm(Size); 413 414 CPEMIs.push_back(CPEMI); 415 416 // Ensure that future entries with higher alignment get inserted before 417 // CPEMI. This is bucket sort with iterators. 418 for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A) 419 if (InsPoint[A] == InsAt) 420 InsPoint[A] = CPEMI; 421 // Add a new CPEntry, but no corresponding CPUser yet. 422 CPEntries.emplace_back(1, CPEntry(CPEMI, I)); 423 ++NumCPEs; 424 LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = " 425 << Size << ", align = " << Alignment.value() << '\n'); 426 } 427 LLVM_DEBUG(BB->dump()); 428 } 429 430 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 431 /// into the block immediately after it. 432 static bool bbHasFallthrough(MachineBasicBlock *MBB) { 433 // Get the next machine basic block in the function. 434 MachineFunction::iterator MBBI = MBB->getIterator(); 435 // Can't fall off end of function. 436 if (std::next(MBBI) == MBB->getParent()->end()) 437 return false; 438 439 MachineBasicBlock *NextBB = &*std::next(MBBI); 440 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 441 E = MBB->succ_end(); 442 I != E; ++I) 443 if (*I == NextBB) 444 return true; 445 446 return false; 447 } 448 449 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 450 /// look up the corresponding CPEntry. 451 CSKYConstantIslands::CPEntry * 452 CSKYConstantIslands::findConstPoolEntry(unsigned CPI, 453 const MachineInstr *CPEMI) { 454 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 455 // Number of entries per constpool index should be small, just do a 456 // linear search. 457 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 458 if (CPEs[I].CPEMI == CPEMI) 459 return &CPEs[I]; 460 } 461 return nullptr; 462 } 463 464 /// getCPEAlign - Returns the required alignment of the constant pool entry 465 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 466 Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { 467 assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY); 468 469 unsigned CPI = CPEMI.getOperand(1).getIndex(); 470 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 471 return MCP->getConstants()[CPI].getAlign(); 472 } 473 474 /// initializeFunctionInfo - Do the initial scan of the function, building up 475 /// information about the sizes of each block, the location of all the water, 476 /// and finding all of the constant pool users. 477 void CSKYConstantIslands::initializeFunctionInfo( 478 const std::vector<MachineInstr *> &CPEMIs) { 479 BBInfo.clear(); 480 BBInfo.resize(MF->getNumBlockIDs()); 481 482 // First thing, compute the size of all basic blocks, and see if the function 483 // has any inline assembly in it. If so, we have to be conservative about 484 // alignment assumptions, as we don't know for sure the size of any 485 // instructions in the inline assembly. 486 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 487 computeBlockSize(&*I); 488 489 // Compute block offsets. 490 adjustBBOffsetsAfter(&MF->front()); 491 492 // Now go back through the instructions and build up our data structures. 493 for (MachineBasicBlock &MBB : *MF) { 494 // If this block doesn't fall through into the next MBB, then this is 495 // 'water' that a constant pool island could be placed. 496 if (!bbHasFallthrough(&MBB)) 497 WaterList.push_back(&MBB); 498 for (MachineInstr &MI : MBB) { 499 if (MI.isDebugInstr()) 500 continue; 501 502 int Opc = MI.getOpcode(); 503 if (MI.isBranch() && !MI.isIndirectBranch()) { 504 bool IsCond = MI.isConditionalBranch(); 505 unsigned Bits = 0; 506 unsigned Scale = 1; 507 int UOpc = CSKY::BR32; 508 509 switch (MI.getOpcode()) { 510 case CSKY::BR16: 511 case CSKY::BF16: 512 case CSKY::BT16: 513 Bits = 10; 514 Scale = 2; 515 break; 516 default: 517 Bits = 16; 518 Scale = 2; 519 break; 520 } 521 522 // Record this immediate branch. 523 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 524 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc)); 525 } 526 527 if (Opc == CSKY::CONSTPOOL_ENTRY) 528 continue; 529 530 // Scan the instructions for constant pool operands. 531 for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op) 532 if (MI.getOperand(Op).isCPI()) { 533 // We found one. The addressing mode tells us the max displacement 534 // from the PC that this instruction permits. 535 536 // Basic size info comes from the TSFlags field. 537 unsigned Bits = 0; 538 unsigned Scale = 1; 539 bool NegOk = false; 540 541 switch (Opc) { 542 default: 543 llvm_unreachable("Unknown addressing mode for CP reference!"); 544 case CSKY::MOVIH32: 545 case CSKY::ORI32: 546 continue; 547 case CSKY::PseudoTLSLA32: 548 case CSKY::JSRI32: 549 case CSKY::JMPI32: 550 case CSKY::LRW32: 551 case CSKY::LRW32_Gen: 552 Bits = 16; 553 Scale = 4; 554 break; 555 case CSKY::f2FLRW_S: 556 case CSKY::f2FLRW_D: 557 Bits = 8; 558 Scale = 4; 559 break; 560 case CSKY::GRS32: 561 Bits = 17; 562 Scale = 2; 563 NegOk = true; 564 break; 565 } 566 // Remember that this is a user of a CP entry. 567 unsigned CPI = MI.getOperand(Op).getIndex(); 568 MachineInstr *CPEMI = CPEMIs[CPI]; 569 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 570 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk)); 571 572 // Increment corresponding CPEntry reference count. 573 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 574 assert(CPE && "Cannot find a corresponding CPEntry!"); 575 CPE->RefCount++; 576 } 577 } 578 } 579 } 580 581 /// computeBlockSize - Compute the size and some alignment information for MBB. 582 /// This function updates BBInfo directly. 583 void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 584 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 585 BBI.Size = 0; 586 587 for (const MachineInstr &MI : *MBB) 588 BBI.Size += TII->getInstSizeInBytes(MI); 589 } 590 591 /// getOffsetOf - Return the current offset of the specified machine instruction 592 /// from the start of the function. This offset changes as stuff is moved 593 /// around inside the function. 594 unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const { 595 MachineBasicBlock *MBB = MI->getParent(); 596 597 // The offset is composed of two things: the sum of the sizes of all MBB's 598 // before this instruction's block, and the offset from the start of the block 599 // it is in. 600 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 601 602 // Sum instructions before MI in MBB. 603 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 604 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 605 Offset += TII->getInstSizeInBytes(*I); 606 } 607 return Offset; 608 } 609 610 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 611 /// ID. 612 static bool compareMbbNumbers(const MachineBasicBlock *LHS, 613 const MachineBasicBlock *RHS) { 614 return LHS->getNumber() < RHS->getNumber(); 615 } 616 617 /// updateForInsertedWaterBlock - When a block is newly inserted into the 618 /// machine function, it upsets all of the block numbers. Renumber the blocks 619 /// and update the arrays that parallel this numbering. 620 void CSKYConstantIslands::updateForInsertedWaterBlock( 621 MachineBasicBlock *NewBB) { 622 // Renumber the MBB's to keep them consecutive. 623 NewBB->getParent()->RenumberBlocks(NewBB); 624 625 // Insert an entry into BBInfo to align it properly with the (newly 626 // renumbered) block numbers. 627 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 628 629 // Next, update WaterList. Specifically, we need to add NewMBB as having 630 // available water after it. 631 water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers); 632 WaterList.insert(IP, NewBB); 633 } 634 635 unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const { 636 unsigned UserOffset = getOffsetOf(U.MI); 637 638 UserOffset &= ~3u; 639 640 return UserOffset; 641 } 642 643 /// Split the basic block containing MI into two blocks, which are joined by 644 /// an unconditional branch. Update data structures and renumber blocks to 645 /// account for this change and returns the newly created block. 646 MachineBasicBlock * 647 CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { 648 MachineBasicBlock *OrigBB = MI.getParent(); 649 650 // Create a new MBB for the code after the OrigBB. 651 MachineBasicBlock *NewBB = 652 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 653 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 654 MF->insert(MBBI, NewBB); 655 656 // Splice the instructions starting with MI over to NewBB. 657 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 658 659 // Add an unconditional branch from OrigBB to NewBB. 660 // Note the new unconditional branch is not being recorded. 661 // There doesn't seem to be meaningful DebugInfo available; this doesn't 662 // correspond to anything in the source. 663 664 // TODO: Add support for 16bit instr. 665 BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB); 666 ++NumSplit; 667 668 // Update the CFG. All succs of OrigBB are now succs of NewBB. 669 NewBB->transferSuccessors(OrigBB); 670 671 // OrigBB branches to NewBB. 672 OrigBB->addSuccessor(NewBB); 673 674 // Update internal data structures to account for the newly inserted MBB. 675 // This is almost the same as updateForInsertedWaterBlock, except that 676 // the Water goes after OrigBB, not NewBB. 677 MF->RenumberBlocks(NewBB); 678 679 // Insert an entry into BBInfo to align it properly with the (newly 680 // renumbered) block numbers. 681 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 682 683 // Next, update WaterList. Specifically, we need to add OrigMBB as having 684 // available water after it (but not if it's already there, which happens 685 // when splitting before a conditional branch that is followed by an 686 // unconditional branch - in that case we want to insert NewBB). 687 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers); 688 MachineBasicBlock *WaterBB = *IP; 689 if (WaterBB == OrigBB) 690 WaterList.insert(std::next(IP), NewBB); 691 else 692 WaterList.insert(IP, OrigBB); 693 NewWaterList.insert(OrigBB); 694 695 // Figure out how large the OrigBB is. As the first half of the original 696 // block, it cannot contain a tablejump. The size includes 697 // the new jump we added. (It should be possible to do this without 698 // recounting everything, but it's very confusing, and this is rarely 699 // executed.) 700 computeBlockSize(OrigBB); 701 702 // Figure out how large the NewMBB is. As the second half of the original 703 // block, it may contain a tablejump. 704 computeBlockSize(NewBB); 705 706 // All BBOffsets following these blocks must be modified. 707 adjustBBOffsetsAfter(OrigBB); 708 709 return NewBB; 710 } 711 712 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 713 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 714 /// constant pool entry). 715 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 716 unsigned TrialOffset, 717 unsigned MaxDisp, bool NegativeOK) { 718 if (UserOffset <= TrialOffset) { 719 // User before the Trial. 720 if (TrialOffset - UserOffset <= MaxDisp) 721 return true; 722 } else if (NegativeOK) { 723 if (UserOffset - TrialOffset <= MaxDisp) 724 return true; 725 } 726 return false; 727 } 728 729 /// isWaterInRange - Returns true if a CPE placed after the specified 730 /// Water (a basic block) will be in range for the specific MI. 731 /// 732 /// Compute how much the function will grow by inserting a CPE after Water. 733 bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset, 734 MachineBasicBlock *Water, CPUser &U, 735 unsigned &Growth) { 736 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); 737 unsigned NextBlockOffset; 738 Align NextBlockAlignment; 739 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 740 if (NextBlock == MF->end()) { 741 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 742 NextBlockAlignment = Align(4); 743 } else { 744 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 745 NextBlockAlignment = NextBlock->getAlignment(); 746 } 747 unsigned Size = U.CPEMI->getOperand(2).getImm(); 748 unsigned CPEEnd = CPEOffset + Size; 749 750 // The CPE may be able to hide in the alignment padding before the next 751 // block. It may also cause more padding to be required if it is more aligned 752 // that the next block. 753 if (CPEEnd > NextBlockOffset) { 754 Growth = CPEEnd - NextBlockOffset; 755 // Compute the padding that would go at the end of the CPE to align the next 756 // block. 757 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 758 759 // If the CPE is to be inserted before the instruction, that will raise 760 // the offset of the instruction. Also account for unknown alignment padding 761 // in blocks between CPE and the user. 762 if (CPEOffset < UserOffset) 763 UserOffset += Growth; 764 } else 765 // CPE fits in existing padding. 766 Growth = 0; 767 768 return isOffsetInRange(UserOffset, CPEOffset, U); 769 } 770 771 /// isCPEntryInRange - Returns true if the distance between specific MI and 772 /// specific ConstPool entry instruction can fit in MI's displacement field. 773 bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI, 774 unsigned UserOffset, 775 MachineInstr *CPEMI, 776 unsigned MaxDisp, bool NegOk, 777 bool DoDump) { 778 unsigned CPEOffset = getOffsetOf(CPEMI); 779 780 if (DoDump) { 781 LLVM_DEBUG({ 782 unsigned Block = MI->getParent()->getNumber(); 783 const BasicBlockInfo &BBI = BBInfo[Block]; 784 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 785 << " max delta=" << MaxDisp 786 << format(" insn address=%#x", UserOffset) << " in " 787 << printMBBReference(*MI->getParent()) << ": " 788 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 789 << format("CPE address=%#x offset=%+d: ", CPEOffset, 790 int(CPEOffset - UserOffset)); 791 }); 792 } 793 794 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 795 } 796 797 #ifndef NDEBUG 798 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 799 /// unconditionally branches to its only successor. 800 static bool bbIsJumpedOver(MachineBasicBlock *MBB) { 801 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 802 return false; 803 MachineBasicBlock *Succ = *MBB->succ_begin(); 804 MachineBasicBlock *Pred = *MBB->pred_begin(); 805 MachineInstr *PredMI = &Pred->back(); 806 if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */) 807 return PredMI->getOperand(0).getMBB() == Succ; 808 return false; 809 } 810 #endif 811 812 void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 813 unsigned BBNum = BB->getNumber(); 814 for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) { 815 // Get the offset and known bits at the end of the layout predecessor. 816 // Include the alignment of the current block. 817 unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size; 818 BBInfo[I].Offset = Offset; 819 } 820 } 821 822 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 823 /// and instruction CPEMI, and decrement its refcount. If the refcount 824 /// becomes 0 remove the entry and instruction. Returns true if we removed 825 /// the entry, false if we didn't. 826 bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI, 827 MachineInstr *CPEMI) { 828 // Find the old entry. Eliminate it if it is no longer used. 829 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 830 assert(CPE && "Unexpected!"); 831 if (--CPE->RefCount == 0) { 832 removeDeadCPEMI(CPEMI); 833 CPE->CPEMI = nullptr; 834 --NumCPEs; 835 return true; 836 } 837 return false; 838 } 839 840 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 841 /// if not, see if an in-range clone of the CPE is in range, and if so, 842 /// change the data structures so the user references the clone. Returns: 843 /// 0 = no existing entry found 844 /// 1 = entry found, and there were no code insertions or deletions 845 /// 2 = entry found, and there were code insertions or deletions 846 int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) { 847 MachineInstr *UserMI = U.MI; 848 MachineInstr *CPEMI = U.CPEMI; 849 850 // Check to see if the CPE is already in-range. 851 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 852 true)) { 853 LLVM_DEBUG(dbgs() << "In range\n"); 854 return 1; 855 } 856 857 // No. Look for previously created clones of the CPE that are in range. 858 unsigned CPI = CPEMI->getOperand(1).getIndex(); 859 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 860 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 861 // We already tried this one 862 if (CPEs[I].CPEMI == CPEMI) 863 continue; 864 // Removing CPEs can leave empty entries, skip 865 if (CPEs[I].CPEMI == nullptr) 866 continue; 867 if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(), 868 U.NegOk)) { 869 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 870 << CPEs[I].CPI << "\n"); 871 // Point the CPUser node to the replacement 872 U.CPEMI = CPEs[I].CPEMI; 873 // Change the CPI in the instruction operand to refer to the clone. 874 for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J) 875 if (UserMI->getOperand(J).isCPI()) { 876 UserMI->getOperand(J).setIndex(CPEs[I].CPI); 877 break; 878 } 879 // Adjust the refcount of the clone... 880 CPEs[I].RefCount++; 881 // ...and the original. If we didn't remove the old entry, none of the 882 // addresses changed, so we don't need another pass. 883 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 884 } 885 } 886 return 0; 887 } 888 889 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 890 /// the specific unconditional branch instruction. 891 static inline unsigned getUnconditionalBrDisp(int Opc) { 892 unsigned Bits, Scale; 893 894 switch (Opc) { 895 case CSKY::BR16: 896 Bits = 10; 897 Scale = 2; 898 break; 899 case CSKY::BR32: 900 Bits = 16; 901 Scale = 2; 902 break; 903 default: 904 llvm_unreachable(""); 905 } 906 907 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 908 return MaxOffs; 909 } 910 911 /// findAvailableWater - Look for an existing entry in the WaterList in which 912 /// we can place the CPE referenced from U so it's within range of U's MI. 913 /// Returns true if found, false if not. If it returns true, WaterIter 914 /// is set to the WaterList entry. 915 /// To ensure that this pass 916 /// terminates, the CPE location for a particular CPUser is only allowed to 917 /// move to a lower address, so search backward from the end of the list and 918 /// prefer the first water that is in range. 919 bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 920 water_iterator &WaterIter) { 921 if (WaterList.empty()) 922 return false; 923 924 unsigned BestGrowth = ~0u; 925 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 926 --IP) { 927 MachineBasicBlock *WaterBB = *IP; 928 // Check if water is in range and is either at a lower address than the 929 // current "high water mark" or a new water block that was created since 930 // the previous iteration by inserting an unconditional branch. In the 931 // latter case, we want to allow resetting the high water mark back to 932 // this new water since we haven't seen it before. Inserting branches 933 // should be relatively uncommon and when it does happen, we want to be 934 // sure to take advantage of it for all the CPEs near that block, so that 935 // we don't insert more branches than necessary. 936 unsigned Growth; 937 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 938 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 939 NewWaterList.count(WaterBB)) && 940 Growth < BestGrowth) { 941 // This is the least amount of required padding seen so far. 942 BestGrowth = Growth; 943 WaterIter = IP; 944 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 945 << " Growth=" << Growth << '\n'); 946 947 // Keep looking unless it is perfect. 948 if (BestGrowth == 0) 949 return true; 950 } 951 if (IP == B) 952 break; 953 } 954 return BestGrowth != ~0u; 955 } 956 957 /// createNewWater - No existing WaterList entry will work for 958 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 959 /// block is used if in range, and the conditional branch munged so control 960 /// flow is correct. Otherwise the block is split to create a hole with an 961 /// unconditional branch around it. In either case NewMBB is set to a 962 /// block following which the new island can be inserted (the WaterList 963 /// is not adjusted). 964 void CSKYConstantIslands::createNewWater(unsigned CPUserIndex, 965 unsigned UserOffset, 966 MachineBasicBlock *&NewMBB) { 967 CPUser &U = CPUsers[CPUserIndex]; 968 MachineInstr *UserMI = U.MI; 969 MachineInstr *CPEMI = U.CPEMI; 970 MachineBasicBlock *UserMBB = UserMI->getParent(); 971 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 972 973 // If the block does not end in an unconditional branch already, and if the 974 // end of the block is within range, make new water there. 975 if (bbHasFallthrough(UserMBB)) { 976 // Size of branch to insert. 977 unsigned Delta = 4; 978 // Compute the offset where the CPE will begin. 979 unsigned CPEOffset = UserBBI.postOffset() + Delta; 980 981 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 982 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 983 << format(", expected CPE offset %#x\n", CPEOffset)); 984 NewMBB = &*++UserMBB->getIterator(); 985 // Add an unconditional branch from UserMBB to fallthrough block. Record 986 // it for branch lengthening; this new branch will not get out of range, 987 // but if the preceding conditional branch is out of range, the targets 988 // will be exchanged, and the altered branch may be out of range, so the 989 // machinery has to know about it. 990 991 // TODO: Add support for 16bit instr. 992 int UncondBr = CSKY::BR32; 993 auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 994 .addMBB(NewMBB) 995 .getInstr(); 996 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 997 ImmBranches.push_back( 998 ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); 999 BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI); 1000 adjustBBOffsetsAfter(UserMBB); 1001 return; 1002 } 1003 } 1004 1005 // What a big block. Find a place within the block to split it. 1006 1007 // Try to split the block so it's fully aligned. Compute the latest split 1008 // point where we can add a 4-byte branch instruction, and then align to 1009 // Align which is the largest possible alignment in the function. 1010 const Align Align = MF->getAlignment(); 1011 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1012 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1013 BaseInsertOffset)); 1014 1015 // The 4 in the following is for the unconditional branch we'll be inserting 1016 // Alignment of the island is handled 1017 // inside isOffsetInRange. 1018 BaseInsertOffset -= 4; 1019 1020 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1021 << " la=" << Log2(Align) << '\n'); 1022 1023 // This could point off the end of the block if we've already got constant 1024 // pool entries following this block; only the last one is in the water list. 1025 // Back past any possible branches (allow for a conditional and a maximally 1026 // long unconditional). 1027 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1028 BaseInsertOffset = UserBBI.postOffset() - 8; 1029 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1030 } 1031 unsigned EndInsertOffset = 1032 BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm(); 1033 MachineBasicBlock::iterator MI = UserMI; 1034 ++MI; 1035 unsigned CPUIndex = CPUserIndex + 1; 1036 unsigned NumCPUsers = CPUsers.size(); 1037 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1038 Offset < BaseInsertOffset; 1039 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1040 assert(MI != UserMBB->end() && "Fell off end of block"); 1041 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1042 CPUser &U = CPUsers[CPUIndex]; 1043 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1044 // Shift intertion point by one unit of alignment so it is within reach. 1045 BaseInsertOffset -= Align.value(); 1046 EndInsertOffset -= Align.value(); 1047 } 1048 // This is overly conservative, as we don't account for CPEMIs being 1049 // reused within the block, but it doesn't matter much. Also assume CPEs 1050 // are added in order with alignment padding. We may eventually be able 1051 // to pack the aligned CPEs better. 1052 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1053 CPUIndex++; 1054 } 1055 } 1056 1057 NewMBB = splitBlockBeforeInstr(*--MI); 1058 } 1059 1060 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1061 /// is out-of-range. If so, pick up the constant pool value and move it some 1062 /// place in-range. Return true if we changed any addresses (thus must run 1063 /// another pass of branch lengthening), false otherwise. 1064 bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1065 CPUser &U = CPUsers[CPUserIndex]; 1066 MachineInstr *UserMI = U.MI; 1067 MachineInstr *CPEMI = U.CPEMI; 1068 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1069 unsigned Size = CPEMI->getOperand(2).getImm(); 1070 // Compute this only once, it's expensive. 1071 unsigned UserOffset = getUserOffset(U); 1072 1073 // See if the current entry is within range, or there is a clone of it 1074 // in range. 1075 int result = findInRangeCPEntry(U, UserOffset); 1076 if (result == 1) 1077 return false; 1078 if (result == 2) 1079 return true; 1080 1081 // Look for water where we can place this CPE. 1082 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1083 MachineBasicBlock *NewMBB; 1084 water_iterator IP; 1085 if (findAvailableWater(U, UserOffset, IP)) { 1086 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1087 MachineBasicBlock *WaterBB = *IP; 1088 1089 // If the original WaterList entry was "new water" on this iteration, 1090 // propagate that to the new island. This is just keeping NewWaterList 1091 // updated to match the WaterList, which will be updated below. 1092 if (NewWaterList.erase(WaterBB)) 1093 NewWaterList.insert(NewIsland); 1094 1095 // The new CPE goes before the following block (NewMBB). 1096 NewMBB = &*++WaterBB->getIterator(); 1097 } else { 1098 LLVM_DEBUG(dbgs() << "No water found\n"); 1099 createNewWater(CPUserIndex, UserOffset, NewMBB); 1100 1101 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1102 // called while handling branches so that the water will be seen on the 1103 // next iteration for constant pools, but in this context, we don't want 1104 // it. Check for this so it will be removed from the WaterList. 1105 // Also remove any entry from NewWaterList. 1106 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1107 IP = llvm::find(WaterList, WaterBB); 1108 if (IP != WaterList.end()) 1109 NewWaterList.erase(WaterBB); 1110 1111 // We are adding new water. Update NewWaterList. 1112 NewWaterList.insert(NewIsland); 1113 } 1114 1115 // Remove the original WaterList entry; we want subsequent insertions in 1116 // this vicinity to go after the one we're about to insert. This 1117 // considerably reduces the number of times we have to move the same CPE 1118 // more than once and is also important to ensure the algorithm terminates. 1119 if (IP != WaterList.end()) 1120 WaterList.erase(IP); 1121 1122 // Okay, we know we can put an island before NewMBB now, do it! 1123 MF->insert(NewMBB->getIterator(), NewIsland); 1124 1125 // Update internal data structures to account for the newly inserted MBB. 1126 updateForInsertedWaterBlock(NewIsland); 1127 1128 // Decrement the old entry, and remove it if refcount becomes 0. 1129 decrementCPEReferenceCount(CPI, CPEMI); 1130 1131 // No existing clone of this CPE is within range. 1132 // We will be generating a new clone. Get a UID for it. 1133 unsigned ID = createPICLabelUId(); 1134 1135 // Now that we have an island to add the CPE to, clone the original CPE and 1136 // add it to the island. 1137 U.HighWaterMark = NewIsland; 1138 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 1139 .addImm(ID) 1140 .addConstantPoolIndex(CPI) 1141 .addImm(Size); 1142 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1143 ++NumCPEs; 1144 1145 // Mark the basic block as aligned as required by the const-pool entry. 1146 NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); 1147 1148 // Increase the size of the island block to account for the new entry. 1149 BBInfo[NewIsland->getNumber()].Size += Size; 1150 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1151 1152 // Finally, change the CPI in the instruction operand to be ID. 1153 for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I) 1154 if (UserMI->getOperand(I).isCPI()) { 1155 UserMI->getOperand(I).setIndex(ID); 1156 break; 1157 } 1158 1159 LLVM_DEBUG( 1160 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1161 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1162 1163 return true; 1164 } 1165 1166 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1167 /// sizes and offsets of impacted basic blocks. 1168 void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1169 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1170 unsigned Size = CPEMI->getOperand(2).getImm(); 1171 CPEMI->eraseFromParent(); 1172 BBInfo[CPEBB->getNumber()].Size -= Size; 1173 // All succeeding offsets have the current size value added in, fix this. 1174 if (CPEBB->empty()) { 1175 BBInfo[CPEBB->getNumber()].Size = 0; 1176 1177 // This block no longer needs to be aligned. 1178 CPEBB->setAlignment(Align(4)); 1179 } else { 1180 // Entries are sorted by descending alignment, so realign from the front. 1181 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); 1182 } 1183 1184 adjustBBOffsetsAfter(CPEBB); 1185 // An island has only one predecessor BB and one successor BB. Check if 1186 // this BB's predecessor jumps directly to this BB's successor. This 1187 // shouldn't happen currently. 1188 assert(!bbIsJumpedOver(CPEBB) && "How did this happen?"); 1189 // FIXME: remove the empty blocks after all the work is done? 1190 } 1191 1192 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1193 /// are zero. 1194 bool CSKYConstantIslands::removeUnusedCPEntries() { 1195 unsigned MadeChange = false; 1196 for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) { 1197 std::vector<CPEntry> &CPEs = CPEntries[I]; 1198 for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) { 1199 if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) { 1200 removeDeadCPEMI(CPEs[J].CPEMI); 1201 CPEs[J].CPEMI = nullptr; 1202 MadeChange = true; 1203 } 1204 } 1205 } 1206 return MadeChange; 1207 } 1208 1209 /// isBBInRange - Returns true if the distance between specific MI and 1210 /// specific BB can fit in MI's displacement field. 1211 bool CSKYConstantIslands::isBBInRange(MachineInstr *MI, 1212 MachineBasicBlock *DestBB, 1213 unsigned MaxDisp) { 1214 unsigned BrOffset = getOffsetOf(MI); 1215 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1216 1217 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1218 << " from " << printMBBReference(*MI->getParent()) 1219 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1220 << " to " << DestOffset << " offset " 1221 << int(DestOffset - BrOffset) << "\t" << *MI); 1222 1223 if (BrOffset <= DestOffset) { 1224 // Branch before the Dest. 1225 if (DestOffset - BrOffset <= MaxDisp) 1226 return true; 1227 } else { 1228 if (BrOffset - DestOffset <= MaxDisp) 1229 return true; 1230 } 1231 return false; 1232 } 1233 1234 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1235 /// away to fit in its displacement field. 1236 bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1237 MachineInstr *MI = Br.MI; 1238 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1239 1240 // Check to see if the DestBB is already in-range. 1241 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1242 return false; 1243 1244 if (!Br.IsCond) 1245 return fixupUnconditionalBr(Br); 1246 return fixupConditionalBr(Br); 1247 } 1248 1249 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1250 /// too far away to fit in its displacement field. If the LR register has been 1251 /// spilled in the epilogue, then we can use BSR to implement a far jump. 1252 /// Otherwise, add an intermediate branch instruction to a branch. 1253 bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1254 MachineInstr *MI = Br.MI; 1255 MachineBasicBlock *MBB = MI->getParent(); 1256 1257 if (!MFI->isLRSpilled()) 1258 report_fatal_error("underestimated function size"); 1259 1260 // Use BSR to implement far jump. 1261 Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2; 1262 MI->setDesc(TII->get(CSKY::BSR32_BR)); 1263 BBInfo[MBB->getNumber()].Size += 4; 1264 adjustBBOffsetsAfter(MBB); 1265 ++NumUBrFixed; 1266 1267 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1268 1269 return true; 1270 } 1271 1272 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1273 /// far away to fit in its displacement field. It is converted to an inverse 1274 /// conditional branch + an unconditional branch to the destination. 1275 bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1276 MachineInstr *MI = Br.MI; 1277 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1278 1279 SmallVector<MachineOperand, 4> Cond; 1280 Cond.push_back(MachineOperand::CreateImm(MI->getOpcode())); 1281 Cond.push_back(MI->getOperand(0)); 1282 TII->reverseBranchCondition(Cond); 1283 1284 // Add an unconditional branch to the destination and invert the branch 1285 // condition to jump over it: 1286 // bteqz L1 1287 // => 1288 // bnez L2 1289 // b L1 1290 // L2: 1291 1292 // If the branch is at the end of its MBB and that has a fall-through block, 1293 // direct the updated conditional branch to the fall-through block. Otherwise, 1294 // split the MBB before the next instruction. 1295 MachineBasicBlock *MBB = MI->getParent(); 1296 MachineInstr *BMI = &MBB->back(); 1297 bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB); 1298 1299 ++NumCBrFixed; 1300 if (BMI != MI) { 1301 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1302 BMI->isUnconditionalBranch()) { 1303 // Last MI in the BB is an unconditional branch. Can we simply invert the 1304 // condition and swap destinations: 1305 // beqz L1 1306 // b L2 1307 // => 1308 // bnez L2 1309 // b L1 1310 MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI); 1311 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1312 LLVM_DEBUG( 1313 dbgs() << " Invert Bcc condition and swap its destination with " 1314 << *BMI); 1315 BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB); 1316 MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest); 1317 1318 MI->setDesc(TII->get(Cond[0].getImm())); 1319 return true; 1320 } 1321 } 1322 } 1323 1324 if (NeedSplit) { 1325 splitBlockBeforeInstr(*MI); 1326 // No need for the branch to the next block. We're adding an unconditional 1327 // branch to the destination. 1328 int Delta = TII->getInstSizeInBytes(MBB->back()); 1329 BBInfo[MBB->getNumber()].Size -= Delta; 1330 MBB->back().eraseFromParent(); 1331 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1332 1333 // The conditional successor will be swapped between the BBs after this, so 1334 // update CFG. 1335 MBB->addSuccessor(DestBB); 1336 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1337 } 1338 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1339 1340 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1341 << " also invert condition and change dest. to " 1342 << printMBBReference(*NextBB) << "\n"); 1343 1344 // Insert a new conditional branch and a new unconditional branch. 1345 // Also update the ImmBranch as well as adding a new entry for the new branch. 1346 1347 BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm())) 1348 .addReg(MI->getOperand(0).getReg()) 1349 .addMBB(NextBB); 1350 1351 Br.MI = &MBB->back(); 1352 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1353 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1354 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1355 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1356 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1357 1358 // Remove the old conditional branch. It may or may not still be in MBB. 1359 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1360 MI->eraseFromParent(); 1361 adjustBBOffsetsAfter(MBB); 1362 return true; 1363 } 1364 1365 /// Returns a pass that converts branches to long branches. 1366 FunctionPass *llvm::createCSKYConstantIslandPass() { 1367 return new CSKYConstantIslands(); 1368 } 1369 1370 INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE, 1371 "CSKY constant island placement and branch shortening pass", 1372 false, false) 1373