xref: /freebsd/contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1 //===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Loading constants inline is expensive on CSKY and it's in general better
11 // to place the constant nearby in code space and then it can be loaded with a
12 // simple 16/32 bit load instruction like lrw.
13 //
14 // The constants can be not just numbers but addresses of functions and labels.
15 // This can be particularly helpful in static relocation mode for embedded
16 // non-linux targets.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "CSKY.h"
21 #include "CSKYConstantPoolValue.h"
22 #include "CSKYMachineFunctionInfo.h"
23 #include "CSKYSubtarget.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "CSKY-constant-islands"
61 
62 STATISTIC(NumCPEs, "Number of constpool entries");
63 STATISTIC(NumSplit, "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
66 
67 namespace {
68 
69 using Iter = MachineBasicBlock::iterator;
70 using ReverseIter = MachineBasicBlock::reverse_iterator;
71 
72 /// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY
73 /// requires constant pool entries to be scattered among the instructions
74 /// inside a function.  To do this, it completely ignores the normal LLVM
75 /// constant pool; instead, it places constants wherever it feels like with
76 /// special instructions.
77 ///
78 /// The terminology used in this pass includes:
79 ///   Islands - Clumps of constants placed in the function.
80 ///   Water   - Potential places where an island could be formed.
81 ///   CPE     - A constant pool entry that has been placed somewhere, which
82 ///             tracks a list of users.
83 
84 class CSKYConstantIslands : public MachineFunctionPass {
85   /// BasicBlockInfo - Information about the offset and size of a single
86   /// basic block.
87   struct BasicBlockInfo {
88     /// Offset - Distance from the beginning of the function to the beginning
89     /// of this basic block.
90     ///
91     /// Offsets are computed assuming worst case padding before an aligned
92     /// block. This means that subtracting basic block offsets always gives a
93     /// conservative estimate of the real distance which may be smaller.
94     ///
95     /// Because worst case padding is used, the computed offset of an aligned
96     /// block may not actually be aligned.
97     unsigned Offset = 0;
98 
99     /// Size - Size of the basic block in bytes.  If the block contains
100     /// inline assembly, this is a worst case estimate.
101     ///
102     /// The size does not include any alignment padding whether from the
103     /// beginning of the block, or from an aligned jump table at the end.
104     unsigned Size = 0;
105 
106     BasicBlockInfo() = default;
107 
108     unsigned postOffset() const { return Offset + Size; }
109   };
110 
111   std::vector<BasicBlockInfo> BBInfo;
112 
113   /// WaterList - A sorted list of basic blocks where islands could be placed
114   /// (i.e. blocks that don't fall through to the following block, due
115   /// to a return, unreachable, or unconditional branch).
116   std::vector<MachineBasicBlock *> WaterList;
117 
118   /// NewWaterList - The subset of WaterList that was created since the
119   /// previous iteration by inserting unconditional branches.
120   SmallSet<MachineBasicBlock *, 4> NewWaterList;
121 
122   using water_iterator = std::vector<MachineBasicBlock *>::iterator;
123 
124   /// CPUser - One user of a constant pool, keeping the machine instruction
125   /// pointer, the constant pool being referenced, and the max displacement
126   /// allowed from the instruction to the CP.  The HighWaterMark records the
127   /// highest basic block where a new CPEntry can be placed.  To ensure this
128   /// pass terminates, the CP entries are initially placed at the end of the
129   /// function and then move monotonically to lower addresses.  The
130   /// exception to this rule is when the current CP entry for a particular
131   /// CPUser is out of range, but there is another CP entry for the same
132   /// constant value in range.  We want to use the existing in-range CP
133   /// entry, but if it later moves out of range, the search for new water
134   /// should resume where it left off.  The HighWaterMark is used to record
135   /// that point.
136   struct CPUser {
137     MachineInstr *MI;
138     MachineInstr *CPEMI;
139     MachineBasicBlock *HighWaterMark;
140 
141   private:
142     unsigned MaxDisp;
143 
144   public:
145     bool NegOk;
146 
147     CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg)
148         : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) {
149       HighWaterMark = CPEMI->getParent();
150     }
151 
152     /// getMaxDisp - Returns the maximum displacement supported by MI.
153     unsigned getMaxDisp() const { return MaxDisp - 16; }
154 
155     void setMaxDisp(unsigned Val) { MaxDisp = Val; }
156   };
157 
158   /// CPUsers - Keep track of all of the machine instructions that use various
159   /// constant pools and their max displacement.
160   std::vector<CPUser> CPUsers;
161 
162   /// CPEntry - One per constant pool entry, keeping the machine instruction
163   /// pointer, the constpool index, and the number of CPUser's which
164   /// reference this entry.
165   struct CPEntry {
166     MachineInstr *CPEMI;
167     unsigned CPI;
168     unsigned RefCount;
169 
170     CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0)
171         : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {}
172   };
173 
174   /// CPEntries - Keep track of all of the constant pool entry machine
175   /// instructions. For each original constpool index (i.e. those that
176   /// existed upon entry to this pass), it keeps a vector of entries.
177   /// Original elements are cloned as we go along; the clones are
178   /// put in the vector of the original element, but have distinct CPIs.
179   std::vector<std::vector<CPEntry>> CPEntries;
180 
181   /// ImmBranch - One per immediate branch, keeping the machine instruction
182   /// pointer, conditional or unconditional, the max displacement,
183   /// and (if isCond is true) the corresponding unconditional branch
184   /// opcode.
185   struct ImmBranch {
186     MachineInstr *MI;
187     unsigned MaxDisp : 31;
188     bool IsCond : 1;
189     int UncondBr;
190 
191     ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr)
192         : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {}
193   };
194 
195   /// ImmBranches - Keep track of all the immediate branch instructions.
196   ///
197   std::vector<ImmBranch> ImmBranches;
198 
199   const CSKYSubtarget *STI = nullptr;
200   const CSKYInstrInfo *TII;
201   CSKYMachineFunctionInfo *MFI;
202   MachineFunction *MF = nullptr;
203   MachineConstantPool *MCP = nullptr;
204 
205   unsigned PICLabelUId;
206 
207   void initPICLabelUId(unsigned UId) { PICLabelUId = UId; }
208 
209   unsigned createPICLabelUId() { return PICLabelUId++; }
210 
211 public:
212   static char ID;
213 
214   CSKYConstantIslands() : MachineFunctionPass(ID) {}
215 
216   StringRef getPassName() const override { return "CSKY Constant Islands"; }
217 
218   bool runOnMachineFunction(MachineFunction &F) override;
219 
220   void getAnalysisUsage(AnalysisUsage &AU) const override {
221     AU.addRequired<MachineDominatorTree>();
222     MachineFunctionPass::getAnalysisUsage(AU);
223   }
224 
225   MachineFunctionProperties getRequiredProperties() const override {
226     return MachineFunctionProperties().set(
227         MachineFunctionProperties::Property::NoVRegs);
228   }
229 
230   void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs);
231   CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
232   Align getCPEAlign(const MachineInstr &CPEMI);
233   void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs);
234   unsigned getOffsetOf(MachineInstr *MI) const;
235   unsigned getUserOffset(CPUser &) const;
236   void dumpBBs();
237 
238   bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp,
239                        bool NegativeOK);
240   bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
241                        const CPUser &U);
242 
243   void computeBlockSize(MachineBasicBlock *MBB);
244   MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
245   void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
246   void adjustBBOffsetsAfter(MachineBasicBlock *BB);
247   bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI);
248   int findInRangeCPEntry(CPUser &U, unsigned UserOffset);
249   bool findAvailableWater(CPUser &U, unsigned UserOffset,
250                           water_iterator &WaterIter);
251   void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
252                       MachineBasicBlock *&NewMBB);
253   bool handleConstantPoolUser(unsigned CPUserIndex);
254   void removeDeadCPEMI(MachineInstr *CPEMI);
255   bool removeUnusedCPEntries();
256   bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
257                         MachineInstr *CPEMI, unsigned Disp, bool NegOk,
258                         bool DoDump = false);
259   bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U,
260                       unsigned &Growth);
261   bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
262   bool fixupImmediateBr(ImmBranch &Br);
263   bool fixupConditionalBr(ImmBranch &Br);
264   bool fixupUnconditionalBr(ImmBranch &Br);
265 };
266 } // end anonymous namespace
267 
268 char CSKYConstantIslands::ID = 0;
269 
270 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
271                                           unsigned TrialOffset,
272                                           const CPUser &U) {
273   return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk);
274 }
275 
276 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
277 /// print block size and offset information - debugging
278 LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() {
279   for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) {
280     const BasicBlockInfo &BBI = BBInfo[J];
281     dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
282            << format(" size=%#x\n", BBInfo[J].Size);
283   }
284 }
285 #endif
286 
287 bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) {
288   MF = &Mf;
289   MCP = Mf.getConstantPool();
290   STI = &Mf.getSubtarget<CSKYSubtarget>();
291 
292   LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: "
293                     << MCP->getConstants().size() << " CP entries, aligned to "
294                     << MCP->getConstantPoolAlign().value() << " bytes *****\n");
295 
296   TII = STI->getInstrInfo();
297   MFI = MF->getInfo<CSKYMachineFunctionInfo>();
298 
299   // This pass invalidates liveness information when it splits basic blocks.
300   MF->getRegInfo().invalidateLiveness();
301 
302   // Renumber all of the machine basic blocks in the function, guaranteeing that
303   // the numbers agree with the position of the block in the function.
304   MF->RenumberBlocks();
305 
306   bool MadeChange = false;
307 
308   // Perform the initial placement of the constant pool entries.  To start with,
309   // we put them all at the end of the function.
310   std::vector<MachineInstr *> CPEMIs;
311   if (!MCP->isEmpty())
312     doInitialPlacement(CPEMIs);
313 
314   /// The next UID to take is the first unused one.
315   initPICLabelUId(CPEMIs.size());
316 
317   // Do the initial scan of the function, building up information about the
318   // sizes of each block, the location of all the water, and finding all of the
319   // constant pool users.
320   initializeFunctionInfo(CPEMIs);
321   CPEMIs.clear();
322   LLVM_DEBUG(dumpBBs());
323 
324   /// Remove dead constant pool entries.
325   MadeChange |= removeUnusedCPEntries();
326 
327   // Iteratively place constant pool entries and fix up branches until there
328   // is no change.
329   unsigned NoCPIters = 0, NoBRIters = 0;
330   (void)NoBRIters;
331   while (true) {
332     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
333     bool CPChange = false;
334     for (unsigned I = 0, E = CPUsers.size(); I != E; ++I)
335       CPChange |= handleConstantPoolUser(I);
336     if (CPChange && ++NoCPIters > 30)
337       report_fatal_error("Constant Island pass failed to converge!");
338     LLVM_DEBUG(dumpBBs());
339 
340     // Clear NewWaterList now.  If we split a block for branches, it should
341     // appear as "new water" for the next iteration of constant pool placement.
342     NewWaterList.clear();
343 
344     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
345     bool BRChange = false;
346     for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I)
347       BRChange |= fixupImmediateBr(ImmBranches[I]);
348     if (BRChange && ++NoBRIters > 30)
349       report_fatal_error("Branch Fix Up pass failed to converge!");
350     LLVM_DEBUG(dumpBBs());
351     if (!CPChange && !BRChange)
352       break;
353     MadeChange = true;
354   }
355 
356   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
357 
358   BBInfo.clear();
359   WaterList.clear();
360   CPUsers.clear();
361   CPEntries.clear();
362   ImmBranches.clear();
363   return MadeChange;
364 }
365 
366 /// doInitialPlacement - Perform the initial placement of the constant pool
367 /// entries.  To start with, we put them all at the end of the function.
368 void CSKYConstantIslands::doInitialPlacement(
369     std::vector<MachineInstr *> &CPEMIs) {
370   // Create the basic block to hold the CPE's.
371   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
372   MF->push_back(BB);
373 
374   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
375   const Align MaxAlign = MCP->getConstantPoolAlign();
376 
377   // Mark the basic block as required by the const-pool.
378   BB->setAlignment(Align(2));
379 
380   // The function needs to be as aligned as the basic blocks. The linker may
381   // move functions around based on their alignment.
382   MF->ensureAlignment(BB->getAlignment());
383 
384   // Order the entries in BB by descending alignment.  That ensures correct
385   // alignment of all entries as long as BB is sufficiently aligned.  Keep
386   // track of the insertion point for each alignment.  We are going to bucket
387   // sort the entries as they are created.
388   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
389                                                        BB->end());
390 
391   // Add all of the constants from the constant pool to the end block, use an
392   // identity mapping of CPI's to CPE's.
393   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
394 
395   const DataLayout &TD = MF->getDataLayout();
396   for (unsigned I = 0, E = CPs.size(); I != E; ++I) {
397     unsigned Size = CPs[I].getSizeInBytes(TD);
398     assert(Size >= 4 && "Too small constant pool entry");
399     Align Alignment = CPs[I].getAlign();
400     // Verify that all constant pool entries are a multiple of their alignment.
401     // If not, we would have to pad them out so that instructions stay aligned.
402     assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
403 
404     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
405     unsigned LogAlign = Log2(Alignment);
406     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
407 
408     MachineInstr *CPEMI =
409         BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
410             .addImm(I)
411             .addConstantPoolIndex(I)
412             .addImm(Size);
413 
414     CPEMIs.push_back(CPEMI);
415 
416     // Ensure that future entries with higher alignment get inserted before
417     // CPEMI. This is bucket sort with iterators.
418     for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A)
419       if (InsPoint[A] == InsAt)
420         InsPoint[A] = CPEMI;
421     // Add a new CPEntry, but no corresponding CPUser yet.
422     CPEntries.emplace_back(1, CPEntry(CPEMI, I));
423     ++NumCPEs;
424     LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = "
425                       << Size << ", align = " << Alignment.value() << '\n');
426   }
427   LLVM_DEBUG(BB->dump());
428 }
429 
430 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
431 /// into the block immediately after it.
432 static bool bbHasFallthrough(MachineBasicBlock *MBB) {
433   // Get the next machine basic block in the function.
434   MachineFunction::iterator MBBI = MBB->getIterator();
435   // Can't fall off end of function.
436   if (std::next(MBBI) == MBB->getParent()->end())
437     return false;
438 
439   MachineBasicBlock *NextBB = &*std::next(MBBI);
440   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
441                                         E = MBB->succ_end();
442        I != E; ++I)
443     if (*I == NextBB)
444       return true;
445 
446   return false;
447 }
448 
449 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
450 /// look up the corresponding CPEntry.
451 CSKYConstantIslands::CPEntry *
452 CSKYConstantIslands::findConstPoolEntry(unsigned CPI,
453                                         const MachineInstr *CPEMI) {
454   std::vector<CPEntry> &CPEs = CPEntries[CPI];
455   // Number of entries per constpool index should be small, just do a
456   // linear search.
457   for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
458     if (CPEs[I].CPEMI == CPEMI)
459       return &CPEs[I];
460   }
461   return nullptr;
462 }
463 
464 /// getCPEAlign - Returns the required alignment of the constant pool entry
465 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
466 Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
467   assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY);
468 
469   unsigned CPI = CPEMI.getOperand(1).getIndex();
470   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
471   return MCP->getConstants()[CPI].getAlign();
472 }
473 
474 /// initializeFunctionInfo - Do the initial scan of the function, building up
475 /// information about the sizes of each block, the location of all the water,
476 /// and finding all of the constant pool users.
477 void CSKYConstantIslands::initializeFunctionInfo(
478     const std::vector<MachineInstr *> &CPEMIs) {
479   BBInfo.clear();
480   BBInfo.resize(MF->getNumBlockIDs());
481 
482   // First thing, compute the size of all basic blocks, and see if the function
483   // has any inline assembly in it. If so, we have to be conservative about
484   // alignment assumptions, as we don't know for sure the size of any
485   // instructions in the inline assembly.
486   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
487     computeBlockSize(&*I);
488 
489   // Compute block offsets.
490   adjustBBOffsetsAfter(&MF->front());
491 
492   // Now go back through the instructions and build up our data structures.
493   for (MachineBasicBlock &MBB : *MF) {
494     // If this block doesn't fall through into the next MBB, then this is
495     // 'water' that a constant pool island could be placed.
496     if (!bbHasFallthrough(&MBB))
497       WaterList.push_back(&MBB);
498     for (MachineInstr &MI : MBB) {
499       if (MI.isDebugInstr())
500         continue;
501 
502       int Opc = MI.getOpcode();
503       if (MI.isBranch() && !MI.isIndirectBranch()) {
504         bool IsCond = MI.isConditionalBranch();
505         unsigned Bits = 0;
506         unsigned Scale = 1;
507         int UOpc = CSKY::BR32;
508 
509         switch (MI.getOpcode()) {
510         case CSKY::BR16:
511         case CSKY::BF16:
512         case CSKY::BT16:
513           Bits = 10;
514           Scale = 2;
515           break;
516         default:
517           Bits = 16;
518           Scale = 2;
519           break;
520         }
521 
522         // Record this immediate branch.
523         unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
524         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc));
525       }
526 
527       if (Opc == CSKY::CONSTPOOL_ENTRY)
528         continue;
529 
530       // Scan the instructions for constant pool operands.
531       for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op)
532         if (MI.getOperand(Op).isCPI()) {
533           // We found one.  The addressing mode tells us the max displacement
534           // from the PC that this instruction permits.
535 
536           // Basic size info comes from the TSFlags field.
537           unsigned Bits = 0;
538           unsigned Scale = 1;
539           bool NegOk = false;
540 
541           switch (Opc) {
542           default:
543             llvm_unreachable("Unknown addressing mode for CP reference!");
544           case CSKY::MOVIH32:
545           case CSKY::ORI32:
546             continue;
547           case CSKY::PseudoTLSLA32:
548           case CSKY::JSRI32:
549           case CSKY::JMPI32:
550           case CSKY::LRW32:
551           case CSKY::LRW32_Gen:
552             Bits = 16;
553             Scale = 4;
554             break;
555           case CSKY::f2FLRW_S:
556           case CSKY::f2FLRW_D:
557             Bits = 8;
558             Scale = 4;
559             break;
560           case CSKY::GRS32:
561             Bits = 17;
562             Scale = 2;
563             NegOk = true;
564             break;
565           }
566           // Remember that this is a user of a CP entry.
567           unsigned CPI = MI.getOperand(Op).getIndex();
568           MachineInstr *CPEMI = CPEMIs[CPI];
569           unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
570           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk));
571 
572           // Increment corresponding CPEntry reference count.
573           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
574           assert(CPE && "Cannot find a corresponding CPEntry!");
575           CPE->RefCount++;
576         }
577     }
578   }
579 }
580 
581 /// computeBlockSize - Compute the size and some alignment information for MBB.
582 /// This function updates BBInfo directly.
583 void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
584   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
585   BBI.Size = 0;
586 
587   for (const MachineInstr &MI : *MBB)
588     BBI.Size += TII->getInstSizeInBytes(MI);
589 }
590 
591 /// getOffsetOf - Return the current offset of the specified machine instruction
592 /// from the start of the function.  This offset changes as stuff is moved
593 /// around inside the function.
594 unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const {
595   MachineBasicBlock *MBB = MI->getParent();
596 
597   // The offset is composed of two things: the sum of the sizes of all MBB's
598   // before this instruction's block, and the offset from the start of the block
599   // it is in.
600   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
601 
602   // Sum instructions before MI in MBB.
603   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
604     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
605     Offset += TII->getInstSizeInBytes(*I);
606   }
607   return Offset;
608 }
609 
610 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
611 /// ID.
612 static bool compareMbbNumbers(const MachineBasicBlock *LHS,
613                               const MachineBasicBlock *RHS) {
614   return LHS->getNumber() < RHS->getNumber();
615 }
616 
617 /// updateForInsertedWaterBlock - When a block is newly inserted into the
618 /// machine function, it upsets all of the block numbers.  Renumber the blocks
619 /// and update the arrays that parallel this numbering.
620 void CSKYConstantIslands::updateForInsertedWaterBlock(
621     MachineBasicBlock *NewBB) {
622   // Renumber the MBB's to keep them consecutive.
623   NewBB->getParent()->RenumberBlocks(NewBB);
624 
625   // Insert an entry into BBInfo to align it properly with the (newly
626   // renumbered) block numbers.
627   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
628 
629   // Next, update WaterList.  Specifically, we need to add NewMBB as having
630   // available water after it.
631   water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers);
632   WaterList.insert(IP, NewBB);
633 }
634 
635 unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const {
636   unsigned UserOffset = getOffsetOf(U.MI);
637 
638   UserOffset &= ~3u;
639 
640   return UserOffset;
641 }
642 
643 /// Split the basic block containing MI into two blocks, which are joined by
644 /// an unconditional branch.  Update data structures and renumber blocks to
645 /// account for this change and returns the newly created block.
646 MachineBasicBlock *
647 CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
648   MachineBasicBlock *OrigBB = MI.getParent();
649 
650   // Create a new MBB for the code after the OrigBB.
651   MachineBasicBlock *NewBB =
652       MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
653   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
654   MF->insert(MBBI, NewBB);
655 
656   // Splice the instructions starting with MI over to NewBB.
657   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
658 
659   // Add an unconditional branch from OrigBB to NewBB.
660   // Note the new unconditional branch is not being recorded.
661   // There doesn't seem to be meaningful DebugInfo available; this doesn't
662   // correspond to anything in the source.
663 
664   // TODO: Add support for 16bit instr.
665   BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB);
666   ++NumSplit;
667 
668   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
669   NewBB->transferSuccessors(OrigBB);
670 
671   // OrigBB branches to NewBB.
672   OrigBB->addSuccessor(NewBB);
673 
674   // Update internal data structures to account for the newly inserted MBB.
675   // This is almost the same as updateForInsertedWaterBlock, except that
676   // the Water goes after OrigBB, not NewBB.
677   MF->RenumberBlocks(NewBB);
678 
679   // Insert an entry into BBInfo to align it properly with the (newly
680   // renumbered) block numbers.
681   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
682 
683   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
684   // available water after it (but not if it's already there, which happens
685   // when splitting before a conditional branch that is followed by an
686   // unconditional branch - in that case we want to insert NewBB).
687   water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers);
688   MachineBasicBlock *WaterBB = *IP;
689   if (WaterBB == OrigBB)
690     WaterList.insert(std::next(IP), NewBB);
691   else
692     WaterList.insert(IP, OrigBB);
693   NewWaterList.insert(OrigBB);
694 
695   // Figure out how large the OrigBB is.  As the first half of the original
696   // block, it cannot contain a tablejump.  The size includes
697   // the new jump we added.  (It should be possible to do this without
698   // recounting everything, but it's very confusing, and this is rarely
699   // executed.)
700   computeBlockSize(OrigBB);
701 
702   // Figure out how large the NewMBB is.  As the second half of the original
703   // block, it may contain a tablejump.
704   computeBlockSize(NewBB);
705 
706   // All BBOffsets following these blocks must be modified.
707   adjustBBOffsetsAfter(OrigBB);
708 
709   return NewBB;
710 }
711 
712 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
713 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
714 /// constant pool entry).
715 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
716                                           unsigned TrialOffset,
717                                           unsigned MaxDisp, bool NegativeOK) {
718   if (UserOffset <= TrialOffset) {
719     // User before the Trial.
720     if (TrialOffset - UserOffset <= MaxDisp)
721       return true;
722   } else if (NegativeOK) {
723     if (UserOffset - TrialOffset <= MaxDisp)
724       return true;
725   }
726   return false;
727 }
728 
729 /// isWaterInRange - Returns true if a CPE placed after the specified
730 /// Water (a basic block) will be in range for the specific MI.
731 ///
732 /// Compute how much the function will grow by inserting a CPE after Water.
733 bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset,
734                                          MachineBasicBlock *Water, CPUser &U,
735                                          unsigned &Growth) {
736   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
737   unsigned NextBlockOffset;
738   Align NextBlockAlignment;
739   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
740   if (NextBlock == MF->end()) {
741     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
742     NextBlockAlignment = Align(4);
743   } else {
744     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
745     NextBlockAlignment = NextBlock->getAlignment();
746   }
747   unsigned Size = U.CPEMI->getOperand(2).getImm();
748   unsigned CPEEnd = CPEOffset + Size;
749 
750   // The CPE may be able to hide in the alignment padding before the next
751   // block. It may also cause more padding to be required if it is more aligned
752   // that the next block.
753   if (CPEEnd > NextBlockOffset) {
754     Growth = CPEEnd - NextBlockOffset;
755     // Compute the padding that would go at the end of the CPE to align the next
756     // block.
757     Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
758 
759     // If the CPE is to be inserted before the instruction, that will raise
760     // the offset of the instruction. Also account for unknown alignment padding
761     // in blocks between CPE and the user.
762     if (CPEOffset < UserOffset)
763       UserOffset += Growth;
764   } else
765     // CPE fits in existing padding.
766     Growth = 0;
767 
768   return isOffsetInRange(UserOffset, CPEOffset, U);
769 }
770 
771 /// isCPEntryInRange - Returns true if the distance between specific MI and
772 /// specific ConstPool entry instruction can fit in MI's displacement field.
773 bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI,
774                                            unsigned UserOffset,
775                                            MachineInstr *CPEMI,
776                                            unsigned MaxDisp, bool NegOk,
777                                            bool DoDump) {
778   unsigned CPEOffset = getOffsetOf(CPEMI);
779 
780   if (DoDump) {
781     LLVM_DEBUG({
782       unsigned Block = MI->getParent()->getNumber();
783       const BasicBlockInfo &BBI = BBInfo[Block];
784       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
785              << " max delta=" << MaxDisp
786              << format(" insn address=%#x", UserOffset) << " in "
787              << printMBBReference(*MI->getParent()) << ": "
788              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
789              << format("CPE address=%#x offset=%+d: ", CPEOffset,
790                        int(CPEOffset - UserOffset));
791     });
792   }
793 
794   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
795 }
796 
797 #ifndef NDEBUG
798 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
799 /// unconditionally branches to its only successor.
800 static bool bbIsJumpedOver(MachineBasicBlock *MBB) {
801   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
802     return false;
803   MachineBasicBlock *Succ = *MBB->succ_begin();
804   MachineBasicBlock *Pred = *MBB->pred_begin();
805   MachineInstr *PredMI = &Pred->back();
806   if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */)
807     return PredMI->getOperand(0).getMBB() == Succ;
808   return false;
809 }
810 #endif
811 
812 void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
813   unsigned BBNum = BB->getNumber();
814   for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) {
815     // Get the offset and known bits at the end of the layout predecessor.
816     // Include the alignment of the current block.
817     unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size;
818     BBInfo[I].Offset = Offset;
819   }
820 }
821 
822 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
823 /// and instruction CPEMI, and decrement its refcount.  If the refcount
824 /// becomes 0 remove the entry and instruction.  Returns true if we removed
825 /// the entry, false if we didn't.
826 bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI,
827                                                      MachineInstr *CPEMI) {
828   // Find the old entry. Eliminate it if it is no longer used.
829   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
830   assert(CPE && "Unexpected!");
831   if (--CPE->RefCount == 0) {
832     removeDeadCPEMI(CPEMI);
833     CPE->CPEMI = nullptr;
834     --NumCPEs;
835     return true;
836   }
837   return false;
838 }
839 
840 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
841 /// if not, see if an in-range clone of the CPE is in range, and if so,
842 /// change the data structures so the user references the clone.  Returns:
843 /// 0 = no existing entry found
844 /// 1 = entry found, and there were no code insertions or deletions
845 /// 2 = entry found, and there were code insertions or deletions
846 int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) {
847   MachineInstr *UserMI = U.MI;
848   MachineInstr *CPEMI = U.CPEMI;
849 
850   // Check to see if the CPE is already in-range.
851   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
852                        true)) {
853     LLVM_DEBUG(dbgs() << "In range\n");
854     return 1;
855   }
856 
857   // No.  Look for previously created clones of the CPE that are in range.
858   unsigned CPI = CPEMI->getOperand(1).getIndex();
859   std::vector<CPEntry> &CPEs = CPEntries[CPI];
860   for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
861     // We already tried this one
862     if (CPEs[I].CPEMI == CPEMI)
863       continue;
864     // Removing CPEs can leave empty entries, skip
865     if (CPEs[I].CPEMI == nullptr)
866       continue;
867     if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(),
868                          U.NegOk)) {
869       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
870                         << CPEs[I].CPI << "\n");
871       // Point the CPUser node to the replacement
872       U.CPEMI = CPEs[I].CPEMI;
873       // Change the CPI in the instruction operand to refer to the clone.
874       for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J)
875         if (UserMI->getOperand(J).isCPI()) {
876           UserMI->getOperand(J).setIndex(CPEs[I].CPI);
877           break;
878         }
879       // Adjust the refcount of the clone...
880       CPEs[I].RefCount++;
881       // ...and the original.  If we didn't remove the old entry, none of the
882       // addresses changed, so we don't need another pass.
883       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
884     }
885   }
886   return 0;
887 }
888 
889 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
890 /// the specific unconditional branch instruction.
891 static inline unsigned getUnconditionalBrDisp(int Opc) {
892   unsigned Bits, Scale;
893 
894   switch (Opc) {
895   case CSKY::BR16:
896     Bits = 10;
897     Scale = 2;
898     break;
899   case CSKY::BR32:
900     Bits = 16;
901     Scale = 2;
902     break;
903   default:
904     llvm_unreachable("");
905   }
906 
907   unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
908   return MaxOffs;
909 }
910 
911 /// findAvailableWater - Look for an existing entry in the WaterList in which
912 /// we can place the CPE referenced from U so it's within range of U's MI.
913 /// Returns true if found, false if not.  If it returns true, WaterIter
914 /// is set to the WaterList entry.
915 /// To ensure that this pass
916 /// terminates, the CPE location for a particular CPUser is only allowed to
917 /// move to a lower address, so search backward from the end of the list and
918 /// prefer the first water that is in range.
919 bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
920                                              water_iterator &WaterIter) {
921   if (WaterList.empty())
922     return false;
923 
924   unsigned BestGrowth = ~0u;
925   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
926        --IP) {
927     MachineBasicBlock *WaterBB = *IP;
928     // Check if water is in range and is either at a lower address than the
929     // current "high water mark" or a new water block that was created since
930     // the previous iteration by inserting an unconditional branch.  In the
931     // latter case, we want to allow resetting the high water mark back to
932     // this new water since we haven't seen it before.  Inserting branches
933     // should be relatively uncommon and when it does happen, we want to be
934     // sure to take advantage of it for all the CPEs near that block, so that
935     // we don't insert more branches than necessary.
936     unsigned Growth;
937     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
938         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
939          NewWaterList.count(WaterBB)) &&
940         Growth < BestGrowth) {
941       // This is the least amount of required padding seen so far.
942       BestGrowth = Growth;
943       WaterIter = IP;
944       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
945                         << " Growth=" << Growth << '\n');
946 
947       // Keep looking unless it is perfect.
948       if (BestGrowth == 0)
949         return true;
950     }
951     if (IP == B)
952       break;
953   }
954   return BestGrowth != ~0u;
955 }
956 
957 /// createNewWater - No existing WaterList entry will work for
958 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
959 /// block is used if in range, and the conditional branch munged so control
960 /// flow is correct.  Otherwise the block is split to create a hole with an
961 /// unconditional branch around it.  In either case NewMBB is set to a
962 /// block following which the new island can be inserted (the WaterList
963 /// is not adjusted).
964 void CSKYConstantIslands::createNewWater(unsigned CPUserIndex,
965                                          unsigned UserOffset,
966                                          MachineBasicBlock *&NewMBB) {
967   CPUser &U = CPUsers[CPUserIndex];
968   MachineInstr *UserMI = U.MI;
969   MachineInstr *CPEMI = U.CPEMI;
970   MachineBasicBlock *UserMBB = UserMI->getParent();
971   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
972 
973   // If the block does not end in an unconditional branch already, and if the
974   // end of the block is within range, make new water there.
975   if (bbHasFallthrough(UserMBB)) {
976     // Size of branch to insert.
977     unsigned Delta = 4;
978     // Compute the offset where the CPE will begin.
979     unsigned CPEOffset = UserBBI.postOffset() + Delta;
980 
981     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
982       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
983                         << format(", expected CPE offset %#x\n", CPEOffset));
984       NewMBB = &*++UserMBB->getIterator();
985       // Add an unconditional branch from UserMBB to fallthrough block.  Record
986       // it for branch lengthening; this new branch will not get out of range,
987       // but if the preceding conditional branch is out of range, the targets
988       // will be exchanged, and the altered branch may be out of range, so the
989       // machinery has to know about it.
990 
991       // TODO: Add support for 16bit instr.
992       int UncondBr = CSKY::BR32;
993       auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
994                         .addMBB(NewMBB)
995                         .getInstr();
996       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
997       ImmBranches.push_back(
998           ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr));
999       BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI);
1000       adjustBBOffsetsAfter(UserMBB);
1001       return;
1002     }
1003   }
1004 
1005   // What a big block.  Find a place within the block to split it.
1006 
1007   // Try to split the block so it's fully aligned.  Compute the latest split
1008   // point where we can add a 4-byte branch instruction, and then align to
1009   // Align which is the largest possible alignment in the function.
1010   const Align Align = MF->getAlignment();
1011   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1012   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1013                               BaseInsertOffset));
1014 
1015   // The 4 in the following is for the unconditional branch we'll be inserting
1016   // Alignment of the island is handled
1017   // inside isOffsetInRange.
1018   BaseInsertOffset -= 4;
1019 
1020   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1021                     << " la=" << Log2(Align) << '\n');
1022 
1023   // This could point off the end of the block if we've already got constant
1024   // pool entries following this block; only the last one is in the water list.
1025   // Back past any possible branches (allow for a conditional and a maximally
1026   // long unconditional).
1027   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1028     BaseInsertOffset = UserBBI.postOffset() - 8;
1029     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1030   }
1031   unsigned EndInsertOffset =
1032       BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm();
1033   MachineBasicBlock::iterator MI = UserMI;
1034   ++MI;
1035   unsigned CPUIndex = CPUserIndex + 1;
1036   unsigned NumCPUsers = CPUsers.size();
1037   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1038        Offset < BaseInsertOffset;
1039        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1040     assert(MI != UserMBB->end() && "Fell off end of block");
1041     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1042       CPUser &U = CPUsers[CPUIndex];
1043       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1044         // Shift intertion point by one unit of alignment so it is within reach.
1045         BaseInsertOffset -= Align.value();
1046         EndInsertOffset -= Align.value();
1047       }
1048       // This is overly conservative, as we don't account for CPEMIs being
1049       // reused within the block, but it doesn't matter much.  Also assume CPEs
1050       // are added in order with alignment padding.  We may eventually be able
1051       // to pack the aligned CPEs better.
1052       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1053       CPUIndex++;
1054     }
1055   }
1056 
1057   NewMBB = splitBlockBeforeInstr(*--MI);
1058 }
1059 
1060 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1061 /// is out-of-range.  If so, pick up the constant pool value and move it some
1062 /// place in-range.  Return true if we changed any addresses (thus must run
1063 /// another pass of branch lengthening), false otherwise.
1064 bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1065   CPUser &U = CPUsers[CPUserIndex];
1066   MachineInstr *UserMI = U.MI;
1067   MachineInstr *CPEMI = U.CPEMI;
1068   unsigned CPI = CPEMI->getOperand(1).getIndex();
1069   unsigned Size = CPEMI->getOperand(2).getImm();
1070   // Compute this only once, it's expensive.
1071   unsigned UserOffset = getUserOffset(U);
1072 
1073   // See if the current entry is within range, or there is a clone of it
1074   // in range.
1075   int result = findInRangeCPEntry(U, UserOffset);
1076   if (result == 1)
1077     return false;
1078   if (result == 2)
1079     return true;
1080 
1081   // Look for water where we can place this CPE.
1082   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1083   MachineBasicBlock *NewMBB;
1084   water_iterator IP;
1085   if (findAvailableWater(U, UserOffset, IP)) {
1086     LLVM_DEBUG(dbgs() << "Found water in range\n");
1087     MachineBasicBlock *WaterBB = *IP;
1088 
1089     // If the original WaterList entry was "new water" on this iteration,
1090     // propagate that to the new island.  This is just keeping NewWaterList
1091     // updated to match the WaterList, which will be updated below.
1092     if (NewWaterList.erase(WaterBB))
1093       NewWaterList.insert(NewIsland);
1094 
1095     // The new CPE goes before the following block (NewMBB).
1096     NewMBB = &*++WaterBB->getIterator();
1097   } else {
1098     LLVM_DEBUG(dbgs() << "No water found\n");
1099     createNewWater(CPUserIndex, UserOffset, NewMBB);
1100 
1101     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1102     // called while handling branches so that the water will be seen on the
1103     // next iteration for constant pools, but in this context, we don't want
1104     // it.  Check for this so it will be removed from the WaterList.
1105     // Also remove any entry from NewWaterList.
1106     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1107     IP = llvm::find(WaterList, WaterBB);
1108     if (IP != WaterList.end())
1109       NewWaterList.erase(WaterBB);
1110 
1111     // We are adding new water.  Update NewWaterList.
1112     NewWaterList.insert(NewIsland);
1113   }
1114 
1115   // Remove the original WaterList entry; we want subsequent insertions in
1116   // this vicinity to go after the one we're about to insert.  This
1117   // considerably reduces the number of times we have to move the same CPE
1118   // more than once and is also important to ensure the algorithm terminates.
1119   if (IP != WaterList.end())
1120     WaterList.erase(IP);
1121 
1122   // Okay, we know we can put an island before NewMBB now, do it!
1123   MF->insert(NewMBB->getIterator(), NewIsland);
1124 
1125   // Update internal data structures to account for the newly inserted MBB.
1126   updateForInsertedWaterBlock(NewIsland);
1127 
1128   // Decrement the old entry, and remove it if refcount becomes 0.
1129   decrementCPEReferenceCount(CPI, CPEMI);
1130 
1131   // No existing clone of this CPE is within range.
1132   // We will be generating a new clone.  Get a UID for it.
1133   unsigned ID = createPICLabelUId();
1134 
1135   // Now that we have an island to add the CPE to, clone the original CPE and
1136   // add it to the island.
1137   U.HighWaterMark = NewIsland;
1138   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
1139                 .addImm(ID)
1140                 .addConstantPoolIndex(CPI)
1141                 .addImm(Size);
1142   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1143   ++NumCPEs;
1144 
1145   // Mark the basic block as aligned as required by the const-pool entry.
1146   NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
1147 
1148   // Increase the size of the island block to account for the new entry.
1149   BBInfo[NewIsland->getNumber()].Size += Size;
1150   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1151 
1152   // Finally, change the CPI in the instruction operand to be ID.
1153   for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I)
1154     if (UserMI->getOperand(I).isCPI()) {
1155       UserMI->getOperand(I).setIndex(ID);
1156       break;
1157     }
1158 
1159   LLVM_DEBUG(
1160       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1161              << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1162 
1163   return true;
1164 }
1165 
1166 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1167 /// sizes and offsets of impacted basic blocks.
1168 void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1169   MachineBasicBlock *CPEBB = CPEMI->getParent();
1170   unsigned Size = CPEMI->getOperand(2).getImm();
1171   CPEMI->eraseFromParent();
1172   BBInfo[CPEBB->getNumber()].Size -= Size;
1173   // All succeeding offsets have the current size value added in, fix this.
1174   if (CPEBB->empty()) {
1175     BBInfo[CPEBB->getNumber()].Size = 0;
1176 
1177     // This block no longer needs to be aligned.
1178     CPEBB->setAlignment(Align(4));
1179   } else {
1180     // Entries are sorted by descending alignment, so realign from the front.
1181     CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
1182   }
1183 
1184   adjustBBOffsetsAfter(CPEBB);
1185   // An island has only one predecessor BB and one successor BB. Check if
1186   // this BB's predecessor jumps directly to this BB's successor. This
1187   // shouldn't happen currently.
1188   assert(!bbIsJumpedOver(CPEBB) && "How did this happen?");
1189   // FIXME: remove the empty blocks after all the work is done?
1190 }
1191 
1192 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1193 /// are zero.
1194 bool CSKYConstantIslands::removeUnusedCPEntries() {
1195   unsigned MadeChange = false;
1196   for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) {
1197     std::vector<CPEntry> &CPEs = CPEntries[I];
1198     for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) {
1199       if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) {
1200         removeDeadCPEMI(CPEs[J].CPEMI);
1201         CPEs[J].CPEMI = nullptr;
1202         MadeChange = true;
1203       }
1204     }
1205   }
1206   return MadeChange;
1207 }
1208 
1209 /// isBBInRange - Returns true if the distance between specific MI and
1210 /// specific BB can fit in MI's displacement field.
1211 bool CSKYConstantIslands::isBBInRange(MachineInstr *MI,
1212                                       MachineBasicBlock *DestBB,
1213                                       unsigned MaxDisp) {
1214   unsigned BrOffset = getOffsetOf(MI);
1215   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1216 
1217   LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1218                     << " from " << printMBBReference(*MI->getParent())
1219                     << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1220                     << " to " << DestOffset << " offset "
1221                     << int(DestOffset - BrOffset) << "\t" << *MI);
1222 
1223   if (BrOffset <= DestOffset) {
1224     // Branch before the Dest.
1225     if (DestOffset - BrOffset <= MaxDisp)
1226       return true;
1227   } else {
1228     if (BrOffset - DestOffset <= MaxDisp)
1229       return true;
1230   }
1231   return false;
1232 }
1233 
1234 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1235 /// away to fit in its displacement field.
1236 bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1237   MachineInstr *MI = Br.MI;
1238   MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
1239 
1240   // Check to see if the DestBB is already in-range.
1241   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1242     return false;
1243 
1244   if (!Br.IsCond)
1245     return fixupUnconditionalBr(Br);
1246   return fixupConditionalBr(Br);
1247 }
1248 
1249 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1250 /// too far away to fit in its displacement field. If the LR register has been
1251 /// spilled in the epilogue, then we can use BSR to implement a far jump.
1252 /// Otherwise, add an intermediate branch instruction to a branch.
1253 bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1254   MachineInstr *MI = Br.MI;
1255   MachineBasicBlock *MBB = MI->getParent();
1256 
1257   if (!MFI->isLRSpilled())
1258     report_fatal_error("underestimated function size");
1259 
1260   // Use BSR to implement far jump.
1261   Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2;
1262   MI->setDesc(TII->get(CSKY::BSR32_BR));
1263   BBInfo[MBB->getNumber()].Size += 4;
1264   adjustBBOffsetsAfter(MBB);
1265   ++NumUBrFixed;
1266 
1267   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1268 
1269   return true;
1270 }
1271 
1272 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1273 /// far away to fit in its displacement field. It is converted to an inverse
1274 /// conditional branch + an unconditional branch to the destination.
1275 bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1276   MachineInstr *MI = Br.MI;
1277   MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
1278 
1279   SmallVector<MachineOperand, 4> Cond;
1280   Cond.push_back(MachineOperand::CreateImm(MI->getOpcode()));
1281   Cond.push_back(MI->getOperand(0));
1282   TII->reverseBranchCondition(Cond);
1283 
1284   // Add an unconditional branch to the destination and invert the branch
1285   // condition to jump over it:
1286   // bteqz L1
1287   // =>
1288   // bnez L2
1289   // b   L1
1290   // L2:
1291 
1292   // If the branch is at the end of its MBB and that has a fall-through block,
1293   // direct the updated conditional branch to the fall-through block. Otherwise,
1294   // split the MBB before the next instruction.
1295   MachineBasicBlock *MBB = MI->getParent();
1296   MachineInstr *BMI = &MBB->back();
1297   bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB);
1298 
1299   ++NumCBrFixed;
1300   if (BMI != MI) {
1301     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1302         BMI->isUnconditionalBranch()) {
1303       // Last MI in the BB is an unconditional branch. Can we simply invert the
1304       // condition and swap destinations:
1305       // beqz L1
1306       // b   L2
1307       // =>
1308       // bnez L2
1309       // b   L1
1310       MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI);
1311       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1312         LLVM_DEBUG(
1313             dbgs() << "  Invert Bcc condition and swap its destination with "
1314                    << *BMI);
1315         BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB);
1316         MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest);
1317 
1318         MI->setDesc(TII->get(Cond[0].getImm()));
1319         return true;
1320       }
1321     }
1322   }
1323 
1324   if (NeedSplit) {
1325     splitBlockBeforeInstr(*MI);
1326     // No need for the branch to the next block. We're adding an unconditional
1327     // branch to the destination.
1328     int Delta = TII->getInstSizeInBytes(MBB->back());
1329     BBInfo[MBB->getNumber()].Size -= Delta;
1330     MBB->back().eraseFromParent();
1331     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1332 
1333     // The conditional successor will be swapped between the BBs after this, so
1334     // update CFG.
1335     MBB->addSuccessor(DestBB);
1336     std::next(MBB->getIterator())->removeSuccessor(DestBB);
1337   }
1338   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1339 
1340   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1341                     << " also invert condition and change dest. to "
1342                     << printMBBReference(*NextBB) << "\n");
1343 
1344   // Insert a new conditional branch and a new unconditional branch.
1345   // Also update the ImmBranch as well as adding a new entry for the new branch.
1346 
1347   BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm()))
1348       .addReg(MI->getOperand(0).getReg())
1349       .addMBB(NextBB);
1350 
1351   Br.MI = &MBB->back();
1352   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1353   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1354   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1355   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1356   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1357 
1358   // Remove the old conditional branch.  It may or may not still be in MBB.
1359   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1360   MI->eraseFromParent();
1361   adjustBBOffsetsAfter(MBB);
1362   return true;
1363 }
1364 
1365 /// Returns a pass that converts branches to long branches.
1366 FunctionPass *llvm::createCSKYConstantIslandPass() {
1367   return new CSKYConstantIslands();
1368 }
1369 
1370 INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE,
1371                 "CSKY constant island placement and branch shortening pass",
1372                 false, false)
1373