1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 26 using namespace llvm; 27 28 static const char *BTFKindStr[] = { 29 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 30 #include "BTF.def" 31 }; 32 33 /// Emit a BTF common type. 34 void BTFTypeBase::emitType(MCStreamer &OS) { 35 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 36 ")"); 37 OS.EmitIntValue(BTFType.NameOff, 4); 38 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 39 OS.EmitIntValue(BTFType.Info, 4); 40 OS.EmitIntValue(BTFType.Size, 4); 41 } 42 43 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 44 bool NeedsFixup) 45 : DTy(DTy), NeedsFixup(NeedsFixup) { 46 switch (Tag) { 47 case dwarf::DW_TAG_pointer_type: 48 Kind = BTF::BTF_KIND_PTR; 49 break; 50 case dwarf::DW_TAG_const_type: 51 Kind = BTF::BTF_KIND_CONST; 52 break; 53 case dwarf::DW_TAG_volatile_type: 54 Kind = BTF::BTF_KIND_VOLATILE; 55 break; 56 case dwarf::DW_TAG_typedef: 57 Kind = BTF::BTF_KIND_TYPEDEF; 58 break; 59 case dwarf::DW_TAG_restrict_type: 60 Kind = BTF::BTF_KIND_RESTRICT; 61 break; 62 default: 63 llvm_unreachable("Unknown DIDerivedType Tag"); 64 } 65 BTFType.Info = Kind << 24; 66 } 67 68 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 69 if (IsCompleted) 70 return; 71 IsCompleted = true; 72 73 BTFType.NameOff = BDebug.addString(DTy->getName()); 74 75 if (NeedsFixup) 76 return; 77 78 // The base type for PTR/CONST/VOLATILE could be void. 79 const DIType *ResolvedType = DTy->getBaseType(); 80 if (!ResolvedType) { 81 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 82 Kind == BTF::BTF_KIND_VOLATILE) && 83 "Invalid null basetype"); 84 BTFType.Type = 0; 85 } else { 86 BTFType.Type = BDebug.getTypeId(ResolvedType); 87 } 88 } 89 90 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 91 92 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 93 BTFType.Type = PointeeType; 94 } 95 96 /// Represent a struct/union forward declaration. 97 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 98 Kind = BTF::BTF_KIND_FWD; 99 BTFType.Info = IsUnion << 31 | Kind << 24; 100 BTFType.Type = 0; 101 } 102 103 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 104 if (IsCompleted) 105 return; 106 IsCompleted = true; 107 108 BTFType.NameOff = BDebug.addString(Name); 109 } 110 111 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 112 113 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 114 uint32_t OffsetInBits, StringRef TypeName) 115 : Name(TypeName) { 116 // Translate IR int encoding to BTF int encoding. 117 uint8_t BTFEncoding; 118 switch (Encoding) { 119 case dwarf::DW_ATE_boolean: 120 BTFEncoding = BTF::INT_BOOL; 121 break; 122 case dwarf::DW_ATE_signed: 123 case dwarf::DW_ATE_signed_char: 124 BTFEncoding = BTF::INT_SIGNED; 125 break; 126 case dwarf::DW_ATE_unsigned: 127 case dwarf::DW_ATE_unsigned_char: 128 BTFEncoding = 0; 129 break; 130 default: 131 llvm_unreachable("Unknown BTFTypeInt Encoding"); 132 } 133 134 Kind = BTF::BTF_KIND_INT; 135 BTFType.Info = Kind << 24; 136 BTFType.Size = roundupToBytes(SizeInBits); 137 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 138 } 139 140 void BTFTypeInt::completeType(BTFDebug &BDebug) { 141 if (IsCompleted) 142 return; 143 IsCompleted = true; 144 145 BTFType.NameOff = BDebug.addString(Name); 146 } 147 148 void BTFTypeInt::emitType(MCStreamer &OS) { 149 BTFTypeBase::emitType(OS); 150 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 151 OS.EmitIntValue(IntVal, 4); 152 } 153 154 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 155 Kind = BTF::BTF_KIND_ENUM; 156 BTFType.Info = Kind << 24 | VLen; 157 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 158 } 159 160 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 161 if (IsCompleted) 162 return; 163 IsCompleted = true; 164 165 BTFType.NameOff = BDebug.addString(ETy->getName()); 166 167 DINodeArray Elements = ETy->getElements(); 168 for (const auto Element : Elements) { 169 const auto *Enum = cast<DIEnumerator>(Element); 170 171 struct BTF::BTFEnum BTFEnum; 172 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 173 // BTF enum value is 32bit, enforce it. 174 BTFEnum.Val = static_cast<uint32_t>(Enum->getValue()); 175 EnumValues.push_back(BTFEnum); 176 } 177 } 178 179 void BTFTypeEnum::emitType(MCStreamer &OS) { 180 BTFTypeBase::emitType(OS); 181 for (const auto &Enum : EnumValues) { 182 OS.EmitIntValue(Enum.NameOff, 4); 183 OS.EmitIntValue(Enum.Val, 4); 184 } 185 } 186 187 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 188 Kind = BTF::BTF_KIND_ARRAY; 189 BTFType.NameOff = 0; 190 BTFType.Info = Kind << 24; 191 BTFType.Size = 0; 192 193 ArrayInfo.ElemType = ElemTypeId; 194 ArrayInfo.Nelems = NumElems; 195 } 196 197 /// Represent a BTF array. 198 void BTFTypeArray::completeType(BTFDebug &BDebug) { 199 if (IsCompleted) 200 return; 201 IsCompleted = true; 202 203 // The IR does not really have a type for the index. 204 // A special type for array index should have been 205 // created during initial type traversal. Just 206 // retrieve that type id. 207 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 208 } 209 210 void BTFTypeArray::emitType(MCStreamer &OS) { 211 BTFTypeBase::emitType(OS); 212 OS.EmitIntValue(ArrayInfo.ElemType, 4); 213 OS.EmitIntValue(ArrayInfo.IndexType, 4); 214 OS.EmitIntValue(ArrayInfo.Nelems, 4); 215 } 216 217 /// Represent either a struct or a union. 218 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 219 bool HasBitField, uint32_t Vlen) 220 : STy(STy), HasBitField(HasBitField) { 221 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 222 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 223 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 224 } 225 226 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 227 if (IsCompleted) 228 return; 229 IsCompleted = true; 230 231 BTFType.NameOff = BDebug.addString(STy->getName()); 232 233 // Add struct/union members. 234 const DINodeArray Elements = STy->getElements(); 235 for (const auto *Element : Elements) { 236 struct BTF::BTFMember BTFMember; 237 const auto *DDTy = cast<DIDerivedType>(Element); 238 239 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 240 if (HasBitField) { 241 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 242 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 243 } else { 244 BTFMember.Offset = DDTy->getOffsetInBits(); 245 } 246 const auto *BaseTy = DDTy->getBaseType(); 247 BTFMember.Type = BDebug.getTypeId(BaseTy); 248 Members.push_back(BTFMember); 249 } 250 } 251 252 void BTFTypeStruct::emitType(MCStreamer &OS) { 253 BTFTypeBase::emitType(OS); 254 for (const auto &Member : Members) { 255 OS.EmitIntValue(Member.NameOff, 4); 256 OS.EmitIntValue(Member.Type, 4); 257 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 258 OS.EmitIntValue(Member.Offset, 4); 259 } 260 } 261 262 std::string BTFTypeStruct::getName() { return STy->getName(); } 263 264 /// The Func kind represents both subprogram and pointee of function 265 /// pointers. If the FuncName is empty, it represents a pointee of function 266 /// pointer. Otherwise, it represents a subprogram. The func arg names 267 /// are empty for pointee of function pointer case, and are valid names 268 /// for subprogram. 269 BTFTypeFuncProto::BTFTypeFuncProto( 270 const DISubroutineType *STy, uint32_t VLen, 271 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 272 : STy(STy), FuncArgNames(FuncArgNames) { 273 Kind = BTF::BTF_KIND_FUNC_PROTO; 274 BTFType.Info = (Kind << 24) | VLen; 275 } 276 277 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 278 if (IsCompleted) 279 return; 280 IsCompleted = true; 281 282 DITypeRefArray Elements = STy->getTypeArray(); 283 auto RetType = Elements[0]; 284 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 285 BTFType.NameOff = 0; 286 287 // For null parameter which is typically the last one 288 // to represent the vararg, encode the NameOff/Type to be 0. 289 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 290 struct BTF::BTFParam Param; 291 auto Element = Elements[I]; 292 if (Element) { 293 Param.NameOff = BDebug.addString(FuncArgNames[I]); 294 Param.Type = BDebug.getTypeId(Element); 295 } else { 296 Param.NameOff = 0; 297 Param.Type = 0; 298 } 299 Parameters.push_back(Param); 300 } 301 } 302 303 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 304 BTFTypeBase::emitType(OS); 305 for (const auto &Param : Parameters) { 306 OS.EmitIntValue(Param.NameOff, 4); 307 OS.EmitIntValue(Param.Type, 4); 308 } 309 } 310 311 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 312 uint32_t Scope) 313 : Name(FuncName) { 314 Kind = BTF::BTF_KIND_FUNC; 315 BTFType.Info = (Kind << 24) | Scope; 316 BTFType.Type = ProtoTypeId; 317 } 318 319 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 320 if (IsCompleted) 321 return; 322 IsCompleted = true; 323 324 BTFType.NameOff = BDebug.addString(Name); 325 } 326 327 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 328 329 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 330 : Name(VarName) { 331 Kind = BTF::BTF_KIND_VAR; 332 BTFType.Info = Kind << 24; 333 BTFType.Type = TypeId; 334 Info = VarInfo; 335 } 336 337 void BTFKindVar::completeType(BTFDebug &BDebug) { 338 BTFType.NameOff = BDebug.addString(Name); 339 } 340 341 void BTFKindVar::emitType(MCStreamer &OS) { 342 BTFTypeBase::emitType(OS); 343 OS.EmitIntValue(Info, 4); 344 } 345 346 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 347 : Asm(AsmPrt), Name(SecName) { 348 Kind = BTF::BTF_KIND_DATASEC; 349 BTFType.Info = Kind << 24; 350 BTFType.Size = 0; 351 } 352 353 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 354 BTFType.NameOff = BDebug.addString(Name); 355 BTFType.Info |= Vars.size(); 356 } 357 358 void BTFKindDataSec::emitType(MCStreamer &OS) { 359 BTFTypeBase::emitType(OS); 360 361 for (const auto &V : Vars) { 362 OS.EmitIntValue(std::get<0>(V), 4); 363 Asm->EmitLabelReference(std::get<1>(V), 4); 364 OS.EmitIntValue(std::get<2>(V), 4); 365 } 366 } 367 368 uint32_t BTFStringTable::addString(StringRef S) { 369 // Check whether the string already exists. 370 for (auto &OffsetM : OffsetToIdMap) { 371 if (Table[OffsetM.second] == S) 372 return OffsetM.first; 373 } 374 // Not find, add to the string table. 375 uint32_t Offset = Size; 376 OffsetToIdMap[Offset] = Table.size(); 377 Table.push_back(S); 378 Size += S.size() + 1; 379 return Offset; 380 } 381 382 BTFDebug::BTFDebug(AsmPrinter *AP) 383 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 384 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 385 MapDefNotCollected(true) { 386 addString("\0"); 387 } 388 389 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 390 const DIType *Ty) { 391 TypeEntry->setId(TypeEntries.size() + 1); 392 uint32_t Id = TypeEntry->getId(); 393 DIToIdMap[Ty] = Id; 394 TypeEntries.push_back(std::move(TypeEntry)); 395 return Id; 396 } 397 398 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 399 TypeEntry->setId(TypeEntries.size() + 1); 400 uint32_t Id = TypeEntry->getId(); 401 TypeEntries.push_back(std::move(TypeEntry)); 402 return Id; 403 } 404 405 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 406 // Only int types are supported in BTF. 407 uint32_t Encoding = BTy->getEncoding(); 408 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed && 409 Encoding != dwarf::DW_ATE_signed_char && 410 Encoding != dwarf::DW_ATE_unsigned && 411 Encoding != dwarf::DW_ATE_unsigned_char) 412 return; 413 414 // Create a BTF type instance for this DIBasicType and put it into 415 // DIToIdMap for cross-type reference check. 416 auto TypeEntry = std::make_unique<BTFTypeInt>( 417 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 418 TypeId = addType(std::move(TypeEntry), BTy); 419 } 420 421 /// Handle subprogram or subroutine types. 422 void BTFDebug::visitSubroutineType( 423 const DISubroutineType *STy, bool ForSubprog, 424 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 425 uint32_t &TypeId) { 426 DITypeRefArray Elements = STy->getTypeArray(); 427 uint32_t VLen = Elements.size() - 1; 428 if (VLen > BTF::MAX_VLEN) 429 return; 430 431 // Subprogram has a valid non-zero-length name, and the pointee of 432 // a function pointer has an empty name. The subprogram type will 433 // not be added to DIToIdMap as it should not be referenced by 434 // any other types. 435 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 436 if (ForSubprog) 437 TypeId = addType(std::move(TypeEntry)); // For subprogram 438 else 439 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 440 441 // Visit return type and func arg types. 442 for (const auto Element : Elements) { 443 visitTypeEntry(Element); 444 } 445 } 446 447 /// Handle structure/union types. 448 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 449 uint32_t &TypeId) { 450 const DINodeArray Elements = CTy->getElements(); 451 uint32_t VLen = Elements.size(); 452 if (VLen > BTF::MAX_VLEN) 453 return; 454 455 // Check whether we have any bitfield members or not 456 bool HasBitField = false; 457 for (const auto *Element : Elements) { 458 auto E = cast<DIDerivedType>(Element); 459 if (E->isBitField()) { 460 HasBitField = true; 461 break; 462 } 463 } 464 465 auto TypeEntry = 466 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 467 StructTypes.push_back(TypeEntry.get()); 468 TypeId = addType(std::move(TypeEntry), CTy); 469 470 // Visit all struct members. 471 for (const auto *Element : Elements) 472 visitTypeEntry(cast<DIDerivedType>(Element)); 473 } 474 475 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 476 // Visit array element type. 477 uint32_t ElemTypeId; 478 const DIType *ElemType = CTy->getBaseType(); 479 visitTypeEntry(ElemType, ElemTypeId, false, false); 480 481 // Visit array dimensions. 482 DINodeArray Elements = CTy->getElements(); 483 for (int I = Elements.size() - 1; I >= 0; --I) { 484 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 485 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 486 const DISubrange *SR = cast<DISubrange>(Element); 487 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 488 int64_t Count = CI->getSExtValue(); 489 490 // For struct s { int b; char c[]; }, the c[] will be represented 491 // as an array with Count = -1. 492 auto TypeEntry = 493 std::make_unique<BTFTypeArray>(ElemTypeId, 494 Count >= 0 ? Count : 0); 495 if (I == 0) 496 ElemTypeId = addType(std::move(TypeEntry), CTy); 497 else 498 ElemTypeId = addType(std::move(TypeEntry)); 499 } 500 } 501 502 // The array TypeId is the type id of the outermost dimension. 503 TypeId = ElemTypeId; 504 505 // The IR does not have a type for array index while BTF wants one. 506 // So create an array index type if there is none. 507 if (!ArrayIndexTypeId) { 508 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 509 0, "__ARRAY_SIZE_TYPE__"); 510 ArrayIndexTypeId = addType(std::move(TypeEntry)); 511 } 512 } 513 514 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 515 DINodeArray Elements = CTy->getElements(); 516 uint32_t VLen = Elements.size(); 517 if (VLen > BTF::MAX_VLEN) 518 return; 519 520 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 521 TypeId = addType(std::move(TypeEntry), CTy); 522 // No need to visit base type as BTF does not encode it. 523 } 524 525 /// Handle structure/union forward declarations. 526 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 527 uint32_t &TypeId) { 528 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 529 TypeId = addType(std::move(TypeEntry), CTy); 530 } 531 532 /// Handle structure, union, array and enumeration types. 533 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 534 uint32_t &TypeId) { 535 auto Tag = CTy->getTag(); 536 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 537 // Handle forward declaration differently as it does not have members. 538 if (CTy->isForwardDecl()) 539 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 540 else 541 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 542 } else if (Tag == dwarf::DW_TAG_array_type) 543 visitArrayType(CTy, TypeId); 544 else if (Tag == dwarf::DW_TAG_enumeration_type) 545 visitEnumType(CTy, TypeId); 546 } 547 548 /// Handle pointer, typedef, const, volatile, restrict and member types. 549 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 550 bool CheckPointer, bool SeenPointer) { 551 unsigned Tag = DTy->getTag(); 552 553 /// Try to avoid chasing pointees, esp. structure pointees which may 554 /// unnecessary bring in a lot of types. 555 if (CheckPointer && !SeenPointer) { 556 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 557 } 558 559 if (CheckPointer && SeenPointer) { 560 const DIType *Base = DTy->getBaseType(); 561 if (Base) { 562 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 563 auto CTag = CTy->getTag(); 564 if ((CTag == dwarf::DW_TAG_structure_type || 565 CTag == dwarf::DW_TAG_union_type) && 566 !CTy->isForwardDecl()) { 567 /// Find a candidate, generate a fixup. Later on the struct/union 568 /// pointee type will be replaced with either a real type or 569 /// a forward declaration. 570 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 571 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 572 Fixup.first = CTag == dwarf::DW_TAG_union_type; 573 Fixup.second.push_back(TypeEntry.get()); 574 TypeId = addType(std::move(TypeEntry), DTy); 575 return; 576 } 577 } 578 } 579 } 580 581 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 582 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 583 Tag == dwarf::DW_TAG_restrict_type) { 584 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 585 TypeId = addType(std::move(TypeEntry), DTy); 586 } else if (Tag != dwarf::DW_TAG_member) { 587 return; 588 } 589 590 // Visit base type of pointer, typedef, const, volatile, restrict or 591 // struct/union member. 592 uint32_t TempTypeId = 0; 593 if (Tag == dwarf::DW_TAG_member) 594 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 595 else 596 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 597 } 598 599 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 600 bool CheckPointer, bool SeenPointer) { 601 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 602 TypeId = DIToIdMap[Ty]; 603 return; 604 } 605 606 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 607 visitBasicType(BTy, TypeId); 608 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 609 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 610 TypeId); 611 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 612 visitCompositeType(CTy, TypeId); 613 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 614 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 615 else 616 llvm_unreachable("Unknown DIType"); 617 } 618 619 void BTFDebug::visitTypeEntry(const DIType *Ty) { 620 uint32_t TypeId; 621 visitTypeEntry(Ty, TypeId, false, false); 622 } 623 624 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 625 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 626 TypeId = DIToIdMap[Ty]; 627 return; 628 } 629 630 // MapDef type is a struct type 631 const auto *CTy = dyn_cast<DICompositeType>(Ty); 632 if (!CTy) 633 return; 634 635 auto Tag = CTy->getTag(); 636 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 637 return; 638 639 // Record this type 640 const DINodeArray Elements = CTy->getElements(); 641 bool HasBitField = false; 642 for (const auto *Element : Elements) { 643 auto E = cast<DIDerivedType>(Element); 644 if (E->isBitField()) { 645 HasBitField = true; 646 break; 647 } 648 } 649 650 auto TypeEntry = 651 std::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size()); 652 StructTypes.push_back(TypeEntry.get()); 653 TypeId = addType(std::move(TypeEntry), CTy); 654 655 // Visit all struct members 656 for (const auto *Element : Elements) { 657 const auto *MemberType = cast<DIDerivedType>(Element); 658 visitTypeEntry(MemberType->getBaseType()); 659 } 660 } 661 662 /// Read file contents from the actual file or from the source 663 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 664 auto File = SP->getFile(); 665 std::string FileName; 666 667 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 668 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 669 else 670 FileName = File->getFilename(); 671 672 // No need to populate the contends if it has been populated! 673 if (FileContent.find(FileName) != FileContent.end()) 674 return FileName; 675 676 std::vector<std::string> Content; 677 std::string Line; 678 Content.push_back(Line); // Line 0 for empty string 679 680 std::unique_ptr<MemoryBuffer> Buf; 681 auto Source = File->getSource(); 682 if (Source) 683 Buf = MemoryBuffer::getMemBufferCopy(*Source); 684 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 685 MemoryBuffer::getFile(FileName)) 686 Buf = std::move(*BufOrErr); 687 if (Buf) 688 for (line_iterator I(*Buf, false), E; I != E; ++I) 689 Content.push_back(*I); 690 691 FileContent[FileName] = Content; 692 return FileName; 693 } 694 695 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 696 uint32_t Line, uint32_t Column) { 697 std::string FileName = populateFileContent(SP); 698 BTFLineInfo LineInfo; 699 700 LineInfo.Label = Label; 701 LineInfo.FileNameOff = addString(FileName); 702 // If file content is not available, let LineOff = 0. 703 if (Line < FileContent[FileName].size()) 704 LineInfo.LineOff = addString(FileContent[FileName][Line]); 705 else 706 LineInfo.LineOff = 0; 707 LineInfo.LineNum = Line; 708 LineInfo.ColumnNum = Column; 709 LineInfoTable[SecNameOff].push_back(LineInfo); 710 } 711 712 void BTFDebug::emitCommonHeader() { 713 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 714 OS.EmitIntValue(BTF::MAGIC, 2); 715 OS.EmitIntValue(BTF::VERSION, 1); 716 OS.EmitIntValue(0, 1); 717 } 718 719 void BTFDebug::emitBTFSection() { 720 // Do not emit section if no types and only "" string. 721 if (!TypeEntries.size() && StringTable.getSize() == 1) 722 return; 723 724 MCContext &Ctx = OS.getContext(); 725 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 726 727 // Emit header. 728 emitCommonHeader(); 729 OS.EmitIntValue(BTF::HeaderSize, 4); 730 731 uint32_t TypeLen = 0, StrLen; 732 for (const auto &TypeEntry : TypeEntries) 733 TypeLen += TypeEntry->getSize(); 734 StrLen = StringTable.getSize(); 735 736 OS.EmitIntValue(0, 4); 737 OS.EmitIntValue(TypeLen, 4); 738 OS.EmitIntValue(TypeLen, 4); 739 OS.EmitIntValue(StrLen, 4); 740 741 // Emit type table. 742 for (const auto &TypeEntry : TypeEntries) 743 TypeEntry->emitType(OS); 744 745 // Emit string table. 746 uint32_t StringOffset = 0; 747 for (const auto &S : StringTable.getTable()) { 748 OS.AddComment("string offset=" + std::to_string(StringOffset)); 749 OS.EmitBytes(S); 750 OS.EmitBytes(StringRef("\0", 1)); 751 StringOffset += S.size() + 1; 752 } 753 } 754 755 void BTFDebug::emitBTFExtSection() { 756 // Do not emit section if empty FuncInfoTable and LineInfoTable 757 // and FieldRelocTable. 758 if (!FuncInfoTable.size() && !LineInfoTable.size() && 759 !FieldRelocTable.size()) 760 return; 761 762 MCContext &Ctx = OS.getContext(); 763 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 764 765 // Emit header. 766 emitCommonHeader(); 767 OS.EmitIntValue(BTF::ExtHeaderSize, 4); 768 769 // Account for FuncInfo/LineInfo record size as well. 770 uint32_t FuncLen = 4, LineLen = 4; 771 // Do not account for optional FieldReloc. 772 uint32_t FieldRelocLen = 0; 773 for (const auto &FuncSec : FuncInfoTable) { 774 FuncLen += BTF::SecFuncInfoSize; 775 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 776 } 777 for (const auto &LineSec : LineInfoTable) { 778 LineLen += BTF::SecLineInfoSize; 779 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 780 } 781 for (const auto &FieldRelocSec : FieldRelocTable) { 782 FieldRelocLen += BTF::SecFieldRelocSize; 783 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 784 } 785 786 if (FieldRelocLen) 787 FieldRelocLen += 4; 788 789 OS.EmitIntValue(0, 4); 790 OS.EmitIntValue(FuncLen, 4); 791 OS.EmitIntValue(FuncLen, 4); 792 OS.EmitIntValue(LineLen, 4); 793 OS.EmitIntValue(FuncLen + LineLen, 4); 794 OS.EmitIntValue(FieldRelocLen, 4); 795 796 // Emit func_info table. 797 OS.AddComment("FuncInfo"); 798 OS.EmitIntValue(BTF::BPFFuncInfoSize, 4); 799 for (const auto &FuncSec : FuncInfoTable) { 800 OS.AddComment("FuncInfo section string offset=" + 801 std::to_string(FuncSec.first)); 802 OS.EmitIntValue(FuncSec.first, 4); 803 OS.EmitIntValue(FuncSec.second.size(), 4); 804 for (const auto &FuncInfo : FuncSec.second) { 805 Asm->EmitLabelReference(FuncInfo.Label, 4); 806 OS.EmitIntValue(FuncInfo.TypeId, 4); 807 } 808 } 809 810 // Emit line_info table. 811 OS.AddComment("LineInfo"); 812 OS.EmitIntValue(BTF::BPFLineInfoSize, 4); 813 for (const auto &LineSec : LineInfoTable) { 814 OS.AddComment("LineInfo section string offset=" + 815 std::to_string(LineSec.first)); 816 OS.EmitIntValue(LineSec.first, 4); 817 OS.EmitIntValue(LineSec.second.size(), 4); 818 for (const auto &LineInfo : LineSec.second) { 819 Asm->EmitLabelReference(LineInfo.Label, 4); 820 OS.EmitIntValue(LineInfo.FileNameOff, 4); 821 OS.EmitIntValue(LineInfo.LineOff, 4); 822 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 823 std::to_string(LineInfo.ColumnNum)); 824 OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4); 825 } 826 } 827 828 // Emit field reloc table. 829 if (FieldRelocLen) { 830 OS.AddComment("FieldReloc"); 831 OS.EmitIntValue(BTF::BPFFieldRelocSize, 4); 832 for (const auto &FieldRelocSec : FieldRelocTable) { 833 OS.AddComment("Field reloc section string offset=" + 834 std::to_string(FieldRelocSec.first)); 835 OS.EmitIntValue(FieldRelocSec.first, 4); 836 OS.EmitIntValue(FieldRelocSec.second.size(), 4); 837 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 838 Asm->EmitLabelReference(FieldRelocInfo.Label, 4); 839 OS.EmitIntValue(FieldRelocInfo.TypeID, 4); 840 OS.EmitIntValue(FieldRelocInfo.OffsetNameOff, 4); 841 OS.EmitIntValue(FieldRelocInfo.RelocKind, 4); 842 } 843 } 844 } 845 } 846 847 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 848 auto *SP = MF->getFunction().getSubprogram(); 849 auto *Unit = SP->getUnit(); 850 851 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 852 SkipInstruction = true; 853 return; 854 } 855 SkipInstruction = false; 856 857 // Collect MapDef types. Map definition needs to collect 858 // pointee types. Do it first. Otherwise, for the following 859 // case: 860 // struct m { ...}; 861 // struct t { 862 // struct m *key; 863 // }; 864 // foo(struct t *arg); 865 // 866 // struct mapdef { 867 // ... 868 // struct m *key; 869 // ... 870 // } __attribute__((section(".maps"))) hash_map; 871 // 872 // If subroutine foo is traversed first, a type chain 873 // "ptr->struct m(fwd)" will be created and later on 874 // when traversing mapdef, since "ptr->struct m" exists, 875 // the traversal of "struct m" will be omitted. 876 if (MapDefNotCollected) { 877 processGlobals(true); 878 MapDefNotCollected = false; 879 } 880 881 // Collect all types locally referenced in this function. 882 // Use RetainedNodes so we can collect all argument names 883 // even if the argument is not used. 884 std::unordered_map<uint32_t, StringRef> FuncArgNames; 885 for (const DINode *DN : SP->getRetainedNodes()) { 886 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 887 // Collect function arguments for subprogram func type. 888 uint32_t Arg = DV->getArg(); 889 if (Arg) { 890 visitTypeEntry(DV->getType()); 891 FuncArgNames[Arg] = DV->getName(); 892 } 893 } 894 } 895 896 // Construct subprogram func proto type. 897 uint32_t ProtoTypeId; 898 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 899 900 // Construct subprogram func type 901 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 902 auto FuncTypeEntry = 903 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 904 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 905 906 for (const auto &TypeEntry : TypeEntries) 907 TypeEntry->completeType(*this); 908 909 // Construct funcinfo and the first lineinfo for the function. 910 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 911 BTFFuncInfo FuncInfo; 912 FuncInfo.Label = FuncLabel; 913 FuncInfo.TypeId = FuncTypeId; 914 if (FuncLabel->isInSection()) { 915 MCSection &Section = FuncLabel->getSection(); 916 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 917 assert(SectionELF && "Null section for Function Label"); 918 SecNameOff = addString(SectionELF->getSectionName()); 919 } else { 920 SecNameOff = addString(".text"); 921 } 922 FuncInfoTable[SecNameOff].push_back(FuncInfo); 923 } 924 925 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 926 SkipInstruction = false; 927 LineInfoGenerated = false; 928 SecNameOff = 0; 929 } 930 931 /// On-demand populate struct types as requested from abstract member 932 /// accessing. 933 unsigned BTFDebug::populateStructType(const DIType *Ty) { 934 unsigned Id; 935 visitTypeEntry(Ty, Id, false, false); 936 for (const auto &TypeEntry : TypeEntries) 937 TypeEntry->completeType(*this); 938 return Id; 939 } 940 941 /// Generate a struct member field relocation. 942 void BTFDebug::generateFieldReloc(const MCSymbol *ORSym, DIType *RootTy, 943 StringRef AccessPattern) { 944 unsigned RootId = populateStructType(RootTy); 945 size_t FirstDollar = AccessPattern.find_first_of('$'); 946 size_t FirstColon = AccessPattern.find_first_of(':'); 947 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 948 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 949 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 950 SecondColon - FirstColon); 951 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 952 FirstDollar - SecondColon); 953 954 BTFFieldReloc FieldReloc; 955 FieldReloc.Label = ORSym; 956 FieldReloc.OffsetNameOff = addString(IndexPattern); 957 FieldReloc.TypeID = RootId; 958 FieldReloc.RelocKind = std::stoull(RelocKindStr); 959 PatchImms[AccessPattern.str()] = std::stoul(PatchImmStr); 960 FieldRelocTable[SecNameOff].push_back(FieldReloc); 961 } 962 963 void BTFDebug::processReloc(const MachineOperand &MO) { 964 // check whether this is a candidate or not 965 if (MO.isGlobal()) { 966 const GlobalValue *GVal = MO.getGlobal(); 967 auto *GVar = dyn_cast<GlobalVariable>(GVal); 968 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 969 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 970 OS.EmitLabel(ORSym); 971 972 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 973 DIType *Ty = dyn_cast<DIType>(MDN); 974 generateFieldReloc(ORSym, Ty, GVar->getName()); 975 } 976 } 977 } 978 979 void BTFDebug::beginInstruction(const MachineInstr *MI) { 980 DebugHandlerBase::beginInstruction(MI); 981 982 if (SkipInstruction || MI->isMetaInstruction() || 983 MI->getFlag(MachineInstr::FrameSetup)) 984 return; 985 986 if (MI->isInlineAsm()) { 987 // Count the number of register definitions to find the asm string. 988 unsigned NumDefs = 0; 989 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 990 ++NumDefs) 991 ; 992 993 // Skip this inline asm instruction if the asmstr is empty. 994 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 995 if (AsmStr[0] == 0) 996 return; 997 } 998 999 if (MI->getOpcode() == BPF::LD_imm64) { 1000 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1001 // add this insn into the .BTF.ext FieldReloc subsection. 1002 // Relocation looks like: 1003 // . SecName: 1004 // . InstOffset 1005 // . TypeID 1006 // . OffSetNameOff 1007 // . RelocType 1008 // Later, the insn is replaced with "r2 = <offset>" 1009 // where "<offset>" equals to the offset based on current 1010 // type definitions. 1011 processReloc(MI->getOperand(1)); 1012 } else if (MI->getOpcode() == BPF::CORE_MEM || 1013 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1014 MI->getOpcode() == BPF::CORE_SHIFT) { 1015 // relocation insn is a load, store or shift insn. 1016 processReloc(MI->getOperand(3)); 1017 } else if (MI->getOpcode() == BPF::JAL) { 1018 // check extern function references 1019 const MachineOperand &MO = MI->getOperand(0); 1020 if (MO.isGlobal()) { 1021 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1022 } 1023 } 1024 1025 // Skip this instruction if no DebugLoc or the DebugLoc 1026 // is the same as the previous instruction. 1027 const DebugLoc &DL = MI->getDebugLoc(); 1028 if (!DL || PrevInstLoc == DL) { 1029 // This instruction will be skipped, no LineInfo has 1030 // been generated, construct one based on function signature. 1031 if (LineInfoGenerated == false) { 1032 auto *S = MI->getMF()->getFunction().getSubprogram(); 1033 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1034 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1035 LineInfoGenerated = true; 1036 } 1037 1038 return; 1039 } 1040 1041 // Create a temporary label to remember the insn for lineinfo. 1042 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1043 OS.EmitLabel(LineSym); 1044 1045 // Construct the lineinfo. 1046 auto SP = DL.get()->getScope()->getSubprogram(); 1047 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1048 1049 LineInfoGenerated = true; 1050 PrevInstLoc = DL; 1051 } 1052 1053 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1054 // Collect all types referenced by globals. 1055 const Module *M = MMI->getModule(); 1056 for (const GlobalVariable &Global : M->globals()) { 1057 // Decide the section name. 1058 StringRef SecName; 1059 if (Global.hasSection()) { 1060 SecName = Global.getSection(); 1061 } else if (Global.hasInitializer()) { 1062 // data, bss, or readonly sections 1063 if (Global.isConstant()) 1064 SecName = ".rodata"; 1065 else 1066 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1067 } else { 1068 // extern variables without explicit section, 1069 // put them into ".extern" section. 1070 SecName = ".extern"; 1071 } 1072 1073 if (ProcessingMapDef != SecName.startswith(".maps")) 1074 continue; 1075 1076 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1077 Global.getDebugInfo(GVs); 1078 1079 // No type information, mostly internal, skip it. 1080 if (GVs.size() == 0) 1081 continue; 1082 1083 uint32_t GVTypeId = 0; 1084 for (auto *GVE : GVs) { 1085 if (SecName.startswith(".maps")) 1086 visitMapDefType(GVE->getVariable()->getType(), GVTypeId); 1087 else 1088 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false); 1089 break; 1090 } 1091 1092 // Only support the following globals: 1093 // . static variables 1094 // . non-static weak or non-weak global variables 1095 // . weak or non-weak extern global variables 1096 // Whether DataSec is readonly or not can be found from corresponding ELF 1097 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1098 // can be found from the corresponding ELF symbol table. 1099 auto Linkage = Global.getLinkage(); 1100 if (Linkage != GlobalValue::InternalLinkage && 1101 Linkage != GlobalValue::ExternalLinkage && 1102 Linkage != GlobalValue::WeakAnyLinkage && 1103 Linkage != GlobalValue::ExternalWeakLinkage) 1104 continue; 1105 1106 uint32_t GVarInfo; 1107 if (Linkage == GlobalValue::InternalLinkage) { 1108 GVarInfo = BTF::VAR_STATIC; 1109 } else if (Global.hasInitializer()) { 1110 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1111 } else { 1112 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1113 } 1114 1115 auto VarEntry = 1116 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1117 uint32_t VarId = addType(std::move(VarEntry)); 1118 1119 assert(!SecName.empty()); 1120 1121 // Find or create a DataSec 1122 if (DataSecEntries.find(SecName) == DataSecEntries.end()) { 1123 DataSecEntries[SecName] = std::make_unique<BTFKindDataSec>(Asm, SecName); 1124 } 1125 1126 // Calculate symbol size 1127 const DataLayout &DL = Global.getParent()->getDataLayout(); 1128 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1129 1130 DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size); 1131 } 1132 } 1133 1134 /// Emit proper patchable instructions. 1135 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1136 if (MI->getOpcode() == BPF::LD_imm64) { 1137 const MachineOperand &MO = MI->getOperand(1); 1138 if (MO.isGlobal()) { 1139 const GlobalValue *GVal = MO.getGlobal(); 1140 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1141 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1142 // Emit "mov ri, <imm>" for patched immediate. 1143 uint32_t Imm = PatchImms[GVar->getName().str()]; 1144 OutMI.setOpcode(BPF::MOV_ri); 1145 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1146 OutMI.addOperand(MCOperand::createImm(Imm)); 1147 return true; 1148 } 1149 } 1150 } else if (MI->getOpcode() == BPF::CORE_MEM || 1151 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1152 MI->getOpcode() == BPF::CORE_SHIFT) { 1153 const MachineOperand &MO = MI->getOperand(3); 1154 if (MO.isGlobal()) { 1155 const GlobalValue *GVal = MO.getGlobal(); 1156 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1157 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1158 uint32_t Imm = PatchImms[GVar->getName().str()]; 1159 OutMI.setOpcode(MI->getOperand(1).getImm()); 1160 if (MI->getOperand(0).isImm()) 1161 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1162 else 1163 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1164 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1165 OutMI.addOperand(MCOperand::createImm(Imm)); 1166 return true; 1167 } 1168 } 1169 } 1170 return false; 1171 } 1172 1173 void BTFDebug::processFuncPrototypes(const Function *F) { 1174 if (!F) 1175 return; 1176 1177 const DISubprogram *SP = F->getSubprogram(); 1178 if (!SP || SP->isDefinition()) 1179 return; 1180 1181 // Do not emit again if already emitted. 1182 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1183 return; 1184 ProtoFunctions.insert(F); 1185 1186 uint32_t ProtoTypeId; 1187 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1188 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1189 1190 uint8_t Scope = BTF::FUNC_EXTERN; 1191 auto FuncTypeEntry = 1192 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1193 addType(std::move(FuncTypeEntry)); 1194 } 1195 1196 void BTFDebug::endModule() { 1197 // Collect MapDef globals if not collected yet. 1198 if (MapDefNotCollected) { 1199 processGlobals(true); 1200 MapDefNotCollected = false; 1201 } 1202 1203 // Collect global types/variables except MapDef globals. 1204 processGlobals(false); 1205 1206 for (auto &DataSec : DataSecEntries) 1207 addType(std::move(DataSec.second)); 1208 1209 // Fixups 1210 for (auto &Fixup : FixupDerivedTypes) { 1211 StringRef TypeName = Fixup.first; 1212 bool IsUnion = Fixup.second.first; 1213 1214 // Search through struct types 1215 uint32_t StructTypeId = 0; 1216 for (const auto &StructType : StructTypes) { 1217 if (StructType->getName() == TypeName) { 1218 StructTypeId = StructType->getId(); 1219 break; 1220 } 1221 } 1222 1223 if (StructTypeId == 0) { 1224 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1225 StructTypeId = addType(std::move(FwdTypeEntry)); 1226 } 1227 1228 for (auto &DType : Fixup.second.second) { 1229 DType->setPointeeType(StructTypeId); 1230 } 1231 } 1232 1233 // Complete BTF type cross refereences. 1234 for (const auto &TypeEntry : TypeEntries) 1235 TypeEntry->completeType(*this); 1236 1237 // Emit BTF sections. 1238 emitBTFSection(); 1239 emitBTFExtSection(); 1240 } 1241