1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/Target/TargetLoweringObjectFile.h" 27 28 using namespace llvm; 29 30 static const char *BTFKindStr[] = { 31 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 32 #include "BTF.def" 33 }; 34 35 /// Emit a BTF common type. 36 void BTFTypeBase::emitType(MCStreamer &OS) { 37 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 38 ")"); 39 OS.emitInt32(BTFType.NameOff); 40 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 41 OS.emitInt32(BTFType.Info); 42 OS.emitInt32(BTFType.Size); 43 } 44 45 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 46 bool NeedsFixup) 47 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { 48 switch (Tag) { 49 case dwarf::DW_TAG_pointer_type: 50 Kind = BTF::BTF_KIND_PTR; 51 break; 52 case dwarf::DW_TAG_const_type: 53 Kind = BTF::BTF_KIND_CONST; 54 break; 55 case dwarf::DW_TAG_volatile_type: 56 Kind = BTF::BTF_KIND_VOLATILE; 57 break; 58 case dwarf::DW_TAG_typedef: 59 Kind = BTF::BTF_KIND_TYPEDEF; 60 break; 61 case dwarf::DW_TAG_restrict_type: 62 Kind = BTF::BTF_KIND_RESTRICT; 63 break; 64 default: 65 llvm_unreachable("Unknown DIDerivedType Tag"); 66 } 67 BTFType.Info = Kind << 24; 68 } 69 70 /// Used by DW_TAG_pointer_type only. 71 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, 72 StringRef Name) 73 : DTy(nullptr), NeedsFixup(false), Name(Name) { 74 Kind = BTF::BTF_KIND_PTR; 75 BTFType.Info = Kind << 24; 76 BTFType.Type = NextTypeId; 77 } 78 79 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 80 if (IsCompleted) 81 return; 82 IsCompleted = true; 83 84 BTFType.NameOff = BDebug.addString(Name); 85 86 if (NeedsFixup || !DTy) 87 return; 88 89 // The base type for PTR/CONST/VOLATILE could be void. 90 const DIType *ResolvedType = DTy->getBaseType(); 91 if (!ResolvedType) { 92 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 93 Kind == BTF::BTF_KIND_VOLATILE) && 94 "Invalid null basetype"); 95 BTFType.Type = 0; 96 } else { 97 BTFType.Type = BDebug.getTypeId(ResolvedType); 98 } 99 } 100 101 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 102 103 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 104 BTFType.Type = PointeeType; 105 } 106 107 /// Represent a struct/union forward declaration. 108 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 109 Kind = BTF::BTF_KIND_FWD; 110 BTFType.Info = IsUnion << 31 | Kind << 24; 111 BTFType.Type = 0; 112 } 113 114 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 115 if (IsCompleted) 116 return; 117 IsCompleted = true; 118 119 BTFType.NameOff = BDebug.addString(Name); 120 } 121 122 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 123 124 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 125 uint32_t OffsetInBits, StringRef TypeName) 126 : Name(TypeName) { 127 // Translate IR int encoding to BTF int encoding. 128 uint8_t BTFEncoding; 129 switch (Encoding) { 130 case dwarf::DW_ATE_boolean: 131 BTFEncoding = BTF::INT_BOOL; 132 break; 133 case dwarf::DW_ATE_signed: 134 case dwarf::DW_ATE_signed_char: 135 BTFEncoding = BTF::INT_SIGNED; 136 break; 137 case dwarf::DW_ATE_unsigned: 138 case dwarf::DW_ATE_unsigned_char: 139 BTFEncoding = 0; 140 break; 141 default: 142 llvm_unreachable("Unknown BTFTypeInt Encoding"); 143 } 144 145 Kind = BTF::BTF_KIND_INT; 146 BTFType.Info = Kind << 24; 147 BTFType.Size = roundupToBytes(SizeInBits); 148 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 149 } 150 151 void BTFTypeInt::completeType(BTFDebug &BDebug) { 152 if (IsCompleted) 153 return; 154 IsCompleted = true; 155 156 BTFType.NameOff = BDebug.addString(Name); 157 } 158 159 void BTFTypeInt::emitType(MCStreamer &OS) { 160 BTFTypeBase::emitType(OS); 161 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 162 OS.emitInt32(IntVal); 163 } 164 165 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen, 166 bool IsSigned) : ETy(ETy) { 167 Kind = BTF::BTF_KIND_ENUM; 168 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 169 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 170 } 171 172 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 173 if (IsCompleted) 174 return; 175 IsCompleted = true; 176 177 BTFType.NameOff = BDebug.addString(ETy->getName()); 178 179 DINodeArray Elements = ETy->getElements(); 180 for (const auto Element : Elements) { 181 const auto *Enum = cast<DIEnumerator>(Element); 182 183 struct BTF::BTFEnum BTFEnum; 184 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 185 // BTF enum value is 32bit, enforce it. 186 uint32_t Value; 187 if (Enum->isUnsigned()) 188 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 189 else 190 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 191 BTFEnum.Val = Value; 192 EnumValues.push_back(BTFEnum); 193 } 194 } 195 196 void BTFTypeEnum::emitType(MCStreamer &OS) { 197 BTFTypeBase::emitType(OS); 198 for (const auto &Enum : EnumValues) { 199 OS.emitInt32(Enum.NameOff); 200 OS.emitInt32(Enum.Val); 201 } 202 } 203 204 BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen, 205 bool IsSigned) : ETy(ETy) { 206 Kind = BTF::BTF_KIND_ENUM64; 207 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 208 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 209 } 210 211 void BTFTypeEnum64::completeType(BTFDebug &BDebug) { 212 if (IsCompleted) 213 return; 214 IsCompleted = true; 215 216 BTFType.NameOff = BDebug.addString(ETy->getName()); 217 218 DINodeArray Elements = ETy->getElements(); 219 for (const auto Element : Elements) { 220 const auto *Enum = cast<DIEnumerator>(Element); 221 222 struct BTF::BTFEnum64 BTFEnum; 223 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 224 uint64_t Value; 225 if (Enum->isUnsigned()) 226 Value = static_cast<uint64_t>(Enum->getValue().getZExtValue()); 227 else 228 Value = static_cast<uint64_t>(Enum->getValue().getSExtValue()); 229 BTFEnum.Val_Lo32 = Value; 230 BTFEnum.Val_Hi32 = Value >> 32; 231 EnumValues.push_back(BTFEnum); 232 } 233 } 234 235 void BTFTypeEnum64::emitType(MCStreamer &OS) { 236 BTFTypeBase::emitType(OS); 237 for (const auto &Enum : EnumValues) { 238 OS.emitInt32(Enum.NameOff); 239 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32)); 240 OS.emitInt32(Enum.Val_Lo32); 241 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32)); 242 OS.emitInt32(Enum.Val_Hi32); 243 } 244 } 245 246 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 247 Kind = BTF::BTF_KIND_ARRAY; 248 BTFType.NameOff = 0; 249 BTFType.Info = Kind << 24; 250 BTFType.Size = 0; 251 252 ArrayInfo.ElemType = ElemTypeId; 253 ArrayInfo.Nelems = NumElems; 254 } 255 256 /// Represent a BTF array. 257 void BTFTypeArray::completeType(BTFDebug &BDebug) { 258 if (IsCompleted) 259 return; 260 IsCompleted = true; 261 262 // The IR does not really have a type for the index. 263 // A special type for array index should have been 264 // created during initial type traversal. Just 265 // retrieve that type id. 266 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 267 } 268 269 void BTFTypeArray::emitType(MCStreamer &OS) { 270 BTFTypeBase::emitType(OS); 271 OS.emitInt32(ArrayInfo.ElemType); 272 OS.emitInt32(ArrayInfo.IndexType); 273 OS.emitInt32(ArrayInfo.Nelems); 274 } 275 276 /// Represent either a struct or a union. 277 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 278 bool HasBitField, uint32_t Vlen) 279 : STy(STy), HasBitField(HasBitField) { 280 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 281 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 282 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 283 } 284 285 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 286 if (IsCompleted) 287 return; 288 IsCompleted = true; 289 290 BTFType.NameOff = BDebug.addString(STy->getName()); 291 292 // Add struct/union members. 293 const DINodeArray Elements = STy->getElements(); 294 for (const auto *Element : Elements) { 295 struct BTF::BTFMember BTFMember; 296 const auto *DDTy = cast<DIDerivedType>(Element); 297 298 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 299 if (HasBitField) { 300 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 301 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 302 } else { 303 BTFMember.Offset = DDTy->getOffsetInBits(); 304 } 305 const auto *BaseTy = DDTy->getBaseType(); 306 BTFMember.Type = BDebug.getTypeId(BaseTy); 307 Members.push_back(BTFMember); 308 } 309 } 310 311 void BTFTypeStruct::emitType(MCStreamer &OS) { 312 BTFTypeBase::emitType(OS); 313 for (const auto &Member : Members) { 314 OS.emitInt32(Member.NameOff); 315 OS.emitInt32(Member.Type); 316 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 317 OS.emitInt32(Member.Offset); 318 } 319 } 320 321 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 322 323 /// The Func kind represents both subprogram and pointee of function 324 /// pointers. If the FuncName is empty, it represents a pointee of function 325 /// pointer. Otherwise, it represents a subprogram. The func arg names 326 /// are empty for pointee of function pointer case, and are valid names 327 /// for subprogram. 328 BTFTypeFuncProto::BTFTypeFuncProto( 329 const DISubroutineType *STy, uint32_t VLen, 330 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 331 : STy(STy), FuncArgNames(FuncArgNames) { 332 Kind = BTF::BTF_KIND_FUNC_PROTO; 333 BTFType.Info = (Kind << 24) | VLen; 334 } 335 336 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 337 if (IsCompleted) 338 return; 339 IsCompleted = true; 340 341 DITypeRefArray Elements = STy->getTypeArray(); 342 auto RetType = Elements[0]; 343 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 344 BTFType.NameOff = 0; 345 346 // For null parameter which is typically the last one 347 // to represent the vararg, encode the NameOff/Type to be 0. 348 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 349 struct BTF::BTFParam Param; 350 auto Element = Elements[I]; 351 if (Element) { 352 Param.NameOff = BDebug.addString(FuncArgNames[I]); 353 Param.Type = BDebug.getTypeId(Element); 354 } else { 355 Param.NameOff = 0; 356 Param.Type = 0; 357 } 358 Parameters.push_back(Param); 359 } 360 } 361 362 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 363 BTFTypeBase::emitType(OS); 364 for (const auto &Param : Parameters) { 365 OS.emitInt32(Param.NameOff); 366 OS.emitInt32(Param.Type); 367 } 368 } 369 370 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 371 uint32_t Scope) 372 : Name(FuncName) { 373 Kind = BTF::BTF_KIND_FUNC; 374 BTFType.Info = (Kind << 24) | Scope; 375 BTFType.Type = ProtoTypeId; 376 } 377 378 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 379 if (IsCompleted) 380 return; 381 IsCompleted = true; 382 383 BTFType.NameOff = BDebug.addString(Name); 384 } 385 386 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 387 388 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 389 : Name(VarName) { 390 Kind = BTF::BTF_KIND_VAR; 391 BTFType.Info = Kind << 24; 392 BTFType.Type = TypeId; 393 Info = VarInfo; 394 } 395 396 void BTFKindVar::completeType(BTFDebug &BDebug) { 397 BTFType.NameOff = BDebug.addString(Name); 398 } 399 400 void BTFKindVar::emitType(MCStreamer &OS) { 401 BTFTypeBase::emitType(OS); 402 OS.emitInt32(Info); 403 } 404 405 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 406 : Asm(AsmPrt), Name(SecName) { 407 Kind = BTF::BTF_KIND_DATASEC; 408 BTFType.Info = Kind << 24; 409 BTFType.Size = 0; 410 } 411 412 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 413 BTFType.NameOff = BDebug.addString(Name); 414 BTFType.Info |= Vars.size(); 415 } 416 417 void BTFKindDataSec::emitType(MCStreamer &OS) { 418 BTFTypeBase::emitType(OS); 419 420 for (const auto &V : Vars) { 421 OS.emitInt32(std::get<0>(V)); 422 Asm->emitLabelReference(std::get<1>(V), 4); 423 OS.emitInt32(std::get<2>(V)); 424 } 425 } 426 427 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 428 : Name(TypeName) { 429 Kind = BTF::BTF_KIND_FLOAT; 430 BTFType.Info = Kind << 24; 431 BTFType.Size = roundupToBytes(SizeInBits); 432 } 433 434 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 435 if (IsCompleted) 436 return; 437 IsCompleted = true; 438 439 BTFType.NameOff = BDebug.addString(Name); 440 } 441 442 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 443 StringRef Tag) 444 : Tag(Tag) { 445 Kind = BTF::BTF_KIND_DECL_TAG; 446 BTFType.Info = Kind << 24; 447 BTFType.Type = BaseTypeId; 448 Info = ComponentIdx; 449 } 450 451 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 452 if (IsCompleted) 453 return; 454 IsCompleted = true; 455 456 BTFType.NameOff = BDebug.addString(Tag); 457 } 458 459 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 460 BTFTypeBase::emitType(OS); 461 OS.emitInt32(Info); 462 } 463 464 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) 465 : DTy(nullptr), Tag(Tag) { 466 Kind = BTF::BTF_KIND_TYPE_TAG; 467 BTFType.Info = Kind << 24; 468 BTFType.Type = NextTypeId; 469 } 470 471 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) 472 : DTy(DTy), Tag(Tag) { 473 Kind = BTF::BTF_KIND_TYPE_TAG; 474 BTFType.Info = Kind << 24; 475 } 476 477 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { 478 if (IsCompleted) 479 return; 480 IsCompleted = true; 481 BTFType.NameOff = BDebug.addString(Tag); 482 if (DTy) { 483 const DIType *ResolvedType = DTy->getBaseType(); 484 if (!ResolvedType) 485 BTFType.Type = 0; 486 else 487 BTFType.Type = BDebug.getTypeId(ResolvedType); 488 } 489 } 490 491 uint32_t BTFStringTable::addString(StringRef S) { 492 // Check whether the string already exists. 493 for (auto &OffsetM : OffsetToIdMap) { 494 if (Table[OffsetM.second] == S) 495 return OffsetM.first; 496 } 497 // Not find, add to the string table. 498 uint32_t Offset = Size; 499 OffsetToIdMap[Offset] = Table.size(); 500 Table.push_back(std::string(S)); 501 Size += S.size() + 1; 502 return Offset; 503 } 504 505 BTFDebug::BTFDebug(AsmPrinter *AP) 506 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 507 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 508 MapDefNotCollected(true) { 509 addString("\0"); 510 } 511 512 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 513 const DIType *Ty) { 514 TypeEntry->setId(TypeEntries.size() + 1); 515 uint32_t Id = TypeEntry->getId(); 516 DIToIdMap[Ty] = Id; 517 TypeEntries.push_back(std::move(TypeEntry)); 518 return Id; 519 } 520 521 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 522 TypeEntry->setId(TypeEntries.size() + 1); 523 uint32_t Id = TypeEntry->getId(); 524 TypeEntries.push_back(std::move(TypeEntry)); 525 return Id; 526 } 527 528 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 529 // Only int and binary floating point types are supported in BTF. 530 uint32_t Encoding = BTy->getEncoding(); 531 std::unique_ptr<BTFTypeBase> TypeEntry; 532 switch (Encoding) { 533 case dwarf::DW_ATE_boolean: 534 case dwarf::DW_ATE_signed: 535 case dwarf::DW_ATE_signed_char: 536 case dwarf::DW_ATE_unsigned: 537 case dwarf::DW_ATE_unsigned_char: 538 // Create a BTF type instance for this DIBasicType and put it into 539 // DIToIdMap for cross-type reference check. 540 TypeEntry = std::make_unique<BTFTypeInt>( 541 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 542 break; 543 case dwarf::DW_ATE_float: 544 TypeEntry = 545 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 546 break; 547 default: 548 return; 549 } 550 551 TypeId = addType(std::move(TypeEntry), BTy); 552 } 553 554 /// Handle subprogram or subroutine types. 555 void BTFDebug::visitSubroutineType( 556 const DISubroutineType *STy, bool ForSubprog, 557 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 558 uint32_t &TypeId) { 559 DITypeRefArray Elements = STy->getTypeArray(); 560 uint32_t VLen = Elements.size() - 1; 561 if (VLen > BTF::MAX_VLEN) 562 return; 563 564 // Subprogram has a valid non-zero-length name, and the pointee of 565 // a function pointer has an empty name. The subprogram type will 566 // not be added to DIToIdMap as it should not be referenced by 567 // any other types. 568 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 569 if (ForSubprog) 570 TypeId = addType(std::move(TypeEntry)); // For subprogram 571 else 572 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 573 574 // Visit return type and func arg types. 575 for (const auto Element : Elements) { 576 visitTypeEntry(Element); 577 } 578 } 579 580 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 581 uint32_t BaseTypeId, 582 int ComponentIdx) { 583 if (!Annotations) 584 return; 585 586 for (const Metadata *Annotation : Annotations->operands()) { 587 const MDNode *MD = cast<MDNode>(Annotation); 588 const MDString *Name = cast<MDString>(MD->getOperand(0)); 589 if (!Name->getString().equals("btf_decl_tag")) 590 continue; 591 592 const MDString *Value = cast<MDString>(MD->getOperand(1)); 593 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 594 Value->getString()); 595 addType(std::move(TypeEntry)); 596 } 597 } 598 599 /// Generate btf_type_tag chains. 600 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { 601 SmallVector<const MDString *, 4> MDStrs; 602 DINodeArray Annots = DTy->getAnnotations(); 603 if (Annots) { 604 // For type with "int __tag1 __tag2 *p", the MDStrs will have 605 // content: [__tag1, __tag2]. 606 for (const Metadata *Annotations : Annots->operands()) { 607 const MDNode *MD = cast<MDNode>(Annotations); 608 const MDString *Name = cast<MDString>(MD->getOperand(0)); 609 if (!Name->getString().equals("btf_type_tag")) 610 continue; 611 MDStrs.push_back(cast<MDString>(MD->getOperand(1))); 612 } 613 } 614 615 if (MDStrs.size() == 0) 616 return -1; 617 618 // With MDStrs [__tag1, __tag2], the output type chain looks like 619 // PTR -> __tag2 -> __tag1 -> BaseType 620 // In the below, we construct BTF types with the order of __tag1, __tag2 621 // and PTR. 622 unsigned TmpTypeId; 623 std::unique_ptr<BTFTypeTypeTag> TypeEntry; 624 if (BaseTypeId >= 0) 625 TypeEntry = 626 std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString()); 627 else 628 TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString()); 629 TmpTypeId = addType(std::move(TypeEntry)); 630 631 for (unsigned I = 1; I < MDStrs.size(); I++) { 632 const MDString *Value = MDStrs[I]; 633 TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString()); 634 TmpTypeId = addType(std::move(TypeEntry)); 635 } 636 return TmpTypeId; 637 } 638 639 /// Handle structure/union types. 640 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 641 uint32_t &TypeId) { 642 const DINodeArray Elements = CTy->getElements(); 643 uint32_t VLen = Elements.size(); 644 if (VLen > BTF::MAX_VLEN) 645 return; 646 647 // Check whether we have any bitfield members or not 648 bool HasBitField = false; 649 for (const auto *Element : Elements) { 650 auto E = cast<DIDerivedType>(Element); 651 if (E->isBitField()) { 652 HasBitField = true; 653 break; 654 } 655 } 656 657 auto TypeEntry = 658 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 659 StructTypes.push_back(TypeEntry.get()); 660 TypeId = addType(std::move(TypeEntry), CTy); 661 662 // Check struct/union annotations 663 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 664 665 // Visit all struct members. 666 int FieldNo = 0; 667 for (const auto *Element : Elements) { 668 const auto Elem = cast<DIDerivedType>(Element); 669 visitTypeEntry(Elem); 670 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 671 FieldNo++; 672 } 673 } 674 675 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 676 // Visit array element type. 677 uint32_t ElemTypeId; 678 const DIType *ElemType = CTy->getBaseType(); 679 visitTypeEntry(ElemType, ElemTypeId, false, false); 680 681 // Visit array dimensions. 682 DINodeArray Elements = CTy->getElements(); 683 for (int I = Elements.size() - 1; I >= 0; --I) { 684 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 685 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 686 const DISubrange *SR = cast<DISubrange>(Element); 687 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 688 int64_t Count = CI->getSExtValue(); 689 690 // For struct s { int b; char c[]; }, the c[] will be represented 691 // as an array with Count = -1. 692 auto TypeEntry = 693 std::make_unique<BTFTypeArray>(ElemTypeId, 694 Count >= 0 ? Count : 0); 695 if (I == 0) 696 ElemTypeId = addType(std::move(TypeEntry), CTy); 697 else 698 ElemTypeId = addType(std::move(TypeEntry)); 699 } 700 } 701 702 // The array TypeId is the type id of the outermost dimension. 703 TypeId = ElemTypeId; 704 705 // The IR does not have a type for array index while BTF wants one. 706 // So create an array index type if there is none. 707 if (!ArrayIndexTypeId) { 708 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 709 0, "__ARRAY_SIZE_TYPE__"); 710 ArrayIndexTypeId = addType(std::move(TypeEntry)); 711 } 712 } 713 714 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 715 DINodeArray Elements = CTy->getElements(); 716 uint32_t VLen = Elements.size(); 717 if (VLen > BTF::MAX_VLEN) 718 return; 719 720 bool IsSigned = false; 721 unsigned NumBits = 32; 722 // No BaseType implies forward declaration in which case a 723 // BTFTypeEnum with Vlen = 0 is emitted. 724 if (CTy->getBaseType() != nullptr) { 725 const auto *BTy = cast<DIBasicType>(CTy->getBaseType()); 726 IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed || 727 BTy->getEncoding() == dwarf::DW_ATE_signed_char; 728 NumBits = BTy->getSizeInBits(); 729 } 730 731 if (NumBits <= 32) { 732 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen, IsSigned); 733 TypeId = addType(std::move(TypeEntry), CTy); 734 } else { 735 assert(NumBits == 64); 736 auto TypeEntry = std::make_unique<BTFTypeEnum64>(CTy, VLen, IsSigned); 737 TypeId = addType(std::move(TypeEntry), CTy); 738 } 739 // No need to visit base type as BTF does not encode it. 740 } 741 742 /// Handle structure/union forward declarations. 743 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 744 uint32_t &TypeId) { 745 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 746 TypeId = addType(std::move(TypeEntry), CTy); 747 } 748 749 /// Handle structure, union, array and enumeration types. 750 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 751 uint32_t &TypeId) { 752 auto Tag = CTy->getTag(); 753 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 754 // Handle forward declaration differently as it does not have members. 755 if (CTy->isForwardDecl()) 756 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 757 else 758 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 759 } else if (Tag == dwarf::DW_TAG_array_type) 760 visitArrayType(CTy, TypeId); 761 else if (Tag == dwarf::DW_TAG_enumeration_type) 762 visitEnumType(CTy, TypeId); 763 } 764 765 /// Handle pointer, typedef, const, volatile, restrict and member types. 766 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 767 bool CheckPointer, bool SeenPointer) { 768 unsigned Tag = DTy->getTag(); 769 770 /// Try to avoid chasing pointees, esp. structure pointees which may 771 /// unnecessary bring in a lot of types. 772 if (CheckPointer && !SeenPointer) { 773 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 774 } 775 776 if (CheckPointer && SeenPointer) { 777 const DIType *Base = DTy->getBaseType(); 778 if (Base) { 779 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 780 auto CTag = CTy->getTag(); 781 if ((CTag == dwarf::DW_TAG_structure_type || 782 CTag == dwarf::DW_TAG_union_type) && 783 !CTy->getName().empty() && !CTy->isForwardDecl()) { 784 /// Find a candidate, generate a fixup. Later on the struct/union 785 /// pointee type will be replaced with either a real type or 786 /// a forward declaration. 787 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 788 auto &Fixup = FixupDerivedTypes[CTy]; 789 Fixup.push_back(std::make_pair(DTy, TypeEntry.get())); 790 TypeId = addType(std::move(TypeEntry), DTy); 791 return; 792 } 793 } 794 } 795 } 796 797 if (Tag == dwarf::DW_TAG_pointer_type) { 798 int TmpTypeId = genBTFTypeTags(DTy, -1); 799 if (TmpTypeId >= 0) { 800 auto TypeDEntry = 801 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName()); 802 TypeId = addType(std::move(TypeDEntry), DTy); 803 } else { 804 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 805 TypeId = addType(std::move(TypeEntry), DTy); 806 } 807 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 808 Tag == dwarf::DW_TAG_volatile_type || 809 Tag == dwarf::DW_TAG_restrict_type) { 810 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 811 TypeId = addType(std::move(TypeEntry), DTy); 812 if (Tag == dwarf::DW_TAG_typedef) 813 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); 814 } else if (Tag != dwarf::DW_TAG_member) { 815 return; 816 } 817 818 // Visit base type of pointer, typedef, const, volatile, restrict or 819 // struct/union member. 820 uint32_t TempTypeId = 0; 821 if (Tag == dwarf::DW_TAG_member) 822 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 823 else 824 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 825 } 826 827 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 828 bool CheckPointer, bool SeenPointer) { 829 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 830 TypeId = DIToIdMap[Ty]; 831 832 // To handle the case like the following: 833 // struct t; 834 // typedef struct t _t; 835 // struct s1 { _t *c; }; 836 // int test1(struct s1 *arg) { ... } 837 // 838 // struct t { int a; int b; }; 839 // struct s2 { _t c; } 840 // int test2(struct s2 *arg) { ... } 841 // 842 // During traversing test1() argument, "_t" is recorded 843 // in DIToIdMap and a forward declaration fixup is created 844 // for "struct t" to avoid pointee type traversal. 845 // 846 // During traversing test2() argument, even if we see "_t" is 847 // already defined, we should keep moving to eventually 848 // bring in types for "struct t". Otherwise, the "struct s2" 849 // definition won't be correct. 850 // 851 // In the above, we have following debuginfo: 852 // {ptr, struct_member} -> typedef -> struct 853 // and BTF type for 'typedef' is generated while 'struct' may 854 // be in FixUp. But let us generalize the above to handle 855 // {different types} -> [various derived types]+ -> another type. 856 // For example, 857 // {func_param, struct_member} -> const -> ptr -> volatile -> struct 858 // We will traverse const/ptr/volatile which already have corresponding 859 // BTF types and generate type for 'struct' which might be in Fixup 860 // state. 861 if (Ty && (!CheckPointer || !SeenPointer)) { 862 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 863 while (DTy) { 864 const DIType *BaseTy = DTy->getBaseType(); 865 if (!BaseTy) 866 break; 867 868 if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) { 869 DTy = dyn_cast<DIDerivedType>(BaseTy); 870 } else { 871 uint32_t TmpTypeId; 872 visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer); 873 break; 874 } 875 } 876 } 877 } 878 879 return; 880 } 881 882 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 883 visitBasicType(BTy, TypeId); 884 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 885 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 886 TypeId); 887 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 888 visitCompositeType(CTy, TypeId); 889 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 890 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 891 else 892 llvm_unreachable("Unknown DIType"); 893 } 894 895 void BTFDebug::visitTypeEntry(const DIType *Ty) { 896 uint32_t TypeId; 897 visitTypeEntry(Ty, TypeId, false, false); 898 } 899 900 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 901 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 902 TypeId = DIToIdMap[Ty]; 903 return; 904 } 905 906 // MapDef type may be a struct type or a non-pointer derived type 907 const DIType *OrigTy = Ty; 908 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 909 auto Tag = DTy->getTag(); 910 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 911 Tag != dwarf::DW_TAG_volatile_type && 912 Tag != dwarf::DW_TAG_restrict_type) 913 break; 914 Ty = DTy->getBaseType(); 915 } 916 917 const auto *CTy = dyn_cast<DICompositeType>(Ty); 918 if (!CTy) 919 return; 920 921 auto Tag = CTy->getTag(); 922 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 923 return; 924 925 // Visit all struct members to ensure pointee type is visited 926 const DINodeArray Elements = CTy->getElements(); 927 for (const auto *Element : Elements) { 928 const auto *MemberType = cast<DIDerivedType>(Element); 929 visitTypeEntry(MemberType->getBaseType()); 930 } 931 932 // Visit this type, struct or a const/typedef/volatile/restrict type 933 visitTypeEntry(OrigTy, TypeId, false, false); 934 } 935 936 /// Read file contents from the actual file or from the source 937 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 938 auto File = SP->getFile(); 939 std::string FileName; 940 941 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 942 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 943 else 944 FileName = std::string(File->getFilename()); 945 946 // No need to populate the contends if it has been populated! 947 if (FileContent.find(FileName) != FileContent.end()) 948 return FileName; 949 950 std::vector<std::string> Content; 951 std::string Line; 952 Content.push_back(Line); // Line 0 for empty string 953 954 std::unique_ptr<MemoryBuffer> Buf; 955 auto Source = File->getSource(); 956 if (Source) 957 Buf = MemoryBuffer::getMemBufferCopy(*Source); 958 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 959 MemoryBuffer::getFile(FileName)) 960 Buf = std::move(*BufOrErr); 961 if (Buf) 962 for (line_iterator I(*Buf, false), E; I != E; ++I) 963 Content.push_back(std::string(*I)); 964 965 FileContent[FileName] = Content; 966 return FileName; 967 } 968 969 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 970 uint32_t Line, uint32_t Column) { 971 std::string FileName = populateFileContent(SP); 972 BTFLineInfo LineInfo; 973 974 LineInfo.Label = Label; 975 LineInfo.FileNameOff = addString(FileName); 976 // If file content is not available, let LineOff = 0. 977 if (Line < FileContent[FileName].size()) 978 LineInfo.LineOff = addString(FileContent[FileName][Line]); 979 else 980 LineInfo.LineOff = 0; 981 LineInfo.LineNum = Line; 982 LineInfo.ColumnNum = Column; 983 LineInfoTable[SecNameOff].push_back(LineInfo); 984 } 985 986 void BTFDebug::emitCommonHeader() { 987 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 988 OS.emitIntValue(BTF::MAGIC, 2); 989 OS.emitInt8(BTF::VERSION); 990 OS.emitInt8(0); 991 } 992 993 void BTFDebug::emitBTFSection() { 994 // Do not emit section if no types and only "" string. 995 if (!TypeEntries.size() && StringTable.getSize() == 1) 996 return; 997 998 MCContext &Ctx = OS.getContext(); 999 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); 1000 Sec->setAlignment(Align(4)); 1001 OS.switchSection(Sec); 1002 1003 // Emit header. 1004 emitCommonHeader(); 1005 OS.emitInt32(BTF::HeaderSize); 1006 1007 uint32_t TypeLen = 0, StrLen; 1008 for (const auto &TypeEntry : TypeEntries) 1009 TypeLen += TypeEntry->getSize(); 1010 StrLen = StringTable.getSize(); 1011 1012 OS.emitInt32(0); 1013 OS.emitInt32(TypeLen); 1014 OS.emitInt32(TypeLen); 1015 OS.emitInt32(StrLen); 1016 1017 // Emit type table. 1018 for (const auto &TypeEntry : TypeEntries) 1019 TypeEntry->emitType(OS); 1020 1021 // Emit string table. 1022 uint32_t StringOffset = 0; 1023 for (const auto &S : StringTable.getTable()) { 1024 OS.AddComment("string offset=" + std::to_string(StringOffset)); 1025 OS.emitBytes(S); 1026 OS.emitBytes(StringRef("\0", 1)); 1027 StringOffset += S.size() + 1; 1028 } 1029 } 1030 1031 void BTFDebug::emitBTFExtSection() { 1032 // Do not emit section if empty FuncInfoTable and LineInfoTable 1033 // and FieldRelocTable. 1034 if (!FuncInfoTable.size() && !LineInfoTable.size() && 1035 !FieldRelocTable.size()) 1036 return; 1037 1038 MCContext &Ctx = OS.getContext(); 1039 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); 1040 Sec->setAlignment(Align(4)); 1041 OS.switchSection(Sec); 1042 1043 // Emit header. 1044 emitCommonHeader(); 1045 OS.emitInt32(BTF::ExtHeaderSize); 1046 1047 // Account for FuncInfo/LineInfo record size as well. 1048 uint32_t FuncLen = 4, LineLen = 4; 1049 // Do not account for optional FieldReloc. 1050 uint32_t FieldRelocLen = 0; 1051 for (const auto &FuncSec : FuncInfoTable) { 1052 FuncLen += BTF::SecFuncInfoSize; 1053 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 1054 } 1055 for (const auto &LineSec : LineInfoTable) { 1056 LineLen += BTF::SecLineInfoSize; 1057 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 1058 } 1059 for (const auto &FieldRelocSec : FieldRelocTable) { 1060 FieldRelocLen += BTF::SecFieldRelocSize; 1061 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 1062 } 1063 1064 if (FieldRelocLen) 1065 FieldRelocLen += 4; 1066 1067 OS.emitInt32(0); 1068 OS.emitInt32(FuncLen); 1069 OS.emitInt32(FuncLen); 1070 OS.emitInt32(LineLen); 1071 OS.emitInt32(FuncLen + LineLen); 1072 OS.emitInt32(FieldRelocLen); 1073 1074 // Emit func_info table. 1075 OS.AddComment("FuncInfo"); 1076 OS.emitInt32(BTF::BPFFuncInfoSize); 1077 for (const auto &FuncSec : FuncInfoTable) { 1078 OS.AddComment("FuncInfo section string offset=" + 1079 std::to_string(FuncSec.first)); 1080 OS.emitInt32(FuncSec.first); 1081 OS.emitInt32(FuncSec.second.size()); 1082 for (const auto &FuncInfo : FuncSec.second) { 1083 Asm->emitLabelReference(FuncInfo.Label, 4); 1084 OS.emitInt32(FuncInfo.TypeId); 1085 } 1086 } 1087 1088 // Emit line_info table. 1089 OS.AddComment("LineInfo"); 1090 OS.emitInt32(BTF::BPFLineInfoSize); 1091 for (const auto &LineSec : LineInfoTable) { 1092 OS.AddComment("LineInfo section string offset=" + 1093 std::to_string(LineSec.first)); 1094 OS.emitInt32(LineSec.first); 1095 OS.emitInt32(LineSec.second.size()); 1096 for (const auto &LineInfo : LineSec.second) { 1097 Asm->emitLabelReference(LineInfo.Label, 4); 1098 OS.emitInt32(LineInfo.FileNameOff); 1099 OS.emitInt32(LineInfo.LineOff); 1100 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 1101 std::to_string(LineInfo.ColumnNum)); 1102 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 1103 } 1104 } 1105 1106 // Emit field reloc table. 1107 if (FieldRelocLen) { 1108 OS.AddComment("FieldReloc"); 1109 OS.emitInt32(BTF::BPFFieldRelocSize); 1110 for (const auto &FieldRelocSec : FieldRelocTable) { 1111 OS.AddComment("Field reloc section string offset=" + 1112 std::to_string(FieldRelocSec.first)); 1113 OS.emitInt32(FieldRelocSec.first); 1114 OS.emitInt32(FieldRelocSec.second.size()); 1115 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 1116 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 1117 OS.emitInt32(FieldRelocInfo.TypeID); 1118 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 1119 OS.emitInt32(FieldRelocInfo.RelocKind); 1120 } 1121 } 1122 } 1123 } 1124 1125 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 1126 auto *SP = MF->getFunction().getSubprogram(); 1127 auto *Unit = SP->getUnit(); 1128 1129 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 1130 SkipInstruction = true; 1131 return; 1132 } 1133 SkipInstruction = false; 1134 1135 // Collect MapDef types. Map definition needs to collect 1136 // pointee types. Do it first. Otherwise, for the following 1137 // case: 1138 // struct m { ...}; 1139 // struct t { 1140 // struct m *key; 1141 // }; 1142 // foo(struct t *arg); 1143 // 1144 // struct mapdef { 1145 // ... 1146 // struct m *key; 1147 // ... 1148 // } __attribute__((section(".maps"))) hash_map; 1149 // 1150 // If subroutine foo is traversed first, a type chain 1151 // "ptr->struct m(fwd)" will be created and later on 1152 // when traversing mapdef, since "ptr->struct m" exists, 1153 // the traversal of "struct m" will be omitted. 1154 if (MapDefNotCollected) { 1155 processGlobals(true); 1156 MapDefNotCollected = false; 1157 } 1158 1159 // Collect all types locally referenced in this function. 1160 // Use RetainedNodes so we can collect all argument names 1161 // even if the argument is not used. 1162 std::unordered_map<uint32_t, StringRef> FuncArgNames; 1163 for (const DINode *DN : SP->getRetainedNodes()) { 1164 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1165 // Collect function arguments for subprogram func type. 1166 uint32_t Arg = DV->getArg(); 1167 if (Arg) { 1168 visitTypeEntry(DV->getType()); 1169 FuncArgNames[Arg] = DV->getName(); 1170 } 1171 } 1172 } 1173 1174 // Construct subprogram func proto type. 1175 uint32_t ProtoTypeId; 1176 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1177 1178 // Construct subprogram func type 1179 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1180 auto FuncTypeEntry = 1181 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1182 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 1183 1184 // Process argument annotations. 1185 for (const DINode *DN : SP->getRetainedNodes()) { 1186 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1187 uint32_t Arg = DV->getArg(); 1188 if (Arg) 1189 processDeclAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1); 1190 } 1191 } 1192 1193 processDeclAnnotations(SP->getAnnotations(), FuncTypeId, -1); 1194 1195 for (const auto &TypeEntry : TypeEntries) 1196 TypeEntry->completeType(*this); 1197 1198 // Construct funcinfo and the first lineinfo for the function. 1199 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1200 BTFFuncInfo FuncInfo; 1201 FuncInfo.Label = FuncLabel; 1202 FuncInfo.TypeId = FuncTypeId; 1203 if (FuncLabel->isInSection()) { 1204 MCSection &Section = FuncLabel->getSection(); 1205 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1206 assert(SectionELF && "Null section for Function Label"); 1207 SecNameOff = addString(SectionELF->getName()); 1208 } else { 1209 SecNameOff = addString(".text"); 1210 } 1211 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1212 } 1213 1214 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1215 SkipInstruction = false; 1216 LineInfoGenerated = false; 1217 SecNameOff = 0; 1218 } 1219 1220 /// On-demand populate types as requested from abstract member 1221 /// accessing or preserve debuginfo type. 1222 unsigned BTFDebug::populateType(const DIType *Ty) { 1223 unsigned Id; 1224 visitTypeEntry(Ty, Id, false, false); 1225 for (const auto &TypeEntry : TypeEntries) 1226 TypeEntry->completeType(*this); 1227 return Id; 1228 } 1229 1230 /// Generate a struct member field relocation. 1231 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1232 const GlobalVariable *GVar, bool IsAma) { 1233 BTFFieldReloc FieldReloc; 1234 FieldReloc.Label = ORSym; 1235 FieldReloc.TypeID = RootId; 1236 1237 StringRef AccessPattern = GVar->getName(); 1238 size_t FirstDollar = AccessPattern.find_first_of('$'); 1239 if (IsAma) { 1240 size_t FirstColon = AccessPattern.find_first_of(':'); 1241 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1242 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1243 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1244 SecondColon - FirstColon); 1245 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1246 FirstDollar - SecondColon); 1247 1248 FieldReloc.OffsetNameOff = addString(IndexPattern); 1249 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1250 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1251 FieldReloc.RelocKind); 1252 } else { 1253 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1254 FieldReloc.OffsetNameOff = addString("0"); 1255 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1256 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1257 } 1258 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1259 } 1260 1261 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1262 // check whether this is a candidate or not 1263 if (MO.isGlobal()) { 1264 const GlobalValue *GVal = MO.getGlobal(); 1265 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1266 if (!GVar) { 1267 // Not a global variable. Maybe an extern function reference. 1268 processFuncPrototypes(dyn_cast<Function>(GVal)); 1269 return; 1270 } 1271 1272 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1273 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1274 return; 1275 1276 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1277 OS.emitLabel(ORSym); 1278 1279 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1280 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1281 generatePatchImmReloc(ORSym, RootId, GVar, 1282 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1283 } 1284 } 1285 1286 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1287 DebugHandlerBase::beginInstruction(MI); 1288 1289 if (SkipInstruction || MI->isMetaInstruction() || 1290 MI->getFlag(MachineInstr::FrameSetup)) 1291 return; 1292 1293 if (MI->isInlineAsm()) { 1294 // Count the number of register definitions to find the asm string. 1295 unsigned NumDefs = 0; 1296 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1297 ++NumDefs) 1298 ; 1299 1300 // Skip this inline asm instruction if the asmstr is empty. 1301 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1302 if (AsmStr[0] == 0) 1303 return; 1304 } 1305 1306 if (MI->getOpcode() == BPF::LD_imm64) { 1307 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1308 // add this insn into the .BTF.ext FieldReloc subsection. 1309 // Relocation looks like: 1310 // . SecName: 1311 // . InstOffset 1312 // . TypeID 1313 // . OffSetNameOff 1314 // . RelocType 1315 // Later, the insn is replaced with "r2 = <offset>" 1316 // where "<offset>" equals to the offset based on current 1317 // type definitions. 1318 // 1319 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1320 // The LD_imm64 result will be replaced with a btf type id. 1321 processGlobalValue(MI->getOperand(1)); 1322 } else if (MI->getOpcode() == BPF::CORE_MEM || 1323 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1324 MI->getOpcode() == BPF::CORE_SHIFT) { 1325 // relocation insn is a load, store or shift insn. 1326 processGlobalValue(MI->getOperand(3)); 1327 } else if (MI->getOpcode() == BPF::JAL) { 1328 // check extern function references 1329 const MachineOperand &MO = MI->getOperand(0); 1330 if (MO.isGlobal()) { 1331 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1332 } 1333 } 1334 1335 if (!CurMI) // no debug info 1336 return; 1337 1338 // Skip this instruction if no DebugLoc or the DebugLoc 1339 // is the same as the previous instruction. 1340 const DebugLoc &DL = MI->getDebugLoc(); 1341 if (!DL || PrevInstLoc == DL) { 1342 // This instruction will be skipped, no LineInfo has 1343 // been generated, construct one based on function signature. 1344 if (LineInfoGenerated == false) { 1345 auto *S = MI->getMF()->getFunction().getSubprogram(); 1346 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1347 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1348 LineInfoGenerated = true; 1349 } 1350 1351 return; 1352 } 1353 1354 // Create a temporary label to remember the insn for lineinfo. 1355 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1356 OS.emitLabel(LineSym); 1357 1358 // Construct the lineinfo. 1359 auto SP = DL.get()->getScope()->getSubprogram(); 1360 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1361 1362 LineInfoGenerated = true; 1363 PrevInstLoc = DL; 1364 } 1365 1366 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1367 // Collect all types referenced by globals. 1368 const Module *M = MMI->getModule(); 1369 for (const GlobalVariable &Global : M->globals()) { 1370 // Decide the section name. 1371 StringRef SecName; 1372 if (Global.hasSection()) { 1373 SecName = Global.getSection(); 1374 } else if (Global.hasInitializer()) { 1375 // data, bss, or readonly sections 1376 if (Global.isConstant()) 1377 SecName = ".rodata"; 1378 else 1379 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1380 } 1381 1382 if (ProcessingMapDef != SecName.startswith(".maps")) 1383 continue; 1384 1385 // Create a .rodata datasec if the global variable is an initialized 1386 // constant with private linkage and if it won't be in .rodata.str<#> 1387 // and .rodata.cst<#> sections. 1388 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1389 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1390 SectionKind GVKind = 1391 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1392 // skip .rodata.str<#> and .rodata.cst<#> sections 1393 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1394 DataSecEntries[std::string(SecName)] = 1395 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1396 } 1397 } 1398 1399 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1400 Global.getDebugInfo(GVs); 1401 1402 // No type information, mostly internal, skip it. 1403 if (GVs.size() == 0) 1404 continue; 1405 1406 uint32_t GVTypeId = 0; 1407 DIGlobalVariable *DIGlobal = nullptr; 1408 for (auto *GVE : GVs) { 1409 DIGlobal = GVE->getVariable(); 1410 if (SecName.startswith(".maps")) 1411 visitMapDefType(DIGlobal->getType(), GVTypeId); 1412 else 1413 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1414 break; 1415 } 1416 1417 // Only support the following globals: 1418 // . static variables 1419 // . non-static weak or non-weak global variables 1420 // . weak or non-weak extern global variables 1421 // Whether DataSec is readonly or not can be found from corresponding ELF 1422 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1423 // can be found from the corresponding ELF symbol table. 1424 auto Linkage = Global.getLinkage(); 1425 if (Linkage != GlobalValue::InternalLinkage && 1426 Linkage != GlobalValue::ExternalLinkage && 1427 Linkage != GlobalValue::WeakAnyLinkage && 1428 Linkage != GlobalValue::WeakODRLinkage && 1429 Linkage != GlobalValue::ExternalWeakLinkage) 1430 continue; 1431 1432 uint32_t GVarInfo; 1433 if (Linkage == GlobalValue::InternalLinkage) { 1434 GVarInfo = BTF::VAR_STATIC; 1435 } else if (Global.hasInitializer()) { 1436 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1437 } else { 1438 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1439 } 1440 1441 auto VarEntry = 1442 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1443 uint32_t VarId = addType(std::move(VarEntry)); 1444 1445 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1446 1447 // An empty SecName means an extern variable without section attribute. 1448 if (SecName.empty()) 1449 continue; 1450 1451 // Find or create a DataSec 1452 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1453 DataSecEntries[std::string(SecName)] = 1454 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1455 } 1456 1457 // Calculate symbol size 1458 const DataLayout &DL = Global.getParent()->getDataLayout(); 1459 uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); 1460 1461 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1462 Asm->getSymbol(&Global), Size); 1463 } 1464 } 1465 1466 /// Emit proper patchable instructions. 1467 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1468 if (MI->getOpcode() == BPF::LD_imm64) { 1469 const MachineOperand &MO = MI->getOperand(1); 1470 if (MO.isGlobal()) { 1471 const GlobalValue *GVal = MO.getGlobal(); 1472 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1473 if (GVar) { 1474 // Emit "mov ri, <imm>" 1475 int64_t Imm; 1476 uint32_t Reloc; 1477 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1478 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1479 Imm = PatchImms[GVar].first; 1480 Reloc = PatchImms[GVar].second; 1481 } else { 1482 return false; 1483 } 1484 1485 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1486 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1487 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1488 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1489 OutMI.setOpcode(BPF::LD_imm64); 1490 else 1491 OutMI.setOpcode(BPF::MOV_ri); 1492 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1493 OutMI.addOperand(MCOperand::createImm(Imm)); 1494 return true; 1495 } 1496 } 1497 } else if (MI->getOpcode() == BPF::CORE_MEM || 1498 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1499 MI->getOpcode() == BPF::CORE_SHIFT) { 1500 const MachineOperand &MO = MI->getOperand(3); 1501 if (MO.isGlobal()) { 1502 const GlobalValue *GVal = MO.getGlobal(); 1503 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1504 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1505 uint32_t Imm = PatchImms[GVar].first; 1506 OutMI.setOpcode(MI->getOperand(1).getImm()); 1507 if (MI->getOperand(0).isImm()) 1508 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1509 else 1510 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1511 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1512 OutMI.addOperand(MCOperand::createImm(Imm)); 1513 return true; 1514 } 1515 } 1516 } 1517 return false; 1518 } 1519 1520 void BTFDebug::processFuncPrototypes(const Function *F) { 1521 if (!F) 1522 return; 1523 1524 const DISubprogram *SP = F->getSubprogram(); 1525 if (!SP || SP->isDefinition()) 1526 return; 1527 1528 // Do not emit again if already emitted. 1529 if (!ProtoFunctions.insert(F).second) 1530 return; 1531 1532 uint32_t ProtoTypeId; 1533 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1534 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1535 1536 uint8_t Scope = BTF::FUNC_EXTERN; 1537 auto FuncTypeEntry = 1538 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1539 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1540 1541 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 1542 1543 if (F->hasSection()) { 1544 StringRef SecName = F->getSection(); 1545 1546 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1547 DataSecEntries[std::string(SecName)] = 1548 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1549 } 1550 1551 // We really don't know func size, set it to 0. 1552 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1553 Asm->getSymbol(F), 0); 1554 } 1555 } 1556 1557 void BTFDebug::endModule() { 1558 // Collect MapDef globals if not collected yet. 1559 if (MapDefNotCollected) { 1560 processGlobals(true); 1561 MapDefNotCollected = false; 1562 } 1563 1564 // Collect global types/variables except MapDef globals. 1565 processGlobals(false); 1566 1567 for (auto &DataSec : DataSecEntries) 1568 addType(std::move(DataSec.second)); 1569 1570 // Fixups 1571 for (auto &Fixup : FixupDerivedTypes) { 1572 const DICompositeType *CTy = Fixup.first; 1573 StringRef TypeName = CTy->getName(); 1574 bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; 1575 1576 // Search through struct types 1577 uint32_t StructTypeId = 0; 1578 for (const auto &StructType : StructTypes) { 1579 if (StructType->getName() == TypeName) { 1580 StructTypeId = StructType->getId(); 1581 break; 1582 } 1583 } 1584 1585 if (StructTypeId == 0) { 1586 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1587 StructTypeId = addType(std::move(FwdTypeEntry)); 1588 } 1589 1590 for (auto &TypeInfo : Fixup.second) { 1591 const DIDerivedType *DTy = TypeInfo.first; 1592 BTFTypeDerived *BDType = TypeInfo.second; 1593 1594 int TmpTypeId = genBTFTypeTags(DTy, StructTypeId); 1595 if (TmpTypeId >= 0) 1596 BDType->setPointeeType(TmpTypeId); 1597 else 1598 BDType->setPointeeType(StructTypeId); 1599 } 1600 } 1601 1602 // Complete BTF type cross refereences. 1603 for (const auto &TypeEntry : TypeEntries) 1604 TypeEntry->completeType(*this); 1605 1606 // Emit BTF sections. 1607 emitBTFSection(); 1608 emitBTFExtSection(); 1609 } 1610