xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing BTF debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "BTFDebug.h"
14 #include "BPF.h"
15 #include "BPFCORE.h"
16 #include "MCTargetDesc/BPFMCTargetDesc.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCObjectFileInfo.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/LineIterator.h"
25 
26 using namespace llvm;
27 
28 static const char *BTFKindStr[] = {
29 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
30 #include "BTF.def"
31 };
32 
33 /// Emit a BTF common type.
34 void BTFTypeBase::emitType(MCStreamer &OS) {
35   OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
36                 ")");
37   OS.EmitIntValue(BTFType.NameOff, 4);
38   OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
39   OS.EmitIntValue(BTFType.Info, 4);
40   OS.EmitIntValue(BTFType.Size, 4);
41 }
42 
43 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
44                                bool NeedsFixup)
45     : DTy(DTy), NeedsFixup(NeedsFixup) {
46   switch (Tag) {
47   case dwarf::DW_TAG_pointer_type:
48     Kind = BTF::BTF_KIND_PTR;
49     break;
50   case dwarf::DW_TAG_const_type:
51     Kind = BTF::BTF_KIND_CONST;
52     break;
53   case dwarf::DW_TAG_volatile_type:
54     Kind = BTF::BTF_KIND_VOLATILE;
55     break;
56   case dwarf::DW_TAG_typedef:
57     Kind = BTF::BTF_KIND_TYPEDEF;
58     break;
59   case dwarf::DW_TAG_restrict_type:
60     Kind = BTF::BTF_KIND_RESTRICT;
61     break;
62   default:
63     llvm_unreachable("Unknown DIDerivedType Tag");
64   }
65   BTFType.Info = Kind << 24;
66 }
67 
68 void BTFTypeDerived::completeType(BTFDebug &BDebug) {
69   if (IsCompleted)
70     return;
71   IsCompleted = true;
72 
73   BTFType.NameOff = BDebug.addString(DTy->getName());
74 
75   if (NeedsFixup)
76     return;
77 
78   // The base type for PTR/CONST/VOLATILE could be void.
79   const DIType *ResolvedType = DTy->getBaseType();
80   if (!ResolvedType) {
81     assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
82             Kind == BTF::BTF_KIND_VOLATILE) &&
83            "Invalid null basetype");
84     BTFType.Type = 0;
85   } else {
86     BTFType.Type = BDebug.getTypeId(ResolvedType);
87   }
88 }
89 
90 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
91 
92 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
93   BTFType.Type = PointeeType;
94 }
95 
96 /// Represent a struct/union forward declaration.
97 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
98   Kind = BTF::BTF_KIND_FWD;
99   BTFType.Info = IsUnion << 31 | Kind << 24;
100   BTFType.Type = 0;
101 }
102 
103 void BTFTypeFwd::completeType(BTFDebug &BDebug) {
104   if (IsCompleted)
105     return;
106   IsCompleted = true;
107 
108   BTFType.NameOff = BDebug.addString(Name);
109 }
110 
111 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
112 
113 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
114                        uint32_t OffsetInBits, StringRef TypeName)
115     : Name(TypeName) {
116   // Translate IR int encoding to BTF int encoding.
117   uint8_t BTFEncoding;
118   switch (Encoding) {
119   case dwarf::DW_ATE_boolean:
120     BTFEncoding = BTF::INT_BOOL;
121     break;
122   case dwarf::DW_ATE_signed:
123   case dwarf::DW_ATE_signed_char:
124     BTFEncoding = BTF::INT_SIGNED;
125     break;
126   case dwarf::DW_ATE_unsigned:
127   case dwarf::DW_ATE_unsigned_char:
128     BTFEncoding = 0;
129     break;
130   default:
131     llvm_unreachable("Unknown BTFTypeInt Encoding");
132   }
133 
134   Kind = BTF::BTF_KIND_INT;
135   BTFType.Info = Kind << 24;
136   BTFType.Size = roundupToBytes(SizeInBits);
137   IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
138 }
139 
140 void BTFTypeInt::completeType(BTFDebug &BDebug) {
141   if (IsCompleted)
142     return;
143   IsCompleted = true;
144 
145   BTFType.NameOff = BDebug.addString(Name);
146 }
147 
148 void BTFTypeInt::emitType(MCStreamer &OS) {
149   BTFTypeBase::emitType(OS);
150   OS.AddComment("0x" + Twine::utohexstr(IntVal));
151   OS.EmitIntValue(IntVal, 4);
152 }
153 
154 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
155   Kind = BTF::BTF_KIND_ENUM;
156   BTFType.Info = Kind << 24 | VLen;
157   BTFType.Size = roundupToBytes(ETy->getSizeInBits());
158 }
159 
160 void BTFTypeEnum::completeType(BTFDebug &BDebug) {
161   if (IsCompleted)
162     return;
163   IsCompleted = true;
164 
165   BTFType.NameOff = BDebug.addString(ETy->getName());
166 
167   DINodeArray Elements = ETy->getElements();
168   for (const auto Element : Elements) {
169     const auto *Enum = cast<DIEnumerator>(Element);
170 
171     struct BTF::BTFEnum BTFEnum;
172     BTFEnum.NameOff = BDebug.addString(Enum->getName());
173     // BTF enum value is 32bit, enforce it.
174     BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
175     EnumValues.push_back(BTFEnum);
176   }
177 }
178 
179 void BTFTypeEnum::emitType(MCStreamer &OS) {
180   BTFTypeBase::emitType(OS);
181   for (const auto &Enum : EnumValues) {
182     OS.EmitIntValue(Enum.NameOff, 4);
183     OS.EmitIntValue(Enum.Val, 4);
184   }
185 }
186 
187 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
188   Kind = BTF::BTF_KIND_ARRAY;
189   BTFType.NameOff = 0;
190   BTFType.Info = Kind << 24;
191   BTFType.Size = 0;
192 
193   ArrayInfo.ElemType = ElemTypeId;
194   ArrayInfo.Nelems = NumElems;
195 }
196 
197 /// Represent a BTF array.
198 void BTFTypeArray::completeType(BTFDebug &BDebug) {
199   if (IsCompleted)
200     return;
201   IsCompleted = true;
202 
203   // The IR does not really have a type for the index.
204   // A special type for array index should have been
205   // created during initial type traversal. Just
206   // retrieve that type id.
207   ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
208 }
209 
210 void BTFTypeArray::emitType(MCStreamer &OS) {
211   BTFTypeBase::emitType(OS);
212   OS.EmitIntValue(ArrayInfo.ElemType, 4);
213   OS.EmitIntValue(ArrayInfo.IndexType, 4);
214   OS.EmitIntValue(ArrayInfo.Nelems, 4);
215 }
216 
217 /// Represent either a struct or a union.
218 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
219                              bool HasBitField, uint32_t Vlen)
220     : STy(STy), HasBitField(HasBitField) {
221   Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
222   BTFType.Size = roundupToBytes(STy->getSizeInBits());
223   BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
224 }
225 
226 void BTFTypeStruct::completeType(BTFDebug &BDebug) {
227   if (IsCompleted)
228     return;
229   IsCompleted = true;
230 
231   BTFType.NameOff = BDebug.addString(STy->getName());
232 
233   // Add struct/union members.
234   const DINodeArray Elements = STy->getElements();
235   for (const auto *Element : Elements) {
236     struct BTF::BTFMember BTFMember;
237     const auto *DDTy = cast<DIDerivedType>(Element);
238 
239     BTFMember.NameOff = BDebug.addString(DDTy->getName());
240     if (HasBitField) {
241       uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
242       BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
243     } else {
244       BTFMember.Offset = DDTy->getOffsetInBits();
245     }
246     const auto *BaseTy = DDTy->getBaseType();
247     BTFMember.Type = BDebug.getTypeId(BaseTy);
248     Members.push_back(BTFMember);
249   }
250 }
251 
252 void BTFTypeStruct::emitType(MCStreamer &OS) {
253   BTFTypeBase::emitType(OS);
254   for (const auto &Member : Members) {
255     OS.EmitIntValue(Member.NameOff, 4);
256     OS.EmitIntValue(Member.Type, 4);
257     OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
258     OS.EmitIntValue(Member.Offset, 4);
259   }
260 }
261 
262 std::string BTFTypeStruct::getName() { return STy->getName(); }
263 
264 /// The Func kind represents both subprogram and pointee of function
265 /// pointers. If the FuncName is empty, it represents a pointee of function
266 /// pointer. Otherwise, it represents a subprogram. The func arg names
267 /// are empty for pointee of function pointer case, and are valid names
268 /// for subprogram.
269 BTFTypeFuncProto::BTFTypeFuncProto(
270     const DISubroutineType *STy, uint32_t VLen,
271     const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
272     : STy(STy), FuncArgNames(FuncArgNames) {
273   Kind = BTF::BTF_KIND_FUNC_PROTO;
274   BTFType.Info = (Kind << 24) | VLen;
275 }
276 
277 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
278   if (IsCompleted)
279     return;
280   IsCompleted = true;
281 
282   DITypeRefArray Elements = STy->getTypeArray();
283   auto RetType = Elements[0];
284   BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
285   BTFType.NameOff = 0;
286 
287   // For null parameter which is typically the last one
288   // to represent the vararg, encode the NameOff/Type to be 0.
289   for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
290     struct BTF::BTFParam Param;
291     auto Element = Elements[I];
292     if (Element) {
293       Param.NameOff = BDebug.addString(FuncArgNames[I]);
294       Param.Type = BDebug.getTypeId(Element);
295     } else {
296       Param.NameOff = 0;
297       Param.Type = 0;
298     }
299     Parameters.push_back(Param);
300   }
301 }
302 
303 void BTFTypeFuncProto::emitType(MCStreamer &OS) {
304   BTFTypeBase::emitType(OS);
305   for (const auto &Param : Parameters) {
306     OS.EmitIntValue(Param.NameOff, 4);
307     OS.EmitIntValue(Param.Type, 4);
308   }
309 }
310 
311 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
312     : Name(FuncName) {
313   Kind = BTF::BTF_KIND_FUNC;
314   BTFType.Info = Kind << 24;
315   BTFType.Type = ProtoTypeId;
316 }
317 
318 void BTFTypeFunc::completeType(BTFDebug &BDebug) {
319   if (IsCompleted)
320     return;
321   IsCompleted = true;
322 
323   BTFType.NameOff = BDebug.addString(Name);
324 }
325 
326 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
327 
328 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
329     : Name(VarName) {
330   Kind = BTF::BTF_KIND_VAR;
331   BTFType.Info = Kind << 24;
332   BTFType.Type = TypeId;
333   Info = VarInfo;
334 }
335 
336 void BTFKindVar::completeType(BTFDebug &BDebug) {
337   BTFType.NameOff = BDebug.addString(Name);
338 }
339 
340 void BTFKindVar::emitType(MCStreamer &OS) {
341   BTFTypeBase::emitType(OS);
342   OS.EmitIntValue(Info, 4);
343 }
344 
345 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
346     : Asm(AsmPrt), Name(SecName) {
347   Kind = BTF::BTF_KIND_DATASEC;
348   BTFType.Info = Kind << 24;
349   BTFType.Size = 0;
350 }
351 
352 void BTFKindDataSec::completeType(BTFDebug &BDebug) {
353   BTFType.NameOff = BDebug.addString(Name);
354   BTFType.Info |= Vars.size();
355 }
356 
357 void BTFKindDataSec::emitType(MCStreamer &OS) {
358   BTFTypeBase::emitType(OS);
359 
360   for (const auto &V : Vars) {
361     OS.EmitIntValue(std::get<0>(V), 4);
362     Asm->EmitLabelReference(std::get<1>(V), 4);
363     OS.EmitIntValue(std::get<2>(V), 4);
364   }
365 }
366 
367 uint32_t BTFStringTable::addString(StringRef S) {
368   // Check whether the string already exists.
369   for (auto &OffsetM : OffsetToIdMap) {
370     if (Table[OffsetM.second] == S)
371       return OffsetM.first;
372   }
373   // Not find, add to the string table.
374   uint32_t Offset = Size;
375   OffsetToIdMap[Offset] = Table.size();
376   Table.push_back(S);
377   Size += S.size() + 1;
378   return Offset;
379 }
380 
381 BTFDebug::BTFDebug(AsmPrinter *AP)
382     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
383       LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
384       MapDefNotCollected(true) {
385   addString("\0");
386 }
387 
388 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
389                            const DIType *Ty) {
390   TypeEntry->setId(TypeEntries.size() + 1);
391   uint32_t Id = TypeEntry->getId();
392   DIToIdMap[Ty] = Id;
393   TypeEntries.push_back(std::move(TypeEntry));
394   return Id;
395 }
396 
397 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
398   TypeEntry->setId(TypeEntries.size() + 1);
399   uint32_t Id = TypeEntry->getId();
400   TypeEntries.push_back(std::move(TypeEntry));
401   return Id;
402 }
403 
404 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
405   // Only int types are supported in BTF.
406   uint32_t Encoding = BTy->getEncoding();
407   if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
408       Encoding != dwarf::DW_ATE_signed_char &&
409       Encoding != dwarf::DW_ATE_unsigned &&
410       Encoding != dwarf::DW_ATE_unsigned_char)
411     return;
412 
413   // Create a BTF type instance for this DIBasicType and put it into
414   // DIToIdMap for cross-type reference check.
415   auto TypeEntry = std::make_unique<BTFTypeInt>(
416       Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
417   TypeId = addType(std::move(TypeEntry), BTy);
418 }
419 
420 /// Handle subprogram or subroutine types.
421 void BTFDebug::visitSubroutineType(
422     const DISubroutineType *STy, bool ForSubprog,
423     const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
424     uint32_t &TypeId) {
425   DITypeRefArray Elements = STy->getTypeArray();
426   uint32_t VLen = Elements.size() - 1;
427   if (VLen > BTF::MAX_VLEN)
428     return;
429 
430   // Subprogram has a valid non-zero-length name, and the pointee of
431   // a function pointer has an empty name. The subprogram type will
432   // not be added to DIToIdMap as it should not be referenced by
433   // any other types.
434   auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
435   if (ForSubprog)
436     TypeId = addType(std::move(TypeEntry)); // For subprogram
437   else
438     TypeId = addType(std::move(TypeEntry), STy); // For func ptr
439 
440   // Visit return type and func arg types.
441   for (const auto Element : Elements) {
442     visitTypeEntry(Element);
443   }
444 }
445 
446 /// Handle structure/union types.
447 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
448                                uint32_t &TypeId) {
449   const DINodeArray Elements = CTy->getElements();
450   uint32_t VLen = Elements.size();
451   if (VLen > BTF::MAX_VLEN)
452     return;
453 
454   // Check whether we have any bitfield members or not
455   bool HasBitField = false;
456   for (const auto *Element : Elements) {
457     auto E = cast<DIDerivedType>(Element);
458     if (E->isBitField()) {
459       HasBitField = true;
460       break;
461     }
462   }
463 
464   auto TypeEntry =
465       std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
466   StructTypes.push_back(TypeEntry.get());
467   TypeId = addType(std::move(TypeEntry), CTy);
468 
469   // Visit all struct members.
470   for (const auto *Element : Elements)
471     visitTypeEntry(cast<DIDerivedType>(Element));
472 }
473 
474 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
475   // Visit array element type.
476   uint32_t ElemTypeId;
477   const DIType *ElemType = CTy->getBaseType();
478   visitTypeEntry(ElemType, ElemTypeId, false, false);
479 
480   // Visit array dimensions.
481   DINodeArray Elements = CTy->getElements();
482   for (int I = Elements.size() - 1; I >= 0; --I) {
483     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
484       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
485         const DISubrange *SR = cast<DISubrange>(Element);
486         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
487         int64_t Count = CI->getSExtValue();
488 
489         // For struct s { int b; char c[]; }, the c[] will be represented
490         // as an array with Count = -1.
491         auto TypeEntry =
492             std::make_unique<BTFTypeArray>(ElemTypeId,
493                 Count >= 0 ? Count : 0);
494         if (I == 0)
495           ElemTypeId = addType(std::move(TypeEntry), CTy);
496         else
497           ElemTypeId = addType(std::move(TypeEntry));
498       }
499   }
500 
501   // The array TypeId is the type id of the outermost dimension.
502   TypeId = ElemTypeId;
503 
504   // The IR does not have a type for array index while BTF wants one.
505   // So create an array index type if there is none.
506   if (!ArrayIndexTypeId) {
507     auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
508                                                    0, "__ARRAY_SIZE_TYPE__");
509     ArrayIndexTypeId = addType(std::move(TypeEntry));
510   }
511 }
512 
513 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
514   DINodeArray Elements = CTy->getElements();
515   uint32_t VLen = Elements.size();
516   if (VLen > BTF::MAX_VLEN)
517     return;
518 
519   auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen);
520   TypeId = addType(std::move(TypeEntry), CTy);
521   // No need to visit base type as BTF does not encode it.
522 }
523 
524 /// Handle structure/union forward declarations.
525 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
526                                 uint32_t &TypeId) {
527   auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
528   TypeId = addType(std::move(TypeEntry), CTy);
529 }
530 
531 /// Handle structure, union, array and enumeration types.
532 void BTFDebug::visitCompositeType(const DICompositeType *CTy,
533                                   uint32_t &TypeId) {
534   auto Tag = CTy->getTag();
535   if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
536     // Handle forward declaration differently as it does not have members.
537     if (CTy->isForwardDecl())
538       visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
539     else
540       visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
541   } else if (Tag == dwarf::DW_TAG_array_type)
542     visitArrayType(CTy, TypeId);
543   else if (Tag == dwarf::DW_TAG_enumeration_type)
544     visitEnumType(CTy, TypeId);
545 }
546 
547 /// Handle pointer, typedef, const, volatile, restrict and member types.
548 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
549                                 bool CheckPointer, bool SeenPointer) {
550   unsigned Tag = DTy->getTag();
551 
552   /// Try to avoid chasing pointees, esp. structure pointees which may
553   /// unnecessary bring in a lot of types.
554   if (CheckPointer && !SeenPointer) {
555     SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
556   }
557 
558   if (CheckPointer && SeenPointer) {
559     const DIType *Base = DTy->getBaseType();
560     if (Base) {
561       if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
562         auto CTag = CTy->getTag();
563         if ((CTag == dwarf::DW_TAG_structure_type ||
564              CTag == dwarf::DW_TAG_union_type) &&
565             !CTy->isForwardDecl()) {
566           /// Find a candidate, generate a fixup. Later on the struct/union
567           /// pointee type will be replaced with either a real type or
568           /// a forward declaration.
569           auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
570           auto &Fixup = FixupDerivedTypes[CTy->getName()];
571           Fixup.first = CTag == dwarf::DW_TAG_union_type;
572           Fixup.second.push_back(TypeEntry.get());
573           TypeId = addType(std::move(TypeEntry), DTy);
574           return;
575         }
576       }
577     }
578   }
579 
580   if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
581       Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
582       Tag == dwarf::DW_TAG_restrict_type) {
583     auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
584     TypeId = addType(std::move(TypeEntry), DTy);
585   } else if (Tag != dwarf::DW_TAG_member) {
586     return;
587   }
588 
589   // Visit base type of pointer, typedef, const, volatile, restrict or
590   // struct/union member.
591   uint32_t TempTypeId = 0;
592   if (Tag == dwarf::DW_TAG_member)
593     visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
594   else
595     visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
596 }
597 
598 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
599                               bool CheckPointer, bool SeenPointer) {
600   if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
601     TypeId = DIToIdMap[Ty];
602     return;
603   }
604 
605   if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
606     visitBasicType(BTy, TypeId);
607   else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
608     visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
609                         TypeId);
610   else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
611     visitCompositeType(CTy, TypeId);
612   else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
613     visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
614   else
615     llvm_unreachable("Unknown DIType");
616 }
617 
618 void BTFDebug::visitTypeEntry(const DIType *Ty) {
619   uint32_t TypeId;
620   visitTypeEntry(Ty, TypeId, false, false);
621 }
622 
623 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
624   if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
625     TypeId = DIToIdMap[Ty];
626     return;
627   }
628 
629   // MapDef type is a struct type
630   const auto *CTy = dyn_cast<DICompositeType>(Ty);
631   if (!CTy)
632     return;
633 
634   auto Tag = CTy->getTag();
635   if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
636     return;
637 
638   // Record this type
639   const DINodeArray Elements = CTy->getElements();
640   bool HasBitField = false;
641   for (const auto *Element : Elements) {
642     auto E = cast<DIDerivedType>(Element);
643     if (E->isBitField()) {
644       HasBitField = true;
645       break;
646     }
647   }
648 
649   auto TypeEntry =
650       std::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size());
651   StructTypes.push_back(TypeEntry.get());
652   TypeId = addType(std::move(TypeEntry), CTy);
653 
654   // Visit all struct members
655   for (const auto *Element : Elements) {
656     const auto *MemberType = cast<DIDerivedType>(Element);
657     visitTypeEntry(MemberType->getBaseType());
658   }
659 }
660 
661 /// Read file contents from the actual file or from the source
662 std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
663   auto File = SP->getFile();
664   std::string FileName;
665 
666   if (!File->getFilename().startswith("/") && File->getDirectory().size())
667     FileName = File->getDirectory().str() + "/" + File->getFilename().str();
668   else
669     FileName = File->getFilename();
670 
671   // No need to populate the contends if it has been populated!
672   if (FileContent.find(FileName) != FileContent.end())
673     return FileName;
674 
675   std::vector<std::string> Content;
676   std::string Line;
677   Content.push_back(Line); // Line 0 for empty string
678 
679   std::unique_ptr<MemoryBuffer> Buf;
680   auto Source = File->getSource();
681   if (Source)
682     Buf = MemoryBuffer::getMemBufferCopy(*Source);
683   else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
684                MemoryBuffer::getFile(FileName))
685     Buf = std::move(*BufOrErr);
686   if (Buf)
687     for (line_iterator I(*Buf, false), E; I != E; ++I)
688       Content.push_back(*I);
689 
690   FileContent[FileName] = Content;
691   return FileName;
692 }
693 
694 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
695                                  uint32_t Line, uint32_t Column) {
696   std::string FileName = populateFileContent(SP);
697   BTFLineInfo LineInfo;
698 
699   LineInfo.Label = Label;
700   LineInfo.FileNameOff = addString(FileName);
701   // If file content is not available, let LineOff = 0.
702   if (Line < FileContent[FileName].size())
703     LineInfo.LineOff = addString(FileContent[FileName][Line]);
704   else
705     LineInfo.LineOff = 0;
706   LineInfo.LineNum = Line;
707   LineInfo.ColumnNum = Column;
708   LineInfoTable[SecNameOff].push_back(LineInfo);
709 }
710 
711 void BTFDebug::emitCommonHeader() {
712   OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
713   OS.EmitIntValue(BTF::MAGIC, 2);
714   OS.EmitIntValue(BTF::VERSION, 1);
715   OS.EmitIntValue(0, 1);
716 }
717 
718 void BTFDebug::emitBTFSection() {
719   // Do not emit section if no types and only "" string.
720   if (!TypeEntries.size() && StringTable.getSize() == 1)
721     return;
722 
723   MCContext &Ctx = OS.getContext();
724   OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
725 
726   // Emit header.
727   emitCommonHeader();
728   OS.EmitIntValue(BTF::HeaderSize, 4);
729 
730   uint32_t TypeLen = 0, StrLen;
731   for (const auto &TypeEntry : TypeEntries)
732     TypeLen += TypeEntry->getSize();
733   StrLen = StringTable.getSize();
734 
735   OS.EmitIntValue(0, 4);
736   OS.EmitIntValue(TypeLen, 4);
737   OS.EmitIntValue(TypeLen, 4);
738   OS.EmitIntValue(StrLen, 4);
739 
740   // Emit type table.
741   for (const auto &TypeEntry : TypeEntries)
742     TypeEntry->emitType(OS);
743 
744   // Emit string table.
745   uint32_t StringOffset = 0;
746   for (const auto &S : StringTable.getTable()) {
747     OS.AddComment("string offset=" + std::to_string(StringOffset));
748     OS.EmitBytes(S);
749     OS.EmitBytes(StringRef("\0", 1));
750     StringOffset += S.size() + 1;
751   }
752 }
753 
754 void BTFDebug::emitBTFExtSection() {
755   // Do not emit section if empty FuncInfoTable and LineInfoTable
756   // and FieldRelocTable.
757   if (!FuncInfoTable.size() && !LineInfoTable.size() &&
758       !FieldRelocTable.size())
759     return;
760 
761   MCContext &Ctx = OS.getContext();
762   OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
763 
764   // Emit header.
765   emitCommonHeader();
766   OS.EmitIntValue(BTF::ExtHeaderSize, 4);
767 
768   // Account for FuncInfo/LineInfo record size as well.
769   uint32_t FuncLen = 4, LineLen = 4;
770   // Do not account for optional FieldReloc.
771   uint32_t FieldRelocLen = 0;
772   for (const auto &FuncSec : FuncInfoTable) {
773     FuncLen += BTF::SecFuncInfoSize;
774     FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
775   }
776   for (const auto &LineSec : LineInfoTable) {
777     LineLen += BTF::SecLineInfoSize;
778     LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
779   }
780   for (const auto &FieldRelocSec : FieldRelocTable) {
781     FieldRelocLen += BTF::SecFieldRelocSize;
782     FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
783   }
784 
785   if (FieldRelocLen)
786     FieldRelocLen += 4;
787 
788   OS.EmitIntValue(0, 4);
789   OS.EmitIntValue(FuncLen, 4);
790   OS.EmitIntValue(FuncLen, 4);
791   OS.EmitIntValue(LineLen, 4);
792   OS.EmitIntValue(FuncLen + LineLen, 4);
793   OS.EmitIntValue(FieldRelocLen, 4);
794 
795   // Emit func_info table.
796   OS.AddComment("FuncInfo");
797   OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
798   for (const auto &FuncSec : FuncInfoTable) {
799     OS.AddComment("FuncInfo section string offset=" +
800                   std::to_string(FuncSec.first));
801     OS.EmitIntValue(FuncSec.first, 4);
802     OS.EmitIntValue(FuncSec.second.size(), 4);
803     for (const auto &FuncInfo : FuncSec.second) {
804       Asm->EmitLabelReference(FuncInfo.Label, 4);
805       OS.EmitIntValue(FuncInfo.TypeId, 4);
806     }
807   }
808 
809   // Emit line_info table.
810   OS.AddComment("LineInfo");
811   OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
812   for (const auto &LineSec : LineInfoTable) {
813     OS.AddComment("LineInfo section string offset=" +
814                   std::to_string(LineSec.first));
815     OS.EmitIntValue(LineSec.first, 4);
816     OS.EmitIntValue(LineSec.second.size(), 4);
817     for (const auto &LineInfo : LineSec.second) {
818       Asm->EmitLabelReference(LineInfo.Label, 4);
819       OS.EmitIntValue(LineInfo.FileNameOff, 4);
820       OS.EmitIntValue(LineInfo.LineOff, 4);
821       OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
822                     std::to_string(LineInfo.ColumnNum));
823       OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
824     }
825   }
826 
827   // Emit field reloc table.
828   if (FieldRelocLen) {
829     OS.AddComment("FieldReloc");
830     OS.EmitIntValue(BTF::BPFFieldRelocSize, 4);
831     for (const auto &FieldRelocSec : FieldRelocTable) {
832       OS.AddComment("Field reloc section string offset=" +
833                     std::to_string(FieldRelocSec.first));
834       OS.EmitIntValue(FieldRelocSec.first, 4);
835       OS.EmitIntValue(FieldRelocSec.second.size(), 4);
836       for (const auto &FieldRelocInfo : FieldRelocSec.second) {
837         Asm->EmitLabelReference(FieldRelocInfo.Label, 4);
838         OS.EmitIntValue(FieldRelocInfo.TypeID, 4);
839         OS.EmitIntValue(FieldRelocInfo.OffsetNameOff, 4);
840         OS.EmitIntValue(FieldRelocInfo.RelocKind, 4);
841       }
842     }
843   }
844 }
845 
846 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
847   auto *SP = MF->getFunction().getSubprogram();
848   auto *Unit = SP->getUnit();
849 
850   if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
851     SkipInstruction = true;
852     return;
853   }
854   SkipInstruction = false;
855 
856   // Collect MapDef types. Map definition needs to collect
857   // pointee types. Do it first. Otherwise, for the following
858   // case:
859   //    struct m { ...};
860   //    struct t {
861   //      struct m *key;
862   //    };
863   //    foo(struct t *arg);
864   //
865   //    struct mapdef {
866   //      ...
867   //      struct m *key;
868   //      ...
869   //    } __attribute__((section(".maps"))) hash_map;
870   //
871   // If subroutine foo is traversed first, a type chain
872   // "ptr->struct m(fwd)" will be created and later on
873   // when traversing mapdef, since "ptr->struct m" exists,
874   // the traversal of "struct m" will be omitted.
875   if (MapDefNotCollected) {
876     processGlobals(true);
877     MapDefNotCollected = false;
878   }
879 
880   // Collect all types locally referenced in this function.
881   // Use RetainedNodes so we can collect all argument names
882   // even if the argument is not used.
883   std::unordered_map<uint32_t, StringRef> FuncArgNames;
884   for (const DINode *DN : SP->getRetainedNodes()) {
885     if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
886       // Collect function arguments for subprogram func type.
887       uint32_t Arg = DV->getArg();
888       if (Arg) {
889         visitTypeEntry(DV->getType());
890         FuncArgNames[Arg] = DV->getName();
891       }
892     }
893   }
894 
895   // Construct subprogram func proto type.
896   uint32_t ProtoTypeId;
897   visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
898 
899   // Construct subprogram func type
900   auto FuncTypeEntry =
901       std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
902   uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
903 
904   for (const auto &TypeEntry : TypeEntries)
905     TypeEntry->completeType(*this);
906 
907   // Construct funcinfo and the first lineinfo for the function.
908   MCSymbol *FuncLabel = Asm->getFunctionBegin();
909   BTFFuncInfo FuncInfo;
910   FuncInfo.Label = FuncLabel;
911   FuncInfo.TypeId = FuncTypeId;
912   if (FuncLabel->isInSection()) {
913     MCSection &Section = FuncLabel->getSection();
914     const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
915     assert(SectionELF && "Null section for Function Label");
916     SecNameOff = addString(SectionELF->getSectionName());
917   } else {
918     SecNameOff = addString(".text");
919   }
920   FuncInfoTable[SecNameOff].push_back(FuncInfo);
921 }
922 
923 void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
924   SkipInstruction = false;
925   LineInfoGenerated = false;
926   SecNameOff = 0;
927 }
928 
929 /// On-demand populate struct types as requested from abstract member
930 /// accessing.
931 unsigned BTFDebug::populateStructType(const DIType *Ty) {
932   unsigned Id;
933   visitTypeEntry(Ty, Id, false, false);
934   for (const auto &TypeEntry : TypeEntries)
935     TypeEntry->completeType(*this);
936   return Id;
937 }
938 
939 /// Generate a struct member field relocation.
940 void BTFDebug::generateFieldReloc(const MachineInstr *MI,
941                                    const MCSymbol *ORSym, DIType *RootTy,
942                                    StringRef AccessPattern) {
943   unsigned RootId = populateStructType(RootTy);
944   size_t FirstDollar = AccessPattern.find_first_of('$');
945   size_t FirstColon = AccessPattern.find_first_of(':');
946   size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
947   StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
948   StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
949       SecondColon - FirstColon);
950   StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
951       FirstDollar - SecondColon);
952 
953   BTFFieldReloc FieldReloc;
954   FieldReloc.Label = ORSym;
955   FieldReloc.OffsetNameOff = addString(IndexPattern);
956   FieldReloc.TypeID = RootId;
957   FieldReloc.RelocKind = std::stoull(RelocKindStr);
958   PatchImms[AccessPattern.str()] = std::stoul(PatchImmStr);
959   FieldRelocTable[SecNameOff].push_back(FieldReloc);
960 }
961 
962 void BTFDebug::processLDimm64(const MachineInstr *MI) {
963   // If the insn is an LD_imm64, the following two cases
964   // will generate an .BTF.ext record.
965   //
966   // If the insn is "r2 = LD_imm64 @__BTF_...",
967   // add this insn into the .BTF.ext FieldReloc subsection.
968   // Relocation looks like:
969   //  . SecName:
970   //    . InstOffset
971   //    . TypeID
972   //    . OffSetNameOff
973   // Later, the insn is replaced with "r2 = <offset>"
974   // where "<offset>" equals to the offset based on current
975   // type definitions.
976   //
977   // If the insn is "r2 = LD_imm64 @VAR" and VAR is
978   // a patchable external global, add this insn into the .BTF.ext
979   // ExternReloc subsection.
980   // Relocation looks like:
981   //  . SecName:
982   //    . InstOffset
983   //    . ExternNameOff
984   // Later, the insn is replaced with "r2 = <value>" or
985   // "LD_imm64 r2, <value>" where "<value>" = 0.
986 
987   // check whether this is a candidate or not
988   const MachineOperand &MO = MI->getOperand(1);
989   if (MO.isGlobal()) {
990     const GlobalValue *GVal = MO.getGlobal();
991     auto *GVar = dyn_cast<GlobalVariable>(GVal);
992     if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
993       MCSymbol *ORSym = OS.getContext().createTempSymbol();
994       OS.EmitLabel(ORSym);
995 
996       MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
997       DIType *Ty = dyn_cast<DIType>(MDN);
998       generateFieldReloc(MI, ORSym, Ty, GVar->getName());
999     }
1000   }
1001 }
1002 
1003 void BTFDebug::beginInstruction(const MachineInstr *MI) {
1004   DebugHandlerBase::beginInstruction(MI);
1005 
1006   if (SkipInstruction || MI->isMetaInstruction() ||
1007       MI->getFlag(MachineInstr::FrameSetup))
1008     return;
1009 
1010   if (MI->isInlineAsm()) {
1011     // Count the number of register definitions to find the asm string.
1012     unsigned NumDefs = 0;
1013     for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1014          ++NumDefs)
1015       ;
1016 
1017     // Skip this inline asm instruction if the asmstr is empty.
1018     const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1019     if (AsmStr[0] == 0)
1020       return;
1021   }
1022 
1023   if (MI->getOpcode() == BPF::LD_imm64)
1024     processLDimm64(MI);
1025 
1026   // Skip this instruction if no DebugLoc or the DebugLoc
1027   // is the same as the previous instruction.
1028   const DebugLoc &DL = MI->getDebugLoc();
1029   if (!DL || PrevInstLoc == DL) {
1030     // This instruction will be skipped, no LineInfo has
1031     // been generated, construct one based on function signature.
1032     if (LineInfoGenerated == false) {
1033       auto *S = MI->getMF()->getFunction().getSubprogram();
1034       MCSymbol *FuncLabel = Asm->getFunctionBegin();
1035       constructLineInfo(S, FuncLabel, S->getLine(), 0);
1036       LineInfoGenerated = true;
1037     }
1038 
1039     return;
1040   }
1041 
1042   // Create a temporary label to remember the insn for lineinfo.
1043   MCSymbol *LineSym = OS.getContext().createTempSymbol();
1044   OS.EmitLabel(LineSym);
1045 
1046   // Construct the lineinfo.
1047   auto SP = DL.get()->getScope()->getSubprogram();
1048   constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1049 
1050   LineInfoGenerated = true;
1051   PrevInstLoc = DL;
1052 }
1053 
1054 void BTFDebug::processGlobals(bool ProcessingMapDef) {
1055   // Collect all types referenced by globals.
1056   const Module *M = MMI->getModule();
1057   for (const GlobalVariable &Global : M->globals()) {
1058     // Ignore external globals for now.
1059     if (!Global.hasInitializer() && Global.hasExternalLinkage())
1060       continue;
1061 
1062     // Decide the section name.
1063     StringRef SecName;
1064     if (Global.hasSection()) {
1065       SecName = Global.getSection();
1066     } else {
1067       // data, bss, or readonly sections
1068       if (Global.isConstant())
1069         SecName = ".rodata";
1070       else
1071         SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
1072     }
1073 
1074     if (ProcessingMapDef != SecName.startswith(".maps"))
1075       continue;
1076 
1077     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1078     Global.getDebugInfo(GVs);
1079     uint32_t GVTypeId = 0;
1080     for (auto *GVE : GVs) {
1081       if (SecName.startswith(".maps"))
1082         visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
1083       else
1084         visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
1085       break;
1086     }
1087 
1088     // Only support the following globals:
1089     //  . static variables
1090     //  . non-static global variables with section attributes
1091     // Essentially means:
1092     //  . .bcc/.data/.rodata DataSec entities only contain static data
1093     //  . Other DataSec entities contain static or initialized global data.
1094     //    Initialized global data are mostly used for finding map key/value type
1095     //    id's. Whether DataSec is readonly or not can be found from
1096     //    corresponding ELF section flags.
1097     auto Linkage = Global.getLinkage();
1098     if (Linkage != GlobalValue::InternalLinkage &&
1099         (Linkage != GlobalValue::ExternalLinkage || !Global.hasSection()))
1100       continue;
1101 
1102     uint32_t GVarInfo = Linkage == GlobalValue::ExternalLinkage
1103                             ? BTF::VAR_GLOBAL_ALLOCATED
1104                             : BTF::VAR_STATIC;
1105     auto VarEntry =
1106         std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1107     uint32_t VarId = addType(std::move(VarEntry));
1108 
1109     // Find or create a DataSec
1110     if (DataSecEntries.find(SecName) == DataSecEntries.end()) {
1111       DataSecEntries[SecName] = std::make_unique<BTFKindDataSec>(Asm, SecName);
1112     }
1113 
1114     // Calculate symbol size
1115     const DataLayout &DL = Global.getParent()->getDataLayout();
1116     uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());
1117 
1118     DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size);
1119   }
1120 }
1121 
1122 /// Emit proper patchable instructions.
1123 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1124   if (MI->getOpcode() == BPF::LD_imm64) {
1125     const MachineOperand &MO = MI->getOperand(1);
1126     if (MO.isGlobal()) {
1127       const GlobalValue *GVal = MO.getGlobal();
1128       auto *GVar = dyn_cast<GlobalVariable>(GVal);
1129       if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1130         // Emit "mov ri, <imm>" for patched immediate.
1131         uint32_t Imm = PatchImms[GVar->getName().str()];
1132         OutMI.setOpcode(BPF::MOV_ri);
1133         OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1134         OutMI.addOperand(MCOperand::createImm(Imm));
1135         return true;
1136       }
1137     }
1138   }
1139   return false;
1140 }
1141 
1142 void BTFDebug::endModule() {
1143   // Collect MapDef globals if not collected yet.
1144   if (MapDefNotCollected) {
1145     processGlobals(true);
1146     MapDefNotCollected = false;
1147   }
1148 
1149   // Collect global types/variables except MapDef globals.
1150   processGlobals(false);
1151   for (auto &DataSec : DataSecEntries)
1152     addType(std::move(DataSec.second));
1153 
1154   // Fixups
1155   for (auto &Fixup : FixupDerivedTypes) {
1156     StringRef TypeName = Fixup.first;
1157     bool IsUnion = Fixup.second.first;
1158 
1159     // Search through struct types
1160     uint32_t StructTypeId = 0;
1161     for (const auto &StructType : StructTypes) {
1162       if (StructType->getName() == TypeName) {
1163         StructTypeId = StructType->getId();
1164         break;
1165       }
1166     }
1167 
1168     if (StructTypeId == 0) {
1169       auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1170       StructTypeId = addType(std::move(FwdTypeEntry));
1171     }
1172 
1173     for (auto &DType : Fixup.second.second) {
1174       DType->setPointeeType(StructTypeId);
1175     }
1176   }
1177 
1178   // Complete BTF type cross refereences.
1179   for (const auto &TypeEntry : TypeEntries)
1180     TypeEntry->completeType(*this);
1181 
1182   // Emit BTF sections.
1183   emitBTFSection();
1184   emitBTFExtSection();
1185 }
1186