1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 /// Used by DW_TAG_pointer_type only. 70 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, 71 StringRef Name) 72 : DTy(nullptr), NeedsFixup(false), Name(Name) { 73 Kind = BTF::BTF_KIND_PTR; 74 BTFType.Info = Kind << 24; 75 BTFType.Type = NextTypeId; 76 } 77 78 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 79 if (IsCompleted) 80 return; 81 IsCompleted = true; 82 83 BTFType.NameOff = BDebug.addString(Name); 84 85 if (NeedsFixup || !DTy) 86 return; 87 88 // The base type for PTR/CONST/VOLATILE could be void. 89 const DIType *ResolvedType = DTy->getBaseType(); 90 if (!ResolvedType) { 91 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 92 Kind == BTF::BTF_KIND_VOLATILE) && 93 "Invalid null basetype"); 94 BTFType.Type = 0; 95 } else { 96 BTFType.Type = BDebug.getTypeId(ResolvedType); 97 } 98 } 99 100 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 101 102 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 103 BTFType.Type = PointeeType; 104 } 105 106 /// Represent a struct/union forward declaration. 107 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 108 Kind = BTF::BTF_KIND_FWD; 109 BTFType.Info = IsUnion << 31 | Kind << 24; 110 BTFType.Type = 0; 111 } 112 113 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 114 if (IsCompleted) 115 return; 116 IsCompleted = true; 117 118 BTFType.NameOff = BDebug.addString(Name); 119 } 120 121 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 122 123 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 124 uint32_t OffsetInBits, StringRef TypeName) 125 : Name(TypeName) { 126 // Translate IR int encoding to BTF int encoding. 127 uint8_t BTFEncoding; 128 switch (Encoding) { 129 case dwarf::DW_ATE_boolean: 130 BTFEncoding = BTF::INT_BOOL; 131 break; 132 case dwarf::DW_ATE_signed: 133 case dwarf::DW_ATE_signed_char: 134 BTFEncoding = BTF::INT_SIGNED; 135 break; 136 case dwarf::DW_ATE_unsigned: 137 case dwarf::DW_ATE_unsigned_char: 138 BTFEncoding = 0; 139 break; 140 default: 141 llvm_unreachable("Unknown BTFTypeInt Encoding"); 142 } 143 144 Kind = BTF::BTF_KIND_INT; 145 BTFType.Info = Kind << 24; 146 BTFType.Size = roundupToBytes(SizeInBits); 147 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 148 } 149 150 void BTFTypeInt::completeType(BTFDebug &BDebug) { 151 if (IsCompleted) 152 return; 153 IsCompleted = true; 154 155 BTFType.NameOff = BDebug.addString(Name); 156 } 157 158 void BTFTypeInt::emitType(MCStreamer &OS) { 159 BTFTypeBase::emitType(OS); 160 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 161 OS.emitInt32(IntVal); 162 } 163 164 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 165 Kind = BTF::BTF_KIND_ENUM; 166 BTFType.Info = Kind << 24 | VLen; 167 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 168 } 169 170 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 171 if (IsCompleted) 172 return; 173 IsCompleted = true; 174 175 BTFType.NameOff = BDebug.addString(ETy->getName()); 176 177 DINodeArray Elements = ETy->getElements(); 178 for (const auto Element : Elements) { 179 const auto *Enum = cast<DIEnumerator>(Element); 180 181 struct BTF::BTFEnum BTFEnum; 182 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 183 // BTF enum value is 32bit, enforce it. 184 uint32_t Value; 185 if (Enum->isUnsigned()) 186 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 187 else 188 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 189 BTFEnum.Val = Value; 190 EnumValues.push_back(BTFEnum); 191 } 192 } 193 194 void BTFTypeEnum::emitType(MCStreamer &OS) { 195 BTFTypeBase::emitType(OS); 196 for (const auto &Enum : EnumValues) { 197 OS.emitInt32(Enum.NameOff); 198 OS.emitInt32(Enum.Val); 199 } 200 } 201 202 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 203 Kind = BTF::BTF_KIND_ARRAY; 204 BTFType.NameOff = 0; 205 BTFType.Info = Kind << 24; 206 BTFType.Size = 0; 207 208 ArrayInfo.ElemType = ElemTypeId; 209 ArrayInfo.Nelems = NumElems; 210 } 211 212 /// Represent a BTF array. 213 void BTFTypeArray::completeType(BTFDebug &BDebug) { 214 if (IsCompleted) 215 return; 216 IsCompleted = true; 217 218 // The IR does not really have a type for the index. 219 // A special type for array index should have been 220 // created during initial type traversal. Just 221 // retrieve that type id. 222 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 223 } 224 225 void BTFTypeArray::emitType(MCStreamer &OS) { 226 BTFTypeBase::emitType(OS); 227 OS.emitInt32(ArrayInfo.ElemType); 228 OS.emitInt32(ArrayInfo.IndexType); 229 OS.emitInt32(ArrayInfo.Nelems); 230 } 231 232 /// Represent either a struct or a union. 233 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 234 bool HasBitField, uint32_t Vlen) 235 : STy(STy), HasBitField(HasBitField) { 236 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 237 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 238 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 239 } 240 241 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 242 if (IsCompleted) 243 return; 244 IsCompleted = true; 245 246 BTFType.NameOff = BDebug.addString(STy->getName()); 247 248 // Add struct/union members. 249 const DINodeArray Elements = STy->getElements(); 250 for (const auto *Element : Elements) { 251 struct BTF::BTFMember BTFMember; 252 const auto *DDTy = cast<DIDerivedType>(Element); 253 254 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 255 if (HasBitField) { 256 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 257 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 258 } else { 259 BTFMember.Offset = DDTy->getOffsetInBits(); 260 } 261 const auto *BaseTy = DDTy->getBaseType(); 262 BTFMember.Type = BDebug.getTypeId(BaseTy); 263 Members.push_back(BTFMember); 264 } 265 } 266 267 void BTFTypeStruct::emitType(MCStreamer &OS) { 268 BTFTypeBase::emitType(OS); 269 for (const auto &Member : Members) { 270 OS.emitInt32(Member.NameOff); 271 OS.emitInt32(Member.Type); 272 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 273 OS.emitInt32(Member.Offset); 274 } 275 } 276 277 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 278 279 /// The Func kind represents both subprogram and pointee of function 280 /// pointers. If the FuncName is empty, it represents a pointee of function 281 /// pointer. Otherwise, it represents a subprogram. The func arg names 282 /// are empty for pointee of function pointer case, and are valid names 283 /// for subprogram. 284 BTFTypeFuncProto::BTFTypeFuncProto( 285 const DISubroutineType *STy, uint32_t VLen, 286 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 287 : STy(STy), FuncArgNames(FuncArgNames) { 288 Kind = BTF::BTF_KIND_FUNC_PROTO; 289 BTFType.Info = (Kind << 24) | VLen; 290 } 291 292 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 293 if (IsCompleted) 294 return; 295 IsCompleted = true; 296 297 DITypeRefArray Elements = STy->getTypeArray(); 298 auto RetType = Elements[0]; 299 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 300 BTFType.NameOff = 0; 301 302 // For null parameter which is typically the last one 303 // to represent the vararg, encode the NameOff/Type to be 0. 304 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 305 struct BTF::BTFParam Param; 306 auto Element = Elements[I]; 307 if (Element) { 308 Param.NameOff = BDebug.addString(FuncArgNames[I]); 309 Param.Type = BDebug.getTypeId(Element); 310 } else { 311 Param.NameOff = 0; 312 Param.Type = 0; 313 } 314 Parameters.push_back(Param); 315 } 316 } 317 318 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 319 BTFTypeBase::emitType(OS); 320 for (const auto &Param : Parameters) { 321 OS.emitInt32(Param.NameOff); 322 OS.emitInt32(Param.Type); 323 } 324 } 325 326 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 327 uint32_t Scope) 328 : Name(FuncName) { 329 Kind = BTF::BTF_KIND_FUNC; 330 BTFType.Info = (Kind << 24) | Scope; 331 BTFType.Type = ProtoTypeId; 332 } 333 334 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 335 if (IsCompleted) 336 return; 337 IsCompleted = true; 338 339 BTFType.NameOff = BDebug.addString(Name); 340 } 341 342 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 343 344 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 345 : Name(VarName) { 346 Kind = BTF::BTF_KIND_VAR; 347 BTFType.Info = Kind << 24; 348 BTFType.Type = TypeId; 349 Info = VarInfo; 350 } 351 352 void BTFKindVar::completeType(BTFDebug &BDebug) { 353 BTFType.NameOff = BDebug.addString(Name); 354 } 355 356 void BTFKindVar::emitType(MCStreamer &OS) { 357 BTFTypeBase::emitType(OS); 358 OS.emitInt32(Info); 359 } 360 361 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 362 : Asm(AsmPrt), Name(SecName) { 363 Kind = BTF::BTF_KIND_DATASEC; 364 BTFType.Info = Kind << 24; 365 BTFType.Size = 0; 366 } 367 368 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 369 BTFType.NameOff = BDebug.addString(Name); 370 BTFType.Info |= Vars.size(); 371 } 372 373 void BTFKindDataSec::emitType(MCStreamer &OS) { 374 BTFTypeBase::emitType(OS); 375 376 for (const auto &V : Vars) { 377 OS.emitInt32(std::get<0>(V)); 378 Asm->emitLabelReference(std::get<1>(V), 4); 379 OS.emitInt32(std::get<2>(V)); 380 } 381 } 382 383 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 384 : Name(TypeName) { 385 Kind = BTF::BTF_KIND_FLOAT; 386 BTFType.Info = Kind << 24; 387 BTFType.Size = roundupToBytes(SizeInBits); 388 } 389 390 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 391 if (IsCompleted) 392 return; 393 IsCompleted = true; 394 395 BTFType.NameOff = BDebug.addString(Name); 396 } 397 398 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 399 StringRef Tag) 400 : Tag(Tag) { 401 Kind = BTF::BTF_KIND_DECL_TAG; 402 BTFType.Info = Kind << 24; 403 BTFType.Type = BaseTypeId; 404 Info = ComponentIdx; 405 } 406 407 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 408 if (IsCompleted) 409 return; 410 IsCompleted = true; 411 412 BTFType.NameOff = BDebug.addString(Tag); 413 } 414 415 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 416 BTFTypeBase::emitType(OS); 417 OS.emitInt32(Info); 418 } 419 420 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) 421 : DTy(nullptr), Tag(Tag) { 422 Kind = BTF::BTF_KIND_TYPE_TAG; 423 BTFType.Info = Kind << 24; 424 BTFType.Type = NextTypeId; 425 } 426 427 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) 428 : DTy(DTy), Tag(Tag) { 429 Kind = BTF::BTF_KIND_TYPE_TAG; 430 BTFType.Info = Kind << 24; 431 } 432 433 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { 434 if (IsCompleted) 435 return; 436 IsCompleted = true; 437 BTFType.NameOff = BDebug.addString(Tag); 438 if (DTy) { 439 const DIType *ResolvedType = DTy->getBaseType(); 440 if (!ResolvedType) 441 BTFType.Type = 0; 442 else 443 BTFType.Type = BDebug.getTypeId(ResolvedType); 444 } 445 } 446 447 uint32_t BTFStringTable::addString(StringRef S) { 448 // Check whether the string already exists. 449 for (auto &OffsetM : OffsetToIdMap) { 450 if (Table[OffsetM.second] == S) 451 return OffsetM.first; 452 } 453 // Not find, add to the string table. 454 uint32_t Offset = Size; 455 OffsetToIdMap[Offset] = Table.size(); 456 Table.push_back(std::string(S)); 457 Size += S.size() + 1; 458 return Offset; 459 } 460 461 BTFDebug::BTFDebug(AsmPrinter *AP) 462 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 463 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 464 MapDefNotCollected(true) { 465 addString("\0"); 466 } 467 468 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 469 const DIType *Ty) { 470 TypeEntry->setId(TypeEntries.size() + 1); 471 uint32_t Id = TypeEntry->getId(); 472 DIToIdMap[Ty] = Id; 473 TypeEntries.push_back(std::move(TypeEntry)); 474 return Id; 475 } 476 477 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 478 TypeEntry->setId(TypeEntries.size() + 1); 479 uint32_t Id = TypeEntry->getId(); 480 TypeEntries.push_back(std::move(TypeEntry)); 481 return Id; 482 } 483 484 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 485 // Only int and binary floating point types are supported in BTF. 486 uint32_t Encoding = BTy->getEncoding(); 487 std::unique_ptr<BTFTypeBase> TypeEntry; 488 switch (Encoding) { 489 case dwarf::DW_ATE_boolean: 490 case dwarf::DW_ATE_signed: 491 case dwarf::DW_ATE_signed_char: 492 case dwarf::DW_ATE_unsigned: 493 case dwarf::DW_ATE_unsigned_char: 494 // Create a BTF type instance for this DIBasicType and put it into 495 // DIToIdMap for cross-type reference check. 496 TypeEntry = std::make_unique<BTFTypeInt>( 497 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 498 break; 499 case dwarf::DW_ATE_float: 500 TypeEntry = 501 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 502 break; 503 default: 504 return; 505 } 506 507 TypeId = addType(std::move(TypeEntry), BTy); 508 } 509 510 /// Handle subprogram or subroutine types. 511 void BTFDebug::visitSubroutineType( 512 const DISubroutineType *STy, bool ForSubprog, 513 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 514 uint32_t &TypeId) { 515 DITypeRefArray Elements = STy->getTypeArray(); 516 uint32_t VLen = Elements.size() - 1; 517 if (VLen > BTF::MAX_VLEN) 518 return; 519 520 // Subprogram has a valid non-zero-length name, and the pointee of 521 // a function pointer has an empty name. The subprogram type will 522 // not be added to DIToIdMap as it should not be referenced by 523 // any other types. 524 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 525 if (ForSubprog) 526 TypeId = addType(std::move(TypeEntry)); // For subprogram 527 else 528 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 529 530 // Visit return type and func arg types. 531 for (const auto Element : Elements) { 532 visitTypeEntry(Element); 533 } 534 } 535 536 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 537 uint32_t BaseTypeId, 538 int ComponentIdx) { 539 if (!Annotations) 540 return; 541 542 for (const Metadata *Annotation : Annotations->operands()) { 543 const MDNode *MD = cast<MDNode>(Annotation); 544 const MDString *Name = cast<MDString>(MD->getOperand(0)); 545 if (!Name->getString().equals("btf_decl_tag")) 546 continue; 547 548 const MDString *Value = cast<MDString>(MD->getOperand(1)); 549 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 550 Value->getString()); 551 addType(std::move(TypeEntry)); 552 } 553 } 554 555 /// Handle structure/union types. 556 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 557 uint32_t &TypeId) { 558 const DINodeArray Elements = CTy->getElements(); 559 uint32_t VLen = Elements.size(); 560 if (VLen > BTF::MAX_VLEN) 561 return; 562 563 // Check whether we have any bitfield members or not 564 bool HasBitField = false; 565 for (const auto *Element : Elements) { 566 auto E = cast<DIDerivedType>(Element); 567 if (E->isBitField()) { 568 HasBitField = true; 569 break; 570 } 571 } 572 573 auto TypeEntry = 574 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 575 StructTypes.push_back(TypeEntry.get()); 576 TypeId = addType(std::move(TypeEntry), CTy); 577 578 // Check struct/union annotations 579 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 580 581 // Visit all struct members. 582 int FieldNo = 0; 583 for (const auto *Element : Elements) { 584 const auto Elem = cast<DIDerivedType>(Element); 585 visitTypeEntry(Elem); 586 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 587 FieldNo++; 588 } 589 } 590 591 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 592 // Visit array element type. 593 uint32_t ElemTypeId; 594 const DIType *ElemType = CTy->getBaseType(); 595 visitTypeEntry(ElemType, ElemTypeId, false, false); 596 597 // Visit array dimensions. 598 DINodeArray Elements = CTy->getElements(); 599 for (int I = Elements.size() - 1; I >= 0; --I) { 600 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 601 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 602 const DISubrange *SR = cast<DISubrange>(Element); 603 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 604 int64_t Count = CI->getSExtValue(); 605 606 // For struct s { int b; char c[]; }, the c[] will be represented 607 // as an array with Count = -1. 608 auto TypeEntry = 609 std::make_unique<BTFTypeArray>(ElemTypeId, 610 Count >= 0 ? Count : 0); 611 if (I == 0) 612 ElemTypeId = addType(std::move(TypeEntry), CTy); 613 else 614 ElemTypeId = addType(std::move(TypeEntry)); 615 } 616 } 617 618 // The array TypeId is the type id of the outermost dimension. 619 TypeId = ElemTypeId; 620 621 // The IR does not have a type for array index while BTF wants one. 622 // So create an array index type if there is none. 623 if (!ArrayIndexTypeId) { 624 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 625 0, "__ARRAY_SIZE_TYPE__"); 626 ArrayIndexTypeId = addType(std::move(TypeEntry)); 627 } 628 } 629 630 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 631 DINodeArray Elements = CTy->getElements(); 632 uint32_t VLen = Elements.size(); 633 if (VLen > BTF::MAX_VLEN) 634 return; 635 636 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 637 TypeId = addType(std::move(TypeEntry), CTy); 638 // No need to visit base type as BTF does not encode it. 639 } 640 641 /// Handle structure/union forward declarations. 642 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 643 uint32_t &TypeId) { 644 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 645 TypeId = addType(std::move(TypeEntry), CTy); 646 } 647 648 /// Handle structure, union, array and enumeration types. 649 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 650 uint32_t &TypeId) { 651 auto Tag = CTy->getTag(); 652 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 653 // Handle forward declaration differently as it does not have members. 654 if (CTy->isForwardDecl()) 655 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 656 else 657 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 658 } else if (Tag == dwarf::DW_TAG_array_type) 659 visitArrayType(CTy, TypeId); 660 else if (Tag == dwarf::DW_TAG_enumeration_type) 661 visitEnumType(CTy, TypeId); 662 } 663 664 /// Handle pointer, typedef, const, volatile, restrict and member types. 665 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 666 bool CheckPointer, bool SeenPointer) { 667 unsigned Tag = DTy->getTag(); 668 669 /// Try to avoid chasing pointees, esp. structure pointees which may 670 /// unnecessary bring in a lot of types. 671 if (CheckPointer && !SeenPointer) { 672 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 673 } 674 675 if (CheckPointer && SeenPointer) { 676 const DIType *Base = DTy->getBaseType(); 677 if (Base) { 678 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 679 auto CTag = CTy->getTag(); 680 if ((CTag == dwarf::DW_TAG_structure_type || 681 CTag == dwarf::DW_TAG_union_type) && 682 !CTy->getName().empty() && !CTy->isForwardDecl()) { 683 /// Find a candidate, generate a fixup. Later on the struct/union 684 /// pointee type will be replaced with either a real type or 685 /// a forward declaration. 686 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 687 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 688 Fixup.first = CTag == dwarf::DW_TAG_union_type; 689 Fixup.second.push_back(TypeEntry.get()); 690 TypeId = addType(std::move(TypeEntry), DTy); 691 return; 692 } 693 } 694 } 695 } 696 697 if (Tag == dwarf::DW_TAG_pointer_type) { 698 SmallVector<const MDString *, 4> MDStrs; 699 DINodeArray Annots = DTy->getAnnotations(); 700 if (Annots) { 701 // For type with "int __tag1 __tag2 *p", the MDStrs will have 702 // content: [__tag1, __tag2]. 703 for (const Metadata *Annotations : Annots->operands()) { 704 const MDNode *MD = cast<MDNode>(Annotations); 705 const MDString *Name = cast<MDString>(MD->getOperand(0)); 706 if (!Name->getString().equals("btf_type_tag")) 707 continue; 708 MDStrs.push_back(cast<MDString>(MD->getOperand(1))); 709 } 710 } 711 712 if (MDStrs.size() > 0) { 713 // With MDStrs [__tag1, __tag2], the output type chain looks like 714 // PTR -> __tag2 -> __tag1 -> BaseType 715 // In the below, we construct BTF types with the order of __tag1, __tag2 716 // and PTR. 717 auto TypeEntry = 718 std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString()); 719 unsigned TmpTypeId = addType(std::move(TypeEntry)); 720 for (unsigned I = 1; I < MDStrs.size(); I++) { 721 const MDString *Value = MDStrs[I]; 722 TypeEntry = 723 std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString()); 724 TmpTypeId = addType(std::move(TypeEntry)); 725 } 726 auto TypeDEntry = 727 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName()); 728 TypeId = addType(std::move(TypeDEntry), DTy); 729 } else { 730 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 731 TypeId = addType(std::move(TypeEntry), DTy); 732 } 733 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 734 Tag == dwarf::DW_TAG_volatile_type || 735 Tag == dwarf::DW_TAG_restrict_type) { 736 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 737 TypeId = addType(std::move(TypeEntry), DTy); 738 if (Tag == dwarf::DW_TAG_typedef) 739 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); 740 } else if (Tag != dwarf::DW_TAG_member) { 741 return; 742 } 743 744 // Visit base type of pointer, typedef, const, volatile, restrict or 745 // struct/union member. 746 uint32_t TempTypeId = 0; 747 if (Tag == dwarf::DW_TAG_member) 748 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 749 else 750 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 751 } 752 753 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 754 bool CheckPointer, bool SeenPointer) { 755 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 756 TypeId = DIToIdMap[Ty]; 757 758 // To handle the case like the following: 759 // struct t; 760 // typedef struct t _t; 761 // struct s1 { _t *c; }; 762 // int test1(struct s1 *arg) { ... } 763 // 764 // struct t { int a; int b; }; 765 // struct s2 { _t c; } 766 // int test2(struct s2 *arg) { ... } 767 // 768 // During traversing test1() argument, "_t" is recorded 769 // in DIToIdMap and a forward declaration fixup is created 770 // for "struct t" to avoid pointee type traversal. 771 // 772 // During traversing test2() argument, even if we see "_t" is 773 // already defined, we should keep moving to eventually 774 // bring in types for "struct t". Otherwise, the "struct s2" 775 // definition won't be correct. 776 if (Ty && (!CheckPointer || !SeenPointer)) { 777 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 778 unsigned Tag = DTy->getTag(); 779 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 780 Tag == dwarf::DW_TAG_volatile_type || 781 Tag == dwarf::DW_TAG_restrict_type) { 782 uint32_t TmpTypeId; 783 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 784 SeenPointer); 785 } 786 } 787 } 788 789 return; 790 } 791 792 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 793 visitBasicType(BTy, TypeId); 794 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 795 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 796 TypeId); 797 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 798 visitCompositeType(CTy, TypeId); 799 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 800 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 801 else 802 llvm_unreachable("Unknown DIType"); 803 } 804 805 void BTFDebug::visitTypeEntry(const DIType *Ty) { 806 uint32_t TypeId; 807 visitTypeEntry(Ty, TypeId, false, false); 808 } 809 810 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 811 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 812 TypeId = DIToIdMap[Ty]; 813 return; 814 } 815 816 // MapDef type may be a struct type or a non-pointer derived type 817 const DIType *OrigTy = Ty; 818 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 819 auto Tag = DTy->getTag(); 820 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 821 Tag != dwarf::DW_TAG_volatile_type && 822 Tag != dwarf::DW_TAG_restrict_type) 823 break; 824 Ty = DTy->getBaseType(); 825 } 826 827 const auto *CTy = dyn_cast<DICompositeType>(Ty); 828 if (!CTy) 829 return; 830 831 auto Tag = CTy->getTag(); 832 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 833 return; 834 835 // Visit all struct members to ensure pointee type is visited 836 const DINodeArray Elements = CTy->getElements(); 837 for (const auto *Element : Elements) { 838 const auto *MemberType = cast<DIDerivedType>(Element); 839 visitTypeEntry(MemberType->getBaseType()); 840 } 841 842 // Visit this type, struct or a const/typedef/volatile/restrict type 843 visitTypeEntry(OrigTy, TypeId, false, false); 844 } 845 846 /// Read file contents from the actual file or from the source 847 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 848 auto File = SP->getFile(); 849 std::string FileName; 850 851 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 852 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 853 else 854 FileName = std::string(File->getFilename()); 855 856 // No need to populate the contends if it has been populated! 857 if (FileContent.find(FileName) != FileContent.end()) 858 return FileName; 859 860 std::vector<std::string> Content; 861 std::string Line; 862 Content.push_back(Line); // Line 0 for empty string 863 864 std::unique_ptr<MemoryBuffer> Buf; 865 auto Source = File->getSource(); 866 if (Source) 867 Buf = MemoryBuffer::getMemBufferCopy(*Source); 868 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 869 MemoryBuffer::getFile(FileName)) 870 Buf = std::move(*BufOrErr); 871 if (Buf) 872 for (line_iterator I(*Buf, false), E; I != E; ++I) 873 Content.push_back(std::string(*I)); 874 875 FileContent[FileName] = Content; 876 return FileName; 877 } 878 879 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 880 uint32_t Line, uint32_t Column) { 881 std::string FileName = populateFileContent(SP); 882 BTFLineInfo LineInfo; 883 884 LineInfo.Label = Label; 885 LineInfo.FileNameOff = addString(FileName); 886 // If file content is not available, let LineOff = 0. 887 if (Line < FileContent[FileName].size()) 888 LineInfo.LineOff = addString(FileContent[FileName][Line]); 889 else 890 LineInfo.LineOff = 0; 891 LineInfo.LineNum = Line; 892 LineInfo.ColumnNum = Column; 893 LineInfoTable[SecNameOff].push_back(LineInfo); 894 } 895 896 void BTFDebug::emitCommonHeader() { 897 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 898 OS.emitIntValue(BTF::MAGIC, 2); 899 OS.emitInt8(BTF::VERSION); 900 OS.emitInt8(0); 901 } 902 903 void BTFDebug::emitBTFSection() { 904 // Do not emit section if no types and only "" string. 905 if (!TypeEntries.size() && StringTable.getSize() == 1) 906 return; 907 908 MCContext &Ctx = OS.getContext(); 909 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); 910 Sec->setAlignment(Align(4)); 911 OS.SwitchSection(Sec); 912 913 // Emit header. 914 emitCommonHeader(); 915 OS.emitInt32(BTF::HeaderSize); 916 917 uint32_t TypeLen = 0, StrLen; 918 for (const auto &TypeEntry : TypeEntries) 919 TypeLen += TypeEntry->getSize(); 920 StrLen = StringTable.getSize(); 921 922 OS.emitInt32(0); 923 OS.emitInt32(TypeLen); 924 OS.emitInt32(TypeLen); 925 OS.emitInt32(StrLen); 926 927 // Emit type table. 928 for (const auto &TypeEntry : TypeEntries) 929 TypeEntry->emitType(OS); 930 931 // Emit string table. 932 uint32_t StringOffset = 0; 933 for (const auto &S : StringTable.getTable()) { 934 OS.AddComment("string offset=" + std::to_string(StringOffset)); 935 OS.emitBytes(S); 936 OS.emitBytes(StringRef("\0", 1)); 937 StringOffset += S.size() + 1; 938 } 939 } 940 941 void BTFDebug::emitBTFExtSection() { 942 // Do not emit section if empty FuncInfoTable and LineInfoTable 943 // and FieldRelocTable. 944 if (!FuncInfoTable.size() && !LineInfoTable.size() && 945 !FieldRelocTable.size()) 946 return; 947 948 MCContext &Ctx = OS.getContext(); 949 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); 950 Sec->setAlignment(Align(4)); 951 OS.SwitchSection(Sec); 952 953 // Emit header. 954 emitCommonHeader(); 955 OS.emitInt32(BTF::ExtHeaderSize); 956 957 // Account for FuncInfo/LineInfo record size as well. 958 uint32_t FuncLen = 4, LineLen = 4; 959 // Do not account for optional FieldReloc. 960 uint32_t FieldRelocLen = 0; 961 for (const auto &FuncSec : FuncInfoTable) { 962 FuncLen += BTF::SecFuncInfoSize; 963 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 964 } 965 for (const auto &LineSec : LineInfoTable) { 966 LineLen += BTF::SecLineInfoSize; 967 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 968 } 969 for (const auto &FieldRelocSec : FieldRelocTable) { 970 FieldRelocLen += BTF::SecFieldRelocSize; 971 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 972 } 973 974 if (FieldRelocLen) 975 FieldRelocLen += 4; 976 977 OS.emitInt32(0); 978 OS.emitInt32(FuncLen); 979 OS.emitInt32(FuncLen); 980 OS.emitInt32(LineLen); 981 OS.emitInt32(FuncLen + LineLen); 982 OS.emitInt32(FieldRelocLen); 983 984 // Emit func_info table. 985 OS.AddComment("FuncInfo"); 986 OS.emitInt32(BTF::BPFFuncInfoSize); 987 for (const auto &FuncSec : FuncInfoTable) { 988 OS.AddComment("FuncInfo section string offset=" + 989 std::to_string(FuncSec.first)); 990 OS.emitInt32(FuncSec.first); 991 OS.emitInt32(FuncSec.second.size()); 992 for (const auto &FuncInfo : FuncSec.second) { 993 Asm->emitLabelReference(FuncInfo.Label, 4); 994 OS.emitInt32(FuncInfo.TypeId); 995 } 996 } 997 998 // Emit line_info table. 999 OS.AddComment("LineInfo"); 1000 OS.emitInt32(BTF::BPFLineInfoSize); 1001 for (const auto &LineSec : LineInfoTable) { 1002 OS.AddComment("LineInfo section string offset=" + 1003 std::to_string(LineSec.first)); 1004 OS.emitInt32(LineSec.first); 1005 OS.emitInt32(LineSec.second.size()); 1006 for (const auto &LineInfo : LineSec.second) { 1007 Asm->emitLabelReference(LineInfo.Label, 4); 1008 OS.emitInt32(LineInfo.FileNameOff); 1009 OS.emitInt32(LineInfo.LineOff); 1010 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 1011 std::to_string(LineInfo.ColumnNum)); 1012 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 1013 } 1014 } 1015 1016 // Emit field reloc table. 1017 if (FieldRelocLen) { 1018 OS.AddComment("FieldReloc"); 1019 OS.emitInt32(BTF::BPFFieldRelocSize); 1020 for (const auto &FieldRelocSec : FieldRelocTable) { 1021 OS.AddComment("Field reloc section string offset=" + 1022 std::to_string(FieldRelocSec.first)); 1023 OS.emitInt32(FieldRelocSec.first); 1024 OS.emitInt32(FieldRelocSec.second.size()); 1025 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 1026 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 1027 OS.emitInt32(FieldRelocInfo.TypeID); 1028 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 1029 OS.emitInt32(FieldRelocInfo.RelocKind); 1030 } 1031 } 1032 } 1033 } 1034 1035 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 1036 auto *SP = MF->getFunction().getSubprogram(); 1037 auto *Unit = SP->getUnit(); 1038 1039 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 1040 SkipInstruction = true; 1041 return; 1042 } 1043 SkipInstruction = false; 1044 1045 // Collect MapDef types. Map definition needs to collect 1046 // pointee types. Do it first. Otherwise, for the following 1047 // case: 1048 // struct m { ...}; 1049 // struct t { 1050 // struct m *key; 1051 // }; 1052 // foo(struct t *arg); 1053 // 1054 // struct mapdef { 1055 // ... 1056 // struct m *key; 1057 // ... 1058 // } __attribute__((section(".maps"))) hash_map; 1059 // 1060 // If subroutine foo is traversed first, a type chain 1061 // "ptr->struct m(fwd)" will be created and later on 1062 // when traversing mapdef, since "ptr->struct m" exists, 1063 // the traversal of "struct m" will be omitted. 1064 if (MapDefNotCollected) { 1065 processGlobals(true); 1066 MapDefNotCollected = false; 1067 } 1068 1069 // Collect all types locally referenced in this function. 1070 // Use RetainedNodes so we can collect all argument names 1071 // even if the argument is not used. 1072 std::unordered_map<uint32_t, StringRef> FuncArgNames; 1073 for (const DINode *DN : SP->getRetainedNodes()) { 1074 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1075 // Collect function arguments for subprogram func type. 1076 uint32_t Arg = DV->getArg(); 1077 if (Arg) { 1078 visitTypeEntry(DV->getType()); 1079 FuncArgNames[Arg] = DV->getName(); 1080 } 1081 } 1082 } 1083 1084 // Construct subprogram func proto type. 1085 uint32_t ProtoTypeId; 1086 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1087 1088 // Construct subprogram func type 1089 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1090 auto FuncTypeEntry = 1091 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1092 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 1093 1094 // Process argument annotations. 1095 for (const DINode *DN : SP->getRetainedNodes()) { 1096 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1097 uint32_t Arg = DV->getArg(); 1098 if (Arg) 1099 processDeclAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1); 1100 } 1101 } 1102 1103 processDeclAnnotations(SP->getAnnotations(), FuncTypeId, -1); 1104 1105 for (const auto &TypeEntry : TypeEntries) 1106 TypeEntry->completeType(*this); 1107 1108 // Construct funcinfo and the first lineinfo for the function. 1109 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1110 BTFFuncInfo FuncInfo; 1111 FuncInfo.Label = FuncLabel; 1112 FuncInfo.TypeId = FuncTypeId; 1113 if (FuncLabel->isInSection()) { 1114 MCSection &Section = FuncLabel->getSection(); 1115 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1116 assert(SectionELF && "Null section for Function Label"); 1117 SecNameOff = addString(SectionELF->getName()); 1118 } else { 1119 SecNameOff = addString(".text"); 1120 } 1121 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1122 } 1123 1124 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1125 SkipInstruction = false; 1126 LineInfoGenerated = false; 1127 SecNameOff = 0; 1128 } 1129 1130 /// On-demand populate types as requested from abstract member 1131 /// accessing or preserve debuginfo type. 1132 unsigned BTFDebug::populateType(const DIType *Ty) { 1133 unsigned Id; 1134 visitTypeEntry(Ty, Id, false, false); 1135 for (const auto &TypeEntry : TypeEntries) 1136 TypeEntry->completeType(*this); 1137 return Id; 1138 } 1139 1140 /// Generate a struct member field relocation. 1141 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1142 const GlobalVariable *GVar, bool IsAma) { 1143 BTFFieldReloc FieldReloc; 1144 FieldReloc.Label = ORSym; 1145 FieldReloc.TypeID = RootId; 1146 1147 StringRef AccessPattern = GVar->getName(); 1148 size_t FirstDollar = AccessPattern.find_first_of('$'); 1149 if (IsAma) { 1150 size_t FirstColon = AccessPattern.find_first_of(':'); 1151 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1152 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1153 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1154 SecondColon - FirstColon); 1155 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1156 FirstDollar - SecondColon); 1157 1158 FieldReloc.OffsetNameOff = addString(IndexPattern); 1159 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1160 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1161 FieldReloc.RelocKind); 1162 } else { 1163 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1164 FieldReloc.OffsetNameOff = addString("0"); 1165 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1166 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1167 } 1168 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1169 } 1170 1171 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1172 // check whether this is a candidate or not 1173 if (MO.isGlobal()) { 1174 const GlobalValue *GVal = MO.getGlobal(); 1175 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1176 if (!GVar) { 1177 // Not a global variable. Maybe an extern function reference. 1178 processFuncPrototypes(dyn_cast<Function>(GVal)); 1179 return; 1180 } 1181 1182 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1183 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1184 return; 1185 1186 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1187 OS.emitLabel(ORSym); 1188 1189 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1190 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1191 generatePatchImmReloc(ORSym, RootId, GVar, 1192 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1193 } 1194 } 1195 1196 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1197 DebugHandlerBase::beginInstruction(MI); 1198 1199 if (SkipInstruction || MI->isMetaInstruction() || 1200 MI->getFlag(MachineInstr::FrameSetup)) 1201 return; 1202 1203 if (MI->isInlineAsm()) { 1204 // Count the number of register definitions to find the asm string. 1205 unsigned NumDefs = 0; 1206 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1207 ++NumDefs) 1208 ; 1209 1210 // Skip this inline asm instruction if the asmstr is empty. 1211 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1212 if (AsmStr[0] == 0) 1213 return; 1214 } 1215 1216 if (MI->getOpcode() == BPF::LD_imm64) { 1217 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1218 // add this insn into the .BTF.ext FieldReloc subsection. 1219 // Relocation looks like: 1220 // . SecName: 1221 // . InstOffset 1222 // . TypeID 1223 // . OffSetNameOff 1224 // . RelocType 1225 // Later, the insn is replaced with "r2 = <offset>" 1226 // where "<offset>" equals to the offset based on current 1227 // type definitions. 1228 // 1229 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1230 // The LD_imm64 result will be replaced with a btf type id. 1231 processGlobalValue(MI->getOperand(1)); 1232 } else if (MI->getOpcode() == BPF::CORE_MEM || 1233 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1234 MI->getOpcode() == BPF::CORE_SHIFT) { 1235 // relocation insn is a load, store or shift insn. 1236 processGlobalValue(MI->getOperand(3)); 1237 } else if (MI->getOpcode() == BPF::JAL) { 1238 // check extern function references 1239 const MachineOperand &MO = MI->getOperand(0); 1240 if (MO.isGlobal()) { 1241 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1242 } 1243 } 1244 1245 if (!CurMI) // no debug info 1246 return; 1247 1248 // Skip this instruction if no DebugLoc or the DebugLoc 1249 // is the same as the previous instruction. 1250 const DebugLoc &DL = MI->getDebugLoc(); 1251 if (!DL || PrevInstLoc == DL) { 1252 // This instruction will be skipped, no LineInfo has 1253 // been generated, construct one based on function signature. 1254 if (LineInfoGenerated == false) { 1255 auto *S = MI->getMF()->getFunction().getSubprogram(); 1256 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1257 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1258 LineInfoGenerated = true; 1259 } 1260 1261 return; 1262 } 1263 1264 // Create a temporary label to remember the insn for lineinfo. 1265 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1266 OS.emitLabel(LineSym); 1267 1268 // Construct the lineinfo. 1269 auto SP = DL.get()->getScope()->getSubprogram(); 1270 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1271 1272 LineInfoGenerated = true; 1273 PrevInstLoc = DL; 1274 } 1275 1276 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1277 // Collect all types referenced by globals. 1278 const Module *M = MMI->getModule(); 1279 for (const GlobalVariable &Global : M->globals()) { 1280 // Decide the section name. 1281 StringRef SecName; 1282 if (Global.hasSection()) { 1283 SecName = Global.getSection(); 1284 } else if (Global.hasInitializer()) { 1285 // data, bss, or readonly sections 1286 if (Global.isConstant()) 1287 SecName = ".rodata"; 1288 else 1289 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1290 } 1291 1292 if (ProcessingMapDef != SecName.startswith(".maps")) 1293 continue; 1294 1295 // Create a .rodata datasec if the global variable is an initialized 1296 // constant with private linkage and if it won't be in .rodata.str<#> 1297 // and .rodata.cst<#> sections. 1298 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1299 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1300 SectionKind GVKind = 1301 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1302 // skip .rodata.str<#> and .rodata.cst<#> sections 1303 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1304 DataSecEntries[std::string(SecName)] = 1305 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1306 } 1307 } 1308 1309 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1310 Global.getDebugInfo(GVs); 1311 1312 // No type information, mostly internal, skip it. 1313 if (GVs.size() == 0) 1314 continue; 1315 1316 uint32_t GVTypeId = 0; 1317 DIGlobalVariable *DIGlobal = nullptr; 1318 for (auto *GVE : GVs) { 1319 DIGlobal = GVE->getVariable(); 1320 if (SecName.startswith(".maps")) 1321 visitMapDefType(DIGlobal->getType(), GVTypeId); 1322 else 1323 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1324 break; 1325 } 1326 1327 // Only support the following globals: 1328 // . static variables 1329 // . non-static weak or non-weak global variables 1330 // . weak or non-weak extern global variables 1331 // Whether DataSec is readonly or not can be found from corresponding ELF 1332 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1333 // can be found from the corresponding ELF symbol table. 1334 auto Linkage = Global.getLinkage(); 1335 if (Linkage != GlobalValue::InternalLinkage && 1336 Linkage != GlobalValue::ExternalLinkage && 1337 Linkage != GlobalValue::WeakAnyLinkage && 1338 Linkage != GlobalValue::WeakODRLinkage && 1339 Linkage != GlobalValue::ExternalWeakLinkage) 1340 continue; 1341 1342 uint32_t GVarInfo; 1343 if (Linkage == GlobalValue::InternalLinkage) { 1344 GVarInfo = BTF::VAR_STATIC; 1345 } else if (Global.hasInitializer()) { 1346 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1347 } else { 1348 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1349 } 1350 1351 auto VarEntry = 1352 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1353 uint32_t VarId = addType(std::move(VarEntry)); 1354 1355 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1356 1357 // An empty SecName means an extern variable without section attribute. 1358 if (SecName.empty()) 1359 continue; 1360 1361 // Find or create a DataSec 1362 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1363 DataSecEntries[std::string(SecName)] = 1364 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1365 } 1366 1367 // Calculate symbol size 1368 const DataLayout &DL = Global.getParent()->getDataLayout(); 1369 uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); 1370 1371 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1372 Asm->getSymbol(&Global), Size); 1373 } 1374 } 1375 1376 /// Emit proper patchable instructions. 1377 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1378 if (MI->getOpcode() == BPF::LD_imm64) { 1379 const MachineOperand &MO = MI->getOperand(1); 1380 if (MO.isGlobal()) { 1381 const GlobalValue *GVal = MO.getGlobal(); 1382 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1383 if (GVar) { 1384 // Emit "mov ri, <imm>" 1385 int64_t Imm; 1386 uint32_t Reloc; 1387 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1388 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1389 Imm = PatchImms[GVar].first; 1390 Reloc = PatchImms[GVar].second; 1391 } else { 1392 return false; 1393 } 1394 1395 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1396 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1397 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1398 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1399 OutMI.setOpcode(BPF::LD_imm64); 1400 else 1401 OutMI.setOpcode(BPF::MOV_ri); 1402 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1403 OutMI.addOperand(MCOperand::createImm(Imm)); 1404 return true; 1405 } 1406 } 1407 } else if (MI->getOpcode() == BPF::CORE_MEM || 1408 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1409 MI->getOpcode() == BPF::CORE_SHIFT) { 1410 const MachineOperand &MO = MI->getOperand(3); 1411 if (MO.isGlobal()) { 1412 const GlobalValue *GVal = MO.getGlobal(); 1413 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1414 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1415 uint32_t Imm = PatchImms[GVar].first; 1416 OutMI.setOpcode(MI->getOperand(1).getImm()); 1417 if (MI->getOperand(0).isImm()) 1418 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1419 else 1420 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1421 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1422 OutMI.addOperand(MCOperand::createImm(Imm)); 1423 return true; 1424 } 1425 } 1426 } 1427 return false; 1428 } 1429 1430 void BTFDebug::processFuncPrototypes(const Function *F) { 1431 if (!F) 1432 return; 1433 1434 const DISubprogram *SP = F->getSubprogram(); 1435 if (!SP || SP->isDefinition()) 1436 return; 1437 1438 // Do not emit again if already emitted. 1439 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1440 return; 1441 ProtoFunctions.insert(F); 1442 1443 uint32_t ProtoTypeId; 1444 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1445 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1446 1447 uint8_t Scope = BTF::FUNC_EXTERN; 1448 auto FuncTypeEntry = 1449 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1450 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1451 1452 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 1453 1454 if (F->hasSection()) { 1455 StringRef SecName = F->getSection(); 1456 1457 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1458 DataSecEntries[std::string(SecName)] = 1459 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1460 } 1461 1462 // We really don't know func size, set it to 0. 1463 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1464 Asm->getSymbol(F), 0); 1465 } 1466 } 1467 1468 void BTFDebug::endModule() { 1469 // Collect MapDef globals if not collected yet. 1470 if (MapDefNotCollected) { 1471 processGlobals(true); 1472 MapDefNotCollected = false; 1473 } 1474 1475 // Collect global types/variables except MapDef globals. 1476 processGlobals(false); 1477 1478 for (auto &DataSec : DataSecEntries) 1479 addType(std::move(DataSec.second)); 1480 1481 // Fixups 1482 for (auto &Fixup : FixupDerivedTypes) { 1483 StringRef TypeName = Fixup.first; 1484 bool IsUnion = Fixup.second.first; 1485 1486 // Search through struct types 1487 uint32_t StructTypeId = 0; 1488 for (const auto &StructType : StructTypes) { 1489 if (StructType->getName() == TypeName) { 1490 StructTypeId = StructType->getId(); 1491 break; 1492 } 1493 } 1494 1495 if (StructTypeId == 0) { 1496 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1497 StructTypeId = addType(std::move(FwdTypeEntry)); 1498 } 1499 1500 for (auto &DType : Fixup.second.second) { 1501 DType->setPointeeType(StructTypeId); 1502 } 1503 } 1504 1505 // Complete BTF type cross refereences. 1506 for (const auto &TypeEntry : TypeEntries) 1507 TypeEntry->completeType(*this); 1508 1509 // Emit BTF sections. 1510 emitBTFSection(); 1511 emitBTFExtSection(); 1512 } 1513