1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 70 if (IsCompleted) 71 return; 72 IsCompleted = true; 73 74 BTFType.NameOff = BDebug.addString(DTy->getName()); 75 76 if (NeedsFixup) 77 return; 78 79 // The base type for PTR/CONST/VOLATILE could be void. 80 const DIType *ResolvedType = DTy->getBaseType(); 81 if (!ResolvedType) { 82 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 83 Kind == BTF::BTF_KIND_VOLATILE) && 84 "Invalid null basetype"); 85 BTFType.Type = 0; 86 } else { 87 BTFType.Type = BDebug.getTypeId(ResolvedType); 88 } 89 } 90 91 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 92 93 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 94 BTFType.Type = PointeeType; 95 } 96 97 /// Represent a struct/union forward declaration. 98 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 99 Kind = BTF::BTF_KIND_FWD; 100 BTFType.Info = IsUnion << 31 | Kind << 24; 101 BTFType.Type = 0; 102 } 103 104 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 105 if (IsCompleted) 106 return; 107 IsCompleted = true; 108 109 BTFType.NameOff = BDebug.addString(Name); 110 } 111 112 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 113 114 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 115 uint32_t OffsetInBits, StringRef TypeName) 116 : Name(TypeName) { 117 // Translate IR int encoding to BTF int encoding. 118 uint8_t BTFEncoding; 119 switch (Encoding) { 120 case dwarf::DW_ATE_boolean: 121 BTFEncoding = BTF::INT_BOOL; 122 break; 123 case dwarf::DW_ATE_signed: 124 case dwarf::DW_ATE_signed_char: 125 BTFEncoding = BTF::INT_SIGNED; 126 break; 127 case dwarf::DW_ATE_unsigned: 128 case dwarf::DW_ATE_unsigned_char: 129 BTFEncoding = 0; 130 break; 131 default: 132 llvm_unreachable("Unknown BTFTypeInt Encoding"); 133 } 134 135 Kind = BTF::BTF_KIND_INT; 136 BTFType.Info = Kind << 24; 137 BTFType.Size = roundupToBytes(SizeInBits); 138 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 139 } 140 141 void BTFTypeInt::completeType(BTFDebug &BDebug) { 142 if (IsCompleted) 143 return; 144 IsCompleted = true; 145 146 BTFType.NameOff = BDebug.addString(Name); 147 } 148 149 void BTFTypeInt::emitType(MCStreamer &OS) { 150 BTFTypeBase::emitType(OS); 151 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 152 OS.emitInt32(IntVal); 153 } 154 155 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 156 Kind = BTF::BTF_KIND_ENUM; 157 BTFType.Info = Kind << 24 | VLen; 158 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 159 } 160 161 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 162 if (IsCompleted) 163 return; 164 IsCompleted = true; 165 166 BTFType.NameOff = BDebug.addString(ETy->getName()); 167 168 DINodeArray Elements = ETy->getElements(); 169 for (const auto Element : Elements) { 170 const auto *Enum = cast<DIEnumerator>(Element); 171 172 struct BTF::BTFEnum BTFEnum; 173 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 174 // BTF enum value is 32bit, enforce it. 175 uint32_t Value; 176 if (Enum->isUnsigned()) 177 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 178 else 179 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 180 BTFEnum.Val = Value; 181 EnumValues.push_back(BTFEnum); 182 } 183 } 184 185 void BTFTypeEnum::emitType(MCStreamer &OS) { 186 BTFTypeBase::emitType(OS); 187 for (const auto &Enum : EnumValues) { 188 OS.emitInt32(Enum.NameOff); 189 OS.emitInt32(Enum.Val); 190 } 191 } 192 193 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 194 Kind = BTF::BTF_KIND_ARRAY; 195 BTFType.NameOff = 0; 196 BTFType.Info = Kind << 24; 197 BTFType.Size = 0; 198 199 ArrayInfo.ElemType = ElemTypeId; 200 ArrayInfo.Nelems = NumElems; 201 } 202 203 /// Represent a BTF array. 204 void BTFTypeArray::completeType(BTFDebug &BDebug) { 205 if (IsCompleted) 206 return; 207 IsCompleted = true; 208 209 // The IR does not really have a type for the index. 210 // A special type for array index should have been 211 // created during initial type traversal. Just 212 // retrieve that type id. 213 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 214 } 215 216 void BTFTypeArray::emitType(MCStreamer &OS) { 217 BTFTypeBase::emitType(OS); 218 OS.emitInt32(ArrayInfo.ElemType); 219 OS.emitInt32(ArrayInfo.IndexType); 220 OS.emitInt32(ArrayInfo.Nelems); 221 } 222 223 /// Represent either a struct or a union. 224 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 225 bool HasBitField, uint32_t Vlen) 226 : STy(STy), HasBitField(HasBitField) { 227 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 228 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 229 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 230 } 231 232 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 233 if (IsCompleted) 234 return; 235 IsCompleted = true; 236 237 BTFType.NameOff = BDebug.addString(STy->getName()); 238 239 // Add struct/union members. 240 const DINodeArray Elements = STy->getElements(); 241 for (const auto *Element : Elements) { 242 struct BTF::BTFMember BTFMember; 243 const auto *DDTy = cast<DIDerivedType>(Element); 244 245 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 246 if (HasBitField) { 247 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 248 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 249 } else { 250 BTFMember.Offset = DDTy->getOffsetInBits(); 251 } 252 const auto *BaseTy = DDTy->getBaseType(); 253 BTFMember.Type = BDebug.getTypeId(BaseTy); 254 Members.push_back(BTFMember); 255 } 256 } 257 258 void BTFTypeStruct::emitType(MCStreamer &OS) { 259 BTFTypeBase::emitType(OS); 260 for (const auto &Member : Members) { 261 OS.emitInt32(Member.NameOff); 262 OS.emitInt32(Member.Type); 263 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 264 OS.emitInt32(Member.Offset); 265 } 266 } 267 268 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 269 270 /// The Func kind represents both subprogram and pointee of function 271 /// pointers. If the FuncName is empty, it represents a pointee of function 272 /// pointer. Otherwise, it represents a subprogram. The func arg names 273 /// are empty for pointee of function pointer case, and are valid names 274 /// for subprogram. 275 BTFTypeFuncProto::BTFTypeFuncProto( 276 const DISubroutineType *STy, uint32_t VLen, 277 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 278 : STy(STy), FuncArgNames(FuncArgNames) { 279 Kind = BTF::BTF_KIND_FUNC_PROTO; 280 BTFType.Info = (Kind << 24) | VLen; 281 } 282 283 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 284 if (IsCompleted) 285 return; 286 IsCompleted = true; 287 288 DITypeRefArray Elements = STy->getTypeArray(); 289 auto RetType = Elements[0]; 290 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 291 BTFType.NameOff = 0; 292 293 // For null parameter which is typically the last one 294 // to represent the vararg, encode the NameOff/Type to be 0. 295 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 296 struct BTF::BTFParam Param; 297 auto Element = Elements[I]; 298 if (Element) { 299 Param.NameOff = BDebug.addString(FuncArgNames[I]); 300 Param.Type = BDebug.getTypeId(Element); 301 } else { 302 Param.NameOff = 0; 303 Param.Type = 0; 304 } 305 Parameters.push_back(Param); 306 } 307 } 308 309 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 310 BTFTypeBase::emitType(OS); 311 for (const auto &Param : Parameters) { 312 OS.emitInt32(Param.NameOff); 313 OS.emitInt32(Param.Type); 314 } 315 } 316 317 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 318 uint32_t Scope) 319 : Name(FuncName) { 320 Kind = BTF::BTF_KIND_FUNC; 321 BTFType.Info = (Kind << 24) | Scope; 322 BTFType.Type = ProtoTypeId; 323 } 324 325 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 326 if (IsCompleted) 327 return; 328 IsCompleted = true; 329 330 BTFType.NameOff = BDebug.addString(Name); 331 } 332 333 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 334 335 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 336 : Name(VarName) { 337 Kind = BTF::BTF_KIND_VAR; 338 BTFType.Info = Kind << 24; 339 BTFType.Type = TypeId; 340 Info = VarInfo; 341 } 342 343 void BTFKindVar::completeType(BTFDebug &BDebug) { 344 BTFType.NameOff = BDebug.addString(Name); 345 } 346 347 void BTFKindVar::emitType(MCStreamer &OS) { 348 BTFTypeBase::emitType(OS); 349 OS.emitInt32(Info); 350 } 351 352 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 353 : Asm(AsmPrt), Name(SecName) { 354 Kind = BTF::BTF_KIND_DATASEC; 355 BTFType.Info = Kind << 24; 356 BTFType.Size = 0; 357 } 358 359 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 360 BTFType.NameOff = BDebug.addString(Name); 361 BTFType.Info |= Vars.size(); 362 } 363 364 void BTFKindDataSec::emitType(MCStreamer &OS) { 365 BTFTypeBase::emitType(OS); 366 367 for (const auto &V : Vars) { 368 OS.emitInt32(std::get<0>(V)); 369 Asm->emitLabelReference(std::get<1>(V), 4); 370 OS.emitInt32(std::get<2>(V)); 371 } 372 } 373 374 uint32_t BTFStringTable::addString(StringRef S) { 375 // Check whether the string already exists. 376 for (auto &OffsetM : OffsetToIdMap) { 377 if (Table[OffsetM.second] == S) 378 return OffsetM.first; 379 } 380 // Not find, add to the string table. 381 uint32_t Offset = Size; 382 OffsetToIdMap[Offset] = Table.size(); 383 Table.push_back(std::string(S)); 384 Size += S.size() + 1; 385 return Offset; 386 } 387 388 BTFDebug::BTFDebug(AsmPrinter *AP) 389 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 390 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 391 MapDefNotCollected(true) { 392 addString("\0"); 393 } 394 395 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 396 const DIType *Ty) { 397 TypeEntry->setId(TypeEntries.size() + 1); 398 uint32_t Id = TypeEntry->getId(); 399 DIToIdMap[Ty] = Id; 400 TypeEntries.push_back(std::move(TypeEntry)); 401 return Id; 402 } 403 404 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 405 TypeEntry->setId(TypeEntries.size() + 1); 406 uint32_t Id = TypeEntry->getId(); 407 TypeEntries.push_back(std::move(TypeEntry)); 408 return Id; 409 } 410 411 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 412 // Only int types are supported in BTF. 413 uint32_t Encoding = BTy->getEncoding(); 414 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed && 415 Encoding != dwarf::DW_ATE_signed_char && 416 Encoding != dwarf::DW_ATE_unsigned && 417 Encoding != dwarf::DW_ATE_unsigned_char) 418 return; 419 420 // Create a BTF type instance for this DIBasicType and put it into 421 // DIToIdMap for cross-type reference check. 422 auto TypeEntry = std::make_unique<BTFTypeInt>( 423 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 424 TypeId = addType(std::move(TypeEntry), BTy); 425 } 426 427 /// Handle subprogram or subroutine types. 428 void BTFDebug::visitSubroutineType( 429 const DISubroutineType *STy, bool ForSubprog, 430 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 431 uint32_t &TypeId) { 432 DITypeRefArray Elements = STy->getTypeArray(); 433 uint32_t VLen = Elements.size() - 1; 434 if (VLen > BTF::MAX_VLEN) 435 return; 436 437 // Subprogram has a valid non-zero-length name, and the pointee of 438 // a function pointer has an empty name. The subprogram type will 439 // not be added to DIToIdMap as it should not be referenced by 440 // any other types. 441 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 442 if (ForSubprog) 443 TypeId = addType(std::move(TypeEntry)); // For subprogram 444 else 445 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 446 447 // Visit return type and func arg types. 448 for (const auto Element : Elements) { 449 visitTypeEntry(Element); 450 } 451 } 452 453 /// Handle structure/union types. 454 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 455 uint32_t &TypeId) { 456 const DINodeArray Elements = CTy->getElements(); 457 uint32_t VLen = Elements.size(); 458 if (VLen > BTF::MAX_VLEN) 459 return; 460 461 // Check whether we have any bitfield members or not 462 bool HasBitField = false; 463 for (const auto *Element : Elements) { 464 auto E = cast<DIDerivedType>(Element); 465 if (E->isBitField()) { 466 HasBitField = true; 467 break; 468 } 469 } 470 471 auto TypeEntry = 472 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 473 StructTypes.push_back(TypeEntry.get()); 474 TypeId = addType(std::move(TypeEntry), CTy); 475 476 // Visit all struct members. 477 for (const auto *Element : Elements) 478 visitTypeEntry(cast<DIDerivedType>(Element)); 479 } 480 481 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 482 // Visit array element type. 483 uint32_t ElemTypeId; 484 const DIType *ElemType = CTy->getBaseType(); 485 visitTypeEntry(ElemType, ElemTypeId, false, false); 486 487 // Visit array dimensions. 488 DINodeArray Elements = CTy->getElements(); 489 for (int I = Elements.size() - 1; I >= 0; --I) { 490 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 491 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 492 const DISubrange *SR = cast<DISubrange>(Element); 493 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 494 int64_t Count = CI->getSExtValue(); 495 496 // For struct s { int b; char c[]; }, the c[] will be represented 497 // as an array with Count = -1. 498 auto TypeEntry = 499 std::make_unique<BTFTypeArray>(ElemTypeId, 500 Count >= 0 ? Count : 0); 501 if (I == 0) 502 ElemTypeId = addType(std::move(TypeEntry), CTy); 503 else 504 ElemTypeId = addType(std::move(TypeEntry)); 505 } 506 } 507 508 // The array TypeId is the type id of the outermost dimension. 509 TypeId = ElemTypeId; 510 511 // The IR does not have a type for array index while BTF wants one. 512 // So create an array index type if there is none. 513 if (!ArrayIndexTypeId) { 514 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 515 0, "__ARRAY_SIZE_TYPE__"); 516 ArrayIndexTypeId = addType(std::move(TypeEntry)); 517 } 518 } 519 520 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 521 DINodeArray Elements = CTy->getElements(); 522 uint32_t VLen = Elements.size(); 523 if (VLen > BTF::MAX_VLEN) 524 return; 525 526 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 527 TypeId = addType(std::move(TypeEntry), CTy); 528 // No need to visit base type as BTF does not encode it. 529 } 530 531 /// Handle structure/union forward declarations. 532 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 533 uint32_t &TypeId) { 534 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 535 TypeId = addType(std::move(TypeEntry), CTy); 536 } 537 538 /// Handle structure, union, array and enumeration types. 539 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 540 uint32_t &TypeId) { 541 auto Tag = CTy->getTag(); 542 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 543 // Handle forward declaration differently as it does not have members. 544 if (CTy->isForwardDecl()) 545 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 546 else 547 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 548 } else if (Tag == dwarf::DW_TAG_array_type) 549 visitArrayType(CTy, TypeId); 550 else if (Tag == dwarf::DW_TAG_enumeration_type) 551 visitEnumType(CTy, TypeId); 552 } 553 554 /// Handle pointer, typedef, const, volatile, restrict and member types. 555 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 556 bool CheckPointer, bool SeenPointer) { 557 unsigned Tag = DTy->getTag(); 558 559 /// Try to avoid chasing pointees, esp. structure pointees which may 560 /// unnecessary bring in a lot of types. 561 if (CheckPointer && !SeenPointer) { 562 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 563 } 564 565 if (CheckPointer && SeenPointer) { 566 const DIType *Base = DTy->getBaseType(); 567 if (Base) { 568 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 569 auto CTag = CTy->getTag(); 570 if ((CTag == dwarf::DW_TAG_structure_type || 571 CTag == dwarf::DW_TAG_union_type) && 572 !CTy->getName().empty() && !CTy->isForwardDecl()) { 573 /// Find a candidate, generate a fixup. Later on the struct/union 574 /// pointee type will be replaced with either a real type or 575 /// a forward declaration. 576 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 577 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 578 Fixup.first = CTag == dwarf::DW_TAG_union_type; 579 Fixup.second.push_back(TypeEntry.get()); 580 TypeId = addType(std::move(TypeEntry), DTy); 581 return; 582 } 583 } 584 } 585 } 586 587 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 588 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 589 Tag == dwarf::DW_TAG_restrict_type) { 590 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 591 TypeId = addType(std::move(TypeEntry), DTy); 592 } else if (Tag != dwarf::DW_TAG_member) { 593 return; 594 } 595 596 // Visit base type of pointer, typedef, const, volatile, restrict or 597 // struct/union member. 598 uint32_t TempTypeId = 0; 599 if (Tag == dwarf::DW_TAG_member) 600 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 601 else 602 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 603 } 604 605 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 606 bool CheckPointer, bool SeenPointer) { 607 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 608 TypeId = DIToIdMap[Ty]; 609 610 // To handle the case like the following: 611 // struct t; 612 // typedef struct t _t; 613 // struct s1 { _t *c; }; 614 // int test1(struct s1 *arg) { ... } 615 // 616 // struct t { int a; int b; }; 617 // struct s2 { _t c; } 618 // int test2(struct s2 *arg) { ... } 619 // 620 // During traversing test1() argument, "_t" is recorded 621 // in DIToIdMap and a forward declaration fixup is created 622 // for "struct t" to avoid pointee type traversal. 623 // 624 // During traversing test2() argument, even if we see "_t" is 625 // already defined, we should keep moving to eventually 626 // bring in types for "struct t". Otherwise, the "struct s2" 627 // definition won't be correct. 628 if (Ty && (!CheckPointer || !SeenPointer)) { 629 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 630 unsigned Tag = DTy->getTag(); 631 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 632 Tag == dwarf::DW_TAG_volatile_type || 633 Tag == dwarf::DW_TAG_restrict_type) { 634 uint32_t TmpTypeId; 635 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 636 SeenPointer); 637 } 638 } 639 } 640 641 return; 642 } 643 644 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 645 visitBasicType(BTy, TypeId); 646 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 647 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 648 TypeId); 649 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 650 visitCompositeType(CTy, TypeId); 651 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 652 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 653 else 654 llvm_unreachable("Unknown DIType"); 655 } 656 657 void BTFDebug::visitTypeEntry(const DIType *Ty) { 658 uint32_t TypeId; 659 visitTypeEntry(Ty, TypeId, false, false); 660 } 661 662 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 663 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 664 TypeId = DIToIdMap[Ty]; 665 return; 666 } 667 668 // MapDef type may be a struct type or a non-pointer derived type 669 const DIType *OrigTy = Ty; 670 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 671 auto Tag = DTy->getTag(); 672 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 673 Tag != dwarf::DW_TAG_volatile_type && 674 Tag != dwarf::DW_TAG_restrict_type) 675 break; 676 Ty = DTy->getBaseType(); 677 } 678 679 const auto *CTy = dyn_cast<DICompositeType>(Ty); 680 if (!CTy) 681 return; 682 683 auto Tag = CTy->getTag(); 684 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 685 return; 686 687 // Visit all struct members to ensure pointee type is visited 688 const DINodeArray Elements = CTy->getElements(); 689 for (const auto *Element : Elements) { 690 const auto *MemberType = cast<DIDerivedType>(Element); 691 visitTypeEntry(MemberType->getBaseType()); 692 } 693 694 // Visit this type, struct or a const/typedef/volatile/restrict type 695 visitTypeEntry(OrigTy, TypeId, false, false); 696 } 697 698 /// Read file contents from the actual file or from the source 699 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 700 auto File = SP->getFile(); 701 std::string FileName; 702 703 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 704 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 705 else 706 FileName = std::string(File->getFilename()); 707 708 // No need to populate the contends if it has been populated! 709 if (FileContent.find(FileName) != FileContent.end()) 710 return FileName; 711 712 std::vector<std::string> Content; 713 std::string Line; 714 Content.push_back(Line); // Line 0 for empty string 715 716 std::unique_ptr<MemoryBuffer> Buf; 717 auto Source = File->getSource(); 718 if (Source) 719 Buf = MemoryBuffer::getMemBufferCopy(*Source); 720 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 721 MemoryBuffer::getFile(FileName)) 722 Buf = std::move(*BufOrErr); 723 if (Buf) 724 for (line_iterator I(*Buf, false), E; I != E; ++I) 725 Content.push_back(std::string(*I)); 726 727 FileContent[FileName] = Content; 728 return FileName; 729 } 730 731 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 732 uint32_t Line, uint32_t Column) { 733 std::string FileName = populateFileContent(SP); 734 BTFLineInfo LineInfo; 735 736 LineInfo.Label = Label; 737 LineInfo.FileNameOff = addString(FileName); 738 // If file content is not available, let LineOff = 0. 739 if (Line < FileContent[FileName].size()) 740 LineInfo.LineOff = addString(FileContent[FileName][Line]); 741 else 742 LineInfo.LineOff = 0; 743 LineInfo.LineNum = Line; 744 LineInfo.ColumnNum = Column; 745 LineInfoTable[SecNameOff].push_back(LineInfo); 746 } 747 748 void BTFDebug::emitCommonHeader() { 749 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 750 OS.emitIntValue(BTF::MAGIC, 2); 751 OS.emitInt8(BTF::VERSION); 752 OS.emitInt8(0); 753 } 754 755 void BTFDebug::emitBTFSection() { 756 // Do not emit section if no types and only "" string. 757 if (!TypeEntries.size() && StringTable.getSize() == 1) 758 return; 759 760 MCContext &Ctx = OS.getContext(); 761 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 762 763 // Emit header. 764 emitCommonHeader(); 765 OS.emitInt32(BTF::HeaderSize); 766 767 uint32_t TypeLen = 0, StrLen; 768 for (const auto &TypeEntry : TypeEntries) 769 TypeLen += TypeEntry->getSize(); 770 StrLen = StringTable.getSize(); 771 772 OS.emitInt32(0); 773 OS.emitInt32(TypeLen); 774 OS.emitInt32(TypeLen); 775 OS.emitInt32(StrLen); 776 777 // Emit type table. 778 for (const auto &TypeEntry : TypeEntries) 779 TypeEntry->emitType(OS); 780 781 // Emit string table. 782 uint32_t StringOffset = 0; 783 for (const auto &S : StringTable.getTable()) { 784 OS.AddComment("string offset=" + std::to_string(StringOffset)); 785 OS.emitBytes(S); 786 OS.emitBytes(StringRef("\0", 1)); 787 StringOffset += S.size() + 1; 788 } 789 } 790 791 void BTFDebug::emitBTFExtSection() { 792 // Do not emit section if empty FuncInfoTable and LineInfoTable 793 // and FieldRelocTable. 794 if (!FuncInfoTable.size() && !LineInfoTable.size() && 795 !FieldRelocTable.size()) 796 return; 797 798 MCContext &Ctx = OS.getContext(); 799 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 800 801 // Emit header. 802 emitCommonHeader(); 803 OS.emitInt32(BTF::ExtHeaderSize); 804 805 // Account for FuncInfo/LineInfo record size as well. 806 uint32_t FuncLen = 4, LineLen = 4; 807 // Do not account for optional FieldReloc. 808 uint32_t FieldRelocLen = 0; 809 for (const auto &FuncSec : FuncInfoTable) { 810 FuncLen += BTF::SecFuncInfoSize; 811 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 812 } 813 for (const auto &LineSec : LineInfoTable) { 814 LineLen += BTF::SecLineInfoSize; 815 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 816 } 817 for (const auto &FieldRelocSec : FieldRelocTable) { 818 FieldRelocLen += BTF::SecFieldRelocSize; 819 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 820 } 821 822 if (FieldRelocLen) 823 FieldRelocLen += 4; 824 825 OS.emitInt32(0); 826 OS.emitInt32(FuncLen); 827 OS.emitInt32(FuncLen); 828 OS.emitInt32(LineLen); 829 OS.emitInt32(FuncLen + LineLen); 830 OS.emitInt32(FieldRelocLen); 831 832 // Emit func_info table. 833 OS.AddComment("FuncInfo"); 834 OS.emitInt32(BTF::BPFFuncInfoSize); 835 for (const auto &FuncSec : FuncInfoTable) { 836 OS.AddComment("FuncInfo section string offset=" + 837 std::to_string(FuncSec.first)); 838 OS.emitInt32(FuncSec.first); 839 OS.emitInt32(FuncSec.second.size()); 840 for (const auto &FuncInfo : FuncSec.second) { 841 Asm->emitLabelReference(FuncInfo.Label, 4); 842 OS.emitInt32(FuncInfo.TypeId); 843 } 844 } 845 846 // Emit line_info table. 847 OS.AddComment("LineInfo"); 848 OS.emitInt32(BTF::BPFLineInfoSize); 849 for (const auto &LineSec : LineInfoTable) { 850 OS.AddComment("LineInfo section string offset=" + 851 std::to_string(LineSec.first)); 852 OS.emitInt32(LineSec.first); 853 OS.emitInt32(LineSec.second.size()); 854 for (const auto &LineInfo : LineSec.second) { 855 Asm->emitLabelReference(LineInfo.Label, 4); 856 OS.emitInt32(LineInfo.FileNameOff); 857 OS.emitInt32(LineInfo.LineOff); 858 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 859 std::to_string(LineInfo.ColumnNum)); 860 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 861 } 862 } 863 864 // Emit field reloc table. 865 if (FieldRelocLen) { 866 OS.AddComment("FieldReloc"); 867 OS.emitInt32(BTF::BPFFieldRelocSize); 868 for (const auto &FieldRelocSec : FieldRelocTable) { 869 OS.AddComment("Field reloc section string offset=" + 870 std::to_string(FieldRelocSec.first)); 871 OS.emitInt32(FieldRelocSec.first); 872 OS.emitInt32(FieldRelocSec.second.size()); 873 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 874 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 875 OS.emitInt32(FieldRelocInfo.TypeID); 876 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 877 OS.emitInt32(FieldRelocInfo.RelocKind); 878 } 879 } 880 } 881 } 882 883 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 884 auto *SP = MF->getFunction().getSubprogram(); 885 auto *Unit = SP->getUnit(); 886 887 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 888 SkipInstruction = true; 889 return; 890 } 891 SkipInstruction = false; 892 893 // Collect MapDef types. Map definition needs to collect 894 // pointee types. Do it first. Otherwise, for the following 895 // case: 896 // struct m { ...}; 897 // struct t { 898 // struct m *key; 899 // }; 900 // foo(struct t *arg); 901 // 902 // struct mapdef { 903 // ... 904 // struct m *key; 905 // ... 906 // } __attribute__((section(".maps"))) hash_map; 907 // 908 // If subroutine foo is traversed first, a type chain 909 // "ptr->struct m(fwd)" will be created and later on 910 // when traversing mapdef, since "ptr->struct m" exists, 911 // the traversal of "struct m" will be omitted. 912 if (MapDefNotCollected) { 913 processGlobals(true); 914 MapDefNotCollected = false; 915 } 916 917 // Collect all types locally referenced in this function. 918 // Use RetainedNodes so we can collect all argument names 919 // even if the argument is not used. 920 std::unordered_map<uint32_t, StringRef> FuncArgNames; 921 for (const DINode *DN : SP->getRetainedNodes()) { 922 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 923 // Collect function arguments for subprogram func type. 924 uint32_t Arg = DV->getArg(); 925 if (Arg) { 926 visitTypeEntry(DV->getType()); 927 FuncArgNames[Arg] = DV->getName(); 928 } 929 } 930 } 931 932 // Construct subprogram func proto type. 933 uint32_t ProtoTypeId; 934 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 935 936 // Construct subprogram func type 937 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 938 auto FuncTypeEntry = 939 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 940 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 941 942 for (const auto &TypeEntry : TypeEntries) 943 TypeEntry->completeType(*this); 944 945 // Construct funcinfo and the first lineinfo for the function. 946 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 947 BTFFuncInfo FuncInfo; 948 FuncInfo.Label = FuncLabel; 949 FuncInfo.TypeId = FuncTypeId; 950 if (FuncLabel->isInSection()) { 951 MCSection &Section = FuncLabel->getSection(); 952 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 953 assert(SectionELF && "Null section for Function Label"); 954 SecNameOff = addString(SectionELF->getName()); 955 } else { 956 SecNameOff = addString(".text"); 957 } 958 FuncInfoTable[SecNameOff].push_back(FuncInfo); 959 } 960 961 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 962 SkipInstruction = false; 963 LineInfoGenerated = false; 964 SecNameOff = 0; 965 } 966 967 /// On-demand populate types as requested from abstract member 968 /// accessing or preserve debuginfo type. 969 unsigned BTFDebug::populateType(const DIType *Ty) { 970 unsigned Id; 971 visitTypeEntry(Ty, Id, false, false); 972 for (const auto &TypeEntry : TypeEntries) 973 TypeEntry->completeType(*this); 974 return Id; 975 } 976 977 /// Generate a struct member field relocation. 978 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 979 const GlobalVariable *GVar, bool IsAma) { 980 BTFFieldReloc FieldReloc; 981 FieldReloc.Label = ORSym; 982 FieldReloc.TypeID = RootId; 983 984 StringRef AccessPattern = GVar->getName(); 985 size_t FirstDollar = AccessPattern.find_first_of('$'); 986 if (IsAma) { 987 size_t FirstColon = AccessPattern.find_first_of(':'); 988 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 989 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 990 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 991 SecondColon - FirstColon); 992 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 993 FirstDollar - SecondColon); 994 995 FieldReloc.OffsetNameOff = addString(IndexPattern); 996 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 997 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 998 FieldReloc.RelocKind); 999 } else { 1000 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1001 FieldReloc.OffsetNameOff = addString("0"); 1002 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1003 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1004 } 1005 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1006 } 1007 1008 void BTFDebug::processReloc(const MachineOperand &MO) { 1009 // check whether this is a candidate or not 1010 if (MO.isGlobal()) { 1011 const GlobalValue *GVal = MO.getGlobal(); 1012 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1013 if (!GVar) 1014 return; 1015 1016 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1017 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1018 return; 1019 1020 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1021 OS.emitLabel(ORSym); 1022 1023 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1024 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1025 generatePatchImmReloc(ORSym, RootId, GVar, 1026 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1027 } 1028 } 1029 1030 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1031 DebugHandlerBase::beginInstruction(MI); 1032 1033 if (SkipInstruction || MI->isMetaInstruction() || 1034 MI->getFlag(MachineInstr::FrameSetup)) 1035 return; 1036 1037 if (MI->isInlineAsm()) { 1038 // Count the number of register definitions to find the asm string. 1039 unsigned NumDefs = 0; 1040 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1041 ++NumDefs) 1042 ; 1043 1044 // Skip this inline asm instruction if the asmstr is empty. 1045 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1046 if (AsmStr[0] == 0) 1047 return; 1048 } 1049 1050 if (MI->getOpcode() == BPF::LD_imm64) { 1051 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1052 // add this insn into the .BTF.ext FieldReloc subsection. 1053 // Relocation looks like: 1054 // . SecName: 1055 // . InstOffset 1056 // . TypeID 1057 // . OffSetNameOff 1058 // . RelocType 1059 // Later, the insn is replaced with "r2 = <offset>" 1060 // where "<offset>" equals to the offset based on current 1061 // type definitions. 1062 // 1063 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1064 // The LD_imm64 result will be replaced with a btf type id. 1065 processReloc(MI->getOperand(1)); 1066 } else if (MI->getOpcode() == BPF::CORE_MEM || 1067 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1068 MI->getOpcode() == BPF::CORE_SHIFT) { 1069 // relocation insn is a load, store or shift insn. 1070 processReloc(MI->getOperand(3)); 1071 } else if (MI->getOpcode() == BPF::JAL) { 1072 // check extern function references 1073 const MachineOperand &MO = MI->getOperand(0); 1074 if (MO.isGlobal()) { 1075 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1076 } 1077 } 1078 1079 if (!CurMI) // no debug info 1080 return; 1081 1082 // Skip this instruction if no DebugLoc or the DebugLoc 1083 // is the same as the previous instruction. 1084 const DebugLoc &DL = MI->getDebugLoc(); 1085 if (!DL || PrevInstLoc == DL) { 1086 // This instruction will be skipped, no LineInfo has 1087 // been generated, construct one based on function signature. 1088 if (LineInfoGenerated == false) { 1089 auto *S = MI->getMF()->getFunction().getSubprogram(); 1090 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1091 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1092 LineInfoGenerated = true; 1093 } 1094 1095 return; 1096 } 1097 1098 // Create a temporary label to remember the insn for lineinfo. 1099 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1100 OS.emitLabel(LineSym); 1101 1102 // Construct the lineinfo. 1103 auto SP = DL.get()->getScope()->getSubprogram(); 1104 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1105 1106 LineInfoGenerated = true; 1107 PrevInstLoc = DL; 1108 } 1109 1110 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1111 // Collect all types referenced by globals. 1112 const Module *M = MMI->getModule(); 1113 for (const GlobalVariable &Global : M->globals()) { 1114 // Decide the section name. 1115 StringRef SecName; 1116 if (Global.hasSection()) { 1117 SecName = Global.getSection(); 1118 } else if (Global.hasInitializer()) { 1119 // data, bss, or readonly sections 1120 if (Global.isConstant()) 1121 SecName = ".rodata"; 1122 else 1123 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1124 } else { 1125 // extern variables without explicit section, 1126 // put them into ".extern" section. 1127 SecName = ".extern"; 1128 } 1129 1130 if (ProcessingMapDef != SecName.startswith(".maps")) 1131 continue; 1132 1133 // Create a .rodata datasec if the global variable is an initialized 1134 // constant with private linkage and if it won't be in .rodata.str<#> 1135 // and .rodata.cst<#> sections. 1136 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1137 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1138 SectionKind GVKind = 1139 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1140 // skip .rodata.str<#> and .rodata.cst<#> sections 1141 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1142 DataSecEntries[std::string(SecName)] = 1143 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1144 } 1145 } 1146 1147 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1148 Global.getDebugInfo(GVs); 1149 1150 // No type information, mostly internal, skip it. 1151 if (GVs.size() == 0) 1152 continue; 1153 1154 uint32_t GVTypeId = 0; 1155 for (auto *GVE : GVs) { 1156 if (SecName.startswith(".maps")) 1157 visitMapDefType(GVE->getVariable()->getType(), GVTypeId); 1158 else 1159 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false); 1160 break; 1161 } 1162 1163 // Only support the following globals: 1164 // . static variables 1165 // . non-static weak or non-weak global variables 1166 // . weak or non-weak extern global variables 1167 // Whether DataSec is readonly or not can be found from corresponding ELF 1168 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1169 // can be found from the corresponding ELF symbol table. 1170 auto Linkage = Global.getLinkage(); 1171 if (Linkage != GlobalValue::InternalLinkage && 1172 Linkage != GlobalValue::ExternalLinkage && 1173 Linkage != GlobalValue::WeakAnyLinkage && 1174 Linkage != GlobalValue::ExternalWeakLinkage) 1175 continue; 1176 1177 uint32_t GVarInfo; 1178 if (Linkage == GlobalValue::InternalLinkage) { 1179 GVarInfo = BTF::VAR_STATIC; 1180 } else if (Global.hasInitializer()) { 1181 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1182 } else { 1183 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1184 } 1185 1186 auto VarEntry = 1187 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1188 uint32_t VarId = addType(std::move(VarEntry)); 1189 1190 assert(!SecName.empty()); 1191 1192 // Find or create a DataSec 1193 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1194 DataSecEntries[std::string(SecName)] = 1195 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1196 } 1197 1198 // Calculate symbol size 1199 const DataLayout &DL = Global.getParent()->getDataLayout(); 1200 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1201 1202 DataSecEntries[std::string(SecName)]->addVar(VarId, Asm->getSymbol(&Global), 1203 Size); 1204 } 1205 } 1206 1207 /// Emit proper patchable instructions. 1208 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1209 if (MI->getOpcode() == BPF::LD_imm64) { 1210 const MachineOperand &MO = MI->getOperand(1); 1211 if (MO.isGlobal()) { 1212 const GlobalValue *GVal = MO.getGlobal(); 1213 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1214 if (GVar) { 1215 // Emit "mov ri, <imm>" 1216 int64_t Imm; 1217 uint32_t Reloc; 1218 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1219 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1220 Imm = PatchImms[GVar].first; 1221 Reloc = PatchImms[GVar].second; 1222 } else { 1223 return false; 1224 } 1225 1226 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1227 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1228 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1229 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1230 OutMI.setOpcode(BPF::LD_imm64); 1231 else 1232 OutMI.setOpcode(BPF::MOV_ri); 1233 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1234 OutMI.addOperand(MCOperand::createImm(Imm)); 1235 return true; 1236 } 1237 } 1238 } else if (MI->getOpcode() == BPF::CORE_MEM || 1239 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1240 MI->getOpcode() == BPF::CORE_SHIFT) { 1241 const MachineOperand &MO = MI->getOperand(3); 1242 if (MO.isGlobal()) { 1243 const GlobalValue *GVal = MO.getGlobal(); 1244 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1245 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1246 uint32_t Imm = PatchImms[GVar].first; 1247 OutMI.setOpcode(MI->getOperand(1).getImm()); 1248 if (MI->getOperand(0).isImm()) 1249 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1250 else 1251 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1252 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1253 OutMI.addOperand(MCOperand::createImm(Imm)); 1254 return true; 1255 } 1256 } 1257 } 1258 return false; 1259 } 1260 1261 void BTFDebug::processFuncPrototypes(const Function *F) { 1262 if (!F) 1263 return; 1264 1265 const DISubprogram *SP = F->getSubprogram(); 1266 if (!SP || SP->isDefinition()) 1267 return; 1268 1269 // Do not emit again if already emitted. 1270 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1271 return; 1272 ProtoFunctions.insert(F); 1273 1274 uint32_t ProtoTypeId; 1275 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1276 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1277 1278 uint8_t Scope = BTF::FUNC_EXTERN; 1279 auto FuncTypeEntry = 1280 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1281 addType(std::move(FuncTypeEntry)); 1282 } 1283 1284 void BTFDebug::endModule() { 1285 // Collect MapDef globals if not collected yet. 1286 if (MapDefNotCollected) { 1287 processGlobals(true); 1288 MapDefNotCollected = false; 1289 } 1290 1291 // Collect global types/variables except MapDef globals. 1292 processGlobals(false); 1293 1294 for (auto &DataSec : DataSecEntries) 1295 addType(std::move(DataSec.second)); 1296 1297 // Fixups 1298 for (auto &Fixup : FixupDerivedTypes) { 1299 StringRef TypeName = Fixup.first; 1300 bool IsUnion = Fixup.second.first; 1301 1302 // Search through struct types 1303 uint32_t StructTypeId = 0; 1304 for (const auto &StructType : StructTypes) { 1305 if (StructType->getName() == TypeName) { 1306 StructTypeId = StructType->getId(); 1307 break; 1308 } 1309 } 1310 1311 if (StructTypeId == 0) { 1312 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1313 StructTypeId = addType(std::move(FwdTypeEntry)); 1314 } 1315 1316 for (auto &DType : Fixup.second.second) { 1317 DType->setPointeeType(StructTypeId); 1318 } 1319 } 1320 1321 // Complete BTF type cross refereences. 1322 for (const auto &TypeEntry : TypeEntries) 1323 TypeEntry->completeType(*this); 1324 1325 // Emit BTF sections. 1326 emitBTFSection(); 1327 emitBTFExtSection(); 1328 } 1329