1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCObjectFileInfo.h" 23 #include "llvm/MC/MCSectionELF.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/Support/LineIterator.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Target/TargetLoweringObjectFile.h" 28 #include <optional> 29 30 using namespace llvm; 31 32 static const char *BTFKindStr[] = { 33 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 34 #include "llvm/DebugInfo/BTF/BTF.def" 35 }; 36 37 /// Emit a BTF common type. 38 void BTFTypeBase::emitType(MCStreamer &OS) { 39 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 40 ")"); 41 OS.emitInt32(BTFType.NameOff); 42 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 43 OS.emitInt32(BTFType.Info); 44 OS.emitInt32(BTFType.Size); 45 } 46 47 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 48 bool NeedsFixup) 49 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { 50 switch (Tag) { 51 case dwarf::DW_TAG_pointer_type: 52 Kind = BTF::BTF_KIND_PTR; 53 break; 54 case dwarf::DW_TAG_const_type: 55 Kind = BTF::BTF_KIND_CONST; 56 break; 57 case dwarf::DW_TAG_volatile_type: 58 Kind = BTF::BTF_KIND_VOLATILE; 59 break; 60 case dwarf::DW_TAG_typedef: 61 Kind = BTF::BTF_KIND_TYPEDEF; 62 break; 63 case dwarf::DW_TAG_restrict_type: 64 Kind = BTF::BTF_KIND_RESTRICT; 65 break; 66 default: 67 llvm_unreachable("Unknown DIDerivedType Tag"); 68 } 69 BTFType.Info = Kind << 24; 70 } 71 72 /// Used by DW_TAG_pointer_type only. 73 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, 74 StringRef Name) 75 : DTy(nullptr), NeedsFixup(false), Name(Name) { 76 Kind = BTF::BTF_KIND_PTR; 77 BTFType.Info = Kind << 24; 78 BTFType.Type = NextTypeId; 79 } 80 81 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 82 if (IsCompleted) 83 return; 84 IsCompleted = true; 85 86 BTFType.NameOff = BDebug.addString(Name); 87 88 if (NeedsFixup || !DTy) 89 return; 90 91 // The base type for PTR/CONST/VOLATILE could be void. 92 const DIType *ResolvedType = DTy->getBaseType(); 93 if (!ResolvedType) { 94 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 95 Kind == BTF::BTF_KIND_VOLATILE) && 96 "Invalid null basetype"); 97 BTFType.Type = 0; 98 } else { 99 BTFType.Type = BDebug.getTypeId(ResolvedType); 100 } 101 } 102 103 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 104 105 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 106 BTFType.Type = PointeeType; 107 } 108 109 /// Represent a struct/union forward declaration. 110 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 111 Kind = BTF::BTF_KIND_FWD; 112 BTFType.Info = IsUnion << 31 | Kind << 24; 113 BTFType.Type = 0; 114 } 115 116 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 117 if (IsCompleted) 118 return; 119 IsCompleted = true; 120 121 BTFType.NameOff = BDebug.addString(Name); 122 } 123 124 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 125 126 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 127 uint32_t OffsetInBits, StringRef TypeName) 128 : Name(TypeName) { 129 // Translate IR int encoding to BTF int encoding. 130 uint8_t BTFEncoding; 131 switch (Encoding) { 132 case dwarf::DW_ATE_boolean: 133 BTFEncoding = BTF::INT_BOOL; 134 break; 135 case dwarf::DW_ATE_signed: 136 case dwarf::DW_ATE_signed_char: 137 BTFEncoding = BTF::INT_SIGNED; 138 break; 139 case dwarf::DW_ATE_unsigned: 140 case dwarf::DW_ATE_unsigned_char: 141 BTFEncoding = 0; 142 break; 143 default: 144 llvm_unreachable("Unknown BTFTypeInt Encoding"); 145 } 146 147 Kind = BTF::BTF_KIND_INT; 148 BTFType.Info = Kind << 24; 149 BTFType.Size = roundupToBytes(SizeInBits); 150 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 151 } 152 153 void BTFTypeInt::completeType(BTFDebug &BDebug) { 154 if (IsCompleted) 155 return; 156 IsCompleted = true; 157 158 BTFType.NameOff = BDebug.addString(Name); 159 } 160 161 void BTFTypeInt::emitType(MCStreamer &OS) { 162 BTFTypeBase::emitType(OS); 163 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 164 OS.emitInt32(IntVal); 165 } 166 167 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen, 168 bool IsSigned) : ETy(ETy) { 169 Kind = BTF::BTF_KIND_ENUM; 170 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 171 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 172 } 173 174 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 175 if (IsCompleted) 176 return; 177 IsCompleted = true; 178 179 BTFType.NameOff = BDebug.addString(ETy->getName()); 180 181 DINodeArray Elements = ETy->getElements(); 182 for (const auto Element : Elements) { 183 const auto *Enum = cast<DIEnumerator>(Element); 184 185 struct BTF::BTFEnum BTFEnum; 186 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 187 // BTF enum value is 32bit, enforce it. 188 uint32_t Value; 189 if (Enum->isUnsigned()) 190 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 191 else 192 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 193 BTFEnum.Val = Value; 194 EnumValues.push_back(BTFEnum); 195 } 196 } 197 198 void BTFTypeEnum::emitType(MCStreamer &OS) { 199 BTFTypeBase::emitType(OS); 200 for (const auto &Enum : EnumValues) { 201 OS.emitInt32(Enum.NameOff); 202 OS.emitInt32(Enum.Val); 203 } 204 } 205 206 BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen, 207 bool IsSigned) : ETy(ETy) { 208 Kind = BTF::BTF_KIND_ENUM64; 209 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 210 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 211 } 212 213 void BTFTypeEnum64::completeType(BTFDebug &BDebug) { 214 if (IsCompleted) 215 return; 216 IsCompleted = true; 217 218 BTFType.NameOff = BDebug.addString(ETy->getName()); 219 220 DINodeArray Elements = ETy->getElements(); 221 for (const auto Element : Elements) { 222 const auto *Enum = cast<DIEnumerator>(Element); 223 224 struct BTF::BTFEnum64 BTFEnum; 225 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 226 uint64_t Value; 227 if (Enum->isUnsigned()) 228 Value = static_cast<uint64_t>(Enum->getValue().getZExtValue()); 229 else 230 Value = static_cast<uint64_t>(Enum->getValue().getSExtValue()); 231 BTFEnum.Val_Lo32 = Value; 232 BTFEnum.Val_Hi32 = Value >> 32; 233 EnumValues.push_back(BTFEnum); 234 } 235 } 236 237 void BTFTypeEnum64::emitType(MCStreamer &OS) { 238 BTFTypeBase::emitType(OS); 239 for (const auto &Enum : EnumValues) { 240 OS.emitInt32(Enum.NameOff); 241 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32)); 242 OS.emitInt32(Enum.Val_Lo32); 243 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32)); 244 OS.emitInt32(Enum.Val_Hi32); 245 } 246 } 247 248 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 249 Kind = BTF::BTF_KIND_ARRAY; 250 BTFType.NameOff = 0; 251 BTFType.Info = Kind << 24; 252 BTFType.Size = 0; 253 254 ArrayInfo.ElemType = ElemTypeId; 255 ArrayInfo.Nelems = NumElems; 256 } 257 258 /// Represent a BTF array. 259 void BTFTypeArray::completeType(BTFDebug &BDebug) { 260 if (IsCompleted) 261 return; 262 IsCompleted = true; 263 264 // The IR does not really have a type for the index. 265 // A special type for array index should have been 266 // created during initial type traversal. Just 267 // retrieve that type id. 268 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 269 } 270 271 void BTFTypeArray::emitType(MCStreamer &OS) { 272 BTFTypeBase::emitType(OS); 273 OS.emitInt32(ArrayInfo.ElemType); 274 OS.emitInt32(ArrayInfo.IndexType); 275 OS.emitInt32(ArrayInfo.Nelems); 276 } 277 278 /// Represent either a struct or a union. 279 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 280 bool HasBitField, uint32_t Vlen) 281 : STy(STy), HasBitField(HasBitField) { 282 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 283 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 284 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 285 } 286 287 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 288 if (IsCompleted) 289 return; 290 IsCompleted = true; 291 292 BTFType.NameOff = BDebug.addString(STy->getName()); 293 294 // Add struct/union members. 295 const DINodeArray Elements = STy->getElements(); 296 for (const auto *Element : Elements) { 297 struct BTF::BTFMember BTFMember; 298 const auto *DDTy = cast<DIDerivedType>(Element); 299 300 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 301 if (HasBitField) { 302 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 303 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 304 } else { 305 BTFMember.Offset = DDTy->getOffsetInBits(); 306 } 307 const auto *BaseTy = DDTy->getBaseType(); 308 BTFMember.Type = BDebug.getTypeId(BaseTy); 309 Members.push_back(BTFMember); 310 } 311 } 312 313 void BTFTypeStruct::emitType(MCStreamer &OS) { 314 BTFTypeBase::emitType(OS); 315 for (const auto &Member : Members) { 316 OS.emitInt32(Member.NameOff); 317 OS.emitInt32(Member.Type); 318 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 319 OS.emitInt32(Member.Offset); 320 } 321 } 322 323 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 324 325 /// The Func kind represents both subprogram and pointee of function 326 /// pointers. If the FuncName is empty, it represents a pointee of function 327 /// pointer. Otherwise, it represents a subprogram. The func arg names 328 /// are empty for pointee of function pointer case, and are valid names 329 /// for subprogram. 330 BTFTypeFuncProto::BTFTypeFuncProto( 331 const DISubroutineType *STy, uint32_t VLen, 332 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 333 : STy(STy), FuncArgNames(FuncArgNames) { 334 Kind = BTF::BTF_KIND_FUNC_PROTO; 335 BTFType.Info = (Kind << 24) | VLen; 336 } 337 338 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 339 if (IsCompleted) 340 return; 341 IsCompleted = true; 342 343 DITypeRefArray Elements = STy->getTypeArray(); 344 auto RetType = Elements[0]; 345 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 346 BTFType.NameOff = 0; 347 348 // For null parameter which is typically the last one 349 // to represent the vararg, encode the NameOff/Type to be 0. 350 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 351 struct BTF::BTFParam Param; 352 auto Element = Elements[I]; 353 if (Element) { 354 Param.NameOff = BDebug.addString(FuncArgNames[I]); 355 Param.Type = BDebug.getTypeId(Element); 356 } else { 357 Param.NameOff = 0; 358 Param.Type = 0; 359 } 360 Parameters.push_back(Param); 361 } 362 } 363 364 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 365 BTFTypeBase::emitType(OS); 366 for (const auto &Param : Parameters) { 367 OS.emitInt32(Param.NameOff); 368 OS.emitInt32(Param.Type); 369 } 370 } 371 372 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 373 uint32_t Scope) 374 : Name(FuncName) { 375 Kind = BTF::BTF_KIND_FUNC; 376 BTFType.Info = (Kind << 24) | Scope; 377 BTFType.Type = ProtoTypeId; 378 } 379 380 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 381 if (IsCompleted) 382 return; 383 IsCompleted = true; 384 385 BTFType.NameOff = BDebug.addString(Name); 386 } 387 388 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 389 390 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 391 : Name(VarName) { 392 Kind = BTF::BTF_KIND_VAR; 393 BTFType.Info = Kind << 24; 394 BTFType.Type = TypeId; 395 Info = VarInfo; 396 } 397 398 void BTFKindVar::completeType(BTFDebug &BDebug) { 399 BTFType.NameOff = BDebug.addString(Name); 400 } 401 402 void BTFKindVar::emitType(MCStreamer &OS) { 403 BTFTypeBase::emitType(OS); 404 OS.emitInt32(Info); 405 } 406 407 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 408 : Asm(AsmPrt), Name(SecName) { 409 Kind = BTF::BTF_KIND_DATASEC; 410 BTFType.Info = Kind << 24; 411 BTFType.Size = 0; 412 } 413 414 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 415 BTFType.NameOff = BDebug.addString(Name); 416 BTFType.Info |= Vars.size(); 417 } 418 419 void BTFKindDataSec::emitType(MCStreamer &OS) { 420 BTFTypeBase::emitType(OS); 421 422 for (const auto &V : Vars) { 423 OS.emitInt32(std::get<0>(V)); 424 Asm->emitLabelReference(std::get<1>(V), 4); 425 OS.emitInt32(std::get<2>(V)); 426 } 427 } 428 429 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 430 : Name(TypeName) { 431 Kind = BTF::BTF_KIND_FLOAT; 432 BTFType.Info = Kind << 24; 433 BTFType.Size = roundupToBytes(SizeInBits); 434 } 435 436 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 437 if (IsCompleted) 438 return; 439 IsCompleted = true; 440 441 BTFType.NameOff = BDebug.addString(Name); 442 } 443 444 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 445 StringRef Tag) 446 : Tag(Tag) { 447 Kind = BTF::BTF_KIND_DECL_TAG; 448 BTFType.Info = Kind << 24; 449 BTFType.Type = BaseTypeId; 450 Info = ComponentIdx; 451 } 452 453 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 454 if (IsCompleted) 455 return; 456 IsCompleted = true; 457 458 BTFType.NameOff = BDebug.addString(Tag); 459 } 460 461 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 462 BTFTypeBase::emitType(OS); 463 OS.emitInt32(Info); 464 } 465 466 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) 467 : DTy(nullptr), Tag(Tag) { 468 Kind = BTF::BTF_KIND_TYPE_TAG; 469 BTFType.Info = Kind << 24; 470 BTFType.Type = NextTypeId; 471 } 472 473 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) 474 : DTy(DTy), Tag(Tag) { 475 Kind = BTF::BTF_KIND_TYPE_TAG; 476 BTFType.Info = Kind << 24; 477 } 478 479 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { 480 if (IsCompleted) 481 return; 482 IsCompleted = true; 483 BTFType.NameOff = BDebug.addString(Tag); 484 if (DTy) { 485 const DIType *ResolvedType = DTy->getBaseType(); 486 if (!ResolvedType) 487 BTFType.Type = 0; 488 else 489 BTFType.Type = BDebug.getTypeId(ResolvedType); 490 } 491 } 492 493 uint32_t BTFStringTable::addString(StringRef S) { 494 // Check whether the string already exists. 495 for (auto &OffsetM : OffsetToIdMap) { 496 if (Table[OffsetM.second] == S) 497 return OffsetM.first; 498 } 499 // Not find, add to the string table. 500 uint32_t Offset = Size; 501 OffsetToIdMap[Offset] = Table.size(); 502 Table.push_back(std::string(S)); 503 Size += S.size() + 1; 504 return Offset; 505 } 506 507 BTFDebug::BTFDebug(AsmPrinter *AP) 508 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 509 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 510 MapDefNotCollected(true) { 511 addString("\0"); 512 } 513 514 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 515 const DIType *Ty) { 516 TypeEntry->setId(TypeEntries.size() + 1); 517 uint32_t Id = TypeEntry->getId(); 518 DIToIdMap[Ty] = Id; 519 TypeEntries.push_back(std::move(TypeEntry)); 520 return Id; 521 } 522 523 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 524 TypeEntry->setId(TypeEntries.size() + 1); 525 uint32_t Id = TypeEntry->getId(); 526 TypeEntries.push_back(std::move(TypeEntry)); 527 return Id; 528 } 529 530 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 531 // Only int and binary floating point types are supported in BTF. 532 uint32_t Encoding = BTy->getEncoding(); 533 std::unique_ptr<BTFTypeBase> TypeEntry; 534 switch (Encoding) { 535 case dwarf::DW_ATE_boolean: 536 case dwarf::DW_ATE_signed: 537 case dwarf::DW_ATE_signed_char: 538 case dwarf::DW_ATE_unsigned: 539 case dwarf::DW_ATE_unsigned_char: 540 // Create a BTF type instance for this DIBasicType and put it into 541 // DIToIdMap for cross-type reference check. 542 TypeEntry = std::make_unique<BTFTypeInt>( 543 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 544 break; 545 case dwarf::DW_ATE_float: 546 TypeEntry = 547 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 548 break; 549 default: 550 return; 551 } 552 553 TypeId = addType(std::move(TypeEntry), BTy); 554 } 555 556 /// Handle subprogram or subroutine types. 557 void BTFDebug::visitSubroutineType( 558 const DISubroutineType *STy, bool ForSubprog, 559 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 560 uint32_t &TypeId) { 561 DITypeRefArray Elements = STy->getTypeArray(); 562 uint32_t VLen = Elements.size() - 1; 563 if (VLen > BTF::MAX_VLEN) 564 return; 565 566 // Subprogram has a valid non-zero-length name, and the pointee of 567 // a function pointer has an empty name. The subprogram type will 568 // not be added to DIToIdMap as it should not be referenced by 569 // any other types. 570 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 571 if (ForSubprog) 572 TypeId = addType(std::move(TypeEntry)); // For subprogram 573 else 574 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 575 576 // Visit return type and func arg types. 577 for (const auto Element : Elements) { 578 visitTypeEntry(Element); 579 } 580 } 581 582 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 583 uint32_t BaseTypeId, 584 int ComponentIdx) { 585 if (!Annotations) 586 return; 587 588 for (const Metadata *Annotation : Annotations->operands()) { 589 const MDNode *MD = cast<MDNode>(Annotation); 590 const MDString *Name = cast<MDString>(MD->getOperand(0)); 591 if (!Name->getString().equals("btf_decl_tag")) 592 continue; 593 594 const MDString *Value = cast<MDString>(MD->getOperand(1)); 595 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 596 Value->getString()); 597 addType(std::move(TypeEntry)); 598 } 599 } 600 601 uint32_t BTFDebug::processDISubprogram(const DISubprogram *SP, 602 uint32_t ProtoTypeId, uint8_t Scope) { 603 auto FuncTypeEntry = 604 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 605 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 606 607 // Process argument annotations. 608 for (const DINode *DN : SP->getRetainedNodes()) { 609 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 610 uint32_t Arg = DV->getArg(); 611 if (Arg) 612 processDeclAnnotations(DV->getAnnotations(), FuncId, Arg - 1); 613 } 614 } 615 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 616 617 return FuncId; 618 } 619 620 /// Generate btf_type_tag chains. 621 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { 622 SmallVector<const MDString *, 4> MDStrs; 623 DINodeArray Annots = DTy->getAnnotations(); 624 if (Annots) { 625 // For type with "int __tag1 __tag2 *p", the MDStrs will have 626 // content: [__tag1, __tag2]. 627 for (const Metadata *Annotations : Annots->operands()) { 628 const MDNode *MD = cast<MDNode>(Annotations); 629 const MDString *Name = cast<MDString>(MD->getOperand(0)); 630 if (!Name->getString().equals("btf_type_tag")) 631 continue; 632 MDStrs.push_back(cast<MDString>(MD->getOperand(1))); 633 } 634 } 635 636 if (MDStrs.size() == 0) 637 return -1; 638 639 // With MDStrs [__tag1, __tag2], the output type chain looks like 640 // PTR -> __tag2 -> __tag1 -> BaseType 641 // In the below, we construct BTF types with the order of __tag1, __tag2 642 // and PTR. 643 unsigned TmpTypeId; 644 std::unique_ptr<BTFTypeTypeTag> TypeEntry; 645 if (BaseTypeId >= 0) 646 TypeEntry = 647 std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString()); 648 else 649 TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString()); 650 TmpTypeId = addType(std::move(TypeEntry)); 651 652 for (unsigned I = 1; I < MDStrs.size(); I++) { 653 const MDString *Value = MDStrs[I]; 654 TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString()); 655 TmpTypeId = addType(std::move(TypeEntry)); 656 } 657 return TmpTypeId; 658 } 659 660 /// Handle structure/union types. 661 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 662 uint32_t &TypeId) { 663 const DINodeArray Elements = CTy->getElements(); 664 uint32_t VLen = Elements.size(); 665 if (VLen > BTF::MAX_VLEN) 666 return; 667 668 // Check whether we have any bitfield members or not 669 bool HasBitField = false; 670 for (const auto *Element : Elements) { 671 auto E = cast<DIDerivedType>(Element); 672 if (E->isBitField()) { 673 HasBitField = true; 674 break; 675 } 676 } 677 678 auto TypeEntry = 679 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 680 StructTypes.push_back(TypeEntry.get()); 681 TypeId = addType(std::move(TypeEntry), CTy); 682 683 // Check struct/union annotations 684 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 685 686 // Visit all struct members. 687 int FieldNo = 0; 688 for (const auto *Element : Elements) { 689 const auto Elem = cast<DIDerivedType>(Element); 690 visitTypeEntry(Elem); 691 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 692 FieldNo++; 693 } 694 } 695 696 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 697 // Visit array element type. 698 uint32_t ElemTypeId; 699 const DIType *ElemType = CTy->getBaseType(); 700 visitTypeEntry(ElemType, ElemTypeId, false, false); 701 702 // Visit array dimensions. 703 DINodeArray Elements = CTy->getElements(); 704 for (int I = Elements.size() - 1; I >= 0; --I) { 705 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 706 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 707 const DISubrange *SR = cast<DISubrange>(Element); 708 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 709 int64_t Count = CI->getSExtValue(); 710 711 // For struct s { int b; char c[]; }, the c[] will be represented 712 // as an array with Count = -1. 713 auto TypeEntry = 714 std::make_unique<BTFTypeArray>(ElemTypeId, 715 Count >= 0 ? Count : 0); 716 if (I == 0) 717 ElemTypeId = addType(std::move(TypeEntry), CTy); 718 else 719 ElemTypeId = addType(std::move(TypeEntry)); 720 } 721 } 722 723 // The array TypeId is the type id of the outermost dimension. 724 TypeId = ElemTypeId; 725 726 // The IR does not have a type for array index while BTF wants one. 727 // So create an array index type if there is none. 728 if (!ArrayIndexTypeId) { 729 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 730 0, "__ARRAY_SIZE_TYPE__"); 731 ArrayIndexTypeId = addType(std::move(TypeEntry)); 732 } 733 } 734 735 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 736 DINodeArray Elements = CTy->getElements(); 737 uint32_t VLen = Elements.size(); 738 if (VLen > BTF::MAX_VLEN) 739 return; 740 741 bool IsSigned = false; 742 unsigned NumBits = 32; 743 // No BaseType implies forward declaration in which case a 744 // BTFTypeEnum with Vlen = 0 is emitted. 745 if (CTy->getBaseType() != nullptr) { 746 const auto *BTy = cast<DIBasicType>(CTy->getBaseType()); 747 IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed || 748 BTy->getEncoding() == dwarf::DW_ATE_signed_char; 749 NumBits = BTy->getSizeInBits(); 750 } 751 752 if (NumBits <= 32) { 753 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen, IsSigned); 754 TypeId = addType(std::move(TypeEntry), CTy); 755 } else { 756 assert(NumBits == 64); 757 auto TypeEntry = std::make_unique<BTFTypeEnum64>(CTy, VLen, IsSigned); 758 TypeId = addType(std::move(TypeEntry), CTy); 759 } 760 // No need to visit base type as BTF does not encode it. 761 } 762 763 /// Handle structure/union forward declarations. 764 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 765 uint32_t &TypeId) { 766 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 767 TypeId = addType(std::move(TypeEntry), CTy); 768 } 769 770 /// Handle structure, union, array and enumeration types. 771 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 772 uint32_t &TypeId) { 773 auto Tag = CTy->getTag(); 774 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 775 // Handle forward declaration differently as it does not have members. 776 if (CTy->isForwardDecl()) 777 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 778 else 779 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 780 } else if (Tag == dwarf::DW_TAG_array_type) 781 visitArrayType(CTy, TypeId); 782 else if (Tag == dwarf::DW_TAG_enumeration_type) 783 visitEnumType(CTy, TypeId); 784 } 785 786 bool BTFDebug::IsForwardDeclCandidate(const DIType *Base) { 787 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 788 auto CTag = CTy->getTag(); 789 if ((CTag == dwarf::DW_TAG_structure_type || 790 CTag == dwarf::DW_TAG_union_type) && 791 !CTy->getName().empty() && !CTy->isForwardDecl()) 792 return true; 793 } 794 return false; 795 } 796 797 /// Handle pointer, typedef, const, volatile, restrict and member types. 798 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 799 bool CheckPointer, bool SeenPointer) { 800 unsigned Tag = DTy->getTag(); 801 802 /// Try to avoid chasing pointees, esp. structure pointees which may 803 /// unnecessary bring in a lot of types. 804 if (CheckPointer && !SeenPointer) { 805 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 806 } 807 808 if (CheckPointer && SeenPointer) { 809 const DIType *Base = DTy->getBaseType(); 810 if (Base) { 811 if (IsForwardDeclCandidate(Base)) { 812 /// Find a candidate, generate a fixup. Later on the struct/union 813 /// pointee type will be replaced with either a real type or 814 /// a forward declaration. 815 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 816 auto &Fixup = FixupDerivedTypes[cast<DICompositeType>(Base)]; 817 Fixup.push_back(std::make_pair(DTy, TypeEntry.get())); 818 TypeId = addType(std::move(TypeEntry), DTy); 819 return; 820 } 821 } 822 } 823 824 if (Tag == dwarf::DW_TAG_pointer_type) { 825 int TmpTypeId = genBTFTypeTags(DTy, -1); 826 if (TmpTypeId >= 0) { 827 auto TypeDEntry = 828 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName()); 829 TypeId = addType(std::move(TypeDEntry), DTy); 830 } else { 831 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 832 TypeId = addType(std::move(TypeEntry), DTy); 833 } 834 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 835 Tag == dwarf::DW_TAG_volatile_type || 836 Tag == dwarf::DW_TAG_restrict_type) { 837 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 838 TypeId = addType(std::move(TypeEntry), DTy); 839 if (Tag == dwarf::DW_TAG_typedef) 840 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); 841 } else if (Tag != dwarf::DW_TAG_member) { 842 return; 843 } 844 845 // Visit base type of pointer, typedef, const, volatile, restrict or 846 // struct/union member. 847 uint32_t TempTypeId = 0; 848 if (Tag == dwarf::DW_TAG_member) 849 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 850 else 851 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 852 } 853 854 /// Visit a type entry. CheckPointer is true if the type has 855 /// one of its predecessors as one struct/union member. SeenPointer 856 /// is true if CheckPointer is true and one of its predecessors 857 /// is a pointer. The goal of CheckPointer and SeenPointer is to 858 /// do pruning for struct/union types so some of these types 859 /// will not be emitted in BTF and rather forward declarations 860 /// will be generated. 861 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 862 bool CheckPointer, bool SeenPointer) { 863 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 864 TypeId = DIToIdMap[Ty]; 865 866 // To handle the case like the following: 867 // struct t; 868 // typedef struct t _t; 869 // struct s1 { _t *c; }; 870 // int test1(struct s1 *arg) { ... } 871 // 872 // struct t { int a; int b; }; 873 // struct s2 { _t c; } 874 // int test2(struct s2 *arg) { ... } 875 // 876 // During traversing test1() argument, "_t" is recorded 877 // in DIToIdMap and a forward declaration fixup is created 878 // for "struct t" to avoid pointee type traversal. 879 // 880 // During traversing test2() argument, even if we see "_t" is 881 // already defined, we should keep moving to eventually 882 // bring in types for "struct t". Otherwise, the "struct s2" 883 // definition won't be correct. 884 // 885 // In the above, we have following debuginfo: 886 // {ptr, struct_member} -> typedef -> struct 887 // and BTF type for 'typedef' is generated while 'struct' may 888 // be in FixUp. But let us generalize the above to handle 889 // {different types} -> [various derived types]+ -> another type. 890 // For example, 891 // {func_param, struct_member} -> const -> ptr -> volatile -> struct 892 // We will traverse const/ptr/volatile which already have corresponding 893 // BTF types and generate type for 'struct' which might be in Fixup 894 // state. 895 if (Ty && (!CheckPointer || !SeenPointer)) { 896 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 897 while (DTy) { 898 const DIType *BaseTy = DTy->getBaseType(); 899 if (!BaseTy) 900 break; 901 902 if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) { 903 DTy = dyn_cast<DIDerivedType>(BaseTy); 904 } else { 905 if (CheckPointer && DTy->getTag() == dwarf::DW_TAG_pointer_type) { 906 SeenPointer = true; 907 if (IsForwardDeclCandidate(BaseTy)) 908 break; 909 } 910 uint32_t TmpTypeId; 911 visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer); 912 break; 913 } 914 } 915 } 916 } 917 918 return; 919 } 920 921 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 922 visitBasicType(BTy, TypeId); 923 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 924 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 925 TypeId); 926 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 927 visitCompositeType(CTy, TypeId); 928 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 929 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 930 else 931 llvm_unreachable("Unknown DIType"); 932 } 933 934 void BTFDebug::visitTypeEntry(const DIType *Ty) { 935 uint32_t TypeId; 936 visitTypeEntry(Ty, TypeId, false, false); 937 } 938 939 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 940 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 941 TypeId = DIToIdMap[Ty]; 942 return; 943 } 944 945 // MapDef type may be a struct type or a non-pointer derived type 946 const DIType *OrigTy = Ty; 947 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 948 auto Tag = DTy->getTag(); 949 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 950 Tag != dwarf::DW_TAG_volatile_type && 951 Tag != dwarf::DW_TAG_restrict_type) 952 break; 953 Ty = DTy->getBaseType(); 954 } 955 956 const auto *CTy = dyn_cast<DICompositeType>(Ty); 957 if (!CTy) 958 return; 959 960 auto Tag = CTy->getTag(); 961 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 962 return; 963 964 // Visit all struct members to ensure pointee type is visited 965 const DINodeArray Elements = CTy->getElements(); 966 for (const auto *Element : Elements) { 967 const auto *MemberType = cast<DIDerivedType>(Element); 968 visitTypeEntry(MemberType->getBaseType()); 969 } 970 971 // Visit this type, struct or a const/typedef/volatile/restrict type 972 visitTypeEntry(OrigTy, TypeId, false, false); 973 } 974 975 /// Read file contents from the actual file or from the source 976 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 977 auto File = SP->getFile(); 978 std::string FileName; 979 980 if (!File->getFilename().starts_with("/") && File->getDirectory().size()) 981 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 982 else 983 FileName = std::string(File->getFilename()); 984 985 // No need to populate the contends if it has been populated! 986 if (FileContent.contains(FileName)) 987 return FileName; 988 989 std::vector<std::string> Content; 990 std::string Line; 991 Content.push_back(Line); // Line 0 for empty string 992 993 std::unique_ptr<MemoryBuffer> Buf; 994 auto Source = File->getSource(); 995 if (Source) 996 Buf = MemoryBuffer::getMemBufferCopy(*Source); 997 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 998 MemoryBuffer::getFile(FileName)) 999 Buf = std::move(*BufOrErr); 1000 if (Buf) 1001 for (line_iterator I(*Buf, false), E; I != E; ++I) 1002 Content.push_back(std::string(*I)); 1003 1004 FileContent[FileName] = Content; 1005 return FileName; 1006 } 1007 1008 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 1009 uint32_t Line, uint32_t Column) { 1010 std::string FileName = populateFileContent(SP); 1011 BTFLineInfo LineInfo; 1012 1013 LineInfo.Label = Label; 1014 LineInfo.FileNameOff = addString(FileName); 1015 // If file content is not available, let LineOff = 0. 1016 if (Line < FileContent[FileName].size()) 1017 LineInfo.LineOff = addString(FileContent[FileName][Line]); 1018 else 1019 LineInfo.LineOff = 0; 1020 LineInfo.LineNum = Line; 1021 LineInfo.ColumnNum = Column; 1022 LineInfoTable[SecNameOff].push_back(LineInfo); 1023 } 1024 1025 void BTFDebug::emitCommonHeader() { 1026 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 1027 OS.emitIntValue(BTF::MAGIC, 2); 1028 OS.emitInt8(BTF::VERSION); 1029 OS.emitInt8(0); 1030 } 1031 1032 void BTFDebug::emitBTFSection() { 1033 // Do not emit section if no types and only "" string. 1034 if (!TypeEntries.size() && StringTable.getSize() == 1) 1035 return; 1036 1037 MCContext &Ctx = OS.getContext(); 1038 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); 1039 Sec->setAlignment(Align(4)); 1040 OS.switchSection(Sec); 1041 1042 // Emit header. 1043 emitCommonHeader(); 1044 OS.emitInt32(BTF::HeaderSize); 1045 1046 uint32_t TypeLen = 0, StrLen; 1047 for (const auto &TypeEntry : TypeEntries) 1048 TypeLen += TypeEntry->getSize(); 1049 StrLen = StringTable.getSize(); 1050 1051 OS.emitInt32(0); 1052 OS.emitInt32(TypeLen); 1053 OS.emitInt32(TypeLen); 1054 OS.emitInt32(StrLen); 1055 1056 // Emit type table. 1057 for (const auto &TypeEntry : TypeEntries) 1058 TypeEntry->emitType(OS); 1059 1060 // Emit string table. 1061 uint32_t StringOffset = 0; 1062 for (const auto &S : StringTable.getTable()) { 1063 OS.AddComment("string offset=" + std::to_string(StringOffset)); 1064 OS.emitBytes(S); 1065 OS.emitBytes(StringRef("\0", 1)); 1066 StringOffset += S.size() + 1; 1067 } 1068 } 1069 1070 void BTFDebug::emitBTFExtSection() { 1071 // Do not emit section if empty FuncInfoTable and LineInfoTable 1072 // and FieldRelocTable. 1073 if (!FuncInfoTable.size() && !LineInfoTable.size() && 1074 !FieldRelocTable.size()) 1075 return; 1076 1077 MCContext &Ctx = OS.getContext(); 1078 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); 1079 Sec->setAlignment(Align(4)); 1080 OS.switchSection(Sec); 1081 1082 // Emit header. 1083 emitCommonHeader(); 1084 OS.emitInt32(BTF::ExtHeaderSize); 1085 1086 // Account for FuncInfo/LineInfo record size as well. 1087 uint32_t FuncLen = 4, LineLen = 4; 1088 // Do not account for optional FieldReloc. 1089 uint32_t FieldRelocLen = 0; 1090 for (const auto &FuncSec : FuncInfoTable) { 1091 FuncLen += BTF::SecFuncInfoSize; 1092 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 1093 } 1094 for (const auto &LineSec : LineInfoTable) { 1095 LineLen += BTF::SecLineInfoSize; 1096 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 1097 } 1098 for (const auto &FieldRelocSec : FieldRelocTable) { 1099 FieldRelocLen += BTF::SecFieldRelocSize; 1100 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 1101 } 1102 1103 if (FieldRelocLen) 1104 FieldRelocLen += 4; 1105 1106 OS.emitInt32(0); 1107 OS.emitInt32(FuncLen); 1108 OS.emitInt32(FuncLen); 1109 OS.emitInt32(LineLen); 1110 OS.emitInt32(FuncLen + LineLen); 1111 OS.emitInt32(FieldRelocLen); 1112 1113 // Emit func_info table. 1114 OS.AddComment("FuncInfo"); 1115 OS.emitInt32(BTF::BPFFuncInfoSize); 1116 for (const auto &FuncSec : FuncInfoTable) { 1117 OS.AddComment("FuncInfo section string offset=" + 1118 std::to_string(FuncSec.first)); 1119 OS.emitInt32(FuncSec.first); 1120 OS.emitInt32(FuncSec.second.size()); 1121 for (const auto &FuncInfo : FuncSec.second) { 1122 Asm->emitLabelReference(FuncInfo.Label, 4); 1123 OS.emitInt32(FuncInfo.TypeId); 1124 } 1125 } 1126 1127 // Emit line_info table. 1128 OS.AddComment("LineInfo"); 1129 OS.emitInt32(BTF::BPFLineInfoSize); 1130 for (const auto &LineSec : LineInfoTable) { 1131 OS.AddComment("LineInfo section string offset=" + 1132 std::to_string(LineSec.first)); 1133 OS.emitInt32(LineSec.first); 1134 OS.emitInt32(LineSec.second.size()); 1135 for (const auto &LineInfo : LineSec.second) { 1136 Asm->emitLabelReference(LineInfo.Label, 4); 1137 OS.emitInt32(LineInfo.FileNameOff); 1138 OS.emitInt32(LineInfo.LineOff); 1139 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 1140 std::to_string(LineInfo.ColumnNum)); 1141 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 1142 } 1143 } 1144 1145 // Emit field reloc table. 1146 if (FieldRelocLen) { 1147 OS.AddComment("FieldReloc"); 1148 OS.emitInt32(BTF::BPFFieldRelocSize); 1149 for (const auto &FieldRelocSec : FieldRelocTable) { 1150 OS.AddComment("Field reloc section string offset=" + 1151 std::to_string(FieldRelocSec.first)); 1152 OS.emitInt32(FieldRelocSec.first); 1153 OS.emitInt32(FieldRelocSec.second.size()); 1154 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 1155 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 1156 OS.emitInt32(FieldRelocInfo.TypeID); 1157 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 1158 OS.emitInt32(FieldRelocInfo.RelocKind); 1159 } 1160 } 1161 } 1162 } 1163 1164 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 1165 auto *SP = MF->getFunction().getSubprogram(); 1166 auto *Unit = SP->getUnit(); 1167 1168 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 1169 SkipInstruction = true; 1170 return; 1171 } 1172 SkipInstruction = false; 1173 1174 // Collect MapDef types. Map definition needs to collect 1175 // pointee types. Do it first. Otherwise, for the following 1176 // case: 1177 // struct m { ...}; 1178 // struct t { 1179 // struct m *key; 1180 // }; 1181 // foo(struct t *arg); 1182 // 1183 // struct mapdef { 1184 // ... 1185 // struct m *key; 1186 // ... 1187 // } __attribute__((section(".maps"))) hash_map; 1188 // 1189 // If subroutine foo is traversed first, a type chain 1190 // "ptr->struct m(fwd)" will be created and later on 1191 // when traversing mapdef, since "ptr->struct m" exists, 1192 // the traversal of "struct m" will be omitted. 1193 if (MapDefNotCollected) { 1194 processGlobals(true); 1195 MapDefNotCollected = false; 1196 } 1197 1198 // Collect all types locally referenced in this function. 1199 // Use RetainedNodes so we can collect all argument names 1200 // even if the argument is not used. 1201 std::unordered_map<uint32_t, StringRef> FuncArgNames; 1202 for (const DINode *DN : SP->getRetainedNodes()) { 1203 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1204 // Collect function arguments for subprogram func type. 1205 uint32_t Arg = DV->getArg(); 1206 if (Arg) { 1207 visitTypeEntry(DV->getType()); 1208 FuncArgNames[Arg] = DV->getName(); 1209 } 1210 } 1211 } 1212 1213 // Construct subprogram func proto type. 1214 uint32_t ProtoTypeId; 1215 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1216 1217 // Construct subprogram func type 1218 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1219 uint32_t FuncTypeId = processDISubprogram(SP, ProtoTypeId, Scope); 1220 1221 for (const auto &TypeEntry : TypeEntries) 1222 TypeEntry->completeType(*this); 1223 1224 // Construct funcinfo and the first lineinfo for the function. 1225 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1226 BTFFuncInfo FuncInfo; 1227 FuncInfo.Label = FuncLabel; 1228 FuncInfo.TypeId = FuncTypeId; 1229 if (FuncLabel->isInSection()) { 1230 MCSection &Section = FuncLabel->getSection(); 1231 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1232 assert(SectionELF && "Null section for Function Label"); 1233 SecNameOff = addString(SectionELF->getName()); 1234 } else { 1235 SecNameOff = addString(".text"); 1236 } 1237 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1238 } 1239 1240 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1241 SkipInstruction = false; 1242 LineInfoGenerated = false; 1243 SecNameOff = 0; 1244 } 1245 1246 /// On-demand populate types as requested from abstract member 1247 /// accessing or preserve debuginfo type. 1248 unsigned BTFDebug::populateType(const DIType *Ty) { 1249 unsigned Id; 1250 visitTypeEntry(Ty, Id, false, false); 1251 for (const auto &TypeEntry : TypeEntries) 1252 TypeEntry->completeType(*this); 1253 return Id; 1254 } 1255 1256 /// Generate a struct member field relocation. 1257 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1258 const GlobalVariable *GVar, bool IsAma) { 1259 BTFFieldReloc FieldReloc; 1260 FieldReloc.Label = ORSym; 1261 FieldReloc.TypeID = RootId; 1262 1263 StringRef AccessPattern = GVar->getName(); 1264 size_t FirstDollar = AccessPattern.find_first_of('$'); 1265 if (IsAma) { 1266 size_t FirstColon = AccessPattern.find_first_of(':'); 1267 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1268 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1269 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1270 SecondColon - FirstColon); 1271 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1272 FirstDollar - SecondColon); 1273 1274 FieldReloc.OffsetNameOff = addString(IndexPattern); 1275 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1276 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1277 FieldReloc.RelocKind); 1278 } else { 1279 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1280 FieldReloc.OffsetNameOff = addString("0"); 1281 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1282 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1283 } 1284 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1285 } 1286 1287 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1288 // check whether this is a candidate or not 1289 if (MO.isGlobal()) { 1290 const GlobalValue *GVal = MO.getGlobal(); 1291 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1292 if (!GVar) { 1293 // Not a global variable. Maybe an extern function reference. 1294 processFuncPrototypes(dyn_cast<Function>(GVal)); 1295 return; 1296 } 1297 1298 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1299 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1300 return; 1301 1302 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1303 OS.emitLabel(ORSym); 1304 1305 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1306 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1307 generatePatchImmReloc(ORSym, RootId, GVar, 1308 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1309 } 1310 } 1311 1312 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1313 DebugHandlerBase::beginInstruction(MI); 1314 1315 if (SkipInstruction || MI->isMetaInstruction() || 1316 MI->getFlag(MachineInstr::FrameSetup)) 1317 return; 1318 1319 if (MI->isInlineAsm()) { 1320 // Count the number of register definitions to find the asm string. 1321 unsigned NumDefs = 0; 1322 while (true) { 1323 const MachineOperand &MO = MI->getOperand(NumDefs); 1324 if (MO.isReg() && MO.isDef()) { 1325 ++NumDefs; 1326 continue; 1327 } 1328 // Skip this inline asm instruction if the asmstr is empty. 1329 const char *AsmStr = MO.getSymbolName(); 1330 if (AsmStr[0] == 0) 1331 return; 1332 break; 1333 } 1334 } 1335 1336 if (MI->getOpcode() == BPF::LD_imm64) { 1337 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1338 // add this insn into the .BTF.ext FieldReloc subsection. 1339 // Relocation looks like: 1340 // . SecName: 1341 // . InstOffset 1342 // . TypeID 1343 // . OffSetNameOff 1344 // . RelocType 1345 // Later, the insn is replaced with "r2 = <offset>" 1346 // where "<offset>" equals to the offset based on current 1347 // type definitions. 1348 // 1349 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1350 // The LD_imm64 result will be replaced with a btf type id. 1351 processGlobalValue(MI->getOperand(1)); 1352 } else if (MI->getOpcode() == BPF::CORE_LD64 || 1353 MI->getOpcode() == BPF::CORE_LD32 || 1354 MI->getOpcode() == BPF::CORE_ST || 1355 MI->getOpcode() == BPF::CORE_SHIFT) { 1356 // relocation insn is a load, store or shift insn. 1357 processGlobalValue(MI->getOperand(3)); 1358 } else if (MI->getOpcode() == BPF::JAL) { 1359 // check extern function references 1360 const MachineOperand &MO = MI->getOperand(0); 1361 if (MO.isGlobal()) { 1362 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1363 } 1364 } 1365 1366 if (!CurMI) // no debug info 1367 return; 1368 1369 // Skip this instruction if no DebugLoc or the DebugLoc 1370 // is the same as the previous instruction. 1371 const DebugLoc &DL = MI->getDebugLoc(); 1372 if (!DL || PrevInstLoc == DL) { 1373 // This instruction will be skipped, no LineInfo has 1374 // been generated, construct one based on function signature. 1375 if (LineInfoGenerated == false) { 1376 auto *S = MI->getMF()->getFunction().getSubprogram(); 1377 if (!S) 1378 return; 1379 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1380 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1381 LineInfoGenerated = true; 1382 } 1383 1384 return; 1385 } 1386 1387 // Create a temporary label to remember the insn for lineinfo. 1388 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1389 OS.emitLabel(LineSym); 1390 1391 // Construct the lineinfo. 1392 auto SP = DL->getScope()->getSubprogram(); 1393 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1394 1395 LineInfoGenerated = true; 1396 PrevInstLoc = DL; 1397 } 1398 1399 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1400 // Collect all types referenced by globals. 1401 const Module *M = MMI->getModule(); 1402 for (const GlobalVariable &Global : M->globals()) { 1403 // Decide the section name. 1404 StringRef SecName; 1405 std::optional<SectionKind> GVKind; 1406 1407 if (!Global.isDeclarationForLinker()) 1408 GVKind = TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1409 1410 if (Global.isDeclarationForLinker()) 1411 SecName = Global.hasSection() ? Global.getSection() : ""; 1412 else if (GVKind->isCommon()) 1413 SecName = ".bss"; 1414 else { 1415 TargetLoweringObjectFile *TLOF = Asm->TM.getObjFileLowering(); 1416 MCSection *Sec = TLOF->SectionForGlobal(&Global, Asm->TM); 1417 SecName = Sec->getName(); 1418 } 1419 1420 if (ProcessingMapDef != SecName.starts_with(".maps")) 1421 continue; 1422 1423 // Create a .rodata datasec if the global variable is an initialized 1424 // constant with private linkage and if it won't be in .rodata.str<#> 1425 // and .rodata.cst<#> sections. 1426 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1427 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1428 // skip .rodata.str<#> and .rodata.cst<#> sections 1429 if (!GVKind->isMergeableCString() && !GVKind->isMergeableConst()) { 1430 DataSecEntries[std::string(SecName)] = 1431 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1432 } 1433 } 1434 1435 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1436 Global.getDebugInfo(GVs); 1437 1438 // No type information, mostly internal, skip it. 1439 if (GVs.size() == 0) 1440 continue; 1441 1442 uint32_t GVTypeId = 0; 1443 DIGlobalVariable *DIGlobal = nullptr; 1444 for (auto *GVE : GVs) { 1445 DIGlobal = GVE->getVariable(); 1446 if (SecName.starts_with(".maps")) 1447 visitMapDefType(DIGlobal->getType(), GVTypeId); 1448 else 1449 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1450 break; 1451 } 1452 1453 // Only support the following globals: 1454 // . static variables 1455 // . non-static weak or non-weak global variables 1456 // . weak or non-weak extern global variables 1457 // Whether DataSec is readonly or not can be found from corresponding ELF 1458 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1459 // can be found from the corresponding ELF symbol table. 1460 auto Linkage = Global.getLinkage(); 1461 if (Linkage != GlobalValue::InternalLinkage && 1462 Linkage != GlobalValue::ExternalLinkage && 1463 Linkage != GlobalValue::WeakAnyLinkage && 1464 Linkage != GlobalValue::WeakODRLinkage && 1465 Linkage != GlobalValue::ExternalWeakLinkage) 1466 continue; 1467 1468 uint32_t GVarInfo; 1469 if (Linkage == GlobalValue::InternalLinkage) { 1470 GVarInfo = BTF::VAR_STATIC; 1471 } else if (Global.hasInitializer()) { 1472 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1473 } else { 1474 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1475 } 1476 1477 auto VarEntry = 1478 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1479 uint32_t VarId = addType(std::move(VarEntry)); 1480 1481 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1482 1483 // An empty SecName means an extern variable without section attribute. 1484 if (SecName.empty()) 1485 continue; 1486 1487 // Find or create a DataSec 1488 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1489 DataSecEntries[std::string(SecName)] = 1490 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1491 } 1492 1493 // Calculate symbol size 1494 const DataLayout &DL = Global.getParent()->getDataLayout(); 1495 uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); 1496 1497 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1498 Asm->getSymbol(&Global), Size); 1499 } 1500 } 1501 1502 /// Emit proper patchable instructions. 1503 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1504 if (MI->getOpcode() == BPF::LD_imm64) { 1505 const MachineOperand &MO = MI->getOperand(1); 1506 if (MO.isGlobal()) { 1507 const GlobalValue *GVal = MO.getGlobal(); 1508 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1509 if (GVar) { 1510 // Emit "mov ri, <imm>" 1511 int64_t Imm; 1512 uint32_t Reloc; 1513 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1514 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1515 Imm = PatchImms[GVar].first; 1516 Reloc = PatchImms[GVar].second; 1517 } else { 1518 return false; 1519 } 1520 1521 if (Reloc == BTF::ENUM_VALUE_EXISTENCE || Reloc == BTF::ENUM_VALUE || 1522 Reloc == BTF::BTF_TYPE_ID_LOCAL || Reloc == BTF::BTF_TYPE_ID_REMOTE) 1523 OutMI.setOpcode(BPF::LD_imm64); 1524 else 1525 OutMI.setOpcode(BPF::MOV_ri); 1526 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1527 OutMI.addOperand(MCOperand::createImm(Imm)); 1528 return true; 1529 } 1530 } 1531 } else if (MI->getOpcode() == BPF::CORE_LD64 || 1532 MI->getOpcode() == BPF::CORE_LD32 || 1533 MI->getOpcode() == BPF::CORE_ST || 1534 MI->getOpcode() == BPF::CORE_SHIFT) { 1535 const MachineOperand &MO = MI->getOperand(3); 1536 if (MO.isGlobal()) { 1537 const GlobalValue *GVal = MO.getGlobal(); 1538 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1539 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1540 uint32_t Imm = PatchImms[GVar].first; 1541 OutMI.setOpcode(MI->getOperand(1).getImm()); 1542 if (MI->getOperand(0).isImm()) 1543 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1544 else 1545 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1546 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1547 OutMI.addOperand(MCOperand::createImm(Imm)); 1548 return true; 1549 } 1550 } 1551 } 1552 return false; 1553 } 1554 1555 void BTFDebug::processFuncPrototypes(const Function *F) { 1556 if (!F) 1557 return; 1558 1559 const DISubprogram *SP = F->getSubprogram(); 1560 if (!SP || SP->isDefinition()) 1561 return; 1562 1563 // Do not emit again if already emitted. 1564 if (!ProtoFunctions.insert(F).second) 1565 return; 1566 1567 uint32_t ProtoTypeId; 1568 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1569 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1570 uint32_t FuncId = processDISubprogram(SP, ProtoTypeId, BTF::FUNC_EXTERN); 1571 1572 if (F->hasSection()) { 1573 StringRef SecName = F->getSection(); 1574 1575 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1576 DataSecEntries[std::string(SecName)] = 1577 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1578 } 1579 1580 // We really don't know func size, set it to 0. 1581 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1582 Asm->getSymbol(F), 0); 1583 } 1584 } 1585 1586 void BTFDebug::endModule() { 1587 // Collect MapDef globals if not collected yet. 1588 if (MapDefNotCollected) { 1589 processGlobals(true); 1590 MapDefNotCollected = false; 1591 } 1592 1593 // Collect global types/variables except MapDef globals. 1594 processGlobals(false); 1595 1596 for (auto &DataSec : DataSecEntries) 1597 addType(std::move(DataSec.second)); 1598 1599 // Fixups 1600 for (auto &Fixup : FixupDerivedTypes) { 1601 const DICompositeType *CTy = Fixup.first; 1602 StringRef TypeName = CTy->getName(); 1603 bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; 1604 1605 // Search through struct types 1606 uint32_t StructTypeId = 0; 1607 for (const auto &StructType : StructTypes) { 1608 if (StructType->getName() == TypeName) { 1609 StructTypeId = StructType->getId(); 1610 break; 1611 } 1612 } 1613 1614 if (StructTypeId == 0) { 1615 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1616 StructTypeId = addType(std::move(FwdTypeEntry)); 1617 } 1618 1619 for (auto &TypeInfo : Fixup.second) { 1620 const DIDerivedType *DTy = TypeInfo.first; 1621 BTFTypeDerived *BDType = TypeInfo.second; 1622 1623 int TmpTypeId = genBTFTypeTags(DTy, StructTypeId); 1624 if (TmpTypeId >= 0) 1625 BDType->setPointeeType(TmpTypeId); 1626 else 1627 BDType->setPointeeType(StructTypeId); 1628 } 1629 } 1630 1631 // Complete BTF type cross refereences. 1632 for (const auto &TypeEntry : TypeEntries) 1633 TypeEntry->completeType(*this); 1634 1635 // Emit BTF sections. 1636 emitBTFSection(); 1637 emitBTFExtSection(); 1638 } 1639