1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 70 if (IsCompleted) 71 return; 72 IsCompleted = true; 73 74 BTFType.NameOff = BDebug.addString(DTy->getName()); 75 76 if (NeedsFixup) 77 return; 78 79 // The base type for PTR/CONST/VOLATILE could be void. 80 const DIType *ResolvedType = DTy->getBaseType(); 81 if (!ResolvedType) { 82 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 83 Kind == BTF::BTF_KIND_VOLATILE) && 84 "Invalid null basetype"); 85 BTFType.Type = 0; 86 } else { 87 BTFType.Type = BDebug.getTypeId(ResolvedType); 88 } 89 } 90 91 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 92 93 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 94 BTFType.Type = PointeeType; 95 } 96 97 /// Represent a struct/union forward declaration. 98 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 99 Kind = BTF::BTF_KIND_FWD; 100 BTFType.Info = IsUnion << 31 | Kind << 24; 101 BTFType.Type = 0; 102 } 103 104 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 105 if (IsCompleted) 106 return; 107 IsCompleted = true; 108 109 BTFType.NameOff = BDebug.addString(Name); 110 } 111 112 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 113 114 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 115 uint32_t OffsetInBits, StringRef TypeName) 116 : Name(TypeName) { 117 // Translate IR int encoding to BTF int encoding. 118 uint8_t BTFEncoding; 119 switch (Encoding) { 120 case dwarf::DW_ATE_boolean: 121 BTFEncoding = BTF::INT_BOOL; 122 break; 123 case dwarf::DW_ATE_signed: 124 case dwarf::DW_ATE_signed_char: 125 BTFEncoding = BTF::INT_SIGNED; 126 break; 127 case dwarf::DW_ATE_unsigned: 128 case dwarf::DW_ATE_unsigned_char: 129 BTFEncoding = 0; 130 break; 131 default: 132 llvm_unreachable("Unknown BTFTypeInt Encoding"); 133 } 134 135 Kind = BTF::BTF_KIND_INT; 136 BTFType.Info = Kind << 24; 137 BTFType.Size = roundupToBytes(SizeInBits); 138 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 139 } 140 141 void BTFTypeInt::completeType(BTFDebug &BDebug) { 142 if (IsCompleted) 143 return; 144 IsCompleted = true; 145 146 BTFType.NameOff = BDebug.addString(Name); 147 } 148 149 void BTFTypeInt::emitType(MCStreamer &OS) { 150 BTFTypeBase::emitType(OS); 151 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 152 OS.emitInt32(IntVal); 153 } 154 155 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 156 Kind = BTF::BTF_KIND_ENUM; 157 BTFType.Info = Kind << 24 | VLen; 158 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 159 } 160 161 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 162 if (IsCompleted) 163 return; 164 IsCompleted = true; 165 166 BTFType.NameOff = BDebug.addString(ETy->getName()); 167 168 DINodeArray Elements = ETy->getElements(); 169 for (const auto Element : Elements) { 170 const auto *Enum = cast<DIEnumerator>(Element); 171 172 struct BTF::BTFEnum BTFEnum; 173 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 174 // BTF enum value is 32bit, enforce it. 175 uint32_t Value; 176 if (Enum->isUnsigned()) 177 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 178 else 179 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 180 BTFEnum.Val = Value; 181 EnumValues.push_back(BTFEnum); 182 } 183 } 184 185 void BTFTypeEnum::emitType(MCStreamer &OS) { 186 BTFTypeBase::emitType(OS); 187 for (const auto &Enum : EnumValues) { 188 OS.emitInt32(Enum.NameOff); 189 OS.emitInt32(Enum.Val); 190 } 191 } 192 193 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 194 Kind = BTF::BTF_KIND_ARRAY; 195 BTFType.NameOff = 0; 196 BTFType.Info = Kind << 24; 197 BTFType.Size = 0; 198 199 ArrayInfo.ElemType = ElemTypeId; 200 ArrayInfo.Nelems = NumElems; 201 } 202 203 /// Represent a BTF array. 204 void BTFTypeArray::completeType(BTFDebug &BDebug) { 205 if (IsCompleted) 206 return; 207 IsCompleted = true; 208 209 // The IR does not really have a type for the index. 210 // A special type for array index should have been 211 // created during initial type traversal. Just 212 // retrieve that type id. 213 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 214 } 215 216 void BTFTypeArray::emitType(MCStreamer &OS) { 217 BTFTypeBase::emitType(OS); 218 OS.emitInt32(ArrayInfo.ElemType); 219 OS.emitInt32(ArrayInfo.IndexType); 220 OS.emitInt32(ArrayInfo.Nelems); 221 } 222 223 /// Represent either a struct or a union. 224 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 225 bool HasBitField, uint32_t Vlen) 226 : STy(STy), HasBitField(HasBitField) { 227 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 228 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 229 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 230 } 231 232 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 233 if (IsCompleted) 234 return; 235 IsCompleted = true; 236 237 BTFType.NameOff = BDebug.addString(STy->getName()); 238 239 // Add struct/union members. 240 const DINodeArray Elements = STy->getElements(); 241 for (const auto *Element : Elements) { 242 struct BTF::BTFMember BTFMember; 243 const auto *DDTy = cast<DIDerivedType>(Element); 244 245 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 246 if (HasBitField) { 247 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 248 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 249 } else { 250 BTFMember.Offset = DDTy->getOffsetInBits(); 251 } 252 const auto *BaseTy = DDTy->getBaseType(); 253 BTFMember.Type = BDebug.getTypeId(BaseTy); 254 Members.push_back(BTFMember); 255 } 256 } 257 258 void BTFTypeStruct::emitType(MCStreamer &OS) { 259 BTFTypeBase::emitType(OS); 260 for (const auto &Member : Members) { 261 OS.emitInt32(Member.NameOff); 262 OS.emitInt32(Member.Type); 263 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 264 OS.emitInt32(Member.Offset); 265 } 266 } 267 268 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 269 270 /// The Func kind represents both subprogram and pointee of function 271 /// pointers. If the FuncName is empty, it represents a pointee of function 272 /// pointer. Otherwise, it represents a subprogram. The func arg names 273 /// are empty for pointee of function pointer case, and are valid names 274 /// for subprogram. 275 BTFTypeFuncProto::BTFTypeFuncProto( 276 const DISubroutineType *STy, uint32_t VLen, 277 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 278 : STy(STy), FuncArgNames(FuncArgNames) { 279 Kind = BTF::BTF_KIND_FUNC_PROTO; 280 BTFType.Info = (Kind << 24) | VLen; 281 } 282 283 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 284 if (IsCompleted) 285 return; 286 IsCompleted = true; 287 288 DITypeRefArray Elements = STy->getTypeArray(); 289 auto RetType = Elements[0]; 290 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 291 BTFType.NameOff = 0; 292 293 // For null parameter which is typically the last one 294 // to represent the vararg, encode the NameOff/Type to be 0. 295 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 296 struct BTF::BTFParam Param; 297 auto Element = Elements[I]; 298 if (Element) { 299 Param.NameOff = BDebug.addString(FuncArgNames[I]); 300 Param.Type = BDebug.getTypeId(Element); 301 } else { 302 Param.NameOff = 0; 303 Param.Type = 0; 304 } 305 Parameters.push_back(Param); 306 } 307 } 308 309 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 310 BTFTypeBase::emitType(OS); 311 for (const auto &Param : Parameters) { 312 OS.emitInt32(Param.NameOff); 313 OS.emitInt32(Param.Type); 314 } 315 } 316 317 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 318 uint32_t Scope) 319 : Name(FuncName) { 320 Kind = BTF::BTF_KIND_FUNC; 321 BTFType.Info = (Kind << 24) | Scope; 322 BTFType.Type = ProtoTypeId; 323 } 324 325 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 326 if (IsCompleted) 327 return; 328 IsCompleted = true; 329 330 BTFType.NameOff = BDebug.addString(Name); 331 } 332 333 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 334 335 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 336 : Name(VarName) { 337 Kind = BTF::BTF_KIND_VAR; 338 BTFType.Info = Kind << 24; 339 BTFType.Type = TypeId; 340 Info = VarInfo; 341 } 342 343 void BTFKindVar::completeType(BTFDebug &BDebug) { 344 BTFType.NameOff = BDebug.addString(Name); 345 } 346 347 void BTFKindVar::emitType(MCStreamer &OS) { 348 BTFTypeBase::emitType(OS); 349 OS.emitInt32(Info); 350 } 351 352 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 353 : Asm(AsmPrt), Name(SecName) { 354 Kind = BTF::BTF_KIND_DATASEC; 355 BTFType.Info = Kind << 24; 356 BTFType.Size = 0; 357 } 358 359 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 360 BTFType.NameOff = BDebug.addString(Name); 361 BTFType.Info |= Vars.size(); 362 } 363 364 void BTFKindDataSec::emitType(MCStreamer &OS) { 365 BTFTypeBase::emitType(OS); 366 367 for (const auto &V : Vars) { 368 OS.emitInt32(std::get<0>(V)); 369 Asm->emitLabelReference(std::get<1>(V), 4); 370 OS.emitInt32(std::get<2>(V)); 371 } 372 } 373 374 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 375 : Name(TypeName) { 376 Kind = BTF::BTF_KIND_FLOAT; 377 BTFType.Info = Kind << 24; 378 BTFType.Size = roundupToBytes(SizeInBits); 379 } 380 381 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 382 if (IsCompleted) 383 return; 384 IsCompleted = true; 385 386 BTFType.NameOff = BDebug.addString(Name); 387 } 388 389 uint32_t BTFStringTable::addString(StringRef S) { 390 // Check whether the string already exists. 391 for (auto &OffsetM : OffsetToIdMap) { 392 if (Table[OffsetM.second] == S) 393 return OffsetM.first; 394 } 395 // Not find, add to the string table. 396 uint32_t Offset = Size; 397 OffsetToIdMap[Offset] = Table.size(); 398 Table.push_back(std::string(S)); 399 Size += S.size() + 1; 400 return Offset; 401 } 402 403 BTFDebug::BTFDebug(AsmPrinter *AP) 404 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 405 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 406 MapDefNotCollected(true) { 407 addString("\0"); 408 } 409 410 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 411 const DIType *Ty) { 412 TypeEntry->setId(TypeEntries.size() + 1); 413 uint32_t Id = TypeEntry->getId(); 414 DIToIdMap[Ty] = Id; 415 TypeEntries.push_back(std::move(TypeEntry)); 416 return Id; 417 } 418 419 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 420 TypeEntry->setId(TypeEntries.size() + 1); 421 uint32_t Id = TypeEntry->getId(); 422 TypeEntries.push_back(std::move(TypeEntry)); 423 return Id; 424 } 425 426 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 427 // Only int and binary floating point types are supported in BTF. 428 uint32_t Encoding = BTy->getEncoding(); 429 std::unique_ptr<BTFTypeBase> TypeEntry; 430 switch (Encoding) { 431 case dwarf::DW_ATE_boolean: 432 case dwarf::DW_ATE_signed: 433 case dwarf::DW_ATE_signed_char: 434 case dwarf::DW_ATE_unsigned: 435 case dwarf::DW_ATE_unsigned_char: 436 // Create a BTF type instance for this DIBasicType and put it into 437 // DIToIdMap for cross-type reference check. 438 TypeEntry = std::make_unique<BTFTypeInt>( 439 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 440 break; 441 case dwarf::DW_ATE_float: 442 TypeEntry = 443 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 444 break; 445 default: 446 return; 447 } 448 449 TypeId = addType(std::move(TypeEntry), BTy); 450 } 451 452 /// Handle subprogram or subroutine types. 453 void BTFDebug::visitSubroutineType( 454 const DISubroutineType *STy, bool ForSubprog, 455 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 456 uint32_t &TypeId) { 457 DITypeRefArray Elements = STy->getTypeArray(); 458 uint32_t VLen = Elements.size() - 1; 459 if (VLen > BTF::MAX_VLEN) 460 return; 461 462 // Subprogram has a valid non-zero-length name, and the pointee of 463 // a function pointer has an empty name. The subprogram type will 464 // not be added to DIToIdMap as it should not be referenced by 465 // any other types. 466 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 467 if (ForSubprog) 468 TypeId = addType(std::move(TypeEntry)); // For subprogram 469 else 470 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 471 472 // Visit return type and func arg types. 473 for (const auto Element : Elements) { 474 visitTypeEntry(Element); 475 } 476 } 477 478 /// Handle structure/union types. 479 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 480 uint32_t &TypeId) { 481 const DINodeArray Elements = CTy->getElements(); 482 uint32_t VLen = Elements.size(); 483 if (VLen > BTF::MAX_VLEN) 484 return; 485 486 // Check whether we have any bitfield members or not 487 bool HasBitField = false; 488 for (const auto *Element : Elements) { 489 auto E = cast<DIDerivedType>(Element); 490 if (E->isBitField()) { 491 HasBitField = true; 492 break; 493 } 494 } 495 496 auto TypeEntry = 497 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 498 StructTypes.push_back(TypeEntry.get()); 499 TypeId = addType(std::move(TypeEntry), CTy); 500 501 // Visit all struct members. 502 for (const auto *Element : Elements) 503 visitTypeEntry(cast<DIDerivedType>(Element)); 504 } 505 506 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 507 // Visit array element type. 508 uint32_t ElemTypeId; 509 const DIType *ElemType = CTy->getBaseType(); 510 visitTypeEntry(ElemType, ElemTypeId, false, false); 511 512 // Visit array dimensions. 513 DINodeArray Elements = CTy->getElements(); 514 for (int I = Elements.size() - 1; I >= 0; --I) { 515 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 516 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 517 const DISubrange *SR = cast<DISubrange>(Element); 518 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 519 int64_t Count = CI->getSExtValue(); 520 521 // For struct s { int b; char c[]; }, the c[] will be represented 522 // as an array with Count = -1. 523 auto TypeEntry = 524 std::make_unique<BTFTypeArray>(ElemTypeId, 525 Count >= 0 ? Count : 0); 526 if (I == 0) 527 ElemTypeId = addType(std::move(TypeEntry), CTy); 528 else 529 ElemTypeId = addType(std::move(TypeEntry)); 530 } 531 } 532 533 // The array TypeId is the type id of the outermost dimension. 534 TypeId = ElemTypeId; 535 536 // The IR does not have a type for array index while BTF wants one. 537 // So create an array index type if there is none. 538 if (!ArrayIndexTypeId) { 539 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 540 0, "__ARRAY_SIZE_TYPE__"); 541 ArrayIndexTypeId = addType(std::move(TypeEntry)); 542 } 543 } 544 545 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 546 DINodeArray Elements = CTy->getElements(); 547 uint32_t VLen = Elements.size(); 548 if (VLen > BTF::MAX_VLEN) 549 return; 550 551 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 552 TypeId = addType(std::move(TypeEntry), CTy); 553 // No need to visit base type as BTF does not encode it. 554 } 555 556 /// Handle structure/union forward declarations. 557 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 558 uint32_t &TypeId) { 559 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 560 TypeId = addType(std::move(TypeEntry), CTy); 561 } 562 563 /// Handle structure, union, array and enumeration types. 564 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 565 uint32_t &TypeId) { 566 auto Tag = CTy->getTag(); 567 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 568 // Handle forward declaration differently as it does not have members. 569 if (CTy->isForwardDecl()) 570 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 571 else 572 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 573 } else if (Tag == dwarf::DW_TAG_array_type) 574 visitArrayType(CTy, TypeId); 575 else if (Tag == dwarf::DW_TAG_enumeration_type) 576 visitEnumType(CTy, TypeId); 577 } 578 579 /// Handle pointer, typedef, const, volatile, restrict and member types. 580 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 581 bool CheckPointer, bool SeenPointer) { 582 unsigned Tag = DTy->getTag(); 583 584 /// Try to avoid chasing pointees, esp. structure pointees which may 585 /// unnecessary bring in a lot of types. 586 if (CheckPointer && !SeenPointer) { 587 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 588 } 589 590 if (CheckPointer && SeenPointer) { 591 const DIType *Base = DTy->getBaseType(); 592 if (Base) { 593 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 594 auto CTag = CTy->getTag(); 595 if ((CTag == dwarf::DW_TAG_structure_type || 596 CTag == dwarf::DW_TAG_union_type) && 597 !CTy->getName().empty() && !CTy->isForwardDecl()) { 598 /// Find a candidate, generate a fixup. Later on the struct/union 599 /// pointee type will be replaced with either a real type or 600 /// a forward declaration. 601 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 602 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 603 Fixup.first = CTag == dwarf::DW_TAG_union_type; 604 Fixup.second.push_back(TypeEntry.get()); 605 TypeId = addType(std::move(TypeEntry), DTy); 606 return; 607 } 608 } 609 } 610 } 611 612 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 613 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 614 Tag == dwarf::DW_TAG_restrict_type) { 615 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 616 TypeId = addType(std::move(TypeEntry), DTy); 617 } else if (Tag != dwarf::DW_TAG_member) { 618 return; 619 } 620 621 // Visit base type of pointer, typedef, const, volatile, restrict or 622 // struct/union member. 623 uint32_t TempTypeId = 0; 624 if (Tag == dwarf::DW_TAG_member) 625 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 626 else 627 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 628 } 629 630 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 631 bool CheckPointer, bool SeenPointer) { 632 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 633 TypeId = DIToIdMap[Ty]; 634 635 // To handle the case like the following: 636 // struct t; 637 // typedef struct t _t; 638 // struct s1 { _t *c; }; 639 // int test1(struct s1 *arg) { ... } 640 // 641 // struct t { int a; int b; }; 642 // struct s2 { _t c; } 643 // int test2(struct s2 *arg) { ... } 644 // 645 // During traversing test1() argument, "_t" is recorded 646 // in DIToIdMap and a forward declaration fixup is created 647 // for "struct t" to avoid pointee type traversal. 648 // 649 // During traversing test2() argument, even if we see "_t" is 650 // already defined, we should keep moving to eventually 651 // bring in types for "struct t". Otherwise, the "struct s2" 652 // definition won't be correct. 653 if (Ty && (!CheckPointer || !SeenPointer)) { 654 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 655 unsigned Tag = DTy->getTag(); 656 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 657 Tag == dwarf::DW_TAG_volatile_type || 658 Tag == dwarf::DW_TAG_restrict_type) { 659 uint32_t TmpTypeId; 660 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 661 SeenPointer); 662 } 663 } 664 } 665 666 return; 667 } 668 669 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 670 visitBasicType(BTy, TypeId); 671 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 672 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 673 TypeId); 674 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 675 visitCompositeType(CTy, TypeId); 676 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 677 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 678 else 679 llvm_unreachable("Unknown DIType"); 680 } 681 682 void BTFDebug::visitTypeEntry(const DIType *Ty) { 683 uint32_t TypeId; 684 visitTypeEntry(Ty, TypeId, false, false); 685 } 686 687 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 688 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 689 TypeId = DIToIdMap[Ty]; 690 return; 691 } 692 693 // MapDef type may be a struct type or a non-pointer derived type 694 const DIType *OrigTy = Ty; 695 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 696 auto Tag = DTy->getTag(); 697 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 698 Tag != dwarf::DW_TAG_volatile_type && 699 Tag != dwarf::DW_TAG_restrict_type) 700 break; 701 Ty = DTy->getBaseType(); 702 } 703 704 const auto *CTy = dyn_cast<DICompositeType>(Ty); 705 if (!CTy) 706 return; 707 708 auto Tag = CTy->getTag(); 709 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 710 return; 711 712 // Visit all struct members to ensure pointee type is visited 713 const DINodeArray Elements = CTy->getElements(); 714 for (const auto *Element : Elements) { 715 const auto *MemberType = cast<DIDerivedType>(Element); 716 visitTypeEntry(MemberType->getBaseType()); 717 } 718 719 // Visit this type, struct or a const/typedef/volatile/restrict type 720 visitTypeEntry(OrigTy, TypeId, false, false); 721 } 722 723 /// Read file contents from the actual file or from the source 724 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 725 auto File = SP->getFile(); 726 std::string FileName; 727 728 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 729 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 730 else 731 FileName = std::string(File->getFilename()); 732 733 // No need to populate the contends if it has been populated! 734 if (FileContent.find(FileName) != FileContent.end()) 735 return FileName; 736 737 std::vector<std::string> Content; 738 std::string Line; 739 Content.push_back(Line); // Line 0 for empty string 740 741 std::unique_ptr<MemoryBuffer> Buf; 742 auto Source = File->getSource(); 743 if (Source) 744 Buf = MemoryBuffer::getMemBufferCopy(*Source); 745 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 746 MemoryBuffer::getFile(FileName)) 747 Buf = std::move(*BufOrErr); 748 if (Buf) 749 for (line_iterator I(*Buf, false), E; I != E; ++I) 750 Content.push_back(std::string(*I)); 751 752 FileContent[FileName] = Content; 753 return FileName; 754 } 755 756 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 757 uint32_t Line, uint32_t Column) { 758 std::string FileName = populateFileContent(SP); 759 BTFLineInfo LineInfo; 760 761 LineInfo.Label = Label; 762 LineInfo.FileNameOff = addString(FileName); 763 // If file content is not available, let LineOff = 0. 764 if (Line < FileContent[FileName].size()) 765 LineInfo.LineOff = addString(FileContent[FileName][Line]); 766 else 767 LineInfo.LineOff = 0; 768 LineInfo.LineNum = Line; 769 LineInfo.ColumnNum = Column; 770 LineInfoTable[SecNameOff].push_back(LineInfo); 771 } 772 773 void BTFDebug::emitCommonHeader() { 774 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 775 OS.emitIntValue(BTF::MAGIC, 2); 776 OS.emitInt8(BTF::VERSION); 777 OS.emitInt8(0); 778 } 779 780 void BTFDebug::emitBTFSection() { 781 // Do not emit section if no types and only "" string. 782 if (!TypeEntries.size() && StringTable.getSize() == 1) 783 return; 784 785 MCContext &Ctx = OS.getContext(); 786 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 787 788 // Emit header. 789 emitCommonHeader(); 790 OS.emitInt32(BTF::HeaderSize); 791 792 uint32_t TypeLen = 0, StrLen; 793 for (const auto &TypeEntry : TypeEntries) 794 TypeLen += TypeEntry->getSize(); 795 StrLen = StringTable.getSize(); 796 797 OS.emitInt32(0); 798 OS.emitInt32(TypeLen); 799 OS.emitInt32(TypeLen); 800 OS.emitInt32(StrLen); 801 802 // Emit type table. 803 for (const auto &TypeEntry : TypeEntries) 804 TypeEntry->emitType(OS); 805 806 // Emit string table. 807 uint32_t StringOffset = 0; 808 for (const auto &S : StringTable.getTable()) { 809 OS.AddComment("string offset=" + std::to_string(StringOffset)); 810 OS.emitBytes(S); 811 OS.emitBytes(StringRef("\0", 1)); 812 StringOffset += S.size() + 1; 813 } 814 } 815 816 void BTFDebug::emitBTFExtSection() { 817 // Do not emit section if empty FuncInfoTable and LineInfoTable 818 // and FieldRelocTable. 819 if (!FuncInfoTable.size() && !LineInfoTable.size() && 820 !FieldRelocTable.size()) 821 return; 822 823 MCContext &Ctx = OS.getContext(); 824 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 825 826 // Emit header. 827 emitCommonHeader(); 828 OS.emitInt32(BTF::ExtHeaderSize); 829 830 // Account for FuncInfo/LineInfo record size as well. 831 uint32_t FuncLen = 4, LineLen = 4; 832 // Do not account for optional FieldReloc. 833 uint32_t FieldRelocLen = 0; 834 for (const auto &FuncSec : FuncInfoTable) { 835 FuncLen += BTF::SecFuncInfoSize; 836 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 837 } 838 for (const auto &LineSec : LineInfoTable) { 839 LineLen += BTF::SecLineInfoSize; 840 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 841 } 842 for (const auto &FieldRelocSec : FieldRelocTable) { 843 FieldRelocLen += BTF::SecFieldRelocSize; 844 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 845 } 846 847 if (FieldRelocLen) 848 FieldRelocLen += 4; 849 850 OS.emitInt32(0); 851 OS.emitInt32(FuncLen); 852 OS.emitInt32(FuncLen); 853 OS.emitInt32(LineLen); 854 OS.emitInt32(FuncLen + LineLen); 855 OS.emitInt32(FieldRelocLen); 856 857 // Emit func_info table. 858 OS.AddComment("FuncInfo"); 859 OS.emitInt32(BTF::BPFFuncInfoSize); 860 for (const auto &FuncSec : FuncInfoTable) { 861 OS.AddComment("FuncInfo section string offset=" + 862 std::to_string(FuncSec.first)); 863 OS.emitInt32(FuncSec.first); 864 OS.emitInt32(FuncSec.second.size()); 865 for (const auto &FuncInfo : FuncSec.second) { 866 Asm->emitLabelReference(FuncInfo.Label, 4); 867 OS.emitInt32(FuncInfo.TypeId); 868 } 869 } 870 871 // Emit line_info table. 872 OS.AddComment("LineInfo"); 873 OS.emitInt32(BTF::BPFLineInfoSize); 874 for (const auto &LineSec : LineInfoTable) { 875 OS.AddComment("LineInfo section string offset=" + 876 std::to_string(LineSec.first)); 877 OS.emitInt32(LineSec.first); 878 OS.emitInt32(LineSec.second.size()); 879 for (const auto &LineInfo : LineSec.second) { 880 Asm->emitLabelReference(LineInfo.Label, 4); 881 OS.emitInt32(LineInfo.FileNameOff); 882 OS.emitInt32(LineInfo.LineOff); 883 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 884 std::to_string(LineInfo.ColumnNum)); 885 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 886 } 887 } 888 889 // Emit field reloc table. 890 if (FieldRelocLen) { 891 OS.AddComment("FieldReloc"); 892 OS.emitInt32(BTF::BPFFieldRelocSize); 893 for (const auto &FieldRelocSec : FieldRelocTable) { 894 OS.AddComment("Field reloc section string offset=" + 895 std::to_string(FieldRelocSec.first)); 896 OS.emitInt32(FieldRelocSec.first); 897 OS.emitInt32(FieldRelocSec.second.size()); 898 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 899 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 900 OS.emitInt32(FieldRelocInfo.TypeID); 901 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 902 OS.emitInt32(FieldRelocInfo.RelocKind); 903 } 904 } 905 } 906 } 907 908 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 909 auto *SP = MF->getFunction().getSubprogram(); 910 auto *Unit = SP->getUnit(); 911 912 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 913 SkipInstruction = true; 914 return; 915 } 916 SkipInstruction = false; 917 918 // Collect MapDef types. Map definition needs to collect 919 // pointee types. Do it first. Otherwise, for the following 920 // case: 921 // struct m { ...}; 922 // struct t { 923 // struct m *key; 924 // }; 925 // foo(struct t *arg); 926 // 927 // struct mapdef { 928 // ... 929 // struct m *key; 930 // ... 931 // } __attribute__((section(".maps"))) hash_map; 932 // 933 // If subroutine foo is traversed first, a type chain 934 // "ptr->struct m(fwd)" will be created and later on 935 // when traversing mapdef, since "ptr->struct m" exists, 936 // the traversal of "struct m" will be omitted. 937 if (MapDefNotCollected) { 938 processGlobals(true); 939 MapDefNotCollected = false; 940 } 941 942 // Collect all types locally referenced in this function. 943 // Use RetainedNodes so we can collect all argument names 944 // even if the argument is not used. 945 std::unordered_map<uint32_t, StringRef> FuncArgNames; 946 for (const DINode *DN : SP->getRetainedNodes()) { 947 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 948 // Collect function arguments for subprogram func type. 949 uint32_t Arg = DV->getArg(); 950 if (Arg) { 951 visitTypeEntry(DV->getType()); 952 FuncArgNames[Arg] = DV->getName(); 953 } 954 } 955 } 956 957 // Construct subprogram func proto type. 958 uint32_t ProtoTypeId; 959 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 960 961 // Construct subprogram func type 962 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 963 auto FuncTypeEntry = 964 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 965 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 966 967 for (const auto &TypeEntry : TypeEntries) 968 TypeEntry->completeType(*this); 969 970 // Construct funcinfo and the first lineinfo for the function. 971 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 972 BTFFuncInfo FuncInfo; 973 FuncInfo.Label = FuncLabel; 974 FuncInfo.TypeId = FuncTypeId; 975 if (FuncLabel->isInSection()) { 976 MCSection &Section = FuncLabel->getSection(); 977 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 978 assert(SectionELF && "Null section for Function Label"); 979 SecNameOff = addString(SectionELF->getName()); 980 } else { 981 SecNameOff = addString(".text"); 982 } 983 FuncInfoTable[SecNameOff].push_back(FuncInfo); 984 } 985 986 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 987 SkipInstruction = false; 988 LineInfoGenerated = false; 989 SecNameOff = 0; 990 } 991 992 /// On-demand populate types as requested from abstract member 993 /// accessing or preserve debuginfo type. 994 unsigned BTFDebug::populateType(const DIType *Ty) { 995 unsigned Id; 996 visitTypeEntry(Ty, Id, false, false); 997 for (const auto &TypeEntry : TypeEntries) 998 TypeEntry->completeType(*this); 999 return Id; 1000 } 1001 1002 /// Generate a struct member field relocation. 1003 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1004 const GlobalVariable *GVar, bool IsAma) { 1005 BTFFieldReloc FieldReloc; 1006 FieldReloc.Label = ORSym; 1007 FieldReloc.TypeID = RootId; 1008 1009 StringRef AccessPattern = GVar->getName(); 1010 size_t FirstDollar = AccessPattern.find_first_of('$'); 1011 if (IsAma) { 1012 size_t FirstColon = AccessPattern.find_first_of(':'); 1013 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1014 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1015 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1016 SecondColon - FirstColon); 1017 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1018 FirstDollar - SecondColon); 1019 1020 FieldReloc.OffsetNameOff = addString(IndexPattern); 1021 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1022 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1023 FieldReloc.RelocKind); 1024 } else { 1025 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1026 FieldReloc.OffsetNameOff = addString("0"); 1027 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1028 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1029 } 1030 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1031 } 1032 1033 void BTFDebug::processReloc(const MachineOperand &MO) { 1034 // check whether this is a candidate or not 1035 if (MO.isGlobal()) { 1036 const GlobalValue *GVal = MO.getGlobal(); 1037 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1038 if (!GVar) 1039 return; 1040 1041 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1042 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1043 return; 1044 1045 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1046 OS.emitLabel(ORSym); 1047 1048 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1049 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1050 generatePatchImmReloc(ORSym, RootId, GVar, 1051 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1052 } 1053 } 1054 1055 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1056 DebugHandlerBase::beginInstruction(MI); 1057 1058 if (SkipInstruction || MI->isMetaInstruction() || 1059 MI->getFlag(MachineInstr::FrameSetup)) 1060 return; 1061 1062 if (MI->isInlineAsm()) { 1063 // Count the number of register definitions to find the asm string. 1064 unsigned NumDefs = 0; 1065 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1066 ++NumDefs) 1067 ; 1068 1069 // Skip this inline asm instruction if the asmstr is empty. 1070 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1071 if (AsmStr[0] == 0) 1072 return; 1073 } 1074 1075 if (MI->getOpcode() == BPF::LD_imm64) { 1076 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1077 // add this insn into the .BTF.ext FieldReloc subsection. 1078 // Relocation looks like: 1079 // . SecName: 1080 // . InstOffset 1081 // . TypeID 1082 // . OffSetNameOff 1083 // . RelocType 1084 // Later, the insn is replaced with "r2 = <offset>" 1085 // where "<offset>" equals to the offset based on current 1086 // type definitions. 1087 // 1088 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1089 // The LD_imm64 result will be replaced with a btf type id. 1090 processReloc(MI->getOperand(1)); 1091 } else if (MI->getOpcode() == BPF::CORE_MEM || 1092 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1093 MI->getOpcode() == BPF::CORE_SHIFT) { 1094 // relocation insn is a load, store or shift insn. 1095 processReloc(MI->getOperand(3)); 1096 } else if (MI->getOpcode() == BPF::JAL) { 1097 // check extern function references 1098 const MachineOperand &MO = MI->getOperand(0); 1099 if (MO.isGlobal()) { 1100 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1101 } 1102 } 1103 1104 if (!CurMI) // no debug info 1105 return; 1106 1107 // Skip this instruction if no DebugLoc or the DebugLoc 1108 // is the same as the previous instruction. 1109 const DebugLoc &DL = MI->getDebugLoc(); 1110 if (!DL || PrevInstLoc == DL) { 1111 // This instruction will be skipped, no LineInfo has 1112 // been generated, construct one based on function signature. 1113 if (LineInfoGenerated == false) { 1114 auto *S = MI->getMF()->getFunction().getSubprogram(); 1115 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1116 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1117 LineInfoGenerated = true; 1118 } 1119 1120 return; 1121 } 1122 1123 // Create a temporary label to remember the insn for lineinfo. 1124 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1125 OS.emitLabel(LineSym); 1126 1127 // Construct the lineinfo. 1128 auto SP = DL.get()->getScope()->getSubprogram(); 1129 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1130 1131 LineInfoGenerated = true; 1132 PrevInstLoc = DL; 1133 } 1134 1135 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1136 // Collect all types referenced by globals. 1137 const Module *M = MMI->getModule(); 1138 for (const GlobalVariable &Global : M->globals()) { 1139 // Decide the section name. 1140 StringRef SecName; 1141 if (Global.hasSection()) { 1142 SecName = Global.getSection(); 1143 } else if (Global.hasInitializer()) { 1144 // data, bss, or readonly sections 1145 if (Global.isConstant()) 1146 SecName = ".rodata"; 1147 else 1148 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1149 } else { 1150 // extern variables without explicit section, 1151 // put them into ".extern" section. 1152 SecName = ".extern"; 1153 } 1154 1155 if (ProcessingMapDef != SecName.startswith(".maps")) 1156 continue; 1157 1158 // Create a .rodata datasec if the global variable is an initialized 1159 // constant with private linkage and if it won't be in .rodata.str<#> 1160 // and .rodata.cst<#> sections. 1161 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1162 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1163 SectionKind GVKind = 1164 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1165 // skip .rodata.str<#> and .rodata.cst<#> sections 1166 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1167 DataSecEntries[std::string(SecName)] = 1168 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1169 } 1170 } 1171 1172 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1173 Global.getDebugInfo(GVs); 1174 1175 // No type information, mostly internal, skip it. 1176 if (GVs.size() == 0) 1177 continue; 1178 1179 uint32_t GVTypeId = 0; 1180 for (auto *GVE : GVs) { 1181 if (SecName.startswith(".maps")) 1182 visitMapDefType(GVE->getVariable()->getType(), GVTypeId); 1183 else 1184 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false); 1185 break; 1186 } 1187 1188 // Only support the following globals: 1189 // . static variables 1190 // . non-static weak or non-weak global variables 1191 // . weak or non-weak extern global variables 1192 // Whether DataSec is readonly or not can be found from corresponding ELF 1193 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1194 // can be found from the corresponding ELF symbol table. 1195 auto Linkage = Global.getLinkage(); 1196 if (Linkage != GlobalValue::InternalLinkage && 1197 Linkage != GlobalValue::ExternalLinkage && 1198 Linkage != GlobalValue::WeakAnyLinkage && 1199 Linkage != GlobalValue::WeakODRLinkage && 1200 Linkage != GlobalValue::ExternalWeakLinkage) 1201 continue; 1202 1203 uint32_t GVarInfo; 1204 if (Linkage == GlobalValue::InternalLinkage) { 1205 GVarInfo = BTF::VAR_STATIC; 1206 } else if (Global.hasInitializer()) { 1207 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1208 } else { 1209 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1210 } 1211 1212 auto VarEntry = 1213 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1214 uint32_t VarId = addType(std::move(VarEntry)); 1215 1216 assert(!SecName.empty()); 1217 1218 // Find or create a DataSec 1219 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1220 DataSecEntries[std::string(SecName)] = 1221 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1222 } 1223 1224 // Calculate symbol size 1225 const DataLayout &DL = Global.getParent()->getDataLayout(); 1226 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1227 1228 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1229 Asm->getSymbol(&Global), Size); 1230 } 1231 } 1232 1233 /// Emit proper patchable instructions. 1234 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1235 if (MI->getOpcode() == BPF::LD_imm64) { 1236 const MachineOperand &MO = MI->getOperand(1); 1237 if (MO.isGlobal()) { 1238 const GlobalValue *GVal = MO.getGlobal(); 1239 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1240 if (GVar) { 1241 // Emit "mov ri, <imm>" 1242 int64_t Imm; 1243 uint32_t Reloc; 1244 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1245 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1246 Imm = PatchImms[GVar].first; 1247 Reloc = PatchImms[GVar].second; 1248 } else { 1249 return false; 1250 } 1251 1252 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1253 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1254 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1255 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1256 OutMI.setOpcode(BPF::LD_imm64); 1257 else 1258 OutMI.setOpcode(BPF::MOV_ri); 1259 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1260 OutMI.addOperand(MCOperand::createImm(Imm)); 1261 return true; 1262 } 1263 } 1264 } else if (MI->getOpcode() == BPF::CORE_MEM || 1265 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1266 MI->getOpcode() == BPF::CORE_SHIFT) { 1267 const MachineOperand &MO = MI->getOperand(3); 1268 if (MO.isGlobal()) { 1269 const GlobalValue *GVal = MO.getGlobal(); 1270 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1271 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1272 uint32_t Imm = PatchImms[GVar].first; 1273 OutMI.setOpcode(MI->getOperand(1).getImm()); 1274 if (MI->getOperand(0).isImm()) 1275 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1276 else 1277 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1278 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1279 OutMI.addOperand(MCOperand::createImm(Imm)); 1280 return true; 1281 } 1282 } 1283 } 1284 return false; 1285 } 1286 1287 void BTFDebug::processFuncPrototypes(const Function *F) { 1288 if (!F) 1289 return; 1290 1291 const DISubprogram *SP = F->getSubprogram(); 1292 if (!SP || SP->isDefinition()) 1293 return; 1294 1295 // Do not emit again if already emitted. 1296 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1297 return; 1298 ProtoFunctions.insert(F); 1299 1300 uint32_t ProtoTypeId; 1301 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1302 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1303 1304 uint8_t Scope = BTF::FUNC_EXTERN; 1305 auto FuncTypeEntry = 1306 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1307 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1308 if (F->hasSection()) { 1309 StringRef SecName = F->getSection(); 1310 1311 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1312 DataSecEntries[std::string(SecName)] = 1313 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1314 } 1315 1316 // We really don't know func size, set it to 0. 1317 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1318 Asm->getSymbol(F), 0); 1319 } 1320 } 1321 1322 void BTFDebug::endModule() { 1323 // Collect MapDef globals if not collected yet. 1324 if (MapDefNotCollected) { 1325 processGlobals(true); 1326 MapDefNotCollected = false; 1327 } 1328 1329 // Collect global types/variables except MapDef globals. 1330 processGlobals(false); 1331 1332 for (auto &DataSec : DataSecEntries) 1333 addType(std::move(DataSec.second)); 1334 1335 // Fixups 1336 for (auto &Fixup : FixupDerivedTypes) { 1337 StringRef TypeName = Fixup.first; 1338 bool IsUnion = Fixup.second.first; 1339 1340 // Search through struct types 1341 uint32_t StructTypeId = 0; 1342 for (const auto &StructType : StructTypes) { 1343 if (StructType->getName() == TypeName) { 1344 StructTypeId = StructType->getId(); 1345 break; 1346 } 1347 } 1348 1349 if (StructTypeId == 0) { 1350 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1351 StructTypeId = addType(std::move(FwdTypeEntry)); 1352 } 1353 1354 for (auto &DType : Fixup.second.second) { 1355 DType->setPointeeType(StructTypeId); 1356 } 1357 } 1358 1359 // Complete BTF type cross refereences. 1360 for (const auto &TypeEntry : TypeEntries) 1361 TypeEntry->completeType(*this); 1362 1363 // Emit BTF sections. 1364 emitBTFSection(); 1365 emitBTFExtSection(); 1366 } 1367