xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFISelLowering.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation  ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/DiagnosticPrinter.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "bpf-lower"
33 
34 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
35   cl::Hidden, cl::init(false),
36   cl::desc("Expand memcpy into load/store pairs in order"));
37 
38 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
39   MachineFunction &MF = DAG.getMachineFunction();
40   DAG.getContext()->diagnose(
41       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
42 }
43 
44 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
45                  SDValue Val) {
46   MachineFunction &MF = DAG.getMachineFunction();
47   std::string Str;
48   raw_string_ostream OS(Str);
49   OS << Msg;
50   Val->print(OS);
51   OS.flush();
52   DAG.getContext()->diagnose(
53       DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
54 }
55 
56 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
57                                      const BPFSubtarget &STI)
58     : TargetLowering(TM) {
59 
60   // Set up the register classes.
61   addRegisterClass(MVT::i64, &BPF::GPRRegClass);
62   if (STI.getHasAlu32())
63     addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
64 
65   // Compute derived properties from the register classes
66   computeRegisterProperties(STI.getRegisterInfo());
67 
68   setStackPointerRegisterToSaveRestore(BPF::R11);
69 
70   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
71   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72   setOperationAction(ISD::BRIND, MVT::Other, Expand);
73   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
74 
75   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
76 
77   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
78   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
79   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
80 
81   // Set unsupported atomic operations as Custom so
82   // we can emit better error messages than fatal error
83   // from selectiondag.
84   for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
85     if (VT == MVT::i32) {
86       if (STI.getHasAlu32())
87         continue;
88     } else {
89       setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
90     }
91 
92     setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
93     setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
94     setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
95     setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
96     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
97   }
98 
99   for (auto VT : { MVT::i32, MVT::i64 }) {
100     if (VT == MVT::i32 && !STI.getHasAlu32())
101       continue;
102 
103     setOperationAction(ISD::SDIVREM, VT, Expand);
104     setOperationAction(ISD::UDIVREM, VT, Expand);
105     setOperationAction(ISD::SREM, VT, Expand);
106     setOperationAction(ISD::UREM, VT, Expand);
107     setOperationAction(ISD::MULHU, VT, Expand);
108     setOperationAction(ISD::MULHS, VT, Expand);
109     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
110     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
111     setOperationAction(ISD::ROTR, VT, Expand);
112     setOperationAction(ISD::ROTL, VT, Expand);
113     setOperationAction(ISD::SHL_PARTS, VT, Expand);
114     setOperationAction(ISD::SRL_PARTS, VT, Expand);
115     setOperationAction(ISD::SRA_PARTS, VT, Expand);
116     setOperationAction(ISD::CTPOP, VT, Expand);
117 
118     setOperationAction(ISD::SETCC, VT, Expand);
119     setOperationAction(ISD::SELECT, VT, Expand);
120     setOperationAction(ISD::SELECT_CC, VT, Custom);
121   }
122 
123   if (STI.getHasAlu32()) {
124     setOperationAction(ISD::BSWAP, MVT::i32, Promote);
125     setOperationAction(ISD::BR_CC, MVT::i32,
126                        STI.getHasJmp32() ? Custom : Promote);
127   }
128 
129   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
130   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
131   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
132   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
133 
134   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
135   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
136   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
137   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
138 
139   // Extended load operations for i1 types must be promoted
140   for (MVT VT : MVT::integer_valuetypes()) {
141     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
142     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
143     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
144 
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
146     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
147     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
148   }
149 
150   setBooleanContents(ZeroOrOneBooleanContent);
151 
152   // Function alignments
153   setMinFunctionAlignment(Align(8));
154   setPrefFunctionAlignment(Align(8));
155 
156   if (BPFExpandMemcpyInOrder) {
157     // LLVM generic code will try to expand memcpy into load/store pairs at this
158     // stage which is before quite a few IR optimization passes, therefore the
159     // loads and stores could potentially be moved apart from each other which
160     // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
161     // compilers.
162     //
163     // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
164     // of memcpy to later stage in IR optimization pipeline so those load/store
165     // pairs won't be touched and could be kept in order. Hence, we set
166     // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
167     // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
168     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
169     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
170     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
171   } else {
172     // inline memcpy() for kernel to see explicit copy
173     unsigned CommonMaxStores =
174       STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
175 
176     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
177     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
178     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
179   }
180 
181   // CPU/Feature control
182   HasAlu32 = STI.getHasAlu32();
183   HasJmp32 = STI.getHasJmp32();
184   HasJmpExt = STI.getHasJmpExt();
185 }
186 
187 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
188   return false;
189 }
190 
191 bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
192   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
193     return false;
194   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
195   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
196   return NumBits1 > NumBits2;
197 }
198 
199 bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
200   if (!VT1.isInteger() || !VT2.isInteger())
201     return false;
202   unsigned NumBits1 = VT1.getSizeInBits();
203   unsigned NumBits2 = VT2.getSizeInBits();
204   return NumBits1 > NumBits2;
205 }
206 
207 bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
208   if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
209     return false;
210   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
211   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
212   return NumBits1 == 32 && NumBits2 == 64;
213 }
214 
215 bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
216   if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
217     return false;
218   unsigned NumBits1 = VT1.getSizeInBits();
219   unsigned NumBits2 = VT2.getSizeInBits();
220   return NumBits1 == 32 && NumBits2 == 64;
221 }
222 
223 BPFTargetLowering::ConstraintType
224 BPFTargetLowering::getConstraintType(StringRef Constraint) const {
225   if (Constraint.size() == 1) {
226     switch (Constraint[0]) {
227     default:
228       break;
229     case 'w':
230       return C_RegisterClass;
231     }
232   }
233 
234   return TargetLowering::getConstraintType(Constraint);
235 }
236 
237 std::pair<unsigned, const TargetRegisterClass *>
238 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
239                                                 StringRef Constraint,
240                                                 MVT VT) const {
241   if (Constraint.size() == 1)
242     // GCC Constraint Letters
243     switch (Constraint[0]) {
244     case 'r': // GENERAL_REGS
245       return std::make_pair(0U, &BPF::GPRRegClass);
246     case 'w':
247       if (HasAlu32)
248         return std::make_pair(0U, &BPF::GPR32RegClass);
249       break;
250     default:
251       break;
252     }
253 
254   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
255 }
256 
257 void BPFTargetLowering::ReplaceNodeResults(
258   SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
259   const char *err_msg;
260   uint32_t Opcode = N->getOpcode();
261   switch (Opcode) {
262   default:
263     report_fatal_error("Unhandled custom legalization");
264   case ISD::ATOMIC_LOAD_ADD:
265   case ISD::ATOMIC_LOAD_AND:
266   case ISD::ATOMIC_LOAD_OR:
267   case ISD::ATOMIC_LOAD_XOR:
268   case ISD::ATOMIC_SWAP:
269   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
270     if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD)
271       err_msg = "Unsupported atomic operations, please use 32/64 bit version";
272     else
273       err_msg = "Unsupported atomic operations, please use 64 bit version";
274     break;
275   }
276 
277   SDLoc DL(N);
278   fail(DL, DAG, err_msg);
279 }
280 
281 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
282   switch (Op.getOpcode()) {
283   case ISD::BR_CC:
284     return LowerBR_CC(Op, DAG);
285   case ISD::GlobalAddress:
286     return LowerGlobalAddress(Op, DAG);
287   case ISD::SELECT_CC:
288     return LowerSELECT_CC(Op, DAG);
289   case ISD::DYNAMIC_STACKALLOC:
290     report_fatal_error("Unsupported dynamic stack allocation");
291   default:
292     llvm_unreachable("unimplemented operand");
293   }
294 }
295 
296 // Calling Convention Implementation
297 #include "BPFGenCallingConv.inc"
298 
299 SDValue BPFTargetLowering::LowerFormalArguments(
300     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
301     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
302     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
303   switch (CallConv) {
304   default:
305     report_fatal_error("Unsupported calling convention");
306   case CallingConv::C:
307   case CallingConv::Fast:
308     break;
309   }
310 
311   MachineFunction &MF = DAG.getMachineFunction();
312   MachineRegisterInfo &RegInfo = MF.getRegInfo();
313 
314   // Assign locations to all of the incoming arguments.
315   SmallVector<CCValAssign, 16> ArgLocs;
316   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
317   CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
318 
319   for (auto &VA : ArgLocs) {
320     if (VA.isRegLoc()) {
321       // Arguments passed in registers
322       EVT RegVT = VA.getLocVT();
323       MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
324       switch (SimpleTy) {
325       default: {
326         errs() << "LowerFormalArguments Unhandled argument type: "
327                << RegVT.getEVTString() << '\n';
328         llvm_unreachable(0);
329       }
330       case MVT::i32:
331       case MVT::i64:
332         Register VReg = RegInfo.createVirtualRegister(
333             SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
334         RegInfo.addLiveIn(VA.getLocReg(), VReg);
335         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
336 
337         // If this is an value that has been promoted to wider types, insert an
338         // assert[sz]ext to capture this, then truncate to the right size.
339         if (VA.getLocInfo() == CCValAssign::SExt)
340           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
341                                  DAG.getValueType(VA.getValVT()));
342         else if (VA.getLocInfo() == CCValAssign::ZExt)
343           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
344                                  DAG.getValueType(VA.getValVT()));
345 
346         if (VA.getLocInfo() != CCValAssign::Full)
347           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
348 
349         InVals.push_back(ArgValue);
350 
351 	break;
352       }
353     } else {
354       fail(DL, DAG, "defined with too many args");
355       InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
356     }
357   }
358 
359   if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
360     fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
361   }
362 
363   return Chain;
364 }
365 
366 const unsigned BPFTargetLowering::MaxArgs = 5;
367 
368 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
369                                      SmallVectorImpl<SDValue> &InVals) const {
370   SelectionDAG &DAG = CLI.DAG;
371   auto &Outs = CLI.Outs;
372   auto &OutVals = CLI.OutVals;
373   auto &Ins = CLI.Ins;
374   SDValue Chain = CLI.Chain;
375   SDValue Callee = CLI.Callee;
376   bool &IsTailCall = CLI.IsTailCall;
377   CallingConv::ID CallConv = CLI.CallConv;
378   bool IsVarArg = CLI.IsVarArg;
379   MachineFunction &MF = DAG.getMachineFunction();
380 
381   // BPF target does not support tail call optimization.
382   IsTailCall = false;
383 
384   switch (CallConv) {
385   default:
386     report_fatal_error("Unsupported calling convention");
387   case CallingConv::Fast:
388   case CallingConv::C:
389     break;
390   }
391 
392   // Analyze operands of the call, assigning locations to each operand.
393   SmallVector<CCValAssign, 16> ArgLocs;
394   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
395 
396   CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
397 
398   unsigned NumBytes = CCInfo.getNextStackOffset();
399 
400   if (Outs.size() > MaxArgs)
401     fail(CLI.DL, DAG, "too many args to ", Callee);
402 
403   for (auto &Arg : Outs) {
404     ISD::ArgFlagsTy Flags = Arg.Flags;
405     if (!Flags.isByVal())
406       continue;
407 
408     fail(CLI.DL, DAG, "pass by value not supported ", Callee);
409   }
410 
411   auto PtrVT = getPointerTy(MF.getDataLayout());
412   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
413 
414   SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
415 
416   // Walk arg assignments
417   for (unsigned i = 0,
418                 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
419        i != e; ++i) {
420     CCValAssign &VA = ArgLocs[i];
421     SDValue Arg = OutVals[i];
422 
423     // Promote the value if needed.
424     switch (VA.getLocInfo()) {
425     default:
426       llvm_unreachable("Unknown loc info");
427     case CCValAssign::Full:
428       break;
429     case CCValAssign::SExt:
430       Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
431       break;
432     case CCValAssign::ZExt:
433       Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
434       break;
435     case CCValAssign::AExt:
436       Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
437       break;
438     }
439 
440     // Push arguments into RegsToPass vector
441     if (VA.isRegLoc())
442       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
443     else
444       llvm_unreachable("call arg pass bug");
445   }
446 
447   SDValue InFlag;
448 
449   // Build a sequence of copy-to-reg nodes chained together with token chain and
450   // flag operands which copy the outgoing args into registers.  The InFlag in
451   // necessary since all emitted instructions must be stuck together.
452   for (auto &Reg : RegsToPass) {
453     Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
454     InFlag = Chain.getValue(1);
455   }
456 
457   // If the callee is a GlobalAddress node (quite common, every direct call is)
458   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
459   // Likewise ExternalSymbol -> TargetExternalSymbol.
460   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
461     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
462                                         G->getOffset(), 0);
463   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
464     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
465     fail(CLI.DL, DAG, Twine("A call to built-in function '"
466                             + StringRef(E->getSymbol())
467                             + "' is not supported."));
468   }
469 
470   // Returns a chain & a flag for retval copy to use.
471   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
472   SmallVector<SDValue, 8> Ops;
473   Ops.push_back(Chain);
474   Ops.push_back(Callee);
475 
476   // Add argument registers to the end of the list so that they are
477   // known live into the call.
478   for (auto &Reg : RegsToPass)
479     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
480 
481   if (InFlag.getNode())
482     Ops.push_back(InFlag);
483 
484   Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
485   InFlag = Chain.getValue(1);
486 
487   // Create the CALLSEQ_END node.
488   Chain = DAG.getCALLSEQ_END(
489       Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
490       DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
491   InFlag = Chain.getValue(1);
492 
493   // Handle result values, copying them out of physregs into vregs that we
494   // return.
495   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
496                          InVals);
497 }
498 
499 SDValue
500 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
501                                bool IsVarArg,
502                                const SmallVectorImpl<ISD::OutputArg> &Outs,
503                                const SmallVectorImpl<SDValue> &OutVals,
504                                const SDLoc &DL, SelectionDAG &DAG) const {
505   unsigned Opc = BPFISD::RET_FLAG;
506 
507   // CCValAssign - represent the assignment of the return value to a location
508   SmallVector<CCValAssign, 16> RVLocs;
509   MachineFunction &MF = DAG.getMachineFunction();
510 
511   // CCState - Info about the registers and stack slot.
512   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
513 
514   if (MF.getFunction().getReturnType()->isAggregateType()) {
515     fail(DL, DAG, "only integer returns supported");
516     return DAG.getNode(Opc, DL, MVT::Other, Chain);
517   }
518 
519   // Analize return values.
520   CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
521 
522   SDValue Flag;
523   SmallVector<SDValue, 4> RetOps(1, Chain);
524 
525   // Copy the result values into the output registers.
526   for (unsigned i = 0; i != RVLocs.size(); ++i) {
527     CCValAssign &VA = RVLocs[i];
528     assert(VA.isRegLoc() && "Can only return in registers!");
529 
530     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
531 
532     // Guarantee that all emitted copies are stuck together,
533     // avoiding something bad.
534     Flag = Chain.getValue(1);
535     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
536   }
537 
538   RetOps[0] = Chain; // Update chain.
539 
540   // Add the flag if we have it.
541   if (Flag.getNode())
542     RetOps.push_back(Flag);
543 
544   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
545 }
546 
547 SDValue BPFTargetLowering::LowerCallResult(
548     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
549     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
550     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
551 
552   MachineFunction &MF = DAG.getMachineFunction();
553   // Assign locations to each value returned by this call.
554   SmallVector<CCValAssign, 16> RVLocs;
555   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
556 
557   if (Ins.size() >= 2) {
558     fail(DL, DAG, "only small returns supported");
559     for (unsigned i = 0, e = Ins.size(); i != e; ++i)
560       InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
561     return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
562   }
563 
564   CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
565 
566   // Copy all of the result registers out of their specified physreg.
567   for (auto &Val : RVLocs) {
568     Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
569                                Val.getValVT(), InFlag).getValue(1);
570     InFlag = Chain.getValue(2);
571     InVals.push_back(Chain.getValue(0));
572   }
573 
574   return Chain;
575 }
576 
577 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
578   switch (CC) {
579   default:
580     break;
581   case ISD::SETULT:
582   case ISD::SETULE:
583   case ISD::SETLT:
584   case ISD::SETLE:
585     CC = ISD::getSetCCSwappedOperands(CC);
586     std::swap(LHS, RHS);
587     break;
588   }
589 }
590 
591 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
592   SDValue Chain = Op.getOperand(0);
593   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
594   SDValue LHS = Op.getOperand(2);
595   SDValue RHS = Op.getOperand(3);
596   SDValue Dest = Op.getOperand(4);
597   SDLoc DL(Op);
598 
599   if (!getHasJmpExt())
600     NegateCC(LHS, RHS, CC);
601 
602   return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
603                      DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
604 }
605 
606 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
607   SDValue LHS = Op.getOperand(0);
608   SDValue RHS = Op.getOperand(1);
609   SDValue TrueV = Op.getOperand(2);
610   SDValue FalseV = Op.getOperand(3);
611   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
612   SDLoc DL(Op);
613 
614   if (!getHasJmpExt())
615     NegateCC(LHS, RHS, CC);
616 
617   SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
618   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
619   SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
620 
621   return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
622 }
623 
624 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
625   switch ((BPFISD::NodeType)Opcode) {
626   case BPFISD::FIRST_NUMBER:
627     break;
628   case BPFISD::RET_FLAG:
629     return "BPFISD::RET_FLAG";
630   case BPFISD::CALL:
631     return "BPFISD::CALL";
632   case BPFISD::SELECT_CC:
633     return "BPFISD::SELECT_CC";
634   case BPFISD::BR_CC:
635     return "BPFISD::BR_CC";
636   case BPFISD::Wrapper:
637     return "BPFISD::Wrapper";
638   case BPFISD::MEMCPY:
639     return "BPFISD::MEMCPY";
640   }
641   return nullptr;
642 }
643 
644 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
645                                               SelectionDAG &DAG) const {
646   auto N = cast<GlobalAddressSDNode>(Op);
647   assert(N->getOffset() == 0 && "Invalid offset for global address");
648 
649   SDLoc DL(Op);
650   const GlobalValue *GV = N->getGlobal();
651   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
652 
653   return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
654 }
655 
656 unsigned
657 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
658                                  unsigned Reg, bool isSigned) const {
659   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
660   const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
661   int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
662   MachineFunction *F = BB->getParent();
663   DebugLoc DL = MI.getDebugLoc();
664 
665   MachineRegisterInfo &RegInfo = F->getRegInfo();
666 
667   if (!isSigned) {
668     Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
669     BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
670     return PromotedReg0;
671   }
672   Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
673   Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
674   Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
675   BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
676   BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
677     .addReg(PromotedReg0).addImm(32);
678   BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
679     .addReg(PromotedReg1).addImm(32);
680 
681   return PromotedReg2;
682 }
683 
684 MachineBasicBlock *
685 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
686                                                      MachineBasicBlock *BB)
687                                                      const {
688   MachineFunction *MF = MI.getParent()->getParent();
689   MachineRegisterInfo &MRI = MF->getRegInfo();
690   MachineInstrBuilder MIB(*MF, MI);
691   unsigned ScratchReg;
692 
693   // This function does custom insertion during lowering BPFISD::MEMCPY which
694   // only has two register operands from memcpy semantics, the copy source
695   // address and the copy destination address.
696   //
697   // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
698   // a third scratch register to serve as the destination register of load and
699   // source register of store.
700   //
701   // The scratch register here is with the Define | Dead | EarlyClobber flags.
702   // The EarlyClobber flag has the semantic property that the operand it is
703   // attached to is clobbered before the rest of the inputs are read. Hence it
704   // must be unique among the operands to the instruction. The Define flag is
705   // needed to coerce the machine verifier that an Undef value isn't a problem
706   // as we anyway is loading memory into it. The Dead flag is needed as the
707   // value in scratch isn't supposed to be used by any other instruction.
708   ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
709   MIB.addReg(ScratchReg,
710              RegState::Define | RegState::Dead | RegState::EarlyClobber);
711 
712   return BB;
713 }
714 
715 MachineBasicBlock *
716 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
717                                                MachineBasicBlock *BB) const {
718   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
719   DebugLoc DL = MI.getDebugLoc();
720   unsigned Opc = MI.getOpcode();
721   bool isSelectRROp = (Opc == BPF::Select ||
722                        Opc == BPF::Select_64_32 ||
723                        Opc == BPF::Select_32 ||
724                        Opc == BPF::Select_32_64);
725 
726   bool isMemcpyOp = Opc == BPF::MEMCPY;
727 
728 #ifndef NDEBUG
729   bool isSelectRIOp = (Opc == BPF::Select_Ri ||
730                        Opc == BPF::Select_Ri_64_32 ||
731                        Opc == BPF::Select_Ri_32 ||
732                        Opc == BPF::Select_Ri_32_64);
733 
734 
735   assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
736          "Unexpected instr type to insert");
737 #endif
738 
739   if (isMemcpyOp)
740     return EmitInstrWithCustomInserterMemcpy(MI, BB);
741 
742   bool is32BitCmp = (Opc == BPF::Select_32 ||
743                      Opc == BPF::Select_32_64 ||
744                      Opc == BPF::Select_Ri_32 ||
745                      Opc == BPF::Select_Ri_32_64);
746 
747   // To "insert" a SELECT instruction, we actually have to insert the diamond
748   // control-flow pattern.  The incoming instruction knows the destination vreg
749   // to set, the condition code register to branch on, the true/false values to
750   // select between, and a branch opcode to use.
751   const BasicBlock *LLVM_BB = BB->getBasicBlock();
752   MachineFunction::iterator I = ++BB->getIterator();
753 
754   // ThisMBB:
755   // ...
756   //  TrueVal = ...
757   //  jmp_XX r1, r2 goto Copy1MBB
758   //  fallthrough --> Copy0MBB
759   MachineBasicBlock *ThisMBB = BB;
760   MachineFunction *F = BB->getParent();
761   MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
762   MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
763 
764   F->insert(I, Copy0MBB);
765   F->insert(I, Copy1MBB);
766   // Update machine-CFG edges by transferring all successors of the current
767   // block to the new block which will contain the Phi node for the select.
768   Copy1MBB->splice(Copy1MBB->begin(), BB,
769                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
770   Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
771   // Next, add the true and fallthrough blocks as its successors.
772   BB->addSuccessor(Copy0MBB);
773   BB->addSuccessor(Copy1MBB);
774 
775   // Insert Branch if Flag
776   int CC = MI.getOperand(3).getImm();
777   int NewCC;
778   switch (CC) {
779 #define SET_NEWCC(X, Y) \
780   case ISD::X: \
781     if (is32BitCmp && HasJmp32) \
782       NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
783     else \
784       NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
785     break
786   SET_NEWCC(SETGT, JSGT);
787   SET_NEWCC(SETUGT, JUGT);
788   SET_NEWCC(SETGE, JSGE);
789   SET_NEWCC(SETUGE, JUGE);
790   SET_NEWCC(SETEQ, JEQ);
791   SET_NEWCC(SETNE, JNE);
792   SET_NEWCC(SETLT, JSLT);
793   SET_NEWCC(SETULT, JULT);
794   SET_NEWCC(SETLE, JSLE);
795   SET_NEWCC(SETULE, JULE);
796   default:
797     report_fatal_error("unimplemented select CondCode " + Twine(CC));
798   }
799 
800   Register LHS = MI.getOperand(1).getReg();
801   bool isSignedCmp = (CC == ISD::SETGT ||
802                       CC == ISD::SETGE ||
803                       CC == ISD::SETLT ||
804                       CC == ISD::SETLE);
805 
806   // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
807   // to be promoted, however if the 32-bit comparison operands are destination
808   // registers then they are implicitly zero-extended already, there is no
809   // need of explicit zero-extend sequence for them.
810   //
811   // We simply do extension for all situations in this method, but we will
812   // try to remove those unnecessary in BPFMIPeephole pass.
813   if (is32BitCmp && !HasJmp32)
814     LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
815 
816   if (isSelectRROp) {
817     Register RHS = MI.getOperand(2).getReg();
818 
819     if (is32BitCmp && !HasJmp32)
820       RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
821 
822     BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
823   } else {
824     int64_t imm32 = MI.getOperand(2).getImm();
825     // Check before we build J*_ri instruction.
826     assert (isInt<32>(imm32));
827     BuildMI(BB, DL, TII.get(NewCC))
828         .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
829   }
830 
831   // Copy0MBB:
832   //  %FalseValue = ...
833   //  # fallthrough to Copy1MBB
834   BB = Copy0MBB;
835 
836   // Update machine-CFG edges
837   BB->addSuccessor(Copy1MBB);
838 
839   // Copy1MBB:
840   //  %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
841   // ...
842   BB = Copy1MBB;
843   BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
844       .addReg(MI.getOperand(5).getReg())
845       .addMBB(Copy0MBB)
846       .addReg(MI.getOperand(4).getReg())
847       .addMBB(ThisMBB);
848 
849   MI.eraseFromParent(); // The pseudo instruction is gone now.
850   return BB;
851 }
852 
853 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
854                                           EVT VT) const {
855   return getHasAlu32() ? MVT::i32 : MVT::i64;
856 }
857 
858 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
859                                               EVT VT) const {
860   return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
861 }
862 
863 bool BPFTargetLowering::isLegalAddressingMode(const DataLayout &DL,
864                                               const AddrMode &AM, Type *Ty,
865                                               unsigned AS,
866                                               Instruction *I) const {
867   // No global is ever allowed as a base.
868   if (AM.BaseGV)
869     return false;
870 
871   switch (AM.Scale) {
872   case 0: // "r+i" or just "i", depending on HasBaseReg.
873     break;
874   case 1:
875     if (!AM.HasBaseReg) // allow "r+i".
876       break;
877     return false; // disallow "r+r" or "r+r+i".
878   default:
879     return false;
880   }
881 
882   return true;
883 }
884