1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that BPF uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BPFISelLowering.h" 15 #include "BPF.h" 16 #include "BPFSubtarget.h" 17 #include "BPFTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAGISel.h" 24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "bpf-lower" 34 35 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order", 36 cl::Hidden, cl::init(false), 37 cl::desc("Expand memcpy into load/store pairs in order")); 38 39 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) { 40 MachineFunction &MF = DAG.getMachineFunction(); 41 DAG.getContext()->diagnose( 42 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 43 } 44 45 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg, 46 SDValue Val) { 47 MachineFunction &MF = DAG.getMachineFunction(); 48 std::string Str; 49 raw_string_ostream OS(Str); 50 OS << Msg; 51 Val->print(OS); 52 OS.flush(); 53 DAG.getContext()->diagnose( 54 DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc())); 55 } 56 57 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM, 58 const BPFSubtarget &STI) 59 : TargetLowering(TM) { 60 61 // Set up the register classes. 62 addRegisterClass(MVT::i64, &BPF::GPRRegClass); 63 if (STI.getHasAlu32()) 64 addRegisterClass(MVT::i32, &BPF::GPR32RegClass); 65 66 // Compute derived properties from the register classes 67 computeRegisterProperties(STI.getRegisterInfo()); 68 69 setStackPointerRegisterToSaveRestore(BPF::R11); 70 71 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 72 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 73 setOperationAction(ISD::BRIND, MVT::Other, Expand); 74 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 75 76 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 77 78 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 79 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 80 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 81 82 for (auto VT : { MVT::i32, MVT::i64 }) { 83 if (VT == MVT::i32 && !STI.getHasAlu32()) 84 continue; 85 86 setOperationAction(ISD::SDIVREM, VT, Expand); 87 setOperationAction(ISD::UDIVREM, VT, Expand); 88 setOperationAction(ISD::SREM, VT, Expand); 89 setOperationAction(ISD::UREM, VT, Expand); 90 setOperationAction(ISD::MULHU, VT, Expand); 91 setOperationAction(ISD::MULHS, VT, Expand); 92 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 93 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 94 setOperationAction(ISD::ROTR, VT, Expand); 95 setOperationAction(ISD::ROTL, VT, Expand); 96 setOperationAction(ISD::SHL_PARTS, VT, Expand); 97 setOperationAction(ISD::SRL_PARTS, VT, Expand); 98 setOperationAction(ISD::SRA_PARTS, VT, Expand); 99 setOperationAction(ISD::CTPOP, VT, Expand); 100 101 setOperationAction(ISD::SETCC, VT, Expand); 102 setOperationAction(ISD::SELECT, VT, Expand); 103 setOperationAction(ISD::SELECT_CC, VT, Custom); 104 } 105 106 if (STI.getHasAlu32()) { 107 setOperationAction(ISD::BSWAP, MVT::i32, Promote); 108 setOperationAction(ISD::BR_CC, MVT::i32, 109 STI.getHasJmp32() ? Custom : Promote); 110 } 111 112 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 113 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 114 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 115 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 116 117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); 121 122 // Extended load operations for i1 types must be promoted 123 for (MVT VT : MVT::integer_valuetypes()) { 124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); 130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 131 } 132 133 setBooleanContents(ZeroOrOneBooleanContent); 134 135 // Function alignments 136 setMinFunctionAlignment(Align(8)); 137 setPrefFunctionAlignment(Align(8)); 138 139 if (BPFExpandMemcpyInOrder) { 140 // LLVM generic code will try to expand memcpy into load/store pairs at this 141 // stage which is before quite a few IR optimization passes, therefore the 142 // loads and stores could potentially be moved apart from each other which 143 // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT 144 // compilers. 145 // 146 // When -bpf-expand-memcpy-in-order specified, we want to defer the expand 147 // of memcpy to later stage in IR optimization pipeline so those load/store 148 // pairs won't be touched and could be kept in order. Hence, we set 149 // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores 150 // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy. 151 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0; 152 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0; 153 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0; 154 } else { 155 // inline memcpy() for kernel to see explicit copy 156 unsigned CommonMaxStores = 157 STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc(); 158 159 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores; 160 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores; 161 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores; 162 } 163 164 // CPU/Feature control 165 HasAlu32 = STI.getHasAlu32(); 166 HasJmp32 = STI.getHasJmp32(); 167 HasJmpExt = STI.getHasJmpExt(); 168 } 169 170 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 171 return false; 172 } 173 174 std::pair<unsigned, const TargetRegisterClass *> 175 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 176 StringRef Constraint, 177 MVT VT) const { 178 if (Constraint.size() == 1) 179 // GCC Constraint Letters 180 switch (Constraint[0]) { 181 case 'r': // GENERAL_REGS 182 return std::make_pair(0U, &BPF::GPRRegClass); 183 default: 184 break; 185 } 186 187 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 188 } 189 190 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 191 switch (Op.getOpcode()) { 192 case ISD::BR_CC: 193 return LowerBR_CC(Op, DAG); 194 case ISD::GlobalAddress: 195 return LowerGlobalAddress(Op, DAG); 196 case ISD::SELECT_CC: 197 return LowerSELECT_CC(Op, DAG); 198 default: 199 llvm_unreachable("unimplemented operand"); 200 } 201 } 202 203 // Calling Convention Implementation 204 #include "BPFGenCallingConv.inc" 205 206 SDValue BPFTargetLowering::LowerFormalArguments( 207 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 208 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 209 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 210 switch (CallConv) { 211 default: 212 report_fatal_error("Unsupported calling convention"); 213 case CallingConv::C: 214 case CallingConv::Fast: 215 break; 216 } 217 218 MachineFunction &MF = DAG.getMachineFunction(); 219 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 220 221 // Assign locations to all of the incoming arguments. 222 SmallVector<CCValAssign, 16> ArgLocs; 223 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 224 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64); 225 226 for (auto &VA : ArgLocs) { 227 if (VA.isRegLoc()) { 228 // Arguments passed in registers 229 EVT RegVT = VA.getLocVT(); 230 MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy; 231 switch (SimpleTy) { 232 default: { 233 errs() << "LowerFormalArguments Unhandled argument type: " 234 << RegVT.getEVTString() << '\n'; 235 llvm_unreachable(0); 236 } 237 case MVT::i32: 238 case MVT::i64: 239 Register VReg = RegInfo.createVirtualRegister( 240 SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass); 241 RegInfo.addLiveIn(VA.getLocReg(), VReg); 242 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); 243 244 // If this is an value that has been promoted to wider types, insert an 245 // assert[sz]ext to capture this, then truncate to the right size. 246 if (VA.getLocInfo() == CCValAssign::SExt) 247 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 248 DAG.getValueType(VA.getValVT())); 249 else if (VA.getLocInfo() == CCValAssign::ZExt) 250 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 251 DAG.getValueType(VA.getValVT())); 252 253 if (VA.getLocInfo() != CCValAssign::Full) 254 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 255 256 InVals.push_back(ArgValue); 257 258 break; 259 } 260 } else { 261 fail(DL, DAG, "defined with too many args"); 262 InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT())); 263 } 264 } 265 266 if (IsVarArg || MF.getFunction().hasStructRetAttr()) { 267 fail(DL, DAG, "functions with VarArgs or StructRet are not supported"); 268 } 269 270 return Chain; 271 } 272 273 const unsigned BPFTargetLowering::MaxArgs = 5; 274 275 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 276 SmallVectorImpl<SDValue> &InVals) const { 277 SelectionDAG &DAG = CLI.DAG; 278 auto &Outs = CLI.Outs; 279 auto &OutVals = CLI.OutVals; 280 auto &Ins = CLI.Ins; 281 SDValue Chain = CLI.Chain; 282 SDValue Callee = CLI.Callee; 283 bool &IsTailCall = CLI.IsTailCall; 284 CallingConv::ID CallConv = CLI.CallConv; 285 bool IsVarArg = CLI.IsVarArg; 286 MachineFunction &MF = DAG.getMachineFunction(); 287 288 // BPF target does not support tail call optimization. 289 IsTailCall = false; 290 291 switch (CallConv) { 292 default: 293 report_fatal_error("Unsupported calling convention"); 294 case CallingConv::Fast: 295 case CallingConv::C: 296 break; 297 } 298 299 // Analyze operands of the call, assigning locations to each operand. 300 SmallVector<CCValAssign, 16> ArgLocs; 301 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 302 303 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64); 304 305 unsigned NumBytes = CCInfo.getNextStackOffset(); 306 307 if (Outs.size() > MaxArgs) 308 fail(CLI.DL, DAG, "too many args to ", Callee); 309 310 for (auto &Arg : Outs) { 311 ISD::ArgFlagsTy Flags = Arg.Flags; 312 if (!Flags.isByVal()) 313 continue; 314 315 fail(CLI.DL, DAG, "pass by value not supported ", Callee); 316 } 317 318 auto PtrVT = getPointerTy(MF.getDataLayout()); 319 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 320 321 SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass; 322 323 // Walk arg assignments 324 for (unsigned i = 0, 325 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs); 326 i != e; ++i) { 327 CCValAssign &VA = ArgLocs[i]; 328 SDValue Arg = OutVals[i]; 329 330 // Promote the value if needed. 331 switch (VA.getLocInfo()) { 332 default: 333 llvm_unreachable("Unknown loc info"); 334 case CCValAssign::Full: 335 break; 336 case CCValAssign::SExt: 337 Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg); 338 break; 339 case CCValAssign::ZExt: 340 Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg); 341 break; 342 case CCValAssign::AExt: 343 Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg); 344 break; 345 } 346 347 // Push arguments into RegsToPass vector 348 if (VA.isRegLoc()) 349 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 350 else 351 llvm_unreachable("call arg pass bug"); 352 } 353 354 SDValue InFlag; 355 356 // Build a sequence of copy-to-reg nodes chained together with token chain and 357 // flag operands which copy the outgoing args into registers. The InFlag in 358 // necessary since all emitted instructions must be stuck together. 359 for (auto &Reg : RegsToPass) { 360 Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag); 361 InFlag = Chain.getValue(1); 362 } 363 364 // If the callee is a GlobalAddress node (quite common, every direct call is) 365 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 366 // Likewise ExternalSymbol -> TargetExternalSymbol. 367 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 368 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT, 369 G->getOffset(), 0); 370 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 371 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 372 fail(CLI.DL, DAG, Twine("A call to built-in function '" 373 + StringRef(E->getSymbol()) 374 + "' is not supported.")); 375 } 376 377 // Returns a chain & a flag for retval copy to use. 378 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 379 SmallVector<SDValue, 8> Ops; 380 Ops.push_back(Chain); 381 Ops.push_back(Callee); 382 383 // Add argument registers to the end of the list so that they are 384 // known live into the call. 385 for (auto &Reg : RegsToPass) 386 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 387 388 if (InFlag.getNode()) 389 Ops.push_back(InFlag); 390 391 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops); 392 InFlag = Chain.getValue(1); 393 394 // Create the CALLSEQ_END node. 395 Chain = DAG.getCALLSEQ_END( 396 Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true), 397 DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL); 398 InFlag = Chain.getValue(1); 399 400 // Handle result values, copying them out of physregs into vregs that we 401 // return. 402 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG, 403 InVals); 404 } 405 406 SDValue 407 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 408 bool IsVarArg, 409 const SmallVectorImpl<ISD::OutputArg> &Outs, 410 const SmallVectorImpl<SDValue> &OutVals, 411 const SDLoc &DL, SelectionDAG &DAG) const { 412 unsigned Opc = BPFISD::RET_FLAG; 413 414 // CCValAssign - represent the assignment of the return value to a location 415 SmallVector<CCValAssign, 16> RVLocs; 416 MachineFunction &MF = DAG.getMachineFunction(); 417 418 // CCState - Info about the registers and stack slot. 419 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 420 421 if (MF.getFunction().getReturnType()->isAggregateType()) { 422 fail(DL, DAG, "only integer returns supported"); 423 return DAG.getNode(Opc, DL, MVT::Other, Chain); 424 } 425 426 // Analize return values. 427 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64); 428 429 SDValue Flag; 430 SmallVector<SDValue, 4> RetOps(1, Chain); 431 432 // Copy the result values into the output registers. 433 for (unsigned i = 0; i != RVLocs.size(); ++i) { 434 CCValAssign &VA = RVLocs[i]; 435 assert(VA.isRegLoc() && "Can only return in registers!"); 436 437 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); 438 439 // Guarantee that all emitted copies are stuck together, 440 // avoiding something bad. 441 Flag = Chain.getValue(1); 442 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 443 } 444 445 RetOps[0] = Chain; // Update chain. 446 447 // Add the flag if we have it. 448 if (Flag.getNode()) 449 RetOps.push_back(Flag); 450 451 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 452 } 453 454 SDValue BPFTargetLowering::LowerCallResult( 455 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 456 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 457 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 458 459 MachineFunction &MF = DAG.getMachineFunction(); 460 // Assign locations to each value returned by this call. 461 SmallVector<CCValAssign, 16> RVLocs; 462 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 463 464 if (Ins.size() >= 2) { 465 fail(DL, DAG, "only small returns supported"); 466 for (unsigned i = 0, e = Ins.size(); i != e; ++i) 467 InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT)); 468 return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1); 469 } 470 471 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64); 472 473 // Copy all of the result registers out of their specified physreg. 474 for (auto &Val : RVLocs) { 475 Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(), 476 Val.getValVT(), InFlag).getValue(1); 477 InFlag = Chain.getValue(2); 478 InVals.push_back(Chain.getValue(0)); 479 } 480 481 return Chain; 482 } 483 484 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 485 switch (CC) { 486 default: 487 break; 488 case ISD::SETULT: 489 case ISD::SETULE: 490 case ISD::SETLT: 491 case ISD::SETLE: 492 CC = ISD::getSetCCSwappedOperands(CC); 493 std::swap(LHS, RHS); 494 break; 495 } 496 } 497 498 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 499 SDValue Chain = Op.getOperand(0); 500 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 501 SDValue LHS = Op.getOperand(2); 502 SDValue RHS = Op.getOperand(3); 503 SDValue Dest = Op.getOperand(4); 504 SDLoc DL(Op); 505 506 if (!getHasJmpExt()) 507 NegateCC(LHS, RHS, CC); 508 509 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS, 510 DAG.getConstant(CC, DL, LHS.getValueType()), Dest); 511 } 512 513 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 514 SDValue LHS = Op.getOperand(0); 515 SDValue RHS = Op.getOperand(1); 516 SDValue TrueV = Op.getOperand(2); 517 SDValue FalseV = Op.getOperand(3); 518 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 519 SDLoc DL(Op); 520 521 if (!getHasJmpExt()) 522 NegateCC(LHS, RHS, CC); 523 524 SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType()); 525 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 526 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 527 528 return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops); 529 } 530 531 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const { 532 switch ((BPFISD::NodeType)Opcode) { 533 case BPFISD::FIRST_NUMBER: 534 break; 535 case BPFISD::RET_FLAG: 536 return "BPFISD::RET_FLAG"; 537 case BPFISD::CALL: 538 return "BPFISD::CALL"; 539 case BPFISD::SELECT_CC: 540 return "BPFISD::SELECT_CC"; 541 case BPFISD::BR_CC: 542 return "BPFISD::BR_CC"; 543 case BPFISD::Wrapper: 544 return "BPFISD::Wrapper"; 545 case BPFISD::MEMCPY: 546 return "BPFISD::MEMCPY"; 547 } 548 return nullptr; 549 } 550 551 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op, 552 SelectionDAG &DAG) const { 553 auto N = cast<GlobalAddressSDNode>(Op); 554 assert(N->getOffset() == 0 && "Invalid offset for global address"); 555 556 SDLoc DL(Op); 557 const GlobalValue *GV = N->getGlobal(); 558 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64); 559 560 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA); 561 } 562 563 unsigned 564 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB, 565 unsigned Reg, bool isSigned) const { 566 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 567 const TargetRegisterClass *RC = getRegClassFor(MVT::i64); 568 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri; 569 MachineFunction *F = BB->getParent(); 570 DebugLoc DL = MI.getDebugLoc(); 571 572 MachineRegisterInfo &RegInfo = F->getRegInfo(); 573 Register PromotedReg0 = RegInfo.createVirtualRegister(RC); 574 Register PromotedReg1 = RegInfo.createVirtualRegister(RC); 575 Register PromotedReg2 = RegInfo.createVirtualRegister(RC); 576 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg); 577 BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1) 578 .addReg(PromotedReg0).addImm(32); 579 BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2) 580 .addReg(PromotedReg1).addImm(32); 581 582 return PromotedReg2; 583 } 584 585 MachineBasicBlock * 586 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI, 587 MachineBasicBlock *BB) 588 const { 589 MachineFunction *MF = MI.getParent()->getParent(); 590 MachineRegisterInfo &MRI = MF->getRegInfo(); 591 MachineInstrBuilder MIB(*MF, MI); 592 unsigned ScratchReg; 593 594 // This function does custom insertion during lowering BPFISD::MEMCPY which 595 // only has two register operands from memcpy semantics, the copy source 596 // address and the copy destination address. 597 // 598 // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need 599 // a third scratch register to serve as the destination register of load and 600 // source register of store. 601 // 602 // The scratch register here is with the Define | Dead | EarlyClobber flags. 603 // The EarlyClobber flag has the semantic property that the operand it is 604 // attached to is clobbered before the rest of the inputs are read. Hence it 605 // must be unique among the operands to the instruction. The Define flag is 606 // needed to coerce the machine verifier that an Undef value isn't a problem 607 // as we anyway is loading memory into it. The Dead flag is needed as the 608 // value in scratch isn't supposed to be used by any other instruction. 609 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass); 610 MIB.addReg(ScratchReg, 611 RegState::Define | RegState::Dead | RegState::EarlyClobber); 612 613 return BB; 614 } 615 616 MachineBasicBlock * 617 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 618 MachineBasicBlock *BB) const { 619 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 620 DebugLoc DL = MI.getDebugLoc(); 621 unsigned Opc = MI.getOpcode(); 622 bool isSelectRROp = (Opc == BPF::Select || 623 Opc == BPF::Select_64_32 || 624 Opc == BPF::Select_32 || 625 Opc == BPF::Select_32_64); 626 627 bool isMemcpyOp = Opc == BPF::MEMCPY; 628 629 #ifndef NDEBUG 630 bool isSelectRIOp = (Opc == BPF::Select_Ri || 631 Opc == BPF::Select_Ri_64_32 || 632 Opc == BPF::Select_Ri_32 || 633 Opc == BPF::Select_Ri_32_64); 634 635 636 assert((isSelectRROp || isSelectRIOp || isMemcpyOp) && 637 "Unexpected instr type to insert"); 638 #endif 639 640 if (isMemcpyOp) 641 return EmitInstrWithCustomInserterMemcpy(MI, BB); 642 643 bool is32BitCmp = (Opc == BPF::Select_32 || 644 Opc == BPF::Select_32_64 || 645 Opc == BPF::Select_Ri_32 || 646 Opc == BPF::Select_Ri_32_64); 647 648 // To "insert" a SELECT instruction, we actually have to insert the diamond 649 // control-flow pattern. The incoming instruction knows the destination vreg 650 // to set, the condition code register to branch on, the true/false values to 651 // select between, and a branch opcode to use. 652 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 653 MachineFunction::iterator I = ++BB->getIterator(); 654 655 // ThisMBB: 656 // ... 657 // TrueVal = ... 658 // jmp_XX r1, r2 goto Copy1MBB 659 // fallthrough --> Copy0MBB 660 MachineBasicBlock *ThisMBB = BB; 661 MachineFunction *F = BB->getParent(); 662 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 663 MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); 664 665 F->insert(I, Copy0MBB); 666 F->insert(I, Copy1MBB); 667 // Update machine-CFG edges by transferring all successors of the current 668 // block to the new block which will contain the Phi node for the select. 669 Copy1MBB->splice(Copy1MBB->begin(), BB, 670 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 671 Copy1MBB->transferSuccessorsAndUpdatePHIs(BB); 672 // Next, add the true and fallthrough blocks as its successors. 673 BB->addSuccessor(Copy0MBB); 674 BB->addSuccessor(Copy1MBB); 675 676 // Insert Branch if Flag 677 int CC = MI.getOperand(3).getImm(); 678 int NewCC; 679 switch (CC) { 680 #define SET_NEWCC(X, Y) \ 681 case ISD::X: \ 682 if (is32BitCmp && HasJmp32) \ 683 NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \ 684 else \ 685 NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \ 686 break 687 SET_NEWCC(SETGT, JSGT); 688 SET_NEWCC(SETUGT, JUGT); 689 SET_NEWCC(SETGE, JSGE); 690 SET_NEWCC(SETUGE, JUGE); 691 SET_NEWCC(SETEQ, JEQ); 692 SET_NEWCC(SETNE, JNE); 693 SET_NEWCC(SETLT, JSLT); 694 SET_NEWCC(SETULT, JULT); 695 SET_NEWCC(SETLE, JSLE); 696 SET_NEWCC(SETULE, JULE); 697 default: 698 report_fatal_error("unimplemented select CondCode " + Twine(CC)); 699 } 700 701 Register LHS = MI.getOperand(1).getReg(); 702 bool isSignedCmp = (CC == ISD::SETGT || 703 CC == ISD::SETGE || 704 CC == ISD::SETLT || 705 CC == ISD::SETLE); 706 707 // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need 708 // to be promoted, however if the 32-bit comparison operands are destination 709 // registers then they are implicitly zero-extended already, there is no 710 // need of explicit zero-extend sequence for them. 711 // 712 // We simply do extension for all situations in this method, but we will 713 // try to remove those unnecessary in BPFMIPeephole pass. 714 if (is32BitCmp && !HasJmp32) 715 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp); 716 717 if (isSelectRROp) { 718 Register RHS = MI.getOperand(2).getReg(); 719 720 if (is32BitCmp && !HasJmp32) 721 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp); 722 723 BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB); 724 } else { 725 int64_t imm32 = MI.getOperand(2).getImm(); 726 // sanity check before we build J*_ri instruction. 727 assert (isInt<32>(imm32)); 728 BuildMI(BB, DL, TII.get(NewCC)) 729 .addReg(LHS).addImm(imm32).addMBB(Copy1MBB); 730 } 731 732 // Copy0MBB: 733 // %FalseValue = ... 734 // # fallthrough to Copy1MBB 735 BB = Copy0MBB; 736 737 // Update machine-CFG edges 738 BB->addSuccessor(Copy1MBB); 739 740 // Copy1MBB: 741 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ] 742 // ... 743 BB = Copy1MBB; 744 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg()) 745 .addReg(MI.getOperand(5).getReg()) 746 .addMBB(Copy0MBB) 747 .addReg(MI.getOperand(4).getReg()) 748 .addMBB(ThisMBB); 749 750 MI.eraseFromParent(); // The pseudo instruction is gone now. 751 return BB; 752 } 753 754 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 755 EVT VT) const { 756 return getHasAlu32() ? MVT::i32 : MVT::i64; 757 } 758 759 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL, 760 EVT VT) const { 761 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64; 762 } 763