xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFISelLowering.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation  ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/DiagnosticPrinter.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "bpf-lower"
33 
34 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
35   cl::Hidden, cl::init(false),
36   cl::desc("Expand memcpy into load/store pairs in order"));
37 
38 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
39   MachineFunction &MF = DAG.getMachineFunction();
40   DAG.getContext()->diagnose(
41       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
42 }
43 
44 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
45                  SDValue Val) {
46   MachineFunction &MF = DAG.getMachineFunction();
47   std::string Str;
48   raw_string_ostream OS(Str);
49   OS << Msg;
50   Val->print(OS);
51   OS.flush();
52   DAG.getContext()->diagnose(
53       DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
54 }
55 
56 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
57                                      const BPFSubtarget &STI)
58     : TargetLowering(TM) {
59 
60   // Set up the register classes.
61   addRegisterClass(MVT::i64, &BPF::GPRRegClass);
62   if (STI.getHasAlu32())
63     addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
64 
65   // Compute derived properties from the register classes
66   computeRegisterProperties(STI.getRegisterInfo());
67 
68   setStackPointerRegisterToSaveRestore(BPF::R11);
69 
70   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
71   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72   setOperationAction(ISD::BRIND, MVT::Other, Expand);
73   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
74 
75   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
76 
77   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
78   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
79   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
80 
81   for (auto VT : { MVT::i32, MVT::i64 }) {
82     if (VT == MVT::i32 && !STI.getHasAlu32())
83       continue;
84 
85     setOperationAction(ISD::SDIVREM, VT, Expand);
86     setOperationAction(ISD::UDIVREM, VT, Expand);
87     setOperationAction(ISD::SREM, VT, Expand);
88     setOperationAction(ISD::UREM, VT, Expand);
89     setOperationAction(ISD::MULHU, VT, Expand);
90     setOperationAction(ISD::MULHS, VT, Expand);
91     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
92     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
93     setOperationAction(ISD::ROTR, VT, Expand);
94     setOperationAction(ISD::ROTL, VT, Expand);
95     setOperationAction(ISD::SHL_PARTS, VT, Expand);
96     setOperationAction(ISD::SRL_PARTS, VT, Expand);
97     setOperationAction(ISD::SRA_PARTS, VT, Expand);
98     setOperationAction(ISD::CTPOP, VT, Expand);
99 
100     setOperationAction(ISD::SETCC, VT, Expand);
101     setOperationAction(ISD::SELECT, VT, Expand);
102     setOperationAction(ISD::SELECT_CC, VT, Custom);
103   }
104 
105   if (STI.getHasAlu32()) {
106     setOperationAction(ISD::BSWAP, MVT::i32, Promote);
107     setOperationAction(ISD::BR_CC, MVT::i32,
108                        STI.getHasJmp32() ? Custom : Promote);
109   }
110 
111   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
112   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
113   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
114   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
115 
116   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
119   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
120 
121   // Extended load operations for i1 types must be promoted
122   for (MVT VT : MVT::integer_valuetypes()) {
123     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
125     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
126 
127     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
128     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
130   }
131 
132   setBooleanContents(ZeroOrOneBooleanContent);
133 
134   // Function alignments
135   setMinFunctionAlignment(Align(8));
136   setPrefFunctionAlignment(Align(8));
137 
138   if (BPFExpandMemcpyInOrder) {
139     // LLVM generic code will try to expand memcpy into load/store pairs at this
140     // stage which is before quite a few IR optimization passes, therefore the
141     // loads and stores could potentially be moved apart from each other which
142     // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
143     // compilers.
144     //
145     // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
146     // of memcpy to later stage in IR optimization pipeline so those load/store
147     // pairs won't be touched and could be kept in order. Hence, we set
148     // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
149     // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
150     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
151     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
152     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
153   } else {
154     // inline memcpy() for kernel to see explicit copy
155     unsigned CommonMaxStores =
156       STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
157 
158     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
159     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
160     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
161   }
162 
163   // CPU/Feature control
164   HasAlu32 = STI.getHasAlu32();
165   HasJmp32 = STI.getHasJmp32();
166   HasJmpExt = STI.getHasJmpExt();
167 }
168 
169 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
170   return false;
171 }
172 
173 bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
174   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
175     return false;
176   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
177   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
178   return NumBits1 > NumBits2;
179 }
180 
181 bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
182   if (!VT1.isInteger() || !VT2.isInteger())
183     return false;
184   unsigned NumBits1 = VT1.getSizeInBits();
185   unsigned NumBits2 = VT2.getSizeInBits();
186   return NumBits1 > NumBits2;
187 }
188 
189 bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
190   if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
191     return false;
192   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
193   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
194   return NumBits1 == 32 && NumBits2 == 64;
195 }
196 
197 bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
198   if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
199     return false;
200   unsigned NumBits1 = VT1.getSizeInBits();
201   unsigned NumBits2 = VT2.getSizeInBits();
202   return NumBits1 == 32 && NumBits2 == 64;
203 }
204 
205 std::pair<unsigned, const TargetRegisterClass *>
206 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
207                                                 StringRef Constraint,
208                                                 MVT VT) const {
209   if (Constraint.size() == 1)
210     // GCC Constraint Letters
211     switch (Constraint[0]) {
212     case 'r': // GENERAL_REGS
213       return std::make_pair(0U, &BPF::GPRRegClass);
214     default:
215       break;
216     }
217 
218   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
219 }
220 
221 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
222   switch (Op.getOpcode()) {
223   case ISD::BR_CC:
224     return LowerBR_CC(Op, DAG);
225   case ISD::GlobalAddress:
226     return LowerGlobalAddress(Op, DAG);
227   case ISD::SELECT_CC:
228     return LowerSELECT_CC(Op, DAG);
229   case ISD::DYNAMIC_STACKALLOC:
230     report_fatal_error("Unsupported dynamic stack allocation");
231   default:
232     llvm_unreachable("unimplemented operand");
233   }
234 }
235 
236 // Calling Convention Implementation
237 #include "BPFGenCallingConv.inc"
238 
239 SDValue BPFTargetLowering::LowerFormalArguments(
240     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
241     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
242     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
243   switch (CallConv) {
244   default:
245     report_fatal_error("Unsupported calling convention");
246   case CallingConv::C:
247   case CallingConv::Fast:
248     break;
249   }
250 
251   MachineFunction &MF = DAG.getMachineFunction();
252   MachineRegisterInfo &RegInfo = MF.getRegInfo();
253 
254   // Assign locations to all of the incoming arguments.
255   SmallVector<CCValAssign, 16> ArgLocs;
256   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
257   CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
258 
259   for (auto &VA : ArgLocs) {
260     if (VA.isRegLoc()) {
261       // Arguments passed in registers
262       EVT RegVT = VA.getLocVT();
263       MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
264       switch (SimpleTy) {
265       default: {
266         errs() << "LowerFormalArguments Unhandled argument type: "
267                << RegVT.getEVTString() << '\n';
268         llvm_unreachable(0);
269       }
270       case MVT::i32:
271       case MVT::i64:
272         Register VReg = RegInfo.createVirtualRegister(
273             SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
274         RegInfo.addLiveIn(VA.getLocReg(), VReg);
275         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
276 
277         // If this is an value that has been promoted to wider types, insert an
278         // assert[sz]ext to capture this, then truncate to the right size.
279         if (VA.getLocInfo() == CCValAssign::SExt)
280           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
281                                  DAG.getValueType(VA.getValVT()));
282         else if (VA.getLocInfo() == CCValAssign::ZExt)
283           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
284                                  DAG.getValueType(VA.getValVT()));
285 
286         if (VA.getLocInfo() != CCValAssign::Full)
287           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
288 
289         InVals.push_back(ArgValue);
290 
291 	break;
292       }
293     } else {
294       fail(DL, DAG, "defined with too many args");
295       InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
296     }
297   }
298 
299   if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
300     fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
301   }
302 
303   return Chain;
304 }
305 
306 const unsigned BPFTargetLowering::MaxArgs = 5;
307 
308 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
309                                      SmallVectorImpl<SDValue> &InVals) const {
310   SelectionDAG &DAG = CLI.DAG;
311   auto &Outs = CLI.Outs;
312   auto &OutVals = CLI.OutVals;
313   auto &Ins = CLI.Ins;
314   SDValue Chain = CLI.Chain;
315   SDValue Callee = CLI.Callee;
316   bool &IsTailCall = CLI.IsTailCall;
317   CallingConv::ID CallConv = CLI.CallConv;
318   bool IsVarArg = CLI.IsVarArg;
319   MachineFunction &MF = DAG.getMachineFunction();
320 
321   // BPF target does not support tail call optimization.
322   IsTailCall = false;
323 
324   switch (CallConv) {
325   default:
326     report_fatal_error("Unsupported calling convention");
327   case CallingConv::Fast:
328   case CallingConv::C:
329     break;
330   }
331 
332   // Analyze operands of the call, assigning locations to each operand.
333   SmallVector<CCValAssign, 16> ArgLocs;
334   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
335 
336   CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
337 
338   unsigned NumBytes = CCInfo.getNextStackOffset();
339 
340   if (Outs.size() > MaxArgs)
341     fail(CLI.DL, DAG, "too many args to ", Callee);
342 
343   for (auto &Arg : Outs) {
344     ISD::ArgFlagsTy Flags = Arg.Flags;
345     if (!Flags.isByVal())
346       continue;
347 
348     fail(CLI.DL, DAG, "pass by value not supported ", Callee);
349   }
350 
351   auto PtrVT = getPointerTy(MF.getDataLayout());
352   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
353 
354   SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
355 
356   // Walk arg assignments
357   for (unsigned i = 0,
358                 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
359        i != e; ++i) {
360     CCValAssign &VA = ArgLocs[i];
361     SDValue Arg = OutVals[i];
362 
363     // Promote the value if needed.
364     switch (VA.getLocInfo()) {
365     default:
366       llvm_unreachable("Unknown loc info");
367     case CCValAssign::Full:
368       break;
369     case CCValAssign::SExt:
370       Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
371       break;
372     case CCValAssign::ZExt:
373       Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
374       break;
375     case CCValAssign::AExt:
376       Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
377       break;
378     }
379 
380     // Push arguments into RegsToPass vector
381     if (VA.isRegLoc())
382       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
383     else
384       llvm_unreachable("call arg pass bug");
385   }
386 
387   SDValue InFlag;
388 
389   // Build a sequence of copy-to-reg nodes chained together with token chain and
390   // flag operands which copy the outgoing args into registers.  The InFlag in
391   // necessary since all emitted instructions must be stuck together.
392   for (auto &Reg : RegsToPass) {
393     Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
394     InFlag = Chain.getValue(1);
395   }
396 
397   // If the callee is a GlobalAddress node (quite common, every direct call is)
398   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
399   // Likewise ExternalSymbol -> TargetExternalSymbol.
400   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
401     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
402                                         G->getOffset(), 0);
403   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
404     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
405     fail(CLI.DL, DAG, Twine("A call to built-in function '"
406                             + StringRef(E->getSymbol())
407                             + "' is not supported."));
408   }
409 
410   // Returns a chain & a flag for retval copy to use.
411   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
412   SmallVector<SDValue, 8> Ops;
413   Ops.push_back(Chain);
414   Ops.push_back(Callee);
415 
416   // Add argument registers to the end of the list so that they are
417   // known live into the call.
418   for (auto &Reg : RegsToPass)
419     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
420 
421   if (InFlag.getNode())
422     Ops.push_back(InFlag);
423 
424   Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
425   InFlag = Chain.getValue(1);
426 
427   // Create the CALLSEQ_END node.
428   Chain = DAG.getCALLSEQ_END(
429       Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
430       DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
431   InFlag = Chain.getValue(1);
432 
433   // Handle result values, copying them out of physregs into vregs that we
434   // return.
435   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
436                          InVals);
437 }
438 
439 SDValue
440 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
441                                bool IsVarArg,
442                                const SmallVectorImpl<ISD::OutputArg> &Outs,
443                                const SmallVectorImpl<SDValue> &OutVals,
444                                const SDLoc &DL, SelectionDAG &DAG) const {
445   unsigned Opc = BPFISD::RET_FLAG;
446 
447   // CCValAssign - represent the assignment of the return value to a location
448   SmallVector<CCValAssign, 16> RVLocs;
449   MachineFunction &MF = DAG.getMachineFunction();
450 
451   // CCState - Info about the registers and stack slot.
452   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
453 
454   if (MF.getFunction().getReturnType()->isAggregateType()) {
455     fail(DL, DAG, "only integer returns supported");
456     return DAG.getNode(Opc, DL, MVT::Other, Chain);
457   }
458 
459   // Analize return values.
460   CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
461 
462   SDValue Flag;
463   SmallVector<SDValue, 4> RetOps(1, Chain);
464 
465   // Copy the result values into the output registers.
466   for (unsigned i = 0; i != RVLocs.size(); ++i) {
467     CCValAssign &VA = RVLocs[i];
468     assert(VA.isRegLoc() && "Can only return in registers!");
469 
470     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
471 
472     // Guarantee that all emitted copies are stuck together,
473     // avoiding something bad.
474     Flag = Chain.getValue(1);
475     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
476   }
477 
478   RetOps[0] = Chain; // Update chain.
479 
480   // Add the flag if we have it.
481   if (Flag.getNode())
482     RetOps.push_back(Flag);
483 
484   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
485 }
486 
487 SDValue BPFTargetLowering::LowerCallResult(
488     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
489     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
490     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
491 
492   MachineFunction &MF = DAG.getMachineFunction();
493   // Assign locations to each value returned by this call.
494   SmallVector<CCValAssign, 16> RVLocs;
495   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
496 
497   if (Ins.size() >= 2) {
498     fail(DL, DAG, "only small returns supported");
499     for (unsigned i = 0, e = Ins.size(); i != e; ++i)
500       InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
501     return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
502   }
503 
504   CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
505 
506   // Copy all of the result registers out of their specified physreg.
507   for (auto &Val : RVLocs) {
508     Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
509                                Val.getValVT(), InFlag).getValue(1);
510     InFlag = Chain.getValue(2);
511     InVals.push_back(Chain.getValue(0));
512   }
513 
514   return Chain;
515 }
516 
517 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
518   switch (CC) {
519   default:
520     break;
521   case ISD::SETULT:
522   case ISD::SETULE:
523   case ISD::SETLT:
524   case ISD::SETLE:
525     CC = ISD::getSetCCSwappedOperands(CC);
526     std::swap(LHS, RHS);
527     break;
528   }
529 }
530 
531 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
532   SDValue Chain = Op.getOperand(0);
533   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
534   SDValue LHS = Op.getOperand(2);
535   SDValue RHS = Op.getOperand(3);
536   SDValue Dest = Op.getOperand(4);
537   SDLoc DL(Op);
538 
539   if (!getHasJmpExt())
540     NegateCC(LHS, RHS, CC);
541 
542   return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
543                      DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
544 }
545 
546 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
547   SDValue LHS = Op.getOperand(0);
548   SDValue RHS = Op.getOperand(1);
549   SDValue TrueV = Op.getOperand(2);
550   SDValue FalseV = Op.getOperand(3);
551   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
552   SDLoc DL(Op);
553 
554   if (!getHasJmpExt())
555     NegateCC(LHS, RHS, CC);
556 
557   SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
558   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
559   SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
560 
561   return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
562 }
563 
564 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
565   switch ((BPFISD::NodeType)Opcode) {
566   case BPFISD::FIRST_NUMBER:
567     break;
568   case BPFISD::RET_FLAG:
569     return "BPFISD::RET_FLAG";
570   case BPFISD::CALL:
571     return "BPFISD::CALL";
572   case BPFISD::SELECT_CC:
573     return "BPFISD::SELECT_CC";
574   case BPFISD::BR_CC:
575     return "BPFISD::BR_CC";
576   case BPFISD::Wrapper:
577     return "BPFISD::Wrapper";
578   case BPFISD::MEMCPY:
579     return "BPFISD::MEMCPY";
580   }
581   return nullptr;
582 }
583 
584 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
585                                               SelectionDAG &DAG) const {
586   auto N = cast<GlobalAddressSDNode>(Op);
587   assert(N->getOffset() == 0 && "Invalid offset for global address");
588 
589   SDLoc DL(Op);
590   const GlobalValue *GV = N->getGlobal();
591   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
592 
593   return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
594 }
595 
596 unsigned
597 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
598                                  unsigned Reg, bool isSigned) const {
599   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
600   const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
601   int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
602   MachineFunction *F = BB->getParent();
603   DebugLoc DL = MI.getDebugLoc();
604 
605   MachineRegisterInfo &RegInfo = F->getRegInfo();
606 
607   if (!isSigned) {
608     Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
609     BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
610     return PromotedReg0;
611   }
612   Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
613   Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
614   Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
615   BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
616   BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
617     .addReg(PromotedReg0).addImm(32);
618   BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
619     .addReg(PromotedReg1).addImm(32);
620 
621   return PromotedReg2;
622 }
623 
624 MachineBasicBlock *
625 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
626                                                      MachineBasicBlock *BB)
627                                                      const {
628   MachineFunction *MF = MI.getParent()->getParent();
629   MachineRegisterInfo &MRI = MF->getRegInfo();
630   MachineInstrBuilder MIB(*MF, MI);
631   unsigned ScratchReg;
632 
633   // This function does custom insertion during lowering BPFISD::MEMCPY which
634   // only has two register operands from memcpy semantics, the copy source
635   // address and the copy destination address.
636   //
637   // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
638   // a third scratch register to serve as the destination register of load and
639   // source register of store.
640   //
641   // The scratch register here is with the Define | Dead | EarlyClobber flags.
642   // The EarlyClobber flag has the semantic property that the operand it is
643   // attached to is clobbered before the rest of the inputs are read. Hence it
644   // must be unique among the operands to the instruction. The Define flag is
645   // needed to coerce the machine verifier that an Undef value isn't a problem
646   // as we anyway is loading memory into it. The Dead flag is needed as the
647   // value in scratch isn't supposed to be used by any other instruction.
648   ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
649   MIB.addReg(ScratchReg,
650              RegState::Define | RegState::Dead | RegState::EarlyClobber);
651 
652   return BB;
653 }
654 
655 MachineBasicBlock *
656 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
657                                                MachineBasicBlock *BB) const {
658   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
659   DebugLoc DL = MI.getDebugLoc();
660   unsigned Opc = MI.getOpcode();
661   bool isSelectRROp = (Opc == BPF::Select ||
662                        Opc == BPF::Select_64_32 ||
663                        Opc == BPF::Select_32 ||
664                        Opc == BPF::Select_32_64);
665 
666   bool isMemcpyOp = Opc == BPF::MEMCPY;
667 
668 #ifndef NDEBUG
669   bool isSelectRIOp = (Opc == BPF::Select_Ri ||
670                        Opc == BPF::Select_Ri_64_32 ||
671                        Opc == BPF::Select_Ri_32 ||
672                        Opc == BPF::Select_Ri_32_64);
673 
674 
675   assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
676          "Unexpected instr type to insert");
677 #endif
678 
679   if (isMemcpyOp)
680     return EmitInstrWithCustomInserterMemcpy(MI, BB);
681 
682   bool is32BitCmp = (Opc == BPF::Select_32 ||
683                      Opc == BPF::Select_32_64 ||
684                      Opc == BPF::Select_Ri_32 ||
685                      Opc == BPF::Select_Ri_32_64);
686 
687   // To "insert" a SELECT instruction, we actually have to insert the diamond
688   // control-flow pattern.  The incoming instruction knows the destination vreg
689   // to set, the condition code register to branch on, the true/false values to
690   // select between, and a branch opcode to use.
691   const BasicBlock *LLVM_BB = BB->getBasicBlock();
692   MachineFunction::iterator I = ++BB->getIterator();
693 
694   // ThisMBB:
695   // ...
696   //  TrueVal = ...
697   //  jmp_XX r1, r2 goto Copy1MBB
698   //  fallthrough --> Copy0MBB
699   MachineBasicBlock *ThisMBB = BB;
700   MachineFunction *F = BB->getParent();
701   MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
702   MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
703 
704   F->insert(I, Copy0MBB);
705   F->insert(I, Copy1MBB);
706   // Update machine-CFG edges by transferring all successors of the current
707   // block to the new block which will contain the Phi node for the select.
708   Copy1MBB->splice(Copy1MBB->begin(), BB,
709                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
710   Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
711   // Next, add the true and fallthrough blocks as its successors.
712   BB->addSuccessor(Copy0MBB);
713   BB->addSuccessor(Copy1MBB);
714 
715   // Insert Branch if Flag
716   int CC = MI.getOperand(3).getImm();
717   int NewCC;
718   switch (CC) {
719 #define SET_NEWCC(X, Y) \
720   case ISD::X: \
721     if (is32BitCmp && HasJmp32) \
722       NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
723     else \
724       NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
725     break
726   SET_NEWCC(SETGT, JSGT);
727   SET_NEWCC(SETUGT, JUGT);
728   SET_NEWCC(SETGE, JSGE);
729   SET_NEWCC(SETUGE, JUGE);
730   SET_NEWCC(SETEQ, JEQ);
731   SET_NEWCC(SETNE, JNE);
732   SET_NEWCC(SETLT, JSLT);
733   SET_NEWCC(SETULT, JULT);
734   SET_NEWCC(SETLE, JSLE);
735   SET_NEWCC(SETULE, JULE);
736   default:
737     report_fatal_error("unimplemented select CondCode " + Twine(CC));
738   }
739 
740   Register LHS = MI.getOperand(1).getReg();
741   bool isSignedCmp = (CC == ISD::SETGT ||
742                       CC == ISD::SETGE ||
743                       CC == ISD::SETLT ||
744                       CC == ISD::SETLE);
745 
746   // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
747   // to be promoted, however if the 32-bit comparison operands are destination
748   // registers then they are implicitly zero-extended already, there is no
749   // need of explicit zero-extend sequence for them.
750   //
751   // We simply do extension for all situations in this method, but we will
752   // try to remove those unnecessary in BPFMIPeephole pass.
753   if (is32BitCmp && !HasJmp32)
754     LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
755 
756   if (isSelectRROp) {
757     Register RHS = MI.getOperand(2).getReg();
758 
759     if (is32BitCmp && !HasJmp32)
760       RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
761 
762     BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
763   } else {
764     int64_t imm32 = MI.getOperand(2).getImm();
765     // sanity check before we build J*_ri instruction.
766     assert (isInt<32>(imm32));
767     BuildMI(BB, DL, TII.get(NewCC))
768         .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
769   }
770 
771   // Copy0MBB:
772   //  %FalseValue = ...
773   //  # fallthrough to Copy1MBB
774   BB = Copy0MBB;
775 
776   // Update machine-CFG edges
777   BB->addSuccessor(Copy1MBB);
778 
779   // Copy1MBB:
780   //  %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
781   // ...
782   BB = Copy1MBB;
783   BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
784       .addReg(MI.getOperand(5).getReg())
785       .addMBB(Copy0MBB)
786       .addReg(MI.getOperand(4).getReg())
787       .addMBB(ThisMBB);
788 
789   MI.eraseFromParent(); // The pseudo instruction is gone now.
790   return BB;
791 }
792 
793 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
794                                           EVT VT) const {
795   return getHasAlu32() ? MVT::i32 : MVT::i64;
796 }
797 
798 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
799                                               EVT VT) const {
800   return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
801 }
802