1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass abstracted struct/union member accesses in order to support 10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program 11 // which can run on different kernels. In particular, if bpf program tries to 12 // access a particular kernel data structure member, the details of the 13 // intermediate member access will be remembered so bpf loader can do 14 // necessary adjustment right before program loading. 15 // 16 // For example, 17 // 18 // struct s { 19 // int a; 20 // int b; 21 // }; 22 // struct t { 23 // struct s c; 24 // int d; 25 // }; 26 // struct t e; 27 // 28 // For the member access e.c.b, the compiler will generate code 29 // &e + 4 30 // 31 // The compile-once run-everywhere instead generates the following code 32 // r = 4 33 // &e + r 34 // The "4" in "r = 4" can be changed based on a particular kernel version. 35 // For example, on a particular kernel version, if struct s is changed to 36 // 37 // struct s { 38 // int new_field; 39 // int a; 40 // int b; 41 // } 42 // 43 // By repeating the member access on the host, the bpf loader can 44 // adjust "r = 4" as "r = 8". 45 // 46 // This feature relies on the following three intrinsic calls: 47 // addr = preserve_array_access_index(base, dimension, index) 48 // addr = preserve_union_access_index(base, di_index) 49 // !llvm.preserve.access.index <union_ditype> 50 // addr = preserve_struct_access_index(base, gep_index, di_index) 51 // !llvm.preserve.access.index <struct_ditype> 52 // 53 // Bitfield member access needs special attention. User cannot take the 54 // address of a bitfield acceess. To facilitate kernel verifier 55 // for easy bitfield code optimization, a new clang intrinsic is introduced: 56 // uint32_t __builtin_preserve_field_info(member_access, info_kind) 57 // In IR, a chain with two (or more) intrinsic calls will be generated: 58 // ... 59 // addr = preserve_struct_access_index(base, 1, 1) !struct s 60 // uint32_t result = bpf_preserve_field_info(addr, info_kind) 61 // 62 // Suppose the info_kind is FIELD_SIGNEDNESS, 63 // The above two IR intrinsics will be replaced with 64 // a relocatable insn: 65 // signness = /* signness of member_access */ 66 // and signness can be changed by bpf loader based on the 67 // types on the host. 68 // 69 // User can also test whether a field exists or not with 70 // uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE) 71 // The field will be always available (result = 1) during initial 72 // compilation, but bpf loader can patch with the correct value 73 // on the target host where the member_access may or may not be available 74 // 75 //===----------------------------------------------------------------------===// 76 77 #include "BPF.h" 78 #include "BPFCORE.h" 79 #include "BPFTargetMachine.h" 80 #include "llvm/IR/DebugInfoMetadata.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include <stack> 91 92 #define DEBUG_TYPE "bpf-abstract-member-access" 93 94 namespace llvm { 95 constexpr StringRef BPFCoreSharedInfo::AmaAttr; 96 } // namespace llvm 97 98 using namespace llvm; 99 100 namespace { 101 102 class BPFAbstractMemberAccess final : public ModulePass { 103 StringRef getPassName() const override { 104 return "BPF Abstract Member Access"; 105 } 106 107 bool runOnModule(Module &M) override; 108 109 public: 110 static char ID; 111 TargetMachine *TM; 112 // Add optional BPFTargetMachine parameter so that BPF backend can add the phase 113 // with target machine to find out the endianness. The default constructor (without 114 // parameters) is used by the pass manager for managing purposes. 115 BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr) : ModulePass(ID), TM(TM) {} 116 117 struct CallInfo { 118 uint32_t Kind; 119 uint32_t AccessIndex; 120 Align RecordAlignment; 121 MDNode *Metadata; 122 Value *Base; 123 }; 124 typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack; 125 126 private: 127 enum : uint32_t { 128 BPFPreserveArrayAI = 1, 129 BPFPreserveUnionAI = 2, 130 BPFPreserveStructAI = 3, 131 BPFPreserveFieldInfoAI = 4, 132 }; 133 134 const DataLayout *DL = nullptr; 135 136 std::map<std::string, GlobalVariable *> GEPGlobals; 137 // A map to link preserve_*_access_index instrinsic calls. 138 std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain; 139 // A map to hold all the base preserve_*_access_index instrinsic calls. 140 // The base call is not an input of any other preserve_* 141 // intrinsics. 142 std::map<CallInst *, CallInfo> BaseAICalls; 143 144 bool doTransformation(Module &M); 145 146 void traceAICall(CallInst *Call, CallInfo &ParentInfo); 147 void traceBitCast(BitCastInst *BitCast, CallInst *Parent, 148 CallInfo &ParentInfo); 149 void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, 150 CallInfo &ParentInfo); 151 void collectAICallChains(Module &M, Function &F); 152 153 bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo); 154 bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI, 155 const MDNode *ChildMeta); 156 bool removePreserveAccessIndexIntrinsic(Module &M); 157 void replaceWithGEP(std::vector<CallInst *> &CallList, 158 uint32_t NumOfZerosIndex, uint32_t DIIndex); 159 bool HasPreserveFieldInfoCall(CallInfoStack &CallStack); 160 void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment, 161 uint32_t &StartBitOffset, uint32_t &EndBitOffset); 162 uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy, 163 uint32_t AccessIndex, uint32_t PatchImm, 164 Align RecordAlignment); 165 166 Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo, 167 std::string &AccessKey, MDNode *&BaseMeta); 168 uint64_t getConstant(const Value *IndexValue); 169 bool transformGEPChain(Module &M, CallInst *Call, CallInfo &CInfo); 170 }; 171 } // End anonymous namespace 172 173 char BPFAbstractMemberAccess::ID = 0; 174 INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE, 175 "abstracting struct/union member accessees", false, false) 176 177 ModulePass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) { 178 return new BPFAbstractMemberAccess(TM); 179 } 180 181 bool BPFAbstractMemberAccess::runOnModule(Module &M) { 182 LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n"); 183 184 // Bail out if no debug info. 185 if (M.debug_compile_units().empty()) 186 return false; 187 188 DL = &M.getDataLayout(); 189 return doTransformation(M); 190 } 191 192 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) { 193 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 194 Tag != dwarf::DW_TAG_volatile_type && 195 Tag != dwarf::DW_TAG_restrict_type && 196 Tag != dwarf::DW_TAG_member) 197 return false; 198 if (Tag == dwarf::DW_TAG_typedef && !skipTypedef) 199 return false; 200 return true; 201 } 202 203 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) { 204 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 205 if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef)) 206 break; 207 Ty = DTy->getBaseType(); 208 } 209 return Ty; 210 } 211 212 static const DIType * stripQualifiers(const DIType *Ty) { 213 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 214 if (!SkipDIDerivedTag(DTy->getTag(), true)) 215 break; 216 Ty = DTy->getBaseType(); 217 } 218 return Ty; 219 } 220 221 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) { 222 DINodeArray Elements = CTy->getElements(); 223 uint32_t DimSize = 1; 224 for (uint32_t I = StartDim; I < Elements.size(); ++I) { 225 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 226 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 227 const DISubrange *SR = cast<DISubrange>(Element); 228 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 229 DimSize *= CI->getSExtValue(); 230 } 231 } 232 233 return DimSize; 234 } 235 236 /// Check whether a call is a preserve_*_access_index intrinsic call or not. 237 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call, 238 CallInfo &CInfo) { 239 if (!Call) 240 return false; 241 242 const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand()); 243 if (!GV) 244 return false; 245 if (GV->getName().startswith("llvm.preserve.array.access.index")) { 246 CInfo.Kind = BPFPreserveArrayAI; 247 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 248 if (!CInfo.Metadata) 249 report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic"); 250 CInfo.AccessIndex = getConstant(Call->getArgOperand(2)); 251 CInfo.Base = Call->getArgOperand(0); 252 CInfo.RecordAlignment = 253 DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType()); 254 return true; 255 } 256 if (GV->getName().startswith("llvm.preserve.union.access.index")) { 257 CInfo.Kind = BPFPreserveUnionAI; 258 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 259 if (!CInfo.Metadata) 260 report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic"); 261 CInfo.AccessIndex = getConstant(Call->getArgOperand(1)); 262 CInfo.Base = Call->getArgOperand(0); 263 CInfo.RecordAlignment = 264 DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType()); 265 return true; 266 } 267 if (GV->getName().startswith("llvm.preserve.struct.access.index")) { 268 CInfo.Kind = BPFPreserveStructAI; 269 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 270 if (!CInfo.Metadata) 271 report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic"); 272 CInfo.AccessIndex = getConstant(Call->getArgOperand(2)); 273 CInfo.Base = Call->getArgOperand(0); 274 CInfo.RecordAlignment = 275 DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType()); 276 return true; 277 } 278 if (GV->getName().startswith("llvm.bpf.preserve.field.info")) { 279 CInfo.Kind = BPFPreserveFieldInfoAI; 280 CInfo.Metadata = nullptr; 281 // Check validity of info_kind as clang did not check this. 282 uint64_t InfoKind = getConstant(Call->getArgOperand(1)); 283 if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND) 284 report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic"); 285 CInfo.AccessIndex = InfoKind; 286 return true; 287 } 288 289 return false; 290 } 291 292 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList, 293 uint32_t DimensionIndex, 294 uint32_t GEPIndex) { 295 for (auto Call : CallList) { 296 uint32_t Dimension = 1; 297 if (DimensionIndex > 0) 298 Dimension = getConstant(Call->getArgOperand(DimensionIndex)); 299 300 Constant *Zero = 301 ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0); 302 SmallVector<Value *, 4> IdxList; 303 for (unsigned I = 0; I < Dimension; ++I) 304 IdxList.push_back(Zero); 305 IdxList.push_back(Call->getArgOperand(GEPIndex)); 306 307 auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0), 308 IdxList, "", Call); 309 Call->replaceAllUsesWith(GEP); 310 Call->eraseFromParent(); 311 } 312 } 313 314 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) { 315 std::vector<CallInst *> PreserveArrayIndexCalls; 316 std::vector<CallInst *> PreserveUnionIndexCalls; 317 std::vector<CallInst *> PreserveStructIndexCalls; 318 bool Found = false; 319 320 for (Function &F : M) 321 for (auto &BB : F) 322 for (auto &I : BB) { 323 auto *Call = dyn_cast<CallInst>(&I); 324 CallInfo CInfo; 325 if (!IsPreserveDIAccessIndexCall(Call, CInfo)) 326 continue; 327 328 Found = true; 329 if (CInfo.Kind == BPFPreserveArrayAI) 330 PreserveArrayIndexCalls.push_back(Call); 331 else if (CInfo.Kind == BPFPreserveUnionAI) 332 PreserveUnionIndexCalls.push_back(Call); 333 else 334 PreserveStructIndexCalls.push_back(Call); 335 } 336 337 // do the following transformation: 338 // . addr = preserve_array_access_index(base, dimension, index) 339 // is transformed to 340 // addr = GEP(base, dimenion's zero's, index) 341 // . addr = preserve_union_access_index(base, di_index) 342 // is transformed to 343 // addr = base, i.e., all usages of "addr" are replaced by "base". 344 // . addr = preserve_struct_access_index(base, gep_index, di_index) 345 // is transformed to 346 // addr = GEP(base, 0, gep_index) 347 replaceWithGEP(PreserveArrayIndexCalls, 1, 2); 348 replaceWithGEP(PreserveStructIndexCalls, 0, 1); 349 for (auto Call : PreserveUnionIndexCalls) { 350 Call->replaceAllUsesWith(Call->getArgOperand(0)); 351 Call->eraseFromParent(); 352 } 353 354 return Found; 355 } 356 357 /// Check whether the access index chain is valid. We check 358 /// here because there may be type casts between two 359 /// access indexes. We want to ensure memory access still valid. 360 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType, 361 uint32_t ParentAI, 362 const MDNode *ChildType) { 363 if (!ChildType) 364 return true; // preserve_field_info, no type comparison needed. 365 366 const DIType *PType = stripQualifiers(cast<DIType>(ParentType)); 367 const DIType *CType = stripQualifiers(cast<DIType>(ChildType)); 368 369 // Child is a derived/pointer type, which is due to type casting. 370 // Pointer type cannot be in the middle of chain. 371 if (isa<DIDerivedType>(CType)) 372 return false; 373 374 // Parent is a pointer type. 375 if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) { 376 if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type) 377 return false; 378 return stripQualifiers(PtrTy->getBaseType()) == CType; 379 } 380 381 // Otherwise, struct/union/array types 382 const auto *PTy = dyn_cast<DICompositeType>(PType); 383 const auto *CTy = dyn_cast<DICompositeType>(CType); 384 assert(PTy && CTy && "ParentType or ChildType is null or not composite"); 385 386 uint32_t PTyTag = PTy->getTag(); 387 assert(PTyTag == dwarf::DW_TAG_array_type || 388 PTyTag == dwarf::DW_TAG_structure_type || 389 PTyTag == dwarf::DW_TAG_union_type); 390 391 uint32_t CTyTag = CTy->getTag(); 392 assert(CTyTag == dwarf::DW_TAG_array_type || 393 CTyTag == dwarf::DW_TAG_structure_type || 394 CTyTag == dwarf::DW_TAG_union_type); 395 396 // Multi dimensional arrays, base element should be the same 397 if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag) 398 return PTy->getBaseType() == CTy->getBaseType(); 399 400 DIType *Ty; 401 if (PTyTag == dwarf::DW_TAG_array_type) 402 Ty = PTy->getBaseType(); 403 else 404 Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]); 405 406 return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy; 407 } 408 409 void BPFAbstractMemberAccess::traceAICall(CallInst *Call, 410 CallInfo &ParentInfo) { 411 for (User *U : Call->users()) { 412 Instruction *Inst = dyn_cast<Instruction>(U); 413 if (!Inst) 414 continue; 415 416 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 417 traceBitCast(BI, Call, ParentInfo); 418 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 419 CallInfo ChildInfo; 420 421 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 422 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 423 ChildInfo.Metadata)) { 424 AIChain[CI] = std::make_pair(Call, ParentInfo); 425 traceAICall(CI, ChildInfo); 426 } else { 427 BaseAICalls[Call] = ParentInfo; 428 } 429 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 430 if (GI->hasAllZeroIndices()) 431 traceGEP(GI, Call, ParentInfo); 432 else 433 BaseAICalls[Call] = ParentInfo; 434 } else { 435 BaseAICalls[Call] = ParentInfo; 436 } 437 } 438 } 439 440 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast, 441 CallInst *Parent, 442 CallInfo &ParentInfo) { 443 for (User *U : BitCast->users()) { 444 Instruction *Inst = dyn_cast<Instruction>(U); 445 if (!Inst) 446 continue; 447 448 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 449 traceBitCast(BI, Parent, ParentInfo); 450 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 451 CallInfo ChildInfo; 452 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 453 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 454 ChildInfo.Metadata)) { 455 AIChain[CI] = std::make_pair(Parent, ParentInfo); 456 traceAICall(CI, ChildInfo); 457 } else { 458 BaseAICalls[Parent] = ParentInfo; 459 } 460 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 461 if (GI->hasAllZeroIndices()) 462 traceGEP(GI, Parent, ParentInfo); 463 else 464 BaseAICalls[Parent] = ParentInfo; 465 } else { 466 BaseAICalls[Parent] = ParentInfo; 467 } 468 } 469 } 470 471 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent, 472 CallInfo &ParentInfo) { 473 for (User *U : GEP->users()) { 474 Instruction *Inst = dyn_cast<Instruction>(U); 475 if (!Inst) 476 continue; 477 478 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 479 traceBitCast(BI, Parent, ParentInfo); 480 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 481 CallInfo ChildInfo; 482 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 483 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 484 ChildInfo.Metadata)) { 485 AIChain[CI] = std::make_pair(Parent, ParentInfo); 486 traceAICall(CI, ChildInfo); 487 } else { 488 BaseAICalls[Parent] = ParentInfo; 489 } 490 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 491 if (GI->hasAllZeroIndices()) 492 traceGEP(GI, Parent, ParentInfo); 493 else 494 BaseAICalls[Parent] = ParentInfo; 495 } else { 496 BaseAICalls[Parent] = ParentInfo; 497 } 498 } 499 } 500 501 void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) { 502 AIChain.clear(); 503 BaseAICalls.clear(); 504 505 for (auto &BB : F) 506 for (auto &I : BB) { 507 CallInfo CInfo; 508 auto *Call = dyn_cast<CallInst>(&I); 509 if (!IsPreserveDIAccessIndexCall(Call, CInfo) || 510 AIChain.find(Call) != AIChain.end()) 511 continue; 512 513 traceAICall(Call, CInfo); 514 } 515 } 516 517 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) { 518 const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue); 519 assert(CV); 520 return CV->getValue().getZExtValue(); 521 } 522 523 /// Get the start and the end of storage offset for \p MemberTy. 524 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy, 525 Align RecordAlignment, 526 uint32_t &StartBitOffset, 527 uint32_t &EndBitOffset) { 528 uint32_t MemberBitSize = MemberTy->getSizeInBits(); 529 uint32_t MemberBitOffset = MemberTy->getOffsetInBits(); 530 uint32_t AlignBits = RecordAlignment.value() * 8; 531 if (RecordAlignment > 8 || MemberBitSize > AlignBits) 532 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, " 533 "requiring too big alignment"); 534 535 StartBitOffset = MemberBitOffset & ~(AlignBits - 1); 536 if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize)) 537 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, " 538 "cross alignment boundary"); 539 EndBitOffset = StartBitOffset + AlignBits; 540 } 541 542 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind, 543 DICompositeType *CTy, 544 uint32_t AccessIndex, 545 uint32_t PatchImm, 546 Align RecordAlignment) { 547 if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE) 548 return 1; 549 550 uint32_t Tag = CTy->getTag(); 551 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) { 552 if (Tag == dwarf::DW_TAG_array_type) { 553 auto *EltTy = stripQualifiers(CTy->getBaseType()); 554 PatchImm += AccessIndex * calcArraySize(CTy, 1) * 555 (EltTy->getSizeInBits() >> 3); 556 } else if (Tag == dwarf::DW_TAG_structure_type) { 557 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 558 if (!MemberTy->isBitField()) { 559 PatchImm += MemberTy->getOffsetInBits() >> 3; 560 } else { 561 unsigned SBitOffset, NextSBitOffset; 562 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, 563 NextSBitOffset); 564 PatchImm += SBitOffset >> 3; 565 } 566 } 567 return PatchImm; 568 } 569 570 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) { 571 if (Tag == dwarf::DW_TAG_array_type) { 572 auto *EltTy = stripQualifiers(CTy->getBaseType()); 573 return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3); 574 } else { 575 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 576 uint32_t SizeInBits = MemberTy->getSizeInBits(); 577 if (!MemberTy->isBitField()) 578 return SizeInBits >> 3; 579 580 unsigned SBitOffset, NextSBitOffset; 581 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 582 SizeInBits = NextSBitOffset - SBitOffset; 583 if (SizeInBits & (SizeInBits - 1)) 584 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info"); 585 return SizeInBits >> 3; 586 } 587 } 588 589 if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) { 590 const DIType *BaseTy; 591 if (Tag == dwarf::DW_TAG_array_type) { 592 // Signedness only checked when final array elements are accessed. 593 if (CTy->getElements().size() != 1) 594 report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info"); 595 BaseTy = stripQualifiers(CTy->getBaseType()); 596 } else { 597 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 598 BaseTy = stripQualifiers(MemberTy->getBaseType()); 599 } 600 601 // Only basic types and enum types have signedness. 602 const auto *BTy = dyn_cast<DIBasicType>(BaseTy); 603 while (!BTy) { 604 const auto *CompTy = dyn_cast<DICompositeType>(BaseTy); 605 // Report an error if the field expression does not have signedness. 606 if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type) 607 report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info"); 608 BaseTy = stripQualifiers(CompTy->getBaseType()); 609 BTy = dyn_cast<DIBasicType>(BaseTy); 610 } 611 uint32_t Encoding = BTy->getEncoding(); 612 return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char); 613 } 614 615 if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) { 616 // The value is loaded into a value with FIELD_BYTE_SIZE size, 617 // and then zero or sign extended to U64. 618 // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations 619 // to extract the original value. 620 const Triple &Triple = TM->getTargetTriple(); 621 DIDerivedType *MemberTy = nullptr; 622 bool IsBitField = false; 623 uint32_t SizeInBits; 624 625 if (Tag == dwarf::DW_TAG_array_type) { 626 auto *EltTy = stripQualifiers(CTy->getBaseType()); 627 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits(); 628 } else { 629 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 630 SizeInBits = MemberTy->getSizeInBits(); 631 IsBitField = MemberTy->isBitField(); 632 } 633 634 if (!IsBitField) { 635 if (SizeInBits > 64) 636 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 637 return 64 - SizeInBits; 638 } 639 640 unsigned SBitOffset, NextSBitOffset; 641 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 642 if (NextSBitOffset - SBitOffset > 64) 643 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 644 645 unsigned OffsetInBits = MemberTy->getOffsetInBits(); 646 if (Triple.getArch() == Triple::bpfel) 647 return SBitOffset + 64 - OffsetInBits - SizeInBits; 648 else 649 return OffsetInBits + 64 - NextSBitOffset; 650 } 651 652 if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) { 653 DIDerivedType *MemberTy = nullptr; 654 bool IsBitField = false; 655 uint32_t SizeInBits; 656 if (Tag == dwarf::DW_TAG_array_type) { 657 auto *EltTy = stripQualifiers(CTy->getBaseType()); 658 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits(); 659 } else { 660 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 661 SizeInBits = MemberTy->getSizeInBits(); 662 IsBitField = MemberTy->isBitField(); 663 } 664 665 if (!IsBitField) { 666 if (SizeInBits > 64) 667 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 668 return 64 - SizeInBits; 669 } 670 671 unsigned SBitOffset, NextSBitOffset; 672 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 673 if (NextSBitOffset - SBitOffset > 64) 674 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 675 676 return 64 - SizeInBits; 677 } 678 679 llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind"); 680 } 681 682 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) { 683 // This is called in error return path, no need to maintain CallStack. 684 while (CallStack.size()) { 685 auto StackElem = CallStack.top(); 686 if (StackElem.second.Kind == BPFPreserveFieldInfoAI) 687 return true; 688 CallStack.pop(); 689 } 690 return false; 691 } 692 693 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base 694 /// pointer of the first preserve_*_access_index call, and construct the access 695 /// string, which will be the name of a global variable. 696 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call, 697 CallInfo &CInfo, 698 std::string &AccessKey, 699 MDNode *&TypeMeta) { 700 Value *Base = nullptr; 701 std::string TypeName; 702 CallInfoStack CallStack; 703 704 // Put the access chain into a stack with the top as the head of the chain. 705 while (Call) { 706 CallStack.push(std::make_pair(Call, CInfo)); 707 CInfo = AIChain[Call].second; 708 Call = AIChain[Call].first; 709 } 710 711 // The access offset from the base of the head of chain is also 712 // calculated here as all debuginfo types are available. 713 714 // Get type name and calculate the first index. 715 // We only want to get type name from typedef, structure or union. 716 // If user wants a relocation like 717 // int *p; ... __builtin_preserve_access_index(&p[4]) ... 718 // or 719 // int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ... 720 // we will skip them. 721 uint32_t FirstIndex = 0; 722 uint32_t PatchImm = 0; // AccessOffset or the requested field info 723 uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET; 724 while (CallStack.size()) { 725 auto StackElem = CallStack.top(); 726 Call = StackElem.first; 727 CInfo = StackElem.second; 728 729 if (!Base) 730 Base = CInfo.Base; 731 732 DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata), 733 false); 734 DIType *Ty = stripQualifiers(PossibleTypeDef); 735 if (CInfo.Kind == BPFPreserveUnionAI || 736 CInfo.Kind == BPFPreserveStructAI) { 737 // struct or union type. If the typedef is in the metadata, always 738 // use the typedef. 739 TypeName = std::string(PossibleTypeDef->getName()); 740 TypeMeta = PossibleTypeDef; 741 PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3); 742 break; 743 } 744 745 assert(CInfo.Kind == BPFPreserveArrayAI); 746 747 // Array entries will always be consumed for accumulative initial index. 748 CallStack.pop(); 749 750 // BPFPreserveArrayAI 751 uint64_t AccessIndex = CInfo.AccessIndex; 752 753 DIType *BaseTy = nullptr; 754 bool CheckElemType = false; 755 if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) { 756 // array type 757 assert(CTy->getTag() == dwarf::DW_TAG_array_type); 758 759 760 FirstIndex += AccessIndex * calcArraySize(CTy, 1); 761 BaseTy = stripQualifiers(CTy->getBaseType()); 762 CheckElemType = CTy->getElements().size() == 1; 763 } else { 764 // pointer type 765 auto *DTy = cast<DIDerivedType>(Ty); 766 assert(DTy->getTag() == dwarf::DW_TAG_pointer_type); 767 768 BaseTy = stripQualifiers(DTy->getBaseType()); 769 CTy = dyn_cast<DICompositeType>(BaseTy); 770 if (!CTy) { 771 CheckElemType = true; 772 } else if (CTy->getTag() != dwarf::DW_TAG_array_type) { 773 FirstIndex += AccessIndex; 774 CheckElemType = true; 775 } else { 776 FirstIndex += AccessIndex * calcArraySize(CTy, 0); 777 } 778 } 779 780 if (CheckElemType) { 781 auto *CTy = dyn_cast<DICompositeType>(BaseTy); 782 if (!CTy) { 783 if (HasPreserveFieldInfoCall(CallStack)) 784 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic"); 785 return nullptr; 786 } 787 788 unsigned CTag = CTy->getTag(); 789 if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) { 790 TypeName = std::string(CTy->getName()); 791 } else { 792 if (HasPreserveFieldInfoCall(CallStack)) 793 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic"); 794 return nullptr; 795 } 796 TypeMeta = CTy; 797 PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3); 798 break; 799 } 800 } 801 assert(TypeName.size()); 802 AccessKey += std::to_string(FirstIndex); 803 804 // Traverse the rest of access chain to complete offset calculation 805 // and access key construction. 806 while (CallStack.size()) { 807 auto StackElem = CallStack.top(); 808 CInfo = StackElem.second; 809 CallStack.pop(); 810 811 if (CInfo.Kind == BPFPreserveFieldInfoAI) { 812 InfoKind = CInfo.AccessIndex; 813 break; 814 } 815 816 // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI, 817 // the action will be extracting field info. 818 if (CallStack.size()) { 819 auto StackElem2 = CallStack.top(); 820 CallInfo CInfo2 = StackElem2.second; 821 if (CInfo2.Kind == BPFPreserveFieldInfoAI) { 822 InfoKind = CInfo2.AccessIndex; 823 assert(CallStack.size() == 1); 824 } 825 } 826 827 // Access Index 828 uint64_t AccessIndex = CInfo.AccessIndex; 829 AccessKey += ":" + std::to_string(AccessIndex); 830 831 MDNode *MDN = CInfo.Metadata; 832 // At this stage, it cannot be pointer type. 833 auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN))); 834 PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm, 835 CInfo.RecordAlignment); 836 } 837 838 // Access key is the 839 // "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" + 840 // access string, 841 // uniquely identifying one relocation. 842 // The prefix "llvm." indicates this is a temporary global, which should 843 // not be emitted to ELF file. 844 AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" + 845 std::to_string(PatchImm) + "$" + AccessKey; 846 847 return Base; 848 } 849 850 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do 851 /// transformation to a chain of relocable GEPs. 852 bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call, 853 CallInfo &CInfo) { 854 std::string AccessKey; 855 MDNode *TypeMeta; 856 Value *Base = 857 computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta); 858 if (!Base) 859 return false; 860 861 BasicBlock *BB = Call->getParent(); 862 GlobalVariable *GV; 863 864 if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) { 865 IntegerType *VarType; 866 if (CInfo.Kind == BPFPreserveFieldInfoAI) 867 VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value 868 else 869 VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr arith 870 871 GV = new GlobalVariable(M, VarType, false, GlobalVariable::ExternalLinkage, 872 NULL, AccessKey); 873 GV->addAttribute(BPFCoreSharedInfo::AmaAttr); 874 GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta); 875 GEPGlobals[AccessKey] = GV; 876 } else { 877 GV = GEPGlobals[AccessKey]; 878 } 879 880 if (CInfo.Kind == BPFPreserveFieldInfoAI) { 881 // Load the global variable which represents the returned field info. 882 auto *LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", 883 Call); 884 Call->replaceAllUsesWith(LDInst); 885 Call->eraseFromParent(); 886 return true; 887 } 888 889 // For any original GEP Call and Base %2 like 890 // %4 = bitcast %struct.net_device** %dev1 to i64* 891 // it is transformed to: 892 // %6 = load sk_buff:50:$0:0:0:2:0 893 // %7 = bitcast %struct.sk_buff* %2 to i8* 894 // %8 = getelementptr i8, i8* %7, %6 895 // %9 = bitcast i8* %8 to i64* 896 // using %9 instead of %4 897 // The original Call inst is removed. 898 899 // Load the global variable. 900 auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call); 901 902 // Generate a BitCast 903 auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext())); 904 BB->getInstList().insert(Call->getIterator(), BCInst); 905 906 // Generate a GetElementPtr 907 auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()), 908 BCInst, LDInst); 909 BB->getInstList().insert(Call->getIterator(), GEP); 910 911 // Generate a BitCast 912 auto *BCInst2 = new BitCastInst(GEP, Call->getType()); 913 BB->getInstList().insert(Call->getIterator(), BCInst2); 914 915 Call->replaceAllUsesWith(BCInst2); 916 Call->eraseFromParent(); 917 918 return true; 919 } 920 921 bool BPFAbstractMemberAccess::doTransformation(Module &M) { 922 bool Transformed = false; 923 924 for (Function &F : M) { 925 // Collect PreserveDIAccessIndex Intrinsic call chains. 926 // The call chains will be used to generate the access 927 // patterns similar to GEP. 928 collectAICallChains(M, F); 929 930 for (auto &C : BaseAICalls) 931 Transformed = transformGEPChain(M, C.first, C.second) || Transformed; 932 } 933 934 return removePreserveAccessIndexIntrinsic(M) || Transformed; 935 } 936