xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp (revision c5c02a131a0e2ef52771e683269bc8778fe511f3)
1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/BinaryFormat/Dwarf.h"
81 #include "llvm/DebugInfo/BTF/BTF.h"
82 #include "llvm/IR/DebugInfoMetadata.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicsBPF.h"
87 #include "llvm/IR/Module.h"
88 #include "llvm/IR/PassManager.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/IR/ValueHandle.h"
93 #include "llvm/Pass.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include <stack>
96 
97 #define DEBUG_TYPE "bpf-abstract-member-access"
98 
99 namespace llvm {
100 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
101 uint32_t BPFCoreSharedInfo::SeqNum;
102 
103 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
104                                                   Instruction *Input,
105                                                   Instruction *Before) {
106   Function *Fn = Intrinsic::getDeclaration(
107       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
108   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
109                                          BPFCoreSharedInfo::SeqNum++);
110 
111   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
112   NewInst->insertBefore(Before);
113   return NewInst;
114 }
115 } // namespace llvm
116 
117 using namespace llvm;
118 
119 namespace {
120 class BPFAbstractMemberAccess final {
121 public:
122   BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
123 
124   bool run(Function &F);
125 
126   struct CallInfo {
127     uint32_t Kind;
128     uint32_t AccessIndex;
129     MaybeAlign RecordAlignment;
130     MDNode *Metadata;
131     WeakTrackingVH Base;
132   };
133   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
134 
135 private:
136   enum : uint32_t {
137     BPFPreserveArrayAI = 1,
138     BPFPreserveUnionAI = 2,
139     BPFPreserveStructAI = 3,
140     BPFPreserveFieldInfoAI = 4,
141   };
142 
143   TargetMachine *TM;
144   const DataLayout *DL = nullptr;
145   Module *M = nullptr;
146 
147   static std::map<std::string, GlobalVariable *> GEPGlobals;
148   // A map to link preserve_*_access_index intrinsic calls.
149   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
150   // A map to hold all the base preserve_*_access_index intrinsic calls.
151   // The base call is not an input of any other preserve_*
152   // intrinsics.
153   std::map<CallInst *, CallInfo> BaseAICalls;
154   // A map to hold <AnonRecord, TypeDef> relationships
155   std::map<DICompositeType *, DIDerivedType *> AnonRecords;
156 
157   void CheckAnonRecordType(DIDerivedType *ParentTy, DIType *Ty);
158   void CheckCompositeType(DIDerivedType *ParentTy, DICompositeType *CTy);
159   void CheckDerivedType(DIDerivedType *ParentTy, DIDerivedType *DTy);
160   void ResetMetadata(struct CallInfo &CInfo);
161 
162   bool doTransformation(Function &F);
163 
164   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
165   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
166                     CallInfo &ParentInfo);
167   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
168                 CallInfo &ParentInfo);
169   void collectAICallChains(Function &F);
170 
171   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
172   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
173                       const MDNode *ChildMeta);
174   bool removePreserveAccessIndexIntrinsic(Function &F);
175   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
176   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
177                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
178   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
179                         uint32_t AccessIndex, uint32_t PatchImm,
180                         MaybeAlign RecordAlignment);
181 
182   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
183                                  std::string &AccessKey, MDNode *&BaseMeta);
184   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
185                            std::string &AccessKey, bool &IsInt32Ret);
186   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
187 };
188 
189 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
190 } // End anonymous namespace
191 
192 bool BPFAbstractMemberAccess::run(Function &F) {
193   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
194 
195   M = F.getParent();
196   if (!M)
197     return false;
198 
199   // Bail out if no debug info.
200   if (M->debug_compile_units().empty())
201     return false;
202 
203   // For each argument/return/local_variable type, trace the type
204   // pattern like '[derived_type]* [composite_type]' to check
205   // and remember (anon record -> typedef) relations where the
206   // anon record is defined as
207   //   typedef [const/volatile/restrict]* [anon record]
208   DISubprogram *SP = F.getSubprogram();
209   if (SP && SP->isDefinition()) {
210     for (DIType *Ty: SP->getType()->getTypeArray())
211       CheckAnonRecordType(nullptr, Ty);
212     for (const DINode *DN : SP->getRetainedNodes()) {
213       if (const auto *DV = dyn_cast<DILocalVariable>(DN))
214         CheckAnonRecordType(nullptr, DV->getType());
215     }
216   }
217 
218   DL = &M->getDataLayout();
219   return doTransformation(F);
220 }
221 
222 void BPFAbstractMemberAccess::ResetMetadata(struct CallInfo &CInfo) {
223   if (auto Ty = dyn_cast<DICompositeType>(CInfo.Metadata)) {
224     if (AnonRecords.find(Ty) != AnonRecords.end()) {
225       if (AnonRecords[Ty] != nullptr)
226         CInfo.Metadata = AnonRecords[Ty];
227     }
228   }
229 }
230 
231 void BPFAbstractMemberAccess::CheckCompositeType(DIDerivedType *ParentTy,
232                                                  DICompositeType *CTy) {
233   if (!CTy->getName().empty() || !ParentTy ||
234       ParentTy->getTag() != dwarf::DW_TAG_typedef)
235     return;
236 
237   if (AnonRecords.find(CTy) == AnonRecords.end()) {
238     AnonRecords[CTy] = ParentTy;
239     return;
240   }
241 
242   // Two or more typedef's may point to the same anon record.
243   // If this is the case, set the typedef DIType to be nullptr
244   // to indicate the duplication case.
245   DIDerivedType *CurrTy = AnonRecords[CTy];
246   if (CurrTy == ParentTy)
247     return;
248   AnonRecords[CTy] = nullptr;
249 }
250 
251 void BPFAbstractMemberAccess::CheckDerivedType(DIDerivedType *ParentTy,
252                                                DIDerivedType *DTy) {
253   DIType *BaseType = DTy->getBaseType();
254   if (!BaseType)
255     return;
256 
257   unsigned Tag = DTy->getTag();
258   if (Tag == dwarf::DW_TAG_pointer_type)
259     CheckAnonRecordType(nullptr, BaseType);
260   else if (Tag == dwarf::DW_TAG_typedef)
261     CheckAnonRecordType(DTy, BaseType);
262   else
263     CheckAnonRecordType(ParentTy, BaseType);
264 }
265 
266 void BPFAbstractMemberAccess::CheckAnonRecordType(DIDerivedType *ParentTy,
267                                                   DIType *Ty) {
268   if (!Ty)
269     return;
270 
271   if (auto *CTy = dyn_cast<DICompositeType>(Ty))
272     return CheckCompositeType(ParentTy, CTy);
273   else if (auto *DTy = dyn_cast<DIDerivedType>(Ty))
274     return CheckDerivedType(ParentTy, DTy);
275 }
276 
277 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
278   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
279       Tag != dwarf::DW_TAG_volatile_type &&
280       Tag != dwarf::DW_TAG_restrict_type &&
281       Tag != dwarf::DW_TAG_member)
282     return false;
283   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
284     return false;
285   return true;
286 }
287 
288 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
289   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
290     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
291       break;
292     Ty = DTy->getBaseType();
293   }
294   return Ty;
295 }
296 
297 static const DIType * stripQualifiers(const DIType *Ty) {
298   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
299     if (!SkipDIDerivedTag(DTy->getTag(), true))
300       break;
301     Ty = DTy->getBaseType();
302   }
303   return Ty;
304 }
305 
306 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
307   DINodeArray Elements = CTy->getElements();
308   uint32_t DimSize = 1;
309   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
310     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
311       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
312         const DISubrange *SR = cast<DISubrange>(Element);
313         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
314         DimSize *= CI->getSExtValue();
315       }
316   }
317 
318   return DimSize;
319 }
320 
321 static Type *getBaseElementType(const CallInst *Call) {
322   // Element type is stored in an elementtype() attribute on the first param.
323   return Call->getParamElementType(0);
324 }
325 
326 static uint64_t getConstant(const Value *IndexValue) {
327   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
328   assert(CV);
329   return CV->getValue().getZExtValue();
330 }
331 
332 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
333 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
334                                                           CallInfo &CInfo) {
335   if (!Call)
336     return false;
337 
338   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
339   if (!GV)
340     return false;
341   if (GV->getName().starts_with("llvm.preserve.array.access.index")) {
342     CInfo.Kind = BPFPreserveArrayAI;
343     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
344     if (!CInfo.Metadata)
345       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
346     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
347     CInfo.Base = Call->getArgOperand(0);
348     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
349     return true;
350   }
351   if (GV->getName().starts_with("llvm.preserve.union.access.index")) {
352     CInfo.Kind = BPFPreserveUnionAI;
353     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
354     if (!CInfo.Metadata)
355       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
356     ResetMetadata(CInfo);
357     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
358     CInfo.Base = Call->getArgOperand(0);
359     return true;
360   }
361   if (GV->getName().starts_with("llvm.preserve.struct.access.index")) {
362     CInfo.Kind = BPFPreserveStructAI;
363     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
364     if (!CInfo.Metadata)
365       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
366     ResetMetadata(CInfo);
367     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
368     CInfo.Base = Call->getArgOperand(0);
369     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
370     return true;
371   }
372   if (GV->getName().starts_with("llvm.bpf.preserve.field.info")) {
373     CInfo.Kind = BPFPreserveFieldInfoAI;
374     CInfo.Metadata = nullptr;
375     // Check validity of info_kind as clang did not check this.
376     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
377     if (InfoKind >= BTF::MAX_FIELD_RELOC_KIND)
378       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
379     CInfo.AccessIndex = InfoKind;
380     return true;
381   }
382   if (GV->getName().starts_with("llvm.bpf.preserve.type.info")) {
383     CInfo.Kind = BPFPreserveFieldInfoAI;
384     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
385     if (!CInfo.Metadata)
386       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
387     uint64_t Flag = getConstant(Call->getArgOperand(1));
388     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
389       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
390     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
391       CInfo.AccessIndex = BTF::TYPE_EXISTENCE;
392     else if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_MATCH)
393       CInfo.AccessIndex = BTF::TYPE_MATCH;
394     else
395       CInfo.AccessIndex = BTF::TYPE_SIZE;
396     return true;
397   }
398   if (GV->getName().starts_with("llvm.bpf.preserve.enum.value")) {
399     CInfo.Kind = BPFPreserveFieldInfoAI;
400     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
401     if (!CInfo.Metadata)
402       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
403     uint64_t Flag = getConstant(Call->getArgOperand(2));
404     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
405       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
406     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
407       CInfo.AccessIndex = BTF::ENUM_VALUE_EXISTENCE;
408     else
409       CInfo.AccessIndex = BTF::ENUM_VALUE;
410     return true;
411   }
412 
413   return false;
414 }
415 
416 static void replaceWithGEP(CallInst *Call, uint32_t DimensionIndex,
417                            uint32_t GEPIndex) {
418   uint32_t Dimension = 1;
419   if (DimensionIndex > 0)
420     Dimension = getConstant(Call->getArgOperand(DimensionIndex));
421 
422   Constant *Zero =
423       ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
424   SmallVector<Value *, 4> IdxList;
425   for (unsigned I = 0; I < Dimension; ++I)
426     IdxList.push_back(Zero);
427   IdxList.push_back(Call->getArgOperand(GEPIndex));
428 
429   auto *GEP = GetElementPtrInst::CreateInBounds(getBaseElementType(Call),
430                                                 Call->getArgOperand(0), IdxList,
431                                                 "", Call->getIterator());
432   Call->replaceAllUsesWith(GEP);
433   Call->eraseFromParent();
434 }
435 
436 void BPFCoreSharedInfo::removeArrayAccessCall(CallInst *Call) {
437   replaceWithGEP(Call, 1, 2);
438 }
439 
440 void BPFCoreSharedInfo::removeStructAccessCall(CallInst *Call) {
441   replaceWithGEP(Call, 0, 1);
442 }
443 
444 void BPFCoreSharedInfo::removeUnionAccessCall(CallInst *Call) {
445   Call->replaceAllUsesWith(Call->getArgOperand(0));
446   Call->eraseFromParent();
447 }
448 
449 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
450   std::vector<CallInst *> PreserveArrayIndexCalls;
451   std::vector<CallInst *> PreserveUnionIndexCalls;
452   std::vector<CallInst *> PreserveStructIndexCalls;
453   bool Found = false;
454 
455   for (auto &BB : F)
456     for (auto &I : BB) {
457       auto *Call = dyn_cast<CallInst>(&I);
458       CallInfo CInfo;
459       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
460         continue;
461 
462       Found = true;
463       if (CInfo.Kind == BPFPreserveArrayAI)
464         PreserveArrayIndexCalls.push_back(Call);
465       else if (CInfo.Kind == BPFPreserveUnionAI)
466         PreserveUnionIndexCalls.push_back(Call);
467       else
468         PreserveStructIndexCalls.push_back(Call);
469     }
470 
471   // do the following transformation:
472   // . addr = preserve_array_access_index(base, dimension, index)
473   //   is transformed to
474   //     addr = GEP(base, dimenion's zero's, index)
475   // . addr = preserve_union_access_index(base, di_index)
476   //   is transformed to
477   //     addr = base, i.e., all usages of "addr" are replaced by "base".
478   // . addr = preserve_struct_access_index(base, gep_index, di_index)
479   //   is transformed to
480   //     addr = GEP(base, 0, gep_index)
481   for (CallInst *Call : PreserveArrayIndexCalls)
482     BPFCoreSharedInfo::removeArrayAccessCall(Call);
483   for (CallInst *Call : PreserveStructIndexCalls)
484     BPFCoreSharedInfo::removeStructAccessCall(Call);
485   for (CallInst *Call : PreserveUnionIndexCalls)
486     BPFCoreSharedInfo::removeUnionAccessCall(Call);
487 
488   return Found;
489 }
490 
491 /// Check whether the access index chain is valid. We check
492 /// here because there may be type casts between two
493 /// access indexes. We want to ensure memory access still valid.
494 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
495                                              uint32_t ParentAI,
496                                              const MDNode *ChildType) {
497   if (!ChildType)
498     return true; // preserve_field_info, no type comparison needed.
499 
500   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
501   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
502 
503   // Child is a derived/pointer type, which is due to type casting.
504   // Pointer type cannot be in the middle of chain.
505   if (isa<DIDerivedType>(CType))
506     return false;
507 
508   // Parent is a pointer type.
509   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
510     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
511       return false;
512     return stripQualifiers(PtrTy->getBaseType()) == CType;
513   }
514 
515   // Otherwise, struct/union/array types
516   const auto *PTy = dyn_cast<DICompositeType>(PType);
517   const auto *CTy = dyn_cast<DICompositeType>(CType);
518   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
519 
520   uint32_t PTyTag = PTy->getTag();
521   assert(PTyTag == dwarf::DW_TAG_array_type ||
522          PTyTag == dwarf::DW_TAG_structure_type ||
523          PTyTag == dwarf::DW_TAG_union_type);
524 
525   uint32_t CTyTag = CTy->getTag();
526   assert(CTyTag == dwarf::DW_TAG_array_type ||
527          CTyTag == dwarf::DW_TAG_structure_type ||
528          CTyTag == dwarf::DW_TAG_union_type);
529 
530   // Multi dimensional arrays, base element should be the same
531   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
532     return PTy->getBaseType() == CTy->getBaseType();
533 
534   DIType *Ty;
535   if (PTyTag == dwarf::DW_TAG_array_type)
536     Ty = PTy->getBaseType();
537   else
538     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
539 
540   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
541 }
542 
543 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
544                                           CallInfo &ParentInfo) {
545   for (User *U : Call->users()) {
546     Instruction *Inst = dyn_cast<Instruction>(U);
547     if (!Inst)
548       continue;
549 
550     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
551       traceBitCast(BI, Call, ParentInfo);
552     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
553       CallInfo ChildInfo;
554 
555       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
556           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
557                          ChildInfo.Metadata)) {
558         AIChain[CI] = std::make_pair(Call, ParentInfo);
559         traceAICall(CI, ChildInfo);
560       } else {
561         BaseAICalls[Call] = ParentInfo;
562       }
563     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
564       if (GI->hasAllZeroIndices())
565         traceGEP(GI, Call, ParentInfo);
566       else
567         BaseAICalls[Call] = ParentInfo;
568     } else {
569       BaseAICalls[Call] = ParentInfo;
570     }
571   }
572 }
573 
574 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
575                                            CallInst *Parent,
576                                            CallInfo &ParentInfo) {
577   for (User *U : BitCast->users()) {
578     Instruction *Inst = dyn_cast<Instruction>(U);
579     if (!Inst)
580       continue;
581 
582     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
583       traceBitCast(BI, Parent, ParentInfo);
584     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
585       CallInfo ChildInfo;
586       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
587           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
588                          ChildInfo.Metadata)) {
589         AIChain[CI] = std::make_pair(Parent, ParentInfo);
590         traceAICall(CI, ChildInfo);
591       } else {
592         BaseAICalls[Parent] = ParentInfo;
593       }
594     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
595       if (GI->hasAllZeroIndices())
596         traceGEP(GI, Parent, ParentInfo);
597       else
598         BaseAICalls[Parent] = ParentInfo;
599     } else {
600       BaseAICalls[Parent] = ParentInfo;
601     }
602   }
603 }
604 
605 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
606                                        CallInfo &ParentInfo) {
607   for (User *U : GEP->users()) {
608     Instruction *Inst = dyn_cast<Instruction>(U);
609     if (!Inst)
610       continue;
611 
612     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
613       traceBitCast(BI, Parent, ParentInfo);
614     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
615       CallInfo ChildInfo;
616       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
617           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
618                          ChildInfo.Metadata)) {
619         AIChain[CI] = std::make_pair(Parent, ParentInfo);
620         traceAICall(CI, ChildInfo);
621       } else {
622         BaseAICalls[Parent] = ParentInfo;
623       }
624     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
625       if (GI->hasAllZeroIndices())
626         traceGEP(GI, Parent, ParentInfo);
627       else
628         BaseAICalls[Parent] = ParentInfo;
629     } else {
630       BaseAICalls[Parent] = ParentInfo;
631     }
632   }
633 }
634 
635 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
636   AIChain.clear();
637   BaseAICalls.clear();
638 
639   for (auto &BB : F)
640     for (auto &I : BB) {
641       CallInfo CInfo;
642       auto *Call = dyn_cast<CallInst>(&I);
643       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
644           AIChain.find(Call) != AIChain.end())
645         continue;
646 
647       traceAICall(Call, CInfo);
648     }
649 }
650 
651 /// Get the start and the end of storage offset for \p MemberTy.
652 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
653                                                  Align RecordAlignment,
654                                                  uint32_t &StartBitOffset,
655                                                  uint32_t &EndBitOffset) {
656   uint32_t MemberBitSize = MemberTy->getSizeInBits();
657   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
658 
659   if (RecordAlignment > 8) {
660     // If the Bits are within an aligned 8-byte, set the RecordAlignment
661     // to 8, other report the fatal error.
662     if (MemberBitOffset / 64 != (MemberBitOffset + MemberBitSize) / 64)
663       report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
664                          "requiring too big alignment");
665     RecordAlignment = Align(8);
666   }
667 
668   uint32_t AlignBits = RecordAlignment.value() * 8;
669   if (MemberBitSize > AlignBits)
670     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
671                        "bitfield size greater than record alignment");
672 
673   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
674   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
675     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
676                        "cross alignment boundary");
677   EndBitOffset = StartBitOffset + AlignBits;
678 }
679 
680 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
681                                                DICompositeType *CTy,
682                                                uint32_t AccessIndex,
683                                                uint32_t PatchImm,
684                                                MaybeAlign RecordAlignment) {
685   if (InfoKind == BTF::FIELD_EXISTENCE)
686     return 1;
687 
688   uint32_t Tag = CTy->getTag();
689   if (InfoKind == BTF::FIELD_BYTE_OFFSET) {
690     if (Tag == dwarf::DW_TAG_array_type) {
691       auto *EltTy = stripQualifiers(CTy->getBaseType());
692       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
693                   (EltTy->getSizeInBits() >> 3);
694     } else if (Tag == dwarf::DW_TAG_structure_type) {
695       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
696       if (!MemberTy->isBitField()) {
697         PatchImm += MemberTy->getOffsetInBits() >> 3;
698       } else {
699         unsigned SBitOffset, NextSBitOffset;
700         GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
701                            NextSBitOffset);
702         PatchImm += SBitOffset >> 3;
703       }
704     }
705     return PatchImm;
706   }
707 
708   if (InfoKind == BTF::FIELD_BYTE_SIZE) {
709     if (Tag == dwarf::DW_TAG_array_type) {
710       auto *EltTy = stripQualifiers(CTy->getBaseType());
711       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
712     } else {
713       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
714       uint32_t SizeInBits = MemberTy->getSizeInBits();
715       if (!MemberTy->isBitField())
716         return SizeInBits >> 3;
717 
718       unsigned SBitOffset, NextSBitOffset;
719       GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
720                          NextSBitOffset);
721       SizeInBits = NextSBitOffset - SBitOffset;
722       if (SizeInBits & (SizeInBits - 1))
723         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
724       return SizeInBits >> 3;
725     }
726   }
727 
728   if (InfoKind == BTF::FIELD_SIGNEDNESS) {
729     const DIType *BaseTy;
730     if (Tag == dwarf::DW_TAG_array_type) {
731       // Signedness only checked when final array elements are accessed.
732       if (CTy->getElements().size() != 1)
733         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
734       BaseTy = stripQualifiers(CTy->getBaseType());
735     } else {
736       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
737       BaseTy = stripQualifiers(MemberTy->getBaseType());
738     }
739 
740     // Only basic types and enum types have signedness.
741     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
742     while (!BTy) {
743       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
744       // Report an error if the field expression does not have signedness.
745       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
746         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
747       BaseTy = stripQualifiers(CompTy->getBaseType());
748       BTy = dyn_cast<DIBasicType>(BaseTy);
749     }
750     uint32_t Encoding = BTy->getEncoding();
751     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
752   }
753 
754   if (InfoKind == BTF::FIELD_LSHIFT_U64) {
755     // The value is loaded into a value with FIELD_BYTE_SIZE size,
756     // and then zero or sign extended to U64.
757     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
758     // to extract the original value.
759     const Triple &Triple = TM->getTargetTriple();
760     DIDerivedType *MemberTy = nullptr;
761     bool IsBitField = false;
762     uint32_t SizeInBits;
763 
764     if (Tag == dwarf::DW_TAG_array_type) {
765       auto *EltTy = stripQualifiers(CTy->getBaseType());
766       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
767     } else {
768       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
769       SizeInBits = MemberTy->getSizeInBits();
770       IsBitField = MemberTy->isBitField();
771     }
772 
773     if (!IsBitField) {
774       if (SizeInBits > 64)
775         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
776       return 64 - SizeInBits;
777     }
778 
779     unsigned SBitOffset, NextSBitOffset;
780     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
781     if (NextSBitOffset - SBitOffset > 64)
782       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
783 
784     unsigned OffsetInBits = MemberTy->getOffsetInBits();
785     if (Triple.getArch() == Triple::bpfel)
786       return SBitOffset + 64 - OffsetInBits - SizeInBits;
787     else
788       return OffsetInBits + 64 - NextSBitOffset;
789   }
790 
791   if (InfoKind == BTF::FIELD_RSHIFT_U64) {
792     DIDerivedType *MemberTy = nullptr;
793     bool IsBitField = false;
794     uint32_t SizeInBits;
795     if (Tag == dwarf::DW_TAG_array_type) {
796       auto *EltTy = stripQualifiers(CTy->getBaseType());
797       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
798     } else {
799       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
800       SizeInBits = MemberTy->getSizeInBits();
801       IsBitField = MemberTy->isBitField();
802     }
803 
804     if (!IsBitField) {
805       if (SizeInBits > 64)
806         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
807       return 64 - SizeInBits;
808     }
809 
810     unsigned SBitOffset, NextSBitOffset;
811     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
812     if (NextSBitOffset - SBitOffset > 64)
813       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
814 
815     return 64 - SizeInBits;
816   }
817 
818   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
819 }
820 
821 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
822   // This is called in error return path, no need to maintain CallStack.
823   while (CallStack.size()) {
824     auto StackElem = CallStack.top();
825     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
826       return true;
827     CallStack.pop();
828   }
829   return false;
830 }
831 
832 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
833 /// pointer of the first preserve_*_access_index call, and construct the access
834 /// string, which will be the name of a global variable.
835 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
836                                                         CallInfo &CInfo,
837                                                         std::string &AccessKey,
838                                                         MDNode *&TypeMeta) {
839   Value *Base = nullptr;
840   std::string TypeName;
841   CallInfoStack CallStack;
842 
843   // Put the access chain into a stack with the top as the head of the chain.
844   while (Call) {
845     CallStack.push(std::make_pair(Call, CInfo));
846     CInfo = AIChain[Call].second;
847     Call = AIChain[Call].first;
848   }
849 
850   // The access offset from the base of the head of chain is also
851   // calculated here as all debuginfo types are available.
852 
853   // Get type name and calculate the first index.
854   // We only want to get type name from typedef, structure or union.
855   // If user wants a relocation like
856   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
857   // or
858   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
859   // we will skip them.
860   uint32_t FirstIndex = 0;
861   uint32_t PatchImm = 0; // AccessOffset or the requested field info
862   uint32_t InfoKind = BTF::FIELD_BYTE_OFFSET;
863   while (CallStack.size()) {
864     auto StackElem = CallStack.top();
865     Call = StackElem.first;
866     CInfo = StackElem.second;
867 
868     if (!Base)
869       Base = CInfo.Base;
870 
871     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
872                                               false);
873     DIType *Ty = stripQualifiers(PossibleTypeDef);
874     if (CInfo.Kind == BPFPreserveUnionAI ||
875         CInfo.Kind == BPFPreserveStructAI) {
876       // struct or union type. If the typedef is in the metadata, always
877       // use the typedef.
878       TypeName = std::string(PossibleTypeDef->getName());
879       TypeMeta = PossibleTypeDef;
880       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
881       break;
882     }
883 
884     assert(CInfo.Kind == BPFPreserveArrayAI);
885 
886     // Array entries will always be consumed for accumulative initial index.
887     CallStack.pop();
888 
889     // BPFPreserveArrayAI
890     uint64_t AccessIndex = CInfo.AccessIndex;
891 
892     DIType *BaseTy = nullptr;
893     bool CheckElemType = false;
894     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
895       // array type
896       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
897 
898 
899       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
900       BaseTy = stripQualifiers(CTy->getBaseType());
901       CheckElemType = CTy->getElements().size() == 1;
902     } else {
903       // pointer type
904       auto *DTy = cast<DIDerivedType>(Ty);
905       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
906 
907       BaseTy = stripQualifiers(DTy->getBaseType());
908       CTy = dyn_cast<DICompositeType>(BaseTy);
909       if (!CTy) {
910         CheckElemType = true;
911       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
912         FirstIndex += AccessIndex;
913         CheckElemType = true;
914       } else {
915         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
916       }
917     }
918 
919     if (CheckElemType) {
920       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
921       if (!CTy) {
922         if (HasPreserveFieldInfoCall(CallStack))
923           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
924         return nullptr;
925       }
926 
927       unsigned CTag = CTy->getTag();
928       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
929         TypeName = std::string(CTy->getName());
930       } else {
931         if (HasPreserveFieldInfoCall(CallStack))
932           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
933         return nullptr;
934       }
935       TypeMeta = CTy;
936       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
937       break;
938     }
939   }
940   assert(TypeName.size());
941   AccessKey += std::to_string(FirstIndex);
942 
943   // Traverse the rest of access chain to complete offset calculation
944   // and access key construction.
945   while (CallStack.size()) {
946     auto StackElem = CallStack.top();
947     CInfo = StackElem.second;
948     CallStack.pop();
949 
950     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
951       InfoKind = CInfo.AccessIndex;
952       if (InfoKind == BTF::FIELD_EXISTENCE)
953         PatchImm = 1;
954       break;
955     }
956 
957     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
958     // the action will be extracting field info.
959     if (CallStack.size()) {
960       auto StackElem2 = CallStack.top();
961       CallInfo CInfo2 = StackElem2.second;
962       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
963         InfoKind = CInfo2.AccessIndex;
964         assert(CallStack.size() == 1);
965       }
966     }
967 
968     // Access Index
969     uint64_t AccessIndex = CInfo.AccessIndex;
970     AccessKey += ":" + std::to_string(AccessIndex);
971 
972     MDNode *MDN = CInfo.Metadata;
973     // At this stage, it cannot be pointer type.
974     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
975     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
976                             CInfo.RecordAlignment);
977   }
978 
979   // Access key is the
980   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
981   //   access string,
982   // uniquely identifying one relocation.
983   // The prefix "llvm." indicates this is a temporary global, which should
984   // not be emitted to ELF file.
985   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
986               std::to_string(PatchImm) + "$" + AccessKey;
987 
988   return Base;
989 }
990 
991 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
992                                                   CallInfo &CInfo,
993                                                   std::string &AccessKey,
994                                                   bool &IsInt32Ret) {
995   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
996   assert(!Ty->getName().empty());
997 
998   int64_t PatchImm;
999   std::string AccessStr("0");
1000   if (CInfo.AccessIndex == BTF::TYPE_EXISTENCE ||
1001       CInfo.AccessIndex == BTF::TYPE_MATCH) {
1002     PatchImm = 1;
1003   } else if (CInfo.AccessIndex == BTF::TYPE_SIZE) {
1004     // typedef debuginfo type has size 0, get the eventual base type.
1005     DIType *BaseTy = stripQualifiers(Ty, true);
1006     PatchImm = BaseTy->getSizeInBits() / 8;
1007   } else {
1008     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
1009     IsInt32Ret = false;
1010 
1011     // The argument could be a global variable or a getelementptr with base to
1012     // a global variable depending on whether the clang option `opaque-options`
1013     // is set or not.
1014     const GlobalVariable *GV =
1015         cast<GlobalVariable>(Call->getArgOperand(1)->stripPointerCasts());
1016     assert(GV->hasInitializer());
1017     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
1018     assert(DA->isString());
1019     StringRef ValueStr = DA->getAsString();
1020 
1021     // ValueStr format: <EnumeratorStr>:<Value>
1022     size_t Separator = ValueStr.find_first_of(':');
1023     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
1024 
1025     // Find enumerator index in the debuginfo
1026     DIType *BaseTy = stripQualifiers(Ty, true);
1027     const auto *CTy = cast<DICompositeType>(BaseTy);
1028     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
1029     int EnumIndex = 0;
1030     for (const auto Element : CTy->getElements()) {
1031       const auto *Enum = cast<DIEnumerator>(Element);
1032       if (Enum->getName() == EnumeratorStr) {
1033         AccessStr = std::to_string(EnumIndex);
1034         break;
1035       }
1036       EnumIndex++;
1037     }
1038 
1039     if (CInfo.AccessIndex == BTF::ENUM_VALUE) {
1040       StringRef EValueStr = ValueStr.substr(Separator + 1);
1041       PatchImm = std::stoll(std::string(EValueStr));
1042     } else {
1043       PatchImm = 1;
1044     }
1045   }
1046 
1047   AccessKey = "llvm." + Ty->getName().str() + ":" +
1048               std::to_string(CInfo.AccessIndex) + std::string(":") +
1049               std::to_string(PatchImm) + std::string("$") + AccessStr;
1050 
1051   return Ty;
1052 }
1053 
1054 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
1055 /// transformation to a chain of relocable GEPs.
1056 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
1057                                                 CallInfo &CInfo) {
1058   std::string AccessKey;
1059   MDNode *TypeMeta;
1060   Value *Base = nullptr;
1061   bool IsInt32Ret;
1062 
1063   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
1064   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
1065     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
1066   } else {
1067     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
1068     if (!Base)
1069       return false;
1070   }
1071 
1072   BasicBlock *BB = Call->getParent();
1073   GlobalVariable *GV;
1074 
1075   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
1076     IntegerType *VarType;
1077     if (IsInt32Ret)
1078       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
1079     else
1080       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
1081 
1082     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1083                             nullptr, AccessKey);
1084     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1085     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1086     GEPGlobals[AccessKey] = GV;
1087   } else {
1088     GV = GEPGlobals[AccessKey];
1089   }
1090 
1091   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1092     // Load the global variable which represents the returned field info.
1093     LoadInst *LDInst;
1094     if (IsInt32Ret)
1095       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "",
1096                             Call->getIterator());
1097     else
1098       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "",
1099                             Call->getIterator());
1100 
1101     Instruction *PassThroughInst =
1102         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1103     Call->replaceAllUsesWith(PassThroughInst);
1104     Call->eraseFromParent();
1105     return true;
1106   }
1107 
1108   // For any original GEP Call and Base %2 like
1109   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1110   // it is transformed to:
1111   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1112   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1113   //   %8 = getelementptr i8, i8* %7, %6
1114   //   %9 = bitcast i8* %8 to i64*
1115   //   using %9 instead of %4
1116   // The original Call inst is removed.
1117 
1118   // Load the global variable.
1119   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "",
1120                               Call->getIterator());
1121 
1122   // Generate a BitCast
1123   auto *BCInst =
1124       new BitCastInst(Base, PointerType::getUnqual(BB->getContext()));
1125   BCInst->insertBefore(Call);
1126 
1127   // Generate a GetElementPtr
1128   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1129                                         BCInst, LDInst);
1130   GEP->insertBefore(Call);
1131 
1132   // Generate a BitCast
1133   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1134   BCInst2->insertBefore(Call);
1135 
1136   // For the following code,
1137   //    Block0:
1138   //      ...
1139   //      if (...) goto Block1 else ...
1140   //    Block1:
1141   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1142   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1143   //      %8 = getelementptr i8, i8* %7, %6
1144   //      ...
1145   //      goto CommonExit
1146   //    Block2:
1147   //      ...
1148   //      if (...) goto Block3 else ...
1149   //    Block3:
1150   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1151   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1152   //      %8 = getelementptr i8, i8* %7, %6
1153   //      ...
1154   //      goto CommonExit
1155   //    CommonExit
1156   // SimplifyCFG may generate:
1157   //    Block0:
1158   //      ...
1159   //      if (...) goto Block_Common else ...
1160   //     Block2:
1161   //       ...
1162   //      if (...) goto Block_Common else ...
1163   //    Block_Common:
1164   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1165   //      %6 = load PHI
1166   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1167   //      %8 = getelementptr i8, i8* %7, %6
1168   //      ...
1169   //      goto CommonExit
1170   //  For the above code, we cannot perform proper relocation since
1171   //  "load PHI" has two possible relocations.
1172   //
1173   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1174   // where one of its parameters is a seq_num. Since two
1175   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1176   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1177   // removed in the beginning of Target IR passes.
1178   //
1179   // This approach is also used in other places when global var
1180   // representing a relocation is used.
1181   Instruction *PassThroughInst =
1182       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1183   Call->replaceAllUsesWith(PassThroughInst);
1184   Call->eraseFromParent();
1185 
1186   return true;
1187 }
1188 
1189 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1190   bool Transformed = false;
1191 
1192   // Collect PreserveDIAccessIndex Intrinsic call chains.
1193   // The call chains will be used to generate the access
1194   // patterns similar to GEP.
1195   collectAICallChains(F);
1196 
1197   for (auto &C : BaseAICalls)
1198     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1199 
1200   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1201 }
1202 
1203 PreservedAnalyses
1204 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1205   return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1206                                             : PreservedAnalyses::all();
1207 }
1208