xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/IR/DebugInfoMetadata.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include <stack>
91 
92 #define DEBUG_TYPE "bpf-abstract-member-access"
93 
94 namespace llvm {
95 const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama";
96 } // namespace llvm
97 
98 using namespace llvm;
99 
100 namespace {
101 
102 class BPFAbstractMemberAccess final : public ModulePass {
103   StringRef getPassName() const override {
104     return "BPF Abstract Member Access";
105   }
106 
107   bool runOnModule(Module &M) override;
108 
109 public:
110   static char ID;
111   TargetMachine *TM;
112   // Add optional BPFTargetMachine parameter so that BPF backend can add the phase
113   // with target machine to find out the endianness. The default constructor (without
114   // parameters) is used by the pass manager for managing purposes.
115   BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr) : ModulePass(ID), TM(TM) {}
116 
117   struct CallInfo {
118     uint32_t Kind;
119     uint32_t AccessIndex;
120     MDNode *Metadata;
121     Value *Base;
122   };
123   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
124 
125 private:
126   enum : uint32_t {
127     BPFPreserveArrayAI = 1,
128     BPFPreserveUnionAI = 2,
129     BPFPreserveStructAI = 3,
130     BPFPreserveFieldInfoAI = 4,
131   };
132 
133   std::map<std::string, GlobalVariable *> GEPGlobals;
134   // A map to link preserve_*_access_index instrinsic calls.
135   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
136   // A map to hold all the base preserve_*_access_index instrinsic calls.
137   // The base call is not an input of any other preserve_*
138   // intrinsics.
139   std::map<CallInst *, CallInfo> BaseAICalls;
140 
141   bool doTransformation(Module &M);
142 
143   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
144   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
145                     CallInfo &ParentInfo);
146   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
147                 CallInfo &ParentInfo);
148   void collectAICallChains(Module &M, Function &F);
149 
150   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
151   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
152                       const MDNode *ChildMeta);
153   bool removePreserveAccessIndexIntrinsic(Module &M);
154   void replaceWithGEP(std::vector<CallInst *> &CallList,
155                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
156   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
157   void GetStorageBitRange(DICompositeType *CTy, DIDerivedType *MemberTy,
158                           uint32_t AccessIndex, uint32_t &StartBitOffset,
159                           uint32_t &EndBitOffset);
160   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
161                         uint32_t AccessIndex, uint32_t PatchImm);
162 
163   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
164                                  std::string &AccessKey, MDNode *&BaseMeta);
165   uint64_t getConstant(const Value *IndexValue);
166   bool transformGEPChain(Module &M, CallInst *Call, CallInfo &CInfo);
167 };
168 } // End anonymous namespace
169 
170 char BPFAbstractMemberAccess::ID = 0;
171 INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
172                 "abstracting struct/union member accessees", false, false)
173 
174 ModulePass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
175   return new BPFAbstractMemberAccess(TM);
176 }
177 
178 bool BPFAbstractMemberAccess::runOnModule(Module &M) {
179   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
180 
181   // Bail out if no debug info.
182   if (M.debug_compile_units().empty())
183     return false;
184 
185   return doTransformation(M);
186 }
187 
188 static bool SkipDIDerivedTag(unsigned Tag) {
189   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
190       Tag != dwarf::DW_TAG_volatile_type &&
191       Tag != dwarf::DW_TAG_restrict_type &&
192       Tag != dwarf::DW_TAG_member)
193      return false;
194   return true;
195 }
196 
197 static DIType * stripQualifiers(DIType *Ty) {
198   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
199     if (!SkipDIDerivedTag(DTy->getTag()))
200       break;
201     Ty = DTy->getBaseType();
202   }
203   return Ty;
204 }
205 
206 static const DIType * stripQualifiers(const DIType *Ty) {
207   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
208     if (!SkipDIDerivedTag(DTy->getTag()))
209       break;
210     Ty = DTy->getBaseType();
211   }
212   return Ty;
213 }
214 
215 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
216   DINodeArray Elements = CTy->getElements();
217   uint32_t DimSize = 1;
218   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
219     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
220       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
221         const DISubrange *SR = cast<DISubrange>(Element);
222         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
223         DimSize *= CI->getSExtValue();
224       }
225   }
226 
227   return DimSize;
228 }
229 
230 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
231 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
232                                                           CallInfo &CInfo) {
233   if (!Call)
234     return false;
235 
236   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue());
237   if (!GV)
238     return false;
239   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
240     CInfo.Kind = BPFPreserveArrayAI;
241     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
242     if (!CInfo.Metadata)
243       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
244     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
245     CInfo.Base = Call->getArgOperand(0);
246     return true;
247   }
248   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
249     CInfo.Kind = BPFPreserveUnionAI;
250     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
251     if (!CInfo.Metadata)
252       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
253     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
254     CInfo.Base = Call->getArgOperand(0);
255     return true;
256   }
257   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
258     CInfo.Kind = BPFPreserveStructAI;
259     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
260     if (!CInfo.Metadata)
261       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
262     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
263     CInfo.Base = Call->getArgOperand(0);
264     return true;
265   }
266   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
267     CInfo.Kind = BPFPreserveFieldInfoAI;
268     CInfo.Metadata = nullptr;
269     // Check validity of info_kind as clang did not check this.
270     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
271     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
272       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
273     CInfo.AccessIndex = InfoKind;
274     return true;
275   }
276 
277   return false;
278 }
279 
280 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
281                                              uint32_t DimensionIndex,
282                                              uint32_t GEPIndex) {
283   for (auto Call : CallList) {
284     uint32_t Dimension = 1;
285     if (DimensionIndex > 0)
286       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
287 
288     Constant *Zero =
289         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
290     SmallVector<Value *, 4> IdxList;
291     for (unsigned I = 0; I < Dimension; ++I)
292       IdxList.push_back(Zero);
293     IdxList.push_back(Call->getArgOperand(GEPIndex));
294 
295     auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
296                                                   IdxList, "", Call);
297     Call->replaceAllUsesWith(GEP);
298     Call->eraseFromParent();
299   }
300 }
301 
302 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
303   std::vector<CallInst *> PreserveArrayIndexCalls;
304   std::vector<CallInst *> PreserveUnionIndexCalls;
305   std::vector<CallInst *> PreserveStructIndexCalls;
306   bool Found = false;
307 
308   for (Function &F : M)
309     for (auto &BB : F)
310       for (auto &I : BB) {
311         auto *Call = dyn_cast<CallInst>(&I);
312         CallInfo CInfo;
313         if (!IsPreserveDIAccessIndexCall(Call, CInfo))
314           continue;
315 
316         Found = true;
317         if (CInfo.Kind == BPFPreserveArrayAI)
318           PreserveArrayIndexCalls.push_back(Call);
319         else if (CInfo.Kind == BPFPreserveUnionAI)
320           PreserveUnionIndexCalls.push_back(Call);
321         else
322           PreserveStructIndexCalls.push_back(Call);
323       }
324 
325   // do the following transformation:
326   // . addr = preserve_array_access_index(base, dimension, index)
327   //   is transformed to
328   //     addr = GEP(base, dimenion's zero's, index)
329   // . addr = preserve_union_access_index(base, di_index)
330   //   is transformed to
331   //     addr = base, i.e., all usages of "addr" are replaced by "base".
332   // . addr = preserve_struct_access_index(base, gep_index, di_index)
333   //   is transformed to
334   //     addr = GEP(base, 0, gep_index)
335   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
336   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
337   for (auto Call : PreserveUnionIndexCalls) {
338     Call->replaceAllUsesWith(Call->getArgOperand(0));
339     Call->eraseFromParent();
340   }
341 
342   return Found;
343 }
344 
345 /// Check whether the access index chain is valid. We check
346 /// here because there may be type casts between two
347 /// access indexes. We want to ensure memory access still valid.
348 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
349                                              uint32_t ParentAI,
350                                              const MDNode *ChildType) {
351   if (!ChildType)
352     return true; // preserve_field_info, no type comparison needed.
353 
354   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
355   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
356 
357   // Child is a derived/pointer type, which is due to type casting.
358   // Pointer type cannot be in the middle of chain.
359   if (isa<DIDerivedType>(CType))
360     return false;
361 
362   // Parent is a pointer type.
363   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
364     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
365       return false;
366     return stripQualifiers(PtrTy->getBaseType()) == CType;
367   }
368 
369   // Otherwise, struct/union/array types
370   const auto *PTy = dyn_cast<DICompositeType>(PType);
371   const auto *CTy = dyn_cast<DICompositeType>(CType);
372   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
373 
374   uint32_t PTyTag = PTy->getTag();
375   assert(PTyTag == dwarf::DW_TAG_array_type ||
376          PTyTag == dwarf::DW_TAG_structure_type ||
377          PTyTag == dwarf::DW_TAG_union_type);
378 
379   uint32_t CTyTag = CTy->getTag();
380   assert(CTyTag == dwarf::DW_TAG_array_type ||
381          CTyTag == dwarf::DW_TAG_structure_type ||
382          CTyTag == dwarf::DW_TAG_union_type);
383 
384   // Multi dimensional arrays, base element should be the same
385   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
386     return PTy->getBaseType() == CTy->getBaseType();
387 
388   DIType *Ty;
389   if (PTyTag == dwarf::DW_TAG_array_type)
390     Ty = PTy->getBaseType();
391   else
392     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
393 
394   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
395 }
396 
397 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
398                                           CallInfo &ParentInfo) {
399   for (User *U : Call->users()) {
400     Instruction *Inst = dyn_cast<Instruction>(U);
401     if (!Inst)
402       continue;
403 
404     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
405       traceBitCast(BI, Call, ParentInfo);
406     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
407       CallInfo ChildInfo;
408 
409       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
410           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
411                          ChildInfo.Metadata)) {
412         AIChain[CI] = std::make_pair(Call, ParentInfo);
413         traceAICall(CI, ChildInfo);
414       } else {
415         BaseAICalls[Call] = ParentInfo;
416       }
417     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
418       if (GI->hasAllZeroIndices())
419         traceGEP(GI, Call, ParentInfo);
420       else
421         BaseAICalls[Call] = ParentInfo;
422     } else {
423       BaseAICalls[Call] = ParentInfo;
424     }
425   }
426 }
427 
428 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
429                                            CallInst *Parent,
430                                            CallInfo &ParentInfo) {
431   for (User *U : BitCast->users()) {
432     Instruction *Inst = dyn_cast<Instruction>(U);
433     if (!Inst)
434       continue;
435 
436     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
437       traceBitCast(BI, Parent, ParentInfo);
438     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
439       CallInfo ChildInfo;
440       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
441           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
442                          ChildInfo.Metadata)) {
443         AIChain[CI] = std::make_pair(Parent, ParentInfo);
444         traceAICall(CI, ChildInfo);
445       } else {
446         BaseAICalls[Parent] = ParentInfo;
447       }
448     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
449       if (GI->hasAllZeroIndices())
450         traceGEP(GI, Parent, ParentInfo);
451       else
452         BaseAICalls[Parent] = ParentInfo;
453     } else {
454       BaseAICalls[Parent] = ParentInfo;
455     }
456   }
457 }
458 
459 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
460                                        CallInfo &ParentInfo) {
461   for (User *U : GEP->users()) {
462     Instruction *Inst = dyn_cast<Instruction>(U);
463     if (!Inst)
464       continue;
465 
466     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
467       traceBitCast(BI, Parent, ParentInfo);
468     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
469       CallInfo ChildInfo;
470       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
471           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
472                          ChildInfo.Metadata)) {
473         AIChain[CI] = std::make_pair(Parent, ParentInfo);
474         traceAICall(CI, ChildInfo);
475       } else {
476         BaseAICalls[Parent] = ParentInfo;
477       }
478     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
479       if (GI->hasAllZeroIndices())
480         traceGEP(GI, Parent, ParentInfo);
481       else
482         BaseAICalls[Parent] = ParentInfo;
483     } else {
484       BaseAICalls[Parent] = ParentInfo;
485     }
486   }
487 }
488 
489 void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
490   AIChain.clear();
491   BaseAICalls.clear();
492 
493   for (auto &BB : F)
494     for (auto &I : BB) {
495       CallInfo CInfo;
496       auto *Call = dyn_cast<CallInst>(&I);
497       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
498           AIChain.find(Call) != AIChain.end())
499         continue;
500 
501       traceAICall(Call, CInfo);
502     }
503 }
504 
505 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
506   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
507   assert(CV);
508   return CV->getValue().getZExtValue();
509 }
510 
511 /// Get the start and the end of storage offset for \p MemberTy.
512 /// The storage bits are corresponding to the LLVM internal types,
513 /// and the storage bits for the member determines what load width
514 /// to use in order to extract the bitfield value.
515 void BPFAbstractMemberAccess::GetStorageBitRange(DICompositeType *CTy,
516                                                  DIDerivedType *MemberTy,
517                                                  uint32_t AccessIndex,
518                                                  uint32_t &StartBitOffset,
519                                                  uint32_t &EndBitOffset) {
520   auto SOff = dyn_cast<ConstantInt>(MemberTy->getStorageOffsetInBits());
521   assert(SOff);
522   StartBitOffset = SOff->getZExtValue();
523 
524   EndBitOffset = CTy->getSizeInBits();
525   uint32_t Index = AccessIndex + 1;
526   for (; Index < CTy->getElements().size(); ++Index) {
527     auto Member = cast<DIDerivedType>(CTy->getElements()[Index]);
528     if (!Member->getStorageOffsetInBits()) {
529       EndBitOffset = Member->getOffsetInBits();
530       break;
531     }
532     SOff = dyn_cast<ConstantInt>(Member->getStorageOffsetInBits());
533     assert(SOff);
534     unsigned BitOffset = SOff->getZExtValue();
535     if (BitOffset != StartBitOffset) {
536       EndBitOffset = BitOffset;
537       break;
538     }
539   }
540 }
541 
542 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
543                                                DICompositeType *CTy,
544                                                uint32_t AccessIndex,
545                                                uint32_t PatchImm) {
546   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
547       return 1;
548 
549   uint32_t Tag = CTy->getTag();
550   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
551     if (Tag == dwarf::DW_TAG_array_type) {
552       auto *EltTy = stripQualifiers(CTy->getBaseType());
553       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
554                   (EltTy->getSizeInBits() >> 3);
555     } else if (Tag == dwarf::DW_TAG_structure_type) {
556       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
557       if (!MemberTy->isBitField()) {
558         PatchImm += MemberTy->getOffsetInBits() >> 3;
559       } else {
560         auto SOffset = dyn_cast<ConstantInt>(MemberTy->getStorageOffsetInBits());
561         assert(SOffset);
562         PatchImm += SOffset->getZExtValue() >> 3;
563       }
564     }
565     return PatchImm;
566   }
567 
568   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
569     if (Tag == dwarf::DW_TAG_array_type) {
570       auto *EltTy = stripQualifiers(CTy->getBaseType());
571       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
572     } else {
573       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
574       uint32_t SizeInBits = MemberTy->getSizeInBits();
575       if (!MemberTy->isBitField())
576         return SizeInBits >> 3;
577 
578       unsigned SBitOffset, NextSBitOffset;
579       GetStorageBitRange(CTy, MemberTy, AccessIndex, SBitOffset, NextSBitOffset);
580       SizeInBits = NextSBitOffset - SBitOffset;
581       if (SizeInBits & (SizeInBits - 1))
582         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
583       return SizeInBits >> 3;
584     }
585   }
586 
587   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
588     const DIType *BaseTy;
589     if (Tag == dwarf::DW_TAG_array_type) {
590       // Signedness only checked when final array elements are accessed.
591       if (CTy->getElements().size() != 1)
592         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
593       BaseTy = stripQualifiers(CTy->getBaseType());
594     } else {
595       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
596       BaseTy = stripQualifiers(MemberTy->getBaseType());
597     }
598 
599     // Only basic types and enum types have signedness.
600     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
601     while (!BTy) {
602       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
603       // Report an error if the field expression does not have signedness.
604       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
605         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
606       BaseTy = stripQualifiers(CompTy->getBaseType());
607       BTy = dyn_cast<DIBasicType>(BaseTy);
608     }
609     uint32_t Encoding = BTy->getEncoding();
610     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
611   }
612 
613   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
614     // The value is loaded into a value with FIELD_BYTE_SIZE size,
615     // and then zero or sign extended to U64.
616     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
617     // to extract the original value.
618     const Triple &Triple = TM->getTargetTriple();
619     DIDerivedType *MemberTy = nullptr;
620     bool IsBitField = false;
621     uint32_t SizeInBits;
622 
623     if (Tag == dwarf::DW_TAG_array_type) {
624       auto *EltTy = stripQualifiers(CTy->getBaseType());
625       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
626     } else {
627       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
628       SizeInBits = MemberTy->getSizeInBits();
629       IsBitField = MemberTy->isBitField();
630     }
631 
632     if (!IsBitField) {
633       if (SizeInBits > 64)
634         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
635       return 64 - SizeInBits;
636     }
637 
638     unsigned SBitOffset, NextSBitOffset;
639     GetStorageBitRange(CTy, MemberTy, AccessIndex, SBitOffset, NextSBitOffset);
640     if (NextSBitOffset - SBitOffset > 64)
641       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
642 
643     unsigned OffsetInBits = MemberTy->getOffsetInBits();
644     if (Triple.getArch() == Triple::bpfel)
645       return SBitOffset + 64 - OffsetInBits - SizeInBits;
646     else
647       return OffsetInBits + 64 - NextSBitOffset;
648   }
649 
650   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
651     DIDerivedType *MemberTy = nullptr;
652     bool IsBitField = false;
653     uint32_t SizeInBits;
654     if (Tag == dwarf::DW_TAG_array_type) {
655       auto *EltTy = stripQualifiers(CTy->getBaseType());
656       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
657     } else {
658       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
659       SizeInBits = MemberTy->getSizeInBits();
660       IsBitField = MemberTy->isBitField();
661     }
662 
663     if (!IsBitField) {
664       if (SizeInBits > 64)
665         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
666       return 64 - SizeInBits;
667     }
668 
669     unsigned SBitOffset, NextSBitOffset;
670     GetStorageBitRange(CTy, MemberTy, AccessIndex, SBitOffset, NextSBitOffset);
671     if (NextSBitOffset - SBitOffset > 64)
672       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
673 
674     return 64 - SizeInBits;
675   }
676 
677   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
678 }
679 
680 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
681   // This is called in error return path, no need to maintain CallStack.
682   while (CallStack.size()) {
683     auto StackElem = CallStack.top();
684     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
685       return true;
686     CallStack.pop();
687   }
688   return false;
689 }
690 
691 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
692 /// pointer of the first preserve_*_access_index call, and construct the access
693 /// string, which will be the name of a global variable.
694 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
695                                                         CallInfo &CInfo,
696                                                         std::string &AccessKey,
697                                                         MDNode *&TypeMeta) {
698   Value *Base = nullptr;
699   std::string TypeName;
700   CallInfoStack CallStack;
701 
702   // Put the access chain into a stack with the top as the head of the chain.
703   while (Call) {
704     CallStack.push(std::make_pair(Call, CInfo));
705     CInfo = AIChain[Call].second;
706     Call = AIChain[Call].first;
707   }
708 
709   // The access offset from the base of the head of chain is also
710   // calculated here as all debuginfo types are available.
711 
712   // Get type name and calculate the first index.
713   // We only want to get type name from structure or union.
714   // If user wants a relocation like
715   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
716   // or
717   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
718   // we will skip them.
719   uint32_t FirstIndex = 0;
720   uint32_t PatchImm = 0; // AccessOffset or the requested field info
721   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
722   while (CallStack.size()) {
723     auto StackElem = CallStack.top();
724     Call = StackElem.first;
725     CInfo = StackElem.second;
726 
727     if (!Base)
728       Base = CInfo.Base;
729 
730     DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata));
731     if (CInfo.Kind == BPFPreserveUnionAI ||
732         CInfo.Kind == BPFPreserveStructAI) {
733       // struct or union type
734       TypeName = Ty->getName();
735       TypeMeta = Ty;
736       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
737       break;
738     }
739 
740     assert(CInfo.Kind == BPFPreserveArrayAI);
741 
742     // Array entries will always be consumed for accumulative initial index.
743     CallStack.pop();
744 
745     // BPFPreserveArrayAI
746     uint64_t AccessIndex = CInfo.AccessIndex;
747 
748     DIType *BaseTy = nullptr;
749     bool CheckElemType = false;
750     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
751       // array type
752       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
753 
754 
755       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
756       BaseTy = stripQualifiers(CTy->getBaseType());
757       CheckElemType = CTy->getElements().size() == 1;
758     } else {
759       // pointer type
760       auto *DTy = cast<DIDerivedType>(Ty);
761       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
762 
763       BaseTy = stripQualifiers(DTy->getBaseType());
764       CTy = dyn_cast<DICompositeType>(BaseTy);
765       if (!CTy) {
766         CheckElemType = true;
767       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
768         FirstIndex += AccessIndex;
769         CheckElemType = true;
770       } else {
771         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
772       }
773     }
774 
775     if (CheckElemType) {
776       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
777       if (!CTy) {
778         if (HasPreserveFieldInfoCall(CallStack))
779           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
780         return nullptr;
781       }
782 
783       unsigned CTag = CTy->getTag();
784       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
785         TypeName = CTy->getName();
786       } else {
787         if (HasPreserveFieldInfoCall(CallStack))
788           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
789         return nullptr;
790       }
791       TypeMeta = CTy;
792       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
793       break;
794     }
795   }
796   assert(TypeName.size());
797   AccessKey += std::to_string(FirstIndex);
798 
799   // Traverse the rest of access chain to complete offset calculation
800   // and access key construction.
801   while (CallStack.size()) {
802     auto StackElem = CallStack.top();
803     CInfo = StackElem.second;
804     CallStack.pop();
805 
806     if (CInfo.Kind == BPFPreserveFieldInfoAI)
807       break;
808 
809     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
810     // the action will be extracting field info.
811     if (CallStack.size()) {
812       auto StackElem2 = CallStack.top();
813       CallInfo CInfo2 = StackElem2.second;
814       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
815         InfoKind = CInfo2.AccessIndex;
816         assert(CallStack.size() == 1);
817       }
818     }
819 
820     // Access Index
821     uint64_t AccessIndex = CInfo.AccessIndex;
822     AccessKey += ":" + std::to_string(AccessIndex);
823 
824     MDNode *MDN = CInfo.Metadata;
825     // At this stage, it cannot be pointer type.
826     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
827     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm);
828   }
829 
830   // Access key is the type name + reloc type + patched imm + access string,
831   // uniquely identifying one relocation.
832   AccessKey = TypeName + ":" + std::to_string(InfoKind) + ":" +
833               std::to_string(PatchImm) + "$" + AccessKey;
834 
835   return Base;
836 }
837 
838 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
839 /// transformation to a chain of relocable GEPs.
840 bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
841                                                 CallInfo &CInfo) {
842   std::string AccessKey;
843   MDNode *TypeMeta;
844   Value *Base =
845       computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
846   if (!Base)
847     return false;
848 
849   BasicBlock *BB = Call->getParent();
850   GlobalVariable *GV;
851 
852   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
853     IntegerType *VarType;
854     if (CInfo.Kind == BPFPreserveFieldInfoAI)
855       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
856     else
857       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr arith
858 
859     GV = new GlobalVariable(M, VarType, false, GlobalVariable::ExternalLinkage,
860                             NULL, AccessKey);
861     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
862     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
863     GEPGlobals[AccessKey] = GV;
864   } else {
865     GV = GEPGlobals[AccessKey];
866   }
867 
868   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
869     // Load the global variable which represents the returned field info.
870     auto *LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV);
871     BB->getInstList().insert(Call->getIterator(), LDInst);
872     Call->replaceAllUsesWith(LDInst);
873     Call->eraseFromParent();
874     return true;
875   }
876 
877   // For any original GEP Call and Base %2 like
878   //   %4 = bitcast %struct.net_device** %dev1 to i64*
879   // it is transformed to:
880   //   %6 = load sk_buff:50:$0:0:0:2:0
881   //   %7 = bitcast %struct.sk_buff* %2 to i8*
882   //   %8 = getelementptr i8, i8* %7, %6
883   //   %9 = bitcast i8* %8 to i64*
884   //   using %9 instead of %4
885   // The original Call inst is removed.
886 
887   // Load the global variable.
888   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV);
889   BB->getInstList().insert(Call->getIterator(), LDInst);
890 
891   // Generate a BitCast
892   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
893   BB->getInstList().insert(Call->getIterator(), BCInst);
894 
895   // Generate a GetElementPtr
896   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
897                                         BCInst, LDInst);
898   BB->getInstList().insert(Call->getIterator(), GEP);
899 
900   // Generate a BitCast
901   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
902   BB->getInstList().insert(Call->getIterator(), BCInst2);
903 
904   Call->replaceAllUsesWith(BCInst2);
905   Call->eraseFromParent();
906 
907   return true;
908 }
909 
910 bool BPFAbstractMemberAccess::doTransformation(Module &M) {
911   bool Transformed = false;
912 
913   for (Function &F : M) {
914     // Collect PreserveDIAccessIndex Intrinsic call chains.
915     // The call chains will be used to generate the access
916     // patterns similar to GEP.
917     collectAICallChains(M, F);
918 
919     for (auto &C : BaseAICalls)
920       Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
921   }
922 
923   return removePreserveAccessIndexIntrinsic(M) || Transformed;
924 }
925