xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/IR/DebugInfoMetadata.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include <stack>
91 
92 #define DEBUG_TYPE "bpf-abstract-member-access"
93 
94 namespace llvm {
95 const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama";
96 } // namespace llvm
97 
98 using namespace llvm;
99 
100 namespace {
101 
102 class BPFAbstractMemberAccess final : public ModulePass {
103   StringRef getPassName() const override {
104     return "BPF Abstract Member Access";
105   }
106 
107   bool runOnModule(Module &M) override;
108 
109 public:
110   static char ID;
111   TargetMachine *TM;
112   // Add optional BPFTargetMachine parameter so that BPF backend can add the phase
113   // with target machine to find out the endianness. The default constructor (without
114   // parameters) is used by the pass manager for managing purposes.
115   BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr) : ModulePass(ID), TM(TM) {}
116 
117   struct CallInfo {
118     uint32_t Kind;
119     uint32_t AccessIndex;
120     uint32_t RecordAlignment;
121     MDNode *Metadata;
122     Value *Base;
123   };
124   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
125 
126 private:
127   enum : uint32_t {
128     BPFPreserveArrayAI = 1,
129     BPFPreserveUnionAI = 2,
130     BPFPreserveStructAI = 3,
131     BPFPreserveFieldInfoAI = 4,
132   };
133 
134   const DataLayout *DL = nullptr;
135 
136   std::map<std::string, GlobalVariable *> GEPGlobals;
137   // A map to link preserve_*_access_index instrinsic calls.
138   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
139   // A map to hold all the base preserve_*_access_index instrinsic calls.
140   // The base call is not an input of any other preserve_*
141   // intrinsics.
142   std::map<CallInst *, CallInfo> BaseAICalls;
143 
144   bool doTransformation(Module &M);
145 
146   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
147   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
148                     CallInfo &ParentInfo);
149   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
150                 CallInfo &ParentInfo);
151   void collectAICallChains(Module &M, Function &F);
152 
153   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
154   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
155                       const MDNode *ChildMeta);
156   bool removePreserveAccessIndexIntrinsic(Module &M);
157   void replaceWithGEP(std::vector<CallInst *> &CallList,
158                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
159   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
160   void GetStorageBitRange(DIDerivedType *MemberTy, uint32_t RecordAlignment,
161                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
162   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
163                         uint32_t AccessIndex, uint32_t PatchImm,
164                         uint32_t RecordAlignment);
165 
166   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
167                                  std::string &AccessKey, MDNode *&BaseMeta);
168   uint64_t getConstant(const Value *IndexValue);
169   bool transformGEPChain(Module &M, CallInst *Call, CallInfo &CInfo);
170 };
171 } // End anonymous namespace
172 
173 char BPFAbstractMemberAccess::ID = 0;
174 INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
175                 "abstracting struct/union member accessees", false, false)
176 
177 ModulePass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
178   return new BPFAbstractMemberAccess(TM);
179 }
180 
181 bool BPFAbstractMemberAccess::runOnModule(Module &M) {
182   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
183 
184   // Bail out if no debug info.
185   if (M.debug_compile_units().empty())
186     return false;
187 
188   DL = &M.getDataLayout();
189   return doTransformation(M);
190 }
191 
192 static bool SkipDIDerivedTag(unsigned Tag) {
193   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
194       Tag != dwarf::DW_TAG_volatile_type &&
195       Tag != dwarf::DW_TAG_restrict_type &&
196       Tag != dwarf::DW_TAG_member)
197      return false;
198   return true;
199 }
200 
201 static DIType * stripQualifiers(DIType *Ty) {
202   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
203     if (!SkipDIDerivedTag(DTy->getTag()))
204       break;
205     Ty = DTy->getBaseType();
206   }
207   return Ty;
208 }
209 
210 static const DIType * stripQualifiers(const DIType *Ty) {
211   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
212     if (!SkipDIDerivedTag(DTy->getTag()))
213       break;
214     Ty = DTy->getBaseType();
215   }
216   return Ty;
217 }
218 
219 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
220   DINodeArray Elements = CTy->getElements();
221   uint32_t DimSize = 1;
222   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
223     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
224       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
225         const DISubrange *SR = cast<DISubrange>(Element);
226         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
227         DimSize *= CI->getSExtValue();
228       }
229   }
230 
231   return DimSize;
232 }
233 
234 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
235 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
236                                                           CallInfo &CInfo) {
237   if (!Call)
238     return false;
239 
240   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue());
241   if (!GV)
242     return false;
243   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
244     CInfo.Kind = BPFPreserveArrayAI;
245     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
246     if (!CInfo.Metadata)
247       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
248     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
249     CInfo.Base = Call->getArgOperand(0);
250     CInfo.RecordAlignment =
251         DL->getABITypeAlignment(CInfo.Base->getType()->getPointerElementType());
252     return true;
253   }
254   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
255     CInfo.Kind = BPFPreserveUnionAI;
256     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
257     if (!CInfo.Metadata)
258       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
259     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
260     CInfo.Base = Call->getArgOperand(0);
261     CInfo.RecordAlignment =
262         DL->getABITypeAlignment(CInfo.Base->getType()->getPointerElementType());
263     return true;
264   }
265   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
266     CInfo.Kind = BPFPreserveStructAI;
267     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
268     if (!CInfo.Metadata)
269       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
270     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
271     CInfo.Base = Call->getArgOperand(0);
272     CInfo.RecordAlignment =
273         DL->getABITypeAlignment(CInfo.Base->getType()->getPointerElementType());
274     return true;
275   }
276   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
277     CInfo.Kind = BPFPreserveFieldInfoAI;
278     CInfo.Metadata = nullptr;
279     // Check validity of info_kind as clang did not check this.
280     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
281     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
282       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
283     CInfo.AccessIndex = InfoKind;
284     return true;
285   }
286 
287   return false;
288 }
289 
290 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
291                                              uint32_t DimensionIndex,
292                                              uint32_t GEPIndex) {
293   for (auto Call : CallList) {
294     uint32_t Dimension = 1;
295     if (DimensionIndex > 0)
296       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
297 
298     Constant *Zero =
299         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
300     SmallVector<Value *, 4> IdxList;
301     for (unsigned I = 0; I < Dimension; ++I)
302       IdxList.push_back(Zero);
303     IdxList.push_back(Call->getArgOperand(GEPIndex));
304 
305     auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
306                                                   IdxList, "", Call);
307     Call->replaceAllUsesWith(GEP);
308     Call->eraseFromParent();
309   }
310 }
311 
312 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
313   std::vector<CallInst *> PreserveArrayIndexCalls;
314   std::vector<CallInst *> PreserveUnionIndexCalls;
315   std::vector<CallInst *> PreserveStructIndexCalls;
316   bool Found = false;
317 
318   for (Function &F : M)
319     for (auto &BB : F)
320       for (auto &I : BB) {
321         auto *Call = dyn_cast<CallInst>(&I);
322         CallInfo CInfo;
323         if (!IsPreserveDIAccessIndexCall(Call, CInfo))
324           continue;
325 
326         Found = true;
327         if (CInfo.Kind == BPFPreserveArrayAI)
328           PreserveArrayIndexCalls.push_back(Call);
329         else if (CInfo.Kind == BPFPreserveUnionAI)
330           PreserveUnionIndexCalls.push_back(Call);
331         else
332           PreserveStructIndexCalls.push_back(Call);
333       }
334 
335   // do the following transformation:
336   // . addr = preserve_array_access_index(base, dimension, index)
337   //   is transformed to
338   //     addr = GEP(base, dimenion's zero's, index)
339   // . addr = preserve_union_access_index(base, di_index)
340   //   is transformed to
341   //     addr = base, i.e., all usages of "addr" are replaced by "base".
342   // . addr = preserve_struct_access_index(base, gep_index, di_index)
343   //   is transformed to
344   //     addr = GEP(base, 0, gep_index)
345   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
346   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
347   for (auto Call : PreserveUnionIndexCalls) {
348     Call->replaceAllUsesWith(Call->getArgOperand(0));
349     Call->eraseFromParent();
350   }
351 
352   return Found;
353 }
354 
355 /// Check whether the access index chain is valid. We check
356 /// here because there may be type casts between two
357 /// access indexes. We want to ensure memory access still valid.
358 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
359                                              uint32_t ParentAI,
360                                              const MDNode *ChildType) {
361   if (!ChildType)
362     return true; // preserve_field_info, no type comparison needed.
363 
364   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
365   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
366 
367   // Child is a derived/pointer type, which is due to type casting.
368   // Pointer type cannot be in the middle of chain.
369   if (isa<DIDerivedType>(CType))
370     return false;
371 
372   // Parent is a pointer type.
373   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
374     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
375       return false;
376     return stripQualifiers(PtrTy->getBaseType()) == CType;
377   }
378 
379   // Otherwise, struct/union/array types
380   const auto *PTy = dyn_cast<DICompositeType>(PType);
381   const auto *CTy = dyn_cast<DICompositeType>(CType);
382   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
383 
384   uint32_t PTyTag = PTy->getTag();
385   assert(PTyTag == dwarf::DW_TAG_array_type ||
386          PTyTag == dwarf::DW_TAG_structure_type ||
387          PTyTag == dwarf::DW_TAG_union_type);
388 
389   uint32_t CTyTag = CTy->getTag();
390   assert(CTyTag == dwarf::DW_TAG_array_type ||
391          CTyTag == dwarf::DW_TAG_structure_type ||
392          CTyTag == dwarf::DW_TAG_union_type);
393 
394   // Multi dimensional arrays, base element should be the same
395   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
396     return PTy->getBaseType() == CTy->getBaseType();
397 
398   DIType *Ty;
399   if (PTyTag == dwarf::DW_TAG_array_type)
400     Ty = PTy->getBaseType();
401   else
402     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
403 
404   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
405 }
406 
407 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
408                                           CallInfo &ParentInfo) {
409   for (User *U : Call->users()) {
410     Instruction *Inst = dyn_cast<Instruction>(U);
411     if (!Inst)
412       continue;
413 
414     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
415       traceBitCast(BI, Call, ParentInfo);
416     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
417       CallInfo ChildInfo;
418 
419       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
420           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
421                          ChildInfo.Metadata)) {
422         AIChain[CI] = std::make_pair(Call, ParentInfo);
423         traceAICall(CI, ChildInfo);
424       } else {
425         BaseAICalls[Call] = ParentInfo;
426       }
427     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
428       if (GI->hasAllZeroIndices())
429         traceGEP(GI, Call, ParentInfo);
430       else
431         BaseAICalls[Call] = ParentInfo;
432     } else {
433       BaseAICalls[Call] = ParentInfo;
434     }
435   }
436 }
437 
438 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
439                                            CallInst *Parent,
440                                            CallInfo &ParentInfo) {
441   for (User *U : BitCast->users()) {
442     Instruction *Inst = dyn_cast<Instruction>(U);
443     if (!Inst)
444       continue;
445 
446     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
447       traceBitCast(BI, Parent, ParentInfo);
448     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
449       CallInfo ChildInfo;
450       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
451           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
452                          ChildInfo.Metadata)) {
453         AIChain[CI] = std::make_pair(Parent, ParentInfo);
454         traceAICall(CI, ChildInfo);
455       } else {
456         BaseAICalls[Parent] = ParentInfo;
457       }
458     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
459       if (GI->hasAllZeroIndices())
460         traceGEP(GI, Parent, ParentInfo);
461       else
462         BaseAICalls[Parent] = ParentInfo;
463     } else {
464       BaseAICalls[Parent] = ParentInfo;
465     }
466   }
467 }
468 
469 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
470                                        CallInfo &ParentInfo) {
471   for (User *U : GEP->users()) {
472     Instruction *Inst = dyn_cast<Instruction>(U);
473     if (!Inst)
474       continue;
475 
476     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
477       traceBitCast(BI, Parent, ParentInfo);
478     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
479       CallInfo ChildInfo;
480       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
481           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
482                          ChildInfo.Metadata)) {
483         AIChain[CI] = std::make_pair(Parent, ParentInfo);
484         traceAICall(CI, ChildInfo);
485       } else {
486         BaseAICalls[Parent] = ParentInfo;
487       }
488     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
489       if (GI->hasAllZeroIndices())
490         traceGEP(GI, Parent, ParentInfo);
491       else
492         BaseAICalls[Parent] = ParentInfo;
493     } else {
494       BaseAICalls[Parent] = ParentInfo;
495     }
496   }
497 }
498 
499 void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
500   AIChain.clear();
501   BaseAICalls.clear();
502 
503   for (auto &BB : F)
504     for (auto &I : BB) {
505       CallInfo CInfo;
506       auto *Call = dyn_cast<CallInst>(&I);
507       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
508           AIChain.find(Call) != AIChain.end())
509         continue;
510 
511       traceAICall(Call, CInfo);
512     }
513 }
514 
515 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
516   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
517   assert(CV);
518   return CV->getValue().getZExtValue();
519 }
520 
521 /// Get the start and the end of storage offset for \p MemberTy.
522 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
523                                                  uint32_t RecordAlignment,
524                                                  uint32_t &StartBitOffset,
525                                                  uint32_t &EndBitOffset) {
526   uint32_t MemberBitSize = MemberTy->getSizeInBits();
527   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
528   uint32_t AlignBits = RecordAlignment * 8;
529   if (RecordAlignment > 8 || MemberBitSize > AlignBits)
530     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
531                        "requiring too big alignment");
532 
533   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
534   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
535     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
536                        "cross alignment boundary");
537   EndBitOffset = StartBitOffset + AlignBits;
538 }
539 
540 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
541                                                DICompositeType *CTy,
542                                                uint32_t AccessIndex,
543                                                uint32_t PatchImm,
544                                                uint32_t RecordAlignment) {
545   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
546       return 1;
547 
548   uint32_t Tag = CTy->getTag();
549   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
550     if (Tag == dwarf::DW_TAG_array_type) {
551       auto *EltTy = stripQualifiers(CTy->getBaseType());
552       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
553                   (EltTy->getSizeInBits() >> 3);
554     } else if (Tag == dwarf::DW_TAG_structure_type) {
555       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
556       if (!MemberTy->isBitField()) {
557         PatchImm += MemberTy->getOffsetInBits() >> 3;
558       } else {
559         unsigned SBitOffset, NextSBitOffset;
560         GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset,
561                            NextSBitOffset);
562         PatchImm += SBitOffset >> 3;
563       }
564     }
565     return PatchImm;
566   }
567 
568   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
569     if (Tag == dwarf::DW_TAG_array_type) {
570       auto *EltTy = stripQualifiers(CTy->getBaseType());
571       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
572     } else {
573       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
574       uint32_t SizeInBits = MemberTy->getSizeInBits();
575       if (!MemberTy->isBitField())
576         return SizeInBits >> 3;
577 
578       unsigned SBitOffset, NextSBitOffset;
579       GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
580       SizeInBits = NextSBitOffset - SBitOffset;
581       if (SizeInBits & (SizeInBits - 1))
582         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
583       return SizeInBits >> 3;
584     }
585   }
586 
587   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
588     const DIType *BaseTy;
589     if (Tag == dwarf::DW_TAG_array_type) {
590       // Signedness only checked when final array elements are accessed.
591       if (CTy->getElements().size() != 1)
592         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
593       BaseTy = stripQualifiers(CTy->getBaseType());
594     } else {
595       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
596       BaseTy = stripQualifiers(MemberTy->getBaseType());
597     }
598 
599     // Only basic types and enum types have signedness.
600     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
601     while (!BTy) {
602       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
603       // Report an error if the field expression does not have signedness.
604       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
605         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
606       BaseTy = stripQualifiers(CompTy->getBaseType());
607       BTy = dyn_cast<DIBasicType>(BaseTy);
608     }
609     uint32_t Encoding = BTy->getEncoding();
610     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
611   }
612 
613   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
614     // The value is loaded into a value with FIELD_BYTE_SIZE size,
615     // and then zero or sign extended to U64.
616     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
617     // to extract the original value.
618     const Triple &Triple = TM->getTargetTriple();
619     DIDerivedType *MemberTy = nullptr;
620     bool IsBitField = false;
621     uint32_t SizeInBits;
622 
623     if (Tag == dwarf::DW_TAG_array_type) {
624       auto *EltTy = stripQualifiers(CTy->getBaseType());
625       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
626     } else {
627       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
628       SizeInBits = MemberTy->getSizeInBits();
629       IsBitField = MemberTy->isBitField();
630     }
631 
632     if (!IsBitField) {
633       if (SizeInBits > 64)
634         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
635       return 64 - SizeInBits;
636     }
637 
638     unsigned SBitOffset, NextSBitOffset;
639     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
640     if (NextSBitOffset - SBitOffset > 64)
641       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
642 
643     unsigned OffsetInBits = MemberTy->getOffsetInBits();
644     if (Triple.getArch() == Triple::bpfel)
645       return SBitOffset + 64 - OffsetInBits - SizeInBits;
646     else
647       return OffsetInBits + 64 - NextSBitOffset;
648   }
649 
650   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
651     DIDerivedType *MemberTy = nullptr;
652     bool IsBitField = false;
653     uint32_t SizeInBits;
654     if (Tag == dwarf::DW_TAG_array_type) {
655       auto *EltTy = stripQualifiers(CTy->getBaseType());
656       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
657     } else {
658       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
659       SizeInBits = MemberTy->getSizeInBits();
660       IsBitField = MemberTy->isBitField();
661     }
662 
663     if (!IsBitField) {
664       if (SizeInBits > 64)
665         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
666       return 64 - SizeInBits;
667     }
668 
669     unsigned SBitOffset, NextSBitOffset;
670     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
671     if (NextSBitOffset - SBitOffset > 64)
672       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
673 
674     return 64 - SizeInBits;
675   }
676 
677   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
678 }
679 
680 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
681   // This is called in error return path, no need to maintain CallStack.
682   while (CallStack.size()) {
683     auto StackElem = CallStack.top();
684     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
685       return true;
686     CallStack.pop();
687   }
688   return false;
689 }
690 
691 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
692 /// pointer of the first preserve_*_access_index call, and construct the access
693 /// string, which will be the name of a global variable.
694 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
695                                                         CallInfo &CInfo,
696                                                         std::string &AccessKey,
697                                                         MDNode *&TypeMeta) {
698   Value *Base = nullptr;
699   std::string TypeName;
700   CallInfoStack CallStack;
701 
702   // Put the access chain into a stack with the top as the head of the chain.
703   while (Call) {
704     CallStack.push(std::make_pair(Call, CInfo));
705     CInfo = AIChain[Call].second;
706     Call = AIChain[Call].first;
707   }
708 
709   // The access offset from the base of the head of chain is also
710   // calculated here as all debuginfo types are available.
711 
712   // Get type name and calculate the first index.
713   // We only want to get type name from structure or union.
714   // If user wants a relocation like
715   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
716   // or
717   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
718   // we will skip them.
719   uint32_t FirstIndex = 0;
720   uint32_t PatchImm = 0; // AccessOffset or the requested field info
721   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
722   while (CallStack.size()) {
723     auto StackElem = CallStack.top();
724     Call = StackElem.first;
725     CInfo = StackElem.second;
726 
727     if (!Base)
728       Base = CInfo.Base;
729 
730     DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata));
731     if (CInfo.Kind == BPFPreserveUnionAI ||
732         CInfo.Kind == BPFPreserveStructAI) {
733       // struct or union type
734       TypeName = Ty->getName();
735       TypeMeta = Ty;
736       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
737       break;
738     }
739 
740     assert(CInfo.Kind == BPFPreserveArrayAI);
741 
742     // Array entries will always be consumed for accumulative initial index.
743     CallStack.pop();
744 
745     // BPFPreserveArrayAI
746     uint64_t AccessIndex = CInfo.AccessIndex;
747 
748     DIType *BaseTy = nullptr;
749     bool CheckElemType = false;
750     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
751       // array type
752       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
753 
754 
755       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
756       BaseTy = stripQualifiers(CTy->getBaseType());
757       CheckElemType = CTy->getElements().size() == 1;
758     } else {
759       // pointer type
760       auto *DTy = cast<DIDerivedType>(Ty);
761       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
762 
763       BaseTy = stripQualifiers(DTy->getBaseType());
764       CTy = dyn_cast<DICompositeType>(BaseTy);
765       if (!CTy) {
766         CheckElemType = true;
767       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
768         FirstIndex += AccessIndex;
769         CheckElemType = true;
770       } else {
771         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
772       }
773     }
774 
775     if (CheckElemType) {
776       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
777       if (!CTy) {
778         if (HasPreserveFieldInfoCall(CallStack))
779           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
780         return nullptr;
781       }
782 
783       unsigned CTag = CTy->getTag();
784       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
785         TypeName = CTy->getName();
786       } else {
787         if (HasPreserveFieldInfoCall(CallStack))
788           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
789         return nullptr;
790       }
791       TypeMeta = CTy;
792       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
793       break;
794     }
795   }
796   assert(TypeName.size());
797   AccessKey += std::to_string(FirstIndex);
798 
799   // Traverse the rest of access chain to complete offset calculation
800   // and access key construction.
801   while (CallStack.size()) {
802     auto StackElem = CallStack.top();
803     CInfo = StackElem.second;
804     CallStack.pop();
805 
806     if (CInfo.Kind == BPFPreserveFieldInfoAI)
807       break;
808 
809     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
810     // the action will be extracting field info.
811     if (CallStack.size()) {
812       auto StackElem2 = CallStack.top();
813       CallInfo CInfo2 = StackElem2.second;
814       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
815         InfoKind = CInfo2.AccessIndex;
816         assert(CallStack.size() == 1);
817       }
818     }
819 
820     // Access Index
821     uint64_t AccessIndex = CInfo.AccessIndex;
822     AccessKey += ":" + std::to_string(AccessIndex);
823 
824     MDNode *MDN = CInfo.Metadata;
825     uint32_t RecordAlignment = CInfo.RecordAlignment;
826     // At this stage, it cannot be pointer type.
827     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
828     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
829                             RecordAlignment);
830   }
831 
832   // Access key is the
833   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
834   //   access string,
835   // uniquely identifying one relocation.
836   // The prefix "llvm." indicates this is a temporary global, which should
837   // not be emitted to ELF file.
838   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
839               std::to_string(PatchImm) + "$" + AccessKey;
840 
841   return Base;
842 }
843 
844 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
845 /// transformation to a chain of relocable GEPs.
846 bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
847                                                 CallInfo &CInfo) {
848   std::string AccessKey;
849   MDNode *TypeMeta;
850   Value *Base =
851       computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
852   if (!Base)
853     return false;
854 
855   BasicBlock *BB = Call->getParent();
856   GlobalVariable *GV;
857 
858   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
859     IntegerType *VarType;
860     if (CInfo.Kind == BPFPreserveFieldInfoAI)
861       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
862     else
863       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr arith
864 
865     GV = new GlobalVariable(M, VarType, false, GlobalVariable::ExternalLinkage,
866                             NULL, AccessKey);
867     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
868     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
869     GEPGlobals[AccessKey] = GV;
870   } else {
871     GV = GEPGlobals[AccessKey];
872   }
873 
874   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
875     // Load the global variable which represents the returned field info.
876     auto *LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV);
877     BB->getInstList().insert(Call->getIterator(), LDInst);
878     Call->replaceAllUsesWith(LDInst);
879     Call->eraseFromParent();
880     return true;
881   }
882 
883   // For any original GEP Call and Base %2 like
884   //   %4 = bitcast %struct.net_device** %dev1 to i64*
885   // it is transformed to:
886   //   %6 = load sk_buff:50:$0:0:0:2:0
887   //   %7 = bitcast %struct.sk_buff* %2 to i8*
888   //   %8 = getelementptr i8, i8* %7, %6
889   //   %9 = bitcast i8* %8 to i64*
890   //   using %9 instead of %4
891   // The original Call inst is removed.
892 
893   // Load the global variable.
894   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV);
895   BB->getInstList().insert(Call->getIterator(), LDInst);
896 
897   // Generate a BitCast
898   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
899   BB->getInstList().insert(Call->getIterator(), BCInst);
900 
901   // Generate a GetElementPtr
902   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
903                                         BCInst, LDInst);
904   BB->getInstList().insert(Call->getIterator(), GEP);
905 
906   // Generate a BitCast
907   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
908   BB->getInstList().insert(Call->getIterator(), BCInst2);
909 
910   Call->replaceAllUsesWith(BCInst2);
911   Call->eraseFromParent();
912 
913   return true;
914 }
915 
916 bool BPFAbstractMemberAccess::doTransformation(Module &M) {
917   bool Transformed = false;
918 
919   for (Function &F : M) {
920     // Collect PreserveDIAccessIndex Intrinsic call chains.
921     // The call chains will be used to generate the access
922     // patterns similar to GEP.
923     collectAICallChains(M, F);
924 
925     for (auto &C : BaseAICalls)
926       Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
927   }
928 
929   return removePreserveAccessIndexIntrinsic(M) || Transformed;
930 }
931