xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/BinaryFormat/Dwarf.h"
81 #include "llvm/IR/DebugInfoMetadata.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicsBPF.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/PassManager.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include <stack>
94 
95 #define DEBUG_TYPE "bpf-abstract-member-access"
96 
97 namespace llvm {
98 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
99 uint32_t BPFCoreSharedInfo::SeqNum;
100 
101 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
102                                                   Instruction *Input,
103                                                   Instruction *Before) {
104   Function *Fn = Intrinsic::getDeclaration(
105       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
106   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
107                                          BPFCoreSharedInfo::SeqNum++);
108 
109   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
110   NewInst->insertBefore(Before);
111   return NewInst;
112 }
113 } // namespace llvm
114 
115 using namespace llvm;
116 
117 namespace {
118 class BPFAbstractMemberAccess final {
119 public:
120   BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
121 
122   bool run(Function &F);
123 
124   struct CallInfo {
125     uint32_t Kind;
126     uint32_t AccessIndex;
127     MaybeAlign RecordAlignment;
128     MDNode *Metadata;
129     WeakTrackingVH Base;
130   };
131   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
132 
133 private:
134   enum : uint32_t {
135     BPFPreserveArrayAI = 1,
136     BPFPreserveUnionAI = 2,
137     BPFPreserveStructAI = 3,
138     BPFPreserveFieldInfoAI = 4,
139   };
140 
141   TargetMachine *TM;
142   const DataLayout *DL = nullptr;
143   Module *M = nullptr;
144 
145   static std::map<std::string, GlobalVariable *> GEPGlobals;
146   // A map to link preserve_*_access_index intrinsic calls.
147   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
148   // A map to hold all the base preserve_*_access_index intrinsic calls.
149   // The base call is not an input of any other preserve_*
150   // intrinsics.
151   std::map<CallInst *, CallInfo> BaseAICalls;
152   // A map to hold <AnonRecord, TypeDef> relationships
153   std::map<DICompositeType *, DIDerivedType *> AnonRecords;
154 
155   void CheckAnonRecordType(DIDerivedType *ParentTy, DIType *Ty);
156   void CheckCompositeType(DIDerivedType *ParentTy, DICompositeType *CTy);
157   void CheckDerivedType(DIDerivedType *ParentTy, DIDerivedType *DTy);
158   void ResetMetadata(struct CallInfo &CInfo);
159 
160   bool doTransformation(Function &F);
161 
162   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
163   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
164                     CallInfo &ParentInfo);
165   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
166                 CallInfo &ParentInfo);
167   void collectAICallChains(Function &F);
168 
169   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
170   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
171                       const MDNode *ChildMeta);
172   bool removePreserveAccessIndexIntrinsic(Function &F);
173   void replaceWithGEP(std::vector<CallInst *> &CallList,
174                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
175   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
176   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
177                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
178   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
179                         uint32_t AccessIndex, uint32_t PatchImm,
180                         MaybeAlign RecordAlignment);
181 
182   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
183                                  std::string &AccessKey, MDNode *&BaseMeta);
184   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
185                            std::string &AccessKey, bool &IsInt32Ret);
186   uint64_t getConstant(const Value *IndexValue);
187   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
188 };
189 
190 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
191 
192 class BPFAbstractMemberAccessLegacyPass final : public FunctionPass {
193   BPFTargetMachine *TM;
194 
195   bool runOnFunction(Function &F) override {
196     return BPFAbstractMemberAccess(TM).run(F);
197   }
198 
199 public:
200   static char ID;
201 
202   // Add optional BPFTargetMachine parameter so that BPF backend can add the
203   // phase with target machine to find out the endianness. The default
204   // constructor (without parameters) is used by the pass manager for managing
205   // purposes.
206   BPFAbstractMemberAccessLegacyPass(BPFTargetMachine *TM = nullptr)
207       : FunctionPass(ID), TM(TM) {}
208 };
209 
210 } // End anonymous namespace
211 
212 char BPFAbstractMemberAccessLegacyPass::ID = 0;
213 INITIALIZE_PASS(BPFAbstractMemberAccessLegacyPass, DEBUG_TYPE,
214                 "BPF Abstract Member Access", false, false)
215 
216 FunctionPass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
217   return new BPFAbstractMemberAccessLegacyPass(TM);
218 }
219 
220 bool BPFAbstractMemberAccess::run(Function &F) {
221   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
222 
223   M = F.getParent();
224   if (!M)
225     return false;
226 
227   // Bail out if no debug info.
228   if (M->debug_compile_units().empty())
229     return false;
230 
231   // For each argument/return/local_variable type, trace the type
232   // pattern like '[derived_type]* [composite_type]' to check
233   // and remember (anon record -> typedef) relations where the
234   // anon record is defined as
235   //   typedef [const/volatile/restrict]* [anon record]
236   DISubprogram *SP = F.getSubprogram();
237   if (SP && SP->isDefinition()) {
238     for (DIType *Ty: SP->getType()->getTypeArray())
239       CheckAnonRecordType(nullptr, Ty);
240     for (const DINode *DN : SP->getRetainedNodes()) {
241       if (const auto *DV = dyn_cast<DILocalVariable>(DN))
242         CheckAnonRecordType(nullptr, DV->getType());
243     }
244   }
245 
246   DL = &M->getDataLayout();
247   return doTransformation(F);
248 }
249 
250 void BPFAbstractMemberAccess::ResetMetadata(struct CallInfo &CInfo) {
251   if (auto Ty = dyn_cast<DICompositeType>(CInfo.Metadata)) {
252     if (AnonRecords.find(Ty) != AnonRecords.end()) {
253       if (AnonRecords[Ty] != nullptr)
254         CInfo.Metadata = AnonRecords[Ty];
255     }
256   }
257 }
258 
259 void BPFAbstractMemberAccess::CheckCompositeType(DIDerivedType *ParentTy,
260                                                  DICompositeType *CTy) {
261   if (!CTy->getName().empty() || !ParentTy ||
262       ParentTy->getTag() != dwarf::DW_TAG_typedef)
263     return;
264 
265   if (AnonRecords.find(CTy) == AnonRecords.end()) {
266     AnonRecords[CTy] = ParentTy;
267     return;
268   }
269 
270   // Two or more typedef's may point to the same anon record.
271   // If this is the case, set the typedef DIType to be nullptr
272   // to indicate the duplication case.
273   DIDerivedType *CurrTy = AnonRecords[CTy];
274   if (CurrTy == ParentTy)
275     return;
276   AnonRecords[CTy] = nullptr;
277 }
278 
279 void BPFAbstractMemberAccess::CheckDerivedType(DIDerivedType *ParentTy,
280                                                DIDerivedType *DTy) {
281   DIType *BaseType = DTy->getBaseType();
282   if (!BaseType)
283     return;
284 
285   unsigned Tag = DTy->getTag();
286   if (Tag == dwarf::DW_TAG_pointer_type)
287     CheckAnonRecordType(nullptr, BaseType);
288   else if (Tag == dwarf::DW_TAG_typedef)
289     CheckAnonRecordType(DTy, BaseType);
290   else
291     CheckAnonRecordType(ParentTy, BaseType);
292 }
293 
294 void BPFAbstractMemberAccess::CheckAnonRecordType(DIDerivedType *ParentTy,
295                                                   DIType *Ty) {
296   if (!Ty)
297     return;
298 
299   if (auto *CTy = dyn_cast<DICompositeType>(Ty))
300     return CheckCompositeType(ParentTy, CTy);
301   else if (auto *DTy = dyn_cast<DIDerivedType>(Ty))
302     return CheckDerivedType(ParentTy, DTy);
303 }
304 
305 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
306   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
307       Tag != dwarf::DW_TAG_volatile_type &&
308       Tag != dwarf::DW_TAG_restrict_type &&
309       Tag != dwarf::DW_TAG_member)
310     return false;
311   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
312     return false;
313   return true;
314 }
315 
316 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
317   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
318     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
319       break;
320     Ty = DTy->getBaseType();
321   }
322   return Ty;
323 }
324 
325 static const DIType * stripQualifiers(const DIType *Ty) {
326   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
327     if (!SkipDIDerivedTag(DTy->getTag(), true))
328       break;
329     Ty = DTy->getBaseType();
330   }
331   return Ty;
332 }
333 
334 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
335   DINodeArray Elements = CTy->getElements();
336   uint32_t DimSize = 1;
337   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
338     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
339       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
340         const DISubrange *SR = cast<DISubrange>(Element);
341         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
342         DimSize *= CI->getSExtValue();
343       }
344   }
345 
346   return DimSize;
347 }
348 
349 static Type *getBaseElementType(const CallInst *Call) {
350   // Element type is stored in an elementtype() attribute on the first param.
351   return Call->getParamElementType(0);
352 }
353 
354 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
355 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
356                                                           CallInfo &CInfo) {
357   if (!Call)
358     return false;
359 
360   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
361   if (!GV)
362     return false;
363   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
364     CInfo.Kind = BPFPreserveArrayAI;
365     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
366     if (!CInfo.Metadata)
367       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
368     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
369     CInfo.Base = Call->getArgOperand(0);
370     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
371     return true;
372   }
373   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
374     CInfo.Kind = BPFPreserveUnionAI;
375     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
376     if (!CInfo.Metadata)
377       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
378     ResetMetadata(CInfo);
379     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
380     CInfo.Base = Call->getArgOperand(0);
381     return true;
382   }
383   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
384     CInfo.Kind = BPFPreserveStructAI;
385     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
386     if (!CInfo.Metadata)
387       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
388     ResetMetadata(CInfo);
389     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
390     CInfo.Base = Call->getArgOperand(0);
391     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
392     return true;
393   }
394   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
395     CInfo.Kind = BPFPreserveFieldInfoAI;
396     CInfo.Metadata = nullptr;
397     // Check validity of info_kind as clang did not check this.
398     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
399     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
400       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
401     CInfo.AccessIndex = InfoKind;
402     return true;
403   }
404   if (GV->getName().startswith("llvm.bpf.preserve.type.info")) {
405     CInfo.Kind = BPFPreserveFieldInfoAI;
406     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
407     if (!CInfo.Metadata)
408       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
409     uint64_t Flag = getConstant(Call->getArgOperand(1));
410     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
411       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
412     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
413       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE;
414     else if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_MATCH)
415       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_MATCH;
416     else
417       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE;
418     return true;
419   }
420   if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) {
421     CInfo.Kind = BPFPreserveFieldInfoAI;
422     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
423     if (!CInfo.Metadata)
424       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
425     uint64_t Flag = getConstant(Call->getArgOperand(2));
426     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
427       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
428     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
429       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE;
430     else
431       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE;
432     return true;
433   }
434 
435   return false;
436 }
437 
438 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
439                                              uint32_t DimensionIndex,
440                                              uint32_t GEPIndex) {
441   for (auto *Call : CallList) {
442     uint32_t Dimension = 1;
443     if (DimensionIndex > 0)
444       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
445 
446     Constant *Zero =
447         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
448     SmallVector<Value *, 4> IdxList;
449     for (unsigned I = 0; I < Dimension; ++I)
450       IdxList.push_back(Zero);
451     IdxList.push_back(Call->getArgOperand(GEPIndex));
452 
453     auto *GEP = GetElementPtrInst::CreateInBounds(
454         getBaseElementType(Call), Call->getArgOperand(0), IdxList, "", Call);
455     Call->replaceAllUsesWith(GEP);
456     Call->eraseFromParent();
457   }
458 }
459 
460 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
461   std::vector<CallInst *> PreserveArrayIndexCalls;
462   std::vector<CallInst *> PreserveUnionIndexCalls;
463   std::vector<CallInst *> PreserveStructIndexCalls;
464   bool Found = false;
465 
466   for (auto &BB : F)
467     for (auto &I : BB) {
468       auto *Call = dyn_cast<CallInst>(&I);
469       CallInfo CInfo;
470       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
471         continue;
472 
473       Found = true;
474       if (CInfo.Kind == BPFPreserveArrayAI)
475         PreserveArrayIndexCalls.push_back(Call);
476       else if (CInfo.Kind == BPFPreserveUnionAI)
477         PreserveUnionIndexCalls.push_back(Call);
478       else
479         PreserveStructIndexCalls.push_back(Call);
480     }
481 
482   // do the following transformation:
483   // . addr = preserve_array_access_index(base, dimension, index)
484   //   is transformed to
485   //     addr = GEP(base, dimenion's zero's, index)
486   // . addr = preserve_union_access_index(base, di_index)
487   //   is transformed to
488   //     addr = base, i.e., all usages of "addr" are replaced by "base".
489   // . addr = preserve_struct_access_index(base, gep_index, di_index)
490   //   is transformed to
491   //     addr = GEP(base, 0, gep_index)
492   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
493   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
494   for (auto *Call : PreserveUnionIndexCalls) {
495     Call->replaceAllUsesWith(Call->getArgOperand(0));
496     Call->eraseFromParent();
497   }
498 
499   return Found;
500 }
501 
502 /// Check whether the access index chain is valid. We check
503 /// here because there may be type casts between two
504 /// access indexes. We want to ensure memory access still valid.
505 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
506                                              uint32_t ParentAI,
507                                              const MDNode *ChildType) {
508   if (!ChildType)
509     return true; // preserve_field_info, no type comparison needed.
510 
511   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
512   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
513 
514   // Child is a derived/pointer type, which is due to type casting.
515   // Pointer type cannot be in the middle of chain.
516   if (isa<DIDerivedType>(CType))
517     return false;
518 
519   // Parent is a pointer type.
520   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
521     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
522       return false;
523     return stripQualifiers(PtrTy->getBaseType()) == CType;
524   }
525 
526   // Otherwise, struct/union/array types
527   const auto *PTy = dyn_cast<DICompositeType>(PType);
528   const auto *CTy = dyn_cast<DICompositeType>(CType);
529   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
530 
531   uint32_t PTyTag = PTy->getTag();
532   assert(PTyTag == dwarf::DW_TAG_array_type ||
533          PTyTag == dwarf::DW_TAG_structure_type ||
534          PTyTag == dwarf::DW_TAG_union_type);
535 
536   uint32_t CTyTag = CTy->getTag();
537   assert(CTyTag == dwarf::DW_TAG_array_type ||
538          CTyTag == dwarf::DW_TAG_structure_type ||
539          CTyTag == dwarf::DW_TAG_union_type);
540 
541   // Multi dimensional arrays, base element should be the same
542   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
543     return PTy->getBaseType() == CTy->getBaseType();
544 
545   DIType *Ty;
546   if (PTyTag == dwarf::DW_TAG_array_type)
547     Ty = PTy->getBaseType();
548   else
549     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
550 
551   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
552 }
553 
554 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
555                                           CallInfo &ParentInfo) {
556   for (User *U : Call->users()) {
557     Instruction *Inst = dyn_cast<Instruction>(U);
558     if (!Inst)
559       continue;
560 
561     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
562       traceBitCast(BI, Call, ParentInfo);
563     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
564       CallInfo ChildInfo;
565 
566       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
567           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
568                          ChildInfo.Metadata)) {
569         AIChain[CI] = std::make_pair(Call, ParentInfo);
570         traceAICall(CI, ChildInfo);
571       } else {
572         BaseAICalls[Call] = ParentInfo;
573       }
574     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
575       if (GI->hasAllZeroIndices())
576         traceGEP(GI, Call, ParentInfo);
577       else
578         BaseAICalls[Call] = ParentInfo;
579     } else {
580       BaseAICalls[Call] = ParentInfo;
581     }
582   }
583 }
584 
585 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
586                                            CallInst *Parent,
587                                            CallInfo &ParentInfo) {
588   for (User *U : BitCast->users()) {
589     Instruction *Inst = dyn_cast<Instruction>(U);
590     if (!Inst)
591       continue;
592 
593     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
594       traceBitCast(BI, Parent, ParentInfo);
595     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
596       CallInfo ChildInfo;
597       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
598           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
599                          ChildInfo.Metadata)) {
600         AIChain[CI] = std::make_pair(Parent, ParentInfo);
601         traceAICall(CI, ChildInfo);
602       } else {
603         BaseAICalls[Parent] = ParentInfo;
604       }
605     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
606       if (GI->hasAllZeroIndices())
607         traceGEP(GI, Parent, ParentInfo);
608       else
609         BaseAICalls[Parent] = ParentInfo;
610     } else {
611       BaseAICalls[Parent] = ParentInfo;
612     }
613   }
614 }
615 
616 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
617                                        CallInfo &ParentInfo) {
618   for (User *U : GEP->users()) {
619     Instruction *Inst = dyn_cast<Instruction>(U);
620     if (!Inst)
621       continue;
622 
623     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
624       traceBitCast(BI, Parent, ParentInfo);
625     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
626       CallInfo ChildInfo;
627       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
628           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
629                          ChildInfo.Metadata)) {
630         AIChain[CI] = std::make_pair(Parent, ParentInfo);
631         traceAICall(CI, ChildInfo);
632       } else {
633         BaseAICalls[Parent] = ParentInfo;
634       }
635     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
636       if (GI->hasAllZeroIndices())
637         traceGEP(GI, Parent, ParentInfo);
638       else
639         BaseAICalls[Parent] = ParentInfo;
640     } else {
641       BaseAICalls[Parent] = ParentInfo;
642     }
643   }
644 }
645 
646 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
647   AIChain.clear();
648   BaseAICalls.clear();
649 
650   for (auto &BB : F)
651     for (auto &I : BB) {
652       CallInfo CInfo;
653       auto *Call = dyn_cast<CallInst>(&I);
654       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
655           AIChain.find(Call) != AIChain.end())
656         continue;
657 
658       traceAICall(Call, CInfo);
659     }
660 }
661 
662 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
663   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
664   assert(CV);
665   return CV->getValue().getZExtValue();
666 }
667 
668 /// Get the start and the end of storage offset for \p MemberTy.
669 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
670                                                  Align RecordAlignment,
671                                                  uint32_t &StartBitOffset,
672                                                  uint32_t &EndBitOffset) {
673   uint32_t MemberBitSize = MemberTy->getSizeInBits();
674   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
675 
676   if (RecordAlignment > 8) {
677     // If the Bits are within an aligned 8-byte, set the RecordAlignment
678     // to 8, other report the fatal error.
679     if (MemberBitOffset / 64 != (MemberBitOffset + MemberBitSize) / 64)
680       report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
681                          "requiring too big alignment");
682     RecordAlignment = Align(8);
683   }
684 
685   uint32_t AlignBits = RecordAlignment.value() * 8;
686   if (MemberBitSize > AlignBits)
687     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
688                        "bitfield size greater than record alignment");
689 
690   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
691   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
692     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
693                        "cross alignment boundary");
694   EndBitOffset = StartBitOffset + AlignBits;
695 }
696 
697 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
698                                                DICompositeType *CTy,
699                                                uint32_t AccessIndex,
700                                                uint32_t PatchImm,
701                                                MaybeAlign RecordAlignment) {
702   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
703       return 1;
704 
705   uint32_t Tag = CTy->getTag();
706   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
707     if (Tag == dwarf::DW_TAG_array_type) {
708       auto *EltTy = stripQualifiers(CTy->getBaseType());
709       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
710                   (EltTy->getSizeInBits() >> 3);
711     } else if (Tag == dwarf::DW_TAG_structure_type) {
712       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
713       if (!MemberTy->isBitField()) {
714         PatchImm += MemberTy->getOffsetInBits() >> 3;
715       } else {
716         unsigned SBitOffset, NextSBitOffset;
717         GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
718                            NextSBitOffset);
719         PatchImm += SBitOffset >> 3;
720       }
721     }
722     return PatchImm;
723   }
724 
725   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
726     if (Tag == dwarf::DW_TAG_array_type) {
727       auto *EltTy = stripQualifiers(CTy->getBaseType());
728       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
729     } else {
730       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
731       uint32_t SizeInBits = MemberTy->getSizeInBits();
732       if (!MemberTy->isBitField())
733         return SizeInBits >> 3;
734 
735       unsigned SBitOffset, NextSBitOffset;
736       GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
737                          NextSBitOffset);
738       SizeInBits = NextSBitOffset - SBitOffset;
739       if (SizeInBits & (SizeInBits - 1))
740         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
741       return SizeInBits >> 3;
742     }
743   }
744 
745   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
746     const DIType *BaseTy;
747     if (Tag == dwarf::DW_TAG_array_type) {
748       // Signedness only checked when final array elements are accessed.
749       if (CTy->getElements().size() != 1)
750         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
751       BaseTy = stripQualifiers(CTy->getBaseType());
752     } else {
753       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
754       BaseTy = stripQualifiers(MemberTy->getBaseType());
755     }
756 
757     // Only basic types and enum types have signedness.
758     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
759     while (!BTy) {
760       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
761       // Report an error if the field expression does not have signedness.
762       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
763         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
764       BaseTy = stripQualifiers(CompTy->getBaseType());
765       BTy = dyn_cast<DIBasicType>(BaseTy);
766     }
767     uint32_t Encoding = BTy->getEncoding();
768     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
769   }
770 
771   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
772     // The value is loaded into a value with FIELD_BYTE_SIZE size,
773     // and then zero or sign extended to U64.
774     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
775     // to extract the original value.
776     const Triple &Triple = TM->getTargetTriple();
777     DIDerivedType *MemberTy = nullptr;
778     bool IsBitField = false;
779     uint32_t SizeInBits;
780 
781     if (Tag == dwarf::DW_TAG_array_type) {
782       auto *EltTy = stripQualifiers(CTy->getBaseType());
783       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
784     } else {
785       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
786       SizeInBits = MemberTy->getSizeInBits();
787       IsBitField = MemberTy->isBitField();
788     }
789 
790     if (!IsBitField) {
791       if (SizeInBits > 64)
792         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
793       return 64 - SizeInBits;
794     }
795 
796     unsigned SBitOffset, NextSBitOffset;
797     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
798     if (NextSBitOffset - SBitOffset > 64)
799       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
800 
801     unsigned OffsetInBits = MemberTy->getOffsetInBits();
802     if (Triple.getArch() == Triple::bpfel)
803       return SBitOffset + 64 - OffsetInBits - SizeInBits;
804     else
805       return OffsetInBits + 64 - NextSBitOffset;
806   }
807 
808   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
809     DIDerivedType *MemberTy = nullptr;
810     bool IsBitField = false;
811     uint32_t SizeInBits;
812     if (Tag == dwarf::DW_TAG_array_type) {
813       auto *EltTy = stripQualifiers(CTy->getBaseType());
814       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
815     } else {
816       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
817       SizeInBits = MemberTy->getSizeInBits();
818       IsBitField = MemberTy->isBitField();
819     }
820 
821     if (!IsBitField) {
822       if (SizeInBits > 64)
823         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
824       return 64 - SizeInBits;
825     }
826 
827     unsigned SBitOffset, NextSBitOffset;
828     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
829     if (NextSBitOffset - SBitOffset > 64)
830       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
831 
832     return 64 - SizeInBits;
833   }
834 
835   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
836 }
837 
838 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
839   // This is called in error return path, no need to maintain CallStack.
840   while (CallStack.size()) {
841     auto StackElem = CallStack.top();
842     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
843       return true;
844     CallStack.pop();
845   }
846   return false;
847 }
848 
849 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
850 /// pointer of the first preserve_*_access_index call, and construct the access
851 /// string, which will be the name of a global variable.
852 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
853                                                         CallInfo &CInfo,
854                                                         std::string &AccessKey,
855                                                         MDNode *&TypeMeta) {
856   Value *Base = nullptr;
857   std::string TypeName;
858   CallInfoStack CallStack;
859 
860   // Put the access chain into a stack with the top as the head of the chain.
861   while (Call) {
862     CallStack.push(std::make_pair(Call, CInfo));
863     CInfo = AIChain[Call].second;
864     Call = AIChain[Call].first;
865   }
866 
867   // The access offset from the base of the head of chain is also
868   // calculated here as all debuginfo types are available.
869 
870   // Get type name and calculate the first index.
871   // We only want to get type name from typedef, structure or union.
872   // If user wants a relocation like
873   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
874   // or
875   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
876   // we will skip them.
877   uint32_t FirstIndex = 0;
878   uint32_t PatchImm = 0; // AccessOffset or the requested field info
879   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
880   while (CallStack.size()) {
881     auto StackElem = CallStack.top();
882     Call = StackElem.first;
883     CInfo = StackElem.second;
884 
885     if (!Base)
886       Base = CInfo.Base;
887 
888     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
889                                               false);
890     DIType *Ty = stripQualifiers(PossibleTypeDef);
891     if (CInfo.Kind == BPFPreserveUnionAI ||
892         CInfo.Kind == BPFPreserveStructAI) {
893       // struct or union type. If the typedef is in the metadata, always
894       // use the typedef.
895       TypeName = std::string(PossibleTypeDef->getName());
896       TypeMeta = PossibleTypeDef;
897       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
898       break;
899     }
900 
901     assert(CInfo.Kind == BPFPreserveArrayAI);
902 
903     // Array entries will always be consumed for accumulative initial index.
904     CallStack.pop();
905 
906     // BPFPreserveArrayAI
907     uint64_t AccessIndex = CInfo.AccessIndex;
908 
909     DIType *BaseTy = nullptr;
910     bool CheckElemType = false;
911     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
912       // array type
913       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
914 
915 
916       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
917       BaseTy = stripQualifiers(CTy->getBaseType());
918       CheckElemType = CTy->getElements().size() == 1;
919     } else {
920       // pointer type
921       auto *DTy = cast<DIDerivedType>(Ty);
922       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
923 
924       BaseTy = stripQualifiers(DTy->getBaseType());
925       CTy = dyn_cast<DICompositeType>(BaseTy);
926       if (!CTy) {
927         CheckElemType = true;
928       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
929         FirstIndex += AccessIndex;
930         CheckElemType = true;
931       } else {
932         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
933       }
934     }
935 
936     if (CheckElemType) {
937       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
938       if (!CTy) {
939         if (HasPreserveFieldInfoCall(CallStack))
940           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
941         return nullptr;
942       }
943 
944       unsigned CTag = CTy->getTag();
945       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
946         TypeName = std::string(CTy->getName());
947       } else {
948         if (HasPreserveFieldInfoCall(CallStack))
949           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
950         return nullptr;
951       }
952       TypeMeta = CTy;
953       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
954       break;
955     }
956   }
957   assert(TypeName.size());
958   AccessKey += std::to_string(FirstIndex);
959 
960   // Traverse the rest of access chain to complete offset calculation
961   // and access key construction.
962   while (CallStack.size()) {
963     auto StackElem = CallStack.top();
964     CInfo = StackElem.second;
965     CallStack.pop();
966 
967     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
968       InfoKind = CInfo.AccessIndex;
969       if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
970         PatchImm = 1;
971       break;
972     }
973 
974     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
975     // the action will be extracting field info.
976     if (CallStack.size()) {
977       auto StackElem2 = CallStack.top();
978       CallInfo CInfo2 = StackElem2.second;
979       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
980         InfoKind = CInfo2.AccessIndex;
981         assert(CallStack.size() == 1);
982       }
983     }
984 
985     // Access Index
986     uint64_t AccessIndex = CInfo.AccessIndex;
987     AccessKey += ":" + std::to_string(AccessIndex);
988 
989     MDNode *MDN = CInfo.Metadata;
990     // At this stage, it cannot be pointer type.
991     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
992     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
993                             CInfo.RecordAlignment);
994   }
995 
996   // Access key is the
997   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
998   //   access string,
999   // uniquely identifying one relocation.
1000   // The prefix "llvm." indicates this is a temporary global, which should
1001   // not be emitted to ELF file.
1002   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
1003               std::to_string(PatchImm) + "$" + AccessKey;
1004 
1005   return Base;
1006 }
1007 
1008 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
1009                                                   CallInfo &CInfo,
1010                                                   std::string &AccessKey,
1011                                                   bool &IsInt32Ret) {
1012   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
1013   assert(!Ty->getName().empty());
1014 
1015   int64_t PatchImm;
1016   std::string AccessStr("0");
1017   if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE ||
1018       CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_MATCH) {
1019     PatchImm = 1;
1020   } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) {
1021     // typedef debuginfo type has size 0, get the eventual base type.
1022     DIType *BaseTy = stripQualifiers(Ty, true);
1023     PatchImm = BaseTy->getSizeInBits() / 8;
1024   } else {
1025     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
1026     IsInt32Ret = false;
1027 
1028     // The argument could be a global variable or a getelementptr with base to
1029     // a global variable depending on whether the clang option `opaque-options`
1030     // is set or not.
1031     const GlobalVariable *GV =
1032         cast<GlobalVariable>(Call->getArgOperand(1)->stripPointerCasts());
1033     assert(GV->hasInitializer());
1034     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
1035     assert(DA->isString());
1036     StringRef ValueStr = DA->getAsString();
1037 
1038     // ValueStr format: <EnumeratorStr>:<Value>
1039     size_t Separator = ValueStr.find_first_of(':');
1040     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
1041 
1042     // Find enumerator index in the debuginfo
1043     DIType *BaseTy = stripQualifiers(Ty, true);
1044     const auto *CTy = cast<DICompositeType>(BaseTy);
1045     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
1046     int EnumIndex = 0;
1047     for (const auto Element : CTy->getElements()) {
1048       const auto *Enum = cast<DIEnumerator>(Element);
1049       if (Enum->getName() == EnumeratorStr) {
1050         AccessStr = std::to_string(EnumIndex);
1051         break;
1052       }
1053       EnumIndex++;
1054     }
1055 
1056     if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) {
1057       StringRef EValueStr = ValueStr.substr(Separator + 1);
1058       PatchImm = std::stoll(std::string(EValueStr));
1059     } else {
1060       PatchImm = 1;
1061     }
1062   }
1063 
1064   AccessKey = "llvm." + Ty->getName().str() + ":" +
1065               std::to_string(CInfo.AccessIndex) + std::string(":") +
1066               std::to_string(PatchImm) + std::string("$") + AccessStr;
1067 
1068   return Ty;
1069 }
1070 
1071 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
1072 /// transformation to a chain of relocable GEPs.
1073 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
1074                                                 CallInfo &CInfo) {
1075   std::string AccessKey;
1076   MDNode *TypeMeta;
1077   Value *Base = nullptr;
1078   bool IsInt32Ret;
1079 
1080   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
1081   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
1082     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
1083   } else {
1084     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
1085     if (!Base)
1086       return false;
1087   }
1088 
1089   BasicBlock *BB = Call->getParent();
1090   GlobalVariable *GV;
1091 
1092   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
1093     IntegerType *VarType;
1094     if (IsInt32Ret)
1095       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
1096     else
1097       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
1098 
1099     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1100                             nullptr, AccessKey);
1101     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1102     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1103     GEPGlobals[AccessKey] = GV;
1104   } else {
1105     GV = GEPGlobals[AccessKey];
1106   }
1107 
1108   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1109     // Load the global variable which represents the returned field info.
1110     LoadInst *LDInst;
1111     if (IsInt32Ret)
1112       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
1113     else
1114       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1115 
1116     Instruction *PassThroughInst =
1117         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1118     Call->replaceAllUsesWith(PassThroughInst);
1119     Call->eraseFromParent();
1120     return true;
1121   }
1122 
1123   // For any original GEP Call and Base %2 like
1124   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1125   // it is transformed to:
1126   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1127   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1128   //   %8 = getelementptr i8, i8* %7, %6
1129   //   %9 = bitcast i8* %8 to i64*
1130   //   using %9 instead of %4
1131   // The original Call inst is removed.
1132 
1133   // Load the global variable.
1134   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1135 
1136   // Generate a BitCast
1137   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
1138   BCInst->insertBefore(Call);
1139 
1140   // Generate a GetElementPtr
1141   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1142                                         BCInst, LDInst);
1143   GEP->insertBefore(Call);
1144 
1145   // Generate a BitCast
1146   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1147   BCInst2->insertBefore(Call);
1148 
1149   // For the following code,
1150   //    Block0:
1151   //      ...
1152   //      if (...) goto Block1 else ...
1153   //    Block1:
1154   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1155   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1156   //      %8 = getelementptr i8, i8* %7, %6
1157   //      ...
1158   //      goto CommonExit
1159   //    Block2:
1160   //      ...
1161   //      if (...) goto Block3 else ...
1162   //    Block3:
1163   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1164   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1165   //      %8 = getelementptr i8, i8* %7, %6
1166   //      ...
1167   //      goto CommonExit
1168   //    CommonExit
1169   // SimplifyCFG may generate:
1170   //    Block0:
1171   //      ...
1172   //      if (...) goto Block_Common else ...
1173   //     Block2:
1174   //       ...
1175   //      if (...) goto Block_Common else ...
1176   //    Block_Common:
1177   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1178   //      %6 = load PHI
1179   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1180   //      %8 = getelementptr i8, i8* %7, %6
1181   //      ...
1182   //      goto CommonExit
1183   //  For the above code, we cannot perform proper relocation since
1184   //  "load PHI" has two possible relocations.
1185   //
1186   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1187   // where one of its parameters is a seq_num. Since two
1188   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1189   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1190   // removed in the beginning of Target IR passes.
1191   //
1192   // This approach is also used in other places when global var
1193   // representing a relocation is used.
1194   Instruction *PassThroughInst =
1195       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1196   Call->replaceAllUsesWith(PassThroughInst);
1197   Call->eraseFromParent();
1198 
1199   return true;
1200 }
1201 
1202 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1203   bool Transformed = false;
1204 
1205   // Collect PreserveDIAccessIndex Intrinsic call chains.
1206   // The call chains will be used to generate the access
1207   // patterns similar to GEP.
1208   collectAICallChains(F);
1209 
1210   for (auto &C : BaseAICalls)
1211     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1212 
1213   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1214 }
1215 
1216 PreservedAnalyses
1217 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1218   return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1219                                             : PreservedAnalyses::all();
1220 }
1221