1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass abstracted struct/union member accesses in order to support 10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program 11 // which can run on different kernels. In particular, if bpf program tries to 12 // access a particular kernel data structure member, the details of the 13 // intermediate member access will be remembered so bpf loader can do 14 // necessary adjustment right before program loading. 15 // 16 // For example, 17 // 18 // struct s { 19 // int a; 20 // int b; 21 // }; 22 // struct t { 23 // struct s c; 24 // int d; 25 // }; 26 // struct t e; 27 // 28 // For the member access e.c.b, the compiler will generate code 29 // &e + 4 30 // 31 // The compile-once run-everywhere instead generates the following code 32 // r = 4 33 // &e + r 34 // The "4" in "r = 4" can be changed based on a particular kernel version. 35 // For example, on a particular kernel version, if struct s is changed to 36 // 37 // struct s { 38 // int new_field; 39 // int a; 40 // int b; 41 // } 42 // 43 // By repeating the member access on the host, the bpf loader can 44 // adjust "r = 4" as "r = 8". 45 // 46 // This feature relies on the following three intrinsic calls: 47 // addr = preserve_array_access_index(base, dimension, index) 48 // addr = preserve_union_access_index(base, di_index) 49 // !llvm.preserve.access.index <union_ditype> 50 // addr = preserve_struct_access_index(base, gep_index, di_index) 51 // !llvm.preserve.access.index <struct_ditype> 52 // 53 // Bitfield member access needs special attention. User cannot take the 54 // address of a bitfield acceess. To facilitate kernel verifier 55 // for easy bitfield code optimization, a new clang intrinsic is introduced: 56 // uint32_t __builtin_preserve_field_info(member_access, info_kind) 57 // In IR, a chain with two (or more) intrinsic calls will be generated: 58 // ... 59 // addr = preserve_struct_access_index(base, 1, 1) !struct s 60 // uint32_t result = bpf_preserve_field_info(addr, info_kind) 61 // 62 // Suppose the info_kind is FIELD_SIGNEDNESS, 63 // The above two IR intrinsics will be replaced with 64 // a relocatable insn: 65 // signness = /* signness of member_access */ 66 // and signness can be changed by bpf loader based on the 67 // types on the host. 68 // 69 // User can also test whether a field exists or not with 70 // uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE) 71 // The field will be always available (result = 1) during initial 72 // compilation, but bpf loader can patch with the correct value 73 // on the target host where the member_access may or may not be available 74 // 75 //===----------------------------------------------------------------------===// 76 77 #include "BPF.h" 78 #include "BPFCORE.h" 79 #include "BPFTargetMachine.h" 80 #include "llvm/IR/DebugInfoMetadata.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include <stack> 91 92 #define DEBUG_TYPE "bpf-abstract-member-access" 93 94 namespace llvm { 95 const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama"; 96 } // namespace llvm 97 98 using namespace llvm; 99 100 namespace { 101 102 class BPFAbstractMemberAccess final : public ModulePass { 103 StringRef getPassName() const override { 104 return "BPF Abstract Member Access"; 105 } 106 107 bool runOnModule(Module &M) override; 108 109 public: 110 static char ID; 111 TargetMachine *TM; 112 // Add optional BPFTargetMachine parameter so that BPF backend can add the phase 113 // with target machine to find out the endianness. The default constructor (without 114 // parameters) is used by the pass manager for managing purposes. 115 BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr) : ModulePass(ID), TM(TM) {} 116 117 struct CallInfo { 118 uint32_t Kind; 119 uint32_t AccessIndex; 120 uint32_t RecordAlignment; 121 MDNode *Metadata; 122 Value *Base; 123 }; 124 typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack; 125 126 private: 127 enum : uint32_t { 128 BPFPreserveArrayAI = 1, 129 BPFPreserveUnionAI = 2, 130 BPFPreserveStructAI = 3, 131 BPFPreserveFieldInfoAI = 4, 132 }; 133 134 const DataLayout *DL = nullptr; 135 136 std::map<std::string, GlobalVariable *> GEPGlobals; 137 // A map to link preserve_*_access_index instrinsic calls. 138 std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain; 139 // A map to hold all the base preserve_*_access_index instrinsic calls. 140 // The base call is not an input of any other preserve_* 141 // intrinsics. 142 std::map<CallInst *, CallInfo> BaseAICalls; 143 144 bool doTransformation(Module &M); 145 146 void traceAICall(CallInst *Call, CallInfo &ParentInfo); 147 void traceBitCast(BitCastInst *BitCast, CallInst *Parent, 148 CallInfo &ParentInfo); 149 void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, 150 CallInfo &ParentInfo); 151 void collectAICallChains(Module &M, Function &F); 152 153 bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo); 154 bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI, 155 const MDNode *ChildMeta); 156 bool removePreserveAccessIndexIntrinsic(Module &M); 157 void replaceWithGEP(std::vector<CallInst *> &CallList, 158 uint32_t NumOfZerosIndex, uint32_t DIIndex); 159 bool HasPreserveFieldInfoCall(CallInfoStack &CallStack); 160 void GetStorageBitRange(DIDerivedType *MemberTy, uint32_t RecordAlignment, 161 uint32_t &StartBitOffset, uint32_t &EndBitOffset); 162 uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy, 163 uint32_t AccessIndex, uint32_t PatchImm, 164 uint32_t RecordAlignment); 165 166 Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo, 167 std::string &AccessKey, MDNode *&BaseMeta); 168 uint64_t getConstant(const Value *IndexValue); 169 bool transformGEPChain(Module &M, CallInst *Call, CallInfo &CInfo); 170 }; 171 } // End anonymous namespace 172 173 char BPFAbstractMemberAccess::ID = 0; 174 INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE, 175 "abstracting struct/union member accessees", false, false) 176 177 ModulePass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) { 178 return new BPFAbstractMemberAccess(TM); 179 } 180 181 bool BPFAbstractMemberAccess::runOnModule(Module &M) { 182 LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n"); 183 184 // Bail out if no debug info. 185 if (M.debug_compile_units().empty()) 186 return false; 187 188 DL = &M.getDataLayout(); 189 return doTransformation(M); 190 } 191 192 static bool SkipDIDerivedTag(unsigned Tag) { 193 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 194 Tag != dwarf::DW_TAG_volatile_type && 195 Tag != dwarf::DW_TAG_restrict_type && 196 Tag != dwarf::DW_TAG_member) 197 return false; 198 return true; 199 } 200 201 static DIType * stripQualifiers(DIType *Ty) { 202 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 203 if (!SkipDIDerivedTag(DTy->getTag())) 204 break; 205 Ty = DTy->getBaseType(); 206 } 207 return Ty; 208 } 209 210 static const DIType * stripQualifiers(const DIType *Ty) { 211 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 212 if (!SkipDIDerivedTag(DTy->getTag())) 213 break; 214 Ty = DTy->getBaseType(); 215 } 216 return Ty; 217 } 218 219 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) { 220 DINodeArray Elements = CTy->getElements(); 221 uint32_t DimSize = 1; 222 for (uint32_t I = StartDim; I < Elements.size(); ++I) { 223 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 224 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 225 const DISubrange *SR = cast<DISubrange>(Element); 226 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 227 DimSize *= CI->getSExtValue(); 228 } 229 } 230 231 return DimSize; 232 } 233 234 /// Check whether a call is a preserve_*_access_index intrinsic call or not. 235 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call, 236 CallInfo &CInfo) { 237 if (!Call) 238 return false; 239 240 const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue()); 241 if (!GV) 242 return false; 243 if (GV->getName().startswith("llvm.preserve.array.access.index")) { 244 CInfo.Kind = BPFPreserveArrayAI; 245 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 246 if (!CInfo.Metadata) 247 report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic"); 248 CInfo.AccessIndex = getConstant(Call->getArgOperand(2)); 249 CInfo.Base = Call->getArgOperand(0); 250 CInfo.RecordAlignment = 251 DL->getABITypeAlignment(CInfo.Base->getType()->getPointerElementType()); 252 return true; 253 } 254 if (GV->getName().startswith("llvm.preserve.union.access.index")) { 255 CInfo.Kind = BPFPreserveUnionAI; 256 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 257 if (!CInfo.Metadata) 258 report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic"); 259 CInfo.AccessIndex = getConstant(Call->getArgOperand(1)); 260 CInfo.Base = Call->getArgOperand(0); 261 CInfo.RecordAlignment = 262 DL->getABITypeAlignment(CInfo.Base->getType()->getPointerElementType()); 263 return true; 264 } 265 if (GV->getName().startswith("llvm.preserve.struct.access.index")) { 266 CInfo.Kind = BPFPreserveStructAI; 267 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 268 if (!CInfo.Metadata) 269 report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic"); 270 CInfo.AccessIndex = getConstant(Call->getArgOperand(2)); 271 CInfo.Base = Call->getArgOperand(0); 272 CInfo.RecordAlignment = 273 DL->getABITypeAlignment(CInfo.Base->getType()->getPointerElementType()); 274 return true; 275 } 276 if (GV->getName().startswith("llvm.bpf.preserve.field.info")) { 277 CInfo.Kind = BPFPreserveFieldInfoAI; 278 CInfo.Metadata = nullptr; 279 // Check validity of info_kind as clang did not check this. 280 uint64_t InfoKind = getConstant(Call->getArgOperand(1)); 281 if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND) 282 report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic"); 283 CInfo.AccessIndex = InfoKind; 284 return true; 285 } 286 287 return false; 288 } 289 290 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList, 291 uint32_t DimensionIndex, 292 uint32_t GEPIndex) { 293 for (auto Call : CallList) { 294 uint32_t Dimension = 1; 295 if (DimensionIndex > 0) 296 Dimension = getConstant(Call->getArgOperand(DimensionIndex)); 297 298 Constant *Zero = 299 ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0); 300 SmallVector<Value *, 4> IdxList; 301 for (unsigned I = 0; I < Dimension; ++I) 302 IdxList.push_back(Zero); 303 IdxList.push_back(Call->getArgOperand(GEPIndex)); 304 305 auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0), 306 IdxList, "", Call); 307 Call->replaceAllUsesWith(GEP); 308 Call->eraseFromParent(); 309 } 310 } 311 312 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) { 313 std::vector<CallInst *> PreserveArrayIndexCalls; 314 std::vector<CallInst *> PreserveUnionIndexCalls; 315 std::vector<CallInst *> PreserveStructIndexCalls; 316 bool Found = false; 317 318 for (Function &F : M) 319 for (auto &BB : F) 320 for (auto &I : BB) { 321 auto *Call = dyn_cast<CallInst>(&I); 322 CallInfo CInfo; 323 if (!IsPreserveDIAccessIndexCall(Call, CInfo)) 324 continue; 325 326 Found = true; 327 if (CInfo.Kind == BPFPreserveArrayAI) 328 PreserveArrayIndexCalls.push_back(Call); 329 else if (CInfo.Kind == BPFPreserveUnionAI) 330 PreserveUnionIndexCalls.push_back(Call); 331 else 332 PreserveStructIndexCalls.push_back(Call); 333 } 334 335 // do the following transformation: 336 // . addr = preserve_array_access_index(base, dimension, index) 337 // is transformed to 338 // addr = GEP(base, dimenion's zero's, index) 339 // . addr = preserve_union_access_index(base, di_index) 340 // is transformed to 341 // addr = base, i.e., all usages of "addr" are replaced by "base". 342 // . addr = preserve_struct_access_index(base, gep_index, di_index) 343 // is transformed to 344 // addr = GEP(base, 0, gep_index) 345 replaceWithGEP(PreserveArrayIndexCalls, 1, 2); 346 replaceWithGEP(PreserveStructIndexCalls, 0, 1); 347 for (auto Call : PreserveUnionIndexCalls) { 348 Call->replaceAllUsesWith(Call->getArgOperand(0)); 349 Call->eraseFromParent(); 350 } 351 352 return Found; 353 } 354 355 /// Check whether the access index chain is valid. We check 356 /// here because there may be type casts between two 357 /// access indexes. We want to ensure memory access still valid. 358 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType, 359 uint32_t ParentAI, 360 const MDNode *ChildType) { 361 if (!ChildType) 362 return true; // preserve_field_info, no type comparison needed. 363 364 const DIType *PType = stripQualifiers(cast<DIType>(ParentType)); 365 const DIType *CType = stripQualifiers(cast<DIType>(ChildType)); 366 367 // Child is a derived/pointer type, which is due to type casting. 368 // Pointer type cannot be in the middle of chain. 369 if (isa<DIDerivedType>(CType)) 370 return false; 371 372 // Parent is a pointer type. 373 if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) { 374 if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type) 375 return false; 376 return stripQualifiers(PtrTy->getBaseType()) == CType; 377 } 378 379 // Otherwise, struct/union/array types 380 const auto *PTy = dyn_cast<DICompositeType>(PType); 381 const auto *CTy = dyn_cast<DICompositeType>(CType); 382 assert(PTy && CTy && "ParentType or ChildType is null or not composite"); 383 384 uint32_t PTyTag = PTy->getTag(); 385 assert(PTyTag == dwarf::DW_TAG_array_type || 386 PTyTag == dwarf::DW_TAG_structure_type || 387 PTyTag == dwarf::DW_TAG_union_type); 388 389 uint32_t CTyTag = CTy->getTag(); 390 assert(CTyTag == dwarf::DW_TAG_array_type || 391 CTyTag == dwarf::DW_TAG_structure_type || 392 CTyTag == dwarf::DW_TAG_union_type); 393 394 // Multi dimensional arrays, base element should be the same 395 if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag) 396 return PTy->getBaseType() == CTy->getBaseType(); 397 398 DIType *Ty; 399 if (PTyTag == dwarf::DW_TAG_array_type) 400 Ty = PTy->getBaseType(); 401 else 402 Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]); 403 404 return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy; 405 } 406 407 void BPFAbstractMemberAccess::traceAICall(CallInst *Call, 408 CallInfo &ParentInfo) { 409 for (User *U : Call->users()) { 410 Instruction *Inst = dyn_cast<Instruction>(U); 411 if (!Inst) 412 continue; 413 414 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 415 traceBitCast(BI, Call, ParentInfo); 416 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 417 CallInfo ChildInfo; 418 419 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 420 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 421 ChildInfo.Metadata)) { 422 AIChain[CI] = std::make_pair(Call, ParentInfo); 423 traceAICall(CI, ChildInfo); 424 } else { 425 BaseAICalls[Call] = ParentInfo; 426 } 427 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 428 if (GI->hasAllZeroIndices()) 429 traceGEP(GI, Call, ParentInfo); 430 else 431 BaseAICalls[Call] = ParentInfo; 432 } else { 433 BaseAICalls[Call] = ParentInfo; 434 } 435 } 436 } 437 438 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast, 439 CallInst *Parent, 440 CallInfo &ParentInfo) { 441 for (User *U : BitCast->users()) { 442 Instruction *Inst = dyn_cast<Instruction>(U); 443 if (!Inst) 444 continue; 445 446 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 447 traceBitCast(BI, Parent, ParentInfo); 448 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 449 CallInfo ChildInfo; 450 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 451 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 452 ChildInfo.Metadata)) { 453 AIChain[CI] = std::make_pair(Parent, ParentInfo); 454 traceAICall(CI, ChildInfo); 455 } else { 456 BaseAICalls[Parent] = ParentInfo; 457 } 458 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 459 if (GI->hasAllZeroIndices()) 460 traceGEP(GI, Parent, ParentInfo); 461 else 462 BaseAICalls[Parent] = ParentInfo; 463 } else { 464 BaseAICalls[Parent] = ParentInfo; 465 } 466 } 467 } 468 469 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent, 470 CallInfo &ParentInfo) { 471 for (User *U : GEP->users()) { 472 Instruction *Inst = dyn_cast<Instruction>(U); 473 if (!Inst) 474 continue; 475 476 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 477 traceBitCast(BI, Parent, ParentInfo); 478 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 479 CallInfo ChildInfo; 480 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 481 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 482 ChildInfo.Metadata)) { 483 AIChain[CI] = std::make_pair(Parent, ParentInfo); 484 traceAICall(CI, ChildInfo); 485 } else { 486 BaseAICalls[Parent] = ParentInfo; 487 } 488 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 489 if (GI->hasAllZeroIndices()) 490 traceGEP(GI, Parent, ParentInfo); 491 else 492 BaseAICalls[Parent] = ParentInfo; 493 } else { 494 BaseAICalls[Parent] = ParentInfo; 495 } 496 } 497 } 498 499 void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) { 500 AIChain.clear(); 501 BaseAICalls.clear(); 502 503 for (auto &BB : F) 504 for (auto &I : BB) { 505 CallInfo CInfo; 506 auto *Call = dyn_cast<CallInst>(&I); 507 if (!IsPreserveDIAccessIndexCall(Call, CInfo) || 508 AIChain.find(Call) != AIChain.end()) 509 continue; 510 511 traceAICall(Call, CInfo); 512 } 513 } 514 515 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) { 516 const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue); 517 assert(CV); 518 return CV->getValue().getZExtValue(); 519 } 520 521 /// Get the start and the end of storage offset for \p MemberTy. 522 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy, 523 uint32_t RecordAlignment, 524 uint32_t &StartBitOffset, 525 uint32_t &EndBitOffset) { 526 uint32_t MemberBitSize = MemberTy->getSizeInBits(); 527 uint32_t MemberBitOffset = MemberTy->getOffsetInBits(); 528 uint32_t AlignBits = RecordAlignment * 8; 529 if (RecordAlignment > 8 || MemberBitSize > AlignBits) 530 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, " 531 "requiring too big alignment"); 532 533 StartBitOffset = MemberBitOffset & ~(AlignBits - 1); 534 if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize)) 535 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, " 536 "cross alignment boundary"); 537 EndBitOffset = StartBitOffset + AlignBits; 538 } 539 540 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind, 541 DICompositeType *CTy, 542 uint32_t AccessIndex, 543 uint32_t PatchImm, 544 uint32_t RecordAlignment) { 545 if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE) 546 return 1; 547 548 uint32_t Tag = CTy->getTag(); 549 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) { 550 if (Tag == dwarf::DW_TAG_array_type) { 551 auto *EltTy = stripQualifiers(CTy->getBaseType()); 552 PatchImm += AccessIndex * calcArraySize(CTy, 1) * 553 (EltTy->getSizeInBits() >> 3); 554 } else if (Tag == dwarf::DW_TAG_structure_type) { 555 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 556 if (!MemberTy->isBitField()) { 557 PatchImm += MemberTy->getOffsetInBits() >> 3; 558 } else { 559 unsigned SBitOffset, NextSBitOffset; 560 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, 561 NextSBitOffset); 562 PatchImm += SBitOffset >> 3; 563 } 564 } 565 return PatchImm; 566 } 567 568 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) { 569 if (Tag == dwarf::DW_TAG_array_type) { 570 auto *EltTy = stripQualifiers(CTy->getBaseType()); 571 return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3); 572 } else { 573 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 574 uint32_t SizeInBits = MemberTy->getSizeInBits(); 575 if (!MemberTy->isBitField()) 576 return SizeInBits >> 3; 577 578 unsigned SBitOffset, NextSBitOffset; 579 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 580 SizeInBits = NextSBitOffset - SBitOffset; 581 if (SizeInBits & (SizeInBits - 1)) 582 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info"); 583 return SizeInBits >> 3; 584 } 585 } 586 587 if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) { 588 const DIType *BaseTy; 589 if (Tag == dwarf::DW_TAG_array_type) { 590 // Signedness only checked when final array elements are accessed. 591 if (CTy->getElements().size() != 1) 592 report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info"); 593 BaseTy = stripQualifiers(CTy->getBaseType()); 594 } else { 595 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 596 BaseTy = stripQualifiers(MemberTy->getBaseType()); 597 } 598 599 // Only basic types and enum types have signedness. 600 const auto *BTy = dyn_cast<DIBasicType>(BaseTy); 601 while (!BTy) { 602 const auto *CompTy = dyn_cast<DICompositeType>(BaseTy); 603 // Report an error if the field expression does not have signedness. 604 if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type) 605 report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info"); 606 BaseTy = stripQualifiers(CompTy->getBaseType()); 607 BTy = dyn_cast<DIBasicType>(BaseTy); 608 } 609 uint32_t Encoding = BTy->getEncoding(); 610 return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char); 611 } 612 613 if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) { 614 // The value is loaded into a value with FIELD_BYTE_SIZE size, 615 // and then zero or sign extended to U64. 616 // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations 617 // to extract the original value. 618 const Triple &Triple = TM->getTargetTriple(); 619 DIDerivedType *MemberTy = nullptr; 620 bool IsBitField = false; 621 uint32_t SizeInBits; 622 623 if (Tag == dwarf::DW_TAG_array_type) { 624 auto *EltTy = stripQualifiers(CTy->getBaseType()); 625 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits(); 626 } else { 627 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 628 SizeInBits = MemberTy->getSizeInBits(); 629 IsBitField = MemberTy->isBitField(); 630 } 631 632 if (!IsBitField) { 633 if (SizeInBits > 64) 634 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 635 return 64 - SizeInBits; 636 } 637 638 unsigned SBitOffset, NextSBitOffset; 639 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 640 if (NextSBitOffset - SBitOffset > 64) 641 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 642 643 unsigned OffsetInBits = MemberTy->getOffsetInBits(); 644 if (Triple.getArch() == Triple::bpfel) 645 return SBitOffset + 64 - OffsetInBits - SizeInBits; 646 else 647 return OffsetInBits + 64 - NextSBitOffset; 648 } 649 650 if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) { 651 DIDerivedType *MemberTy = nullptr; 652 bool IsBitField = false; 653 uint32_t SizeInBits; 654 if (Tag == dwarf::DW_TAG_array_type) { 655 auto *EltTy = stripQualifiers(CTy->getBaseType()); 656 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits(); 657 } else { 658 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 659 SizeInBits = MemberTy->getSizeInBits(); 660 IsBitField = MemberTy->isBitField(); 661 } 662 663 if (!IsBitField) { 664 if (SizeInBits > 64) 665 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 666 return 64 - SizeInBits; 667 } 668 669 unsigned SBitOffset, NextSBitOffset; 670 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 671 if (NextSBitOffset - SBitOffset > 64) 672 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 673 674 return 64 - SizeInBits; 675 } 676 677 llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind"); 678 } 679 680 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) { 681 // This is called in error return path, no need to maintain CallStack. 682 while (CallStack.size()) { 683 auto StackElem = CallStack.top(); 684 if (StackElem.second.Kind == BPFPreserveFieldInfoAI) 685 return true; 686 CallStack.pop(); 687 } 688 return false; 689 } 690 691 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base 692 /// pointer of the first preserve_*_access_index call, and construct the access 693 /// string, which will be the name of a global variable. 694 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call, 695 CallInfo &CInfo, 696 std::string &AccessKey, 697 MDNode *&TypeMeta) { 698 Value *Base = nullptr; 699 std::string TypeName; 700 CallInfoStack CallStack; 701 702 // Put the access chain into a stack with the top as the head of the chain. 703 while (Call) { 704 CallStack.push(std::make_pair(Call, CInfo)); 705 CInfo = AIChain[Call].second; 706 Call = AIChain[Call].first; 707 } 708 709 // The access offset from the base of the head of chain is also 710 // calculated here as all debuginfo types are available. 711 712 // Get type name and calculate the first index. 713 // We only want to get type name from structure or union. 714 // If user wants a relocation like 715 // int *p; ... __builtin_preserve_access_index(&p[4]) ... 716 // or 717 // int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ... 718 // we will skip them. 719 uint32_t FirstIndex = 0; 720 uint32_t PatchImm = 0; // AccessOffset or the requested field info 721 uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET; 722 while (CallStack.size()) { 723 auto StackElem = CallStack.top(); 724 Call = StackElem.first; 725 CInfo = StackElem.second; 726 727 if (!Base) 728 Base = CInfo.Base; 729 730 DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata)); 731 if (CInfo.Kind == BPFPreserveUnionAI || 732 CInfo.Kind == BPFPreserveStructAI) { 733 // struct or union type 734 TypeName = Ty->getName(); 735 TypeMeta = Ty; 736 PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3); 737 break; 738 } 739 740 assert(CInfo.Kind == BPFPreserveArrayAI); 741 742 // Array entries will always be consumed for accumulative initial index. 743 CallStack.pop(); 744 745 // BPFPreserveArrayAI 746 uint64_t AccessIndex = CInfo.AccessIndex; 747 748 DIType *BaseTy = nullptr; 749 bool CheckElemType = false; 750 if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) { 751 // array type 752 assert(CTy->getTag() == dwarf::DW_TAG_array_type); 753 754 755 FirstIndex += AccessIndex * calcArraySize(CTy, 1); 756 BaseTy = stripQualifiers(CTy->getBaseType()); 757 CheckElemType = CTy->getElements().size() == 1; 758 } else { 759 // pointer type 760 auto *DTy = cast<DIDerivedType>(Ty); 761 assert(DTy->getTag() == dwarf::DW_TAG_pointer_type); 762 763 BaseTy = stripQualifiers(DTy->getBaseType()); 764 CTy = dyn_cast<DICompositeType>(BaseTy); 765 if (!CTy) { 766 CheckElemType = true; 767 } else if (CTy->getTag() != dwarf::DW_TAG_array_type) { 768 FirstIndex += AccessIndex; 769 CheckElemType = true; 770 } else { 771 FirstIndex += AccessIndex * calcArraySize(CTy, 0); 772 } 773 } 774 775 if (CheckElemType) { 776 auto *CTy = dyn_cast<DICompositeType>(BaseTy); 777 if (!CTy) { 778 if (HasPreserveFieldInfoCall(CallStack)) 779 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic"); 780 return nullptr; 781 } 782 783 unsigned CTag = CTy->getTag(); 784 if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) { 785 TypeName = CTy->getName(); 786 } else { 787 if (HasPreserveFieldInfoCall(CallStack)) 788 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic"); 789 return nullptr; 790 } 791 TypeMeta = CTy; 792 PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3); 793 break; 794 } 795 } 796 assert(TypeName.size()); 797 AccessKey += std::to_string(FirstIndex); 798 799 // Traverse the rest of access chain to complete offset calculation 800 // and access key construction. 801 while (CallStack.size()) { 802 auto StackElem = CallStack.top(); 803 CInfo = StackElem.second; 804 CallStack.pop(); 805 806 if (CInfo.Kind == BPFPreserveFieldInfoAI) 807 break; 808 809 // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI, 810 // the action will be extracting field info. 811 if (CallStack.size()) { 812 auto StackElem2 = CallStack.top(); 813 CallInfo CInfo2 = StackElem2.second; 814 if (CInfo2.Kind == BPFPreserveFieldInfoAI) { 815 InfoKind = CInfo2.AccessIndex; 816 assert(CallStack.size() == 1); 817 } 818 } 819 820 // Access Index 821 uint64_t AccessIndex = CInfo.AccessIndex; 822 AccessKey += ":" + std::to_string(AccessIndex); 823 824 MDNode *MDN = CInfo.Metadata; 825 uint32_t RecordAlignment = CInfo.RecordAlignment; 826 // At this stage, it cannot be pointer type. 827 auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN))); 828 PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm, 829 RecordAlignment); 830 } 831 832 // Access key is the 833 // "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" + 834 // access string, 835 // uniquely identifying one relocation. 836 // The prefix "llvm." indicates this is a temporary global, which should 837 // not be emitted to ELF file. 838 AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" + 839 std::to_string(PatchImm) + "$" + AccessKey; 840 841 return Base; 842 } 843 844 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do 845 /// transformation to a chain of relocable GEPs. 846 bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call, 847 CallInfo &CInfo) { 848 std::string AccessKey; 849 MDNode *TypeMeta; 850 Value *Base = 851 computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta); 852 if (!Base) 853 return false; 854 855 BasicBlock *BB = Call->getParent(); 856 GlobalVariable *GV; 857 858 if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) { 859 IntegerType *VarType; 860 if (CInfo.Kind == BPFPreserveFieldInfoAI) 861 VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value 862 else 863 VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr arith 864 865 GV = new GlobalVariable(M, VarType, false, GlobalVariable::ExternalLinkage, 866 NULL, AccessKey); 867 GV->addAttribute(BPFCoreSharedInfo::AmaAttr); 868 GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta); 869 GEPGlobals[AccessKey] = GV; 870 } else { 871 GV = GEPGlobals[AccessKey]; 872 } 873 874 if (CInfo.Kind == BPFPreserveFieldInfoAI) { 875 // Load the global variable which represents the returned field info. 876 auto *LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV); 877 BB->getInstList().insert(Call->getIterator(), LDInst); 878 Call->replaceAllUsesWith(LDInst); 879 Call->eraseFromParent(); 880 return true; 881 } 882 883 // For any original GEP Call and Base %2 like 884 // %4 = bitcast %struct.net_device** %dev1 to i64* 885 // it is transformed to: 886 // %6 = load sk_buff:50:$0:0:0:2:0 887 // %7 = bitcast %struct.sk_buff* %2 to i8* 888 // %8 = getelementptr i8, i8* %7, %6 889 // %9 = bitcast i8* %8 to i64* 890 // using %9 instead of %4 891 // The original Call inst is removed. 892 893 // Load the global variable. 894 auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV); 895 BB->getInstList().insert(Call->getIterator(), LDInst); 896 897 // Generate a BitCast 898 auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext())); 899 BB->getInstList().insert(Call->getIterator(), BCInst); 900 901 // Generate a GetElementPtr 902 auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()), 903 BCInst, LDInst); 904 BB->getInstList().insert(Call->getIterator(), GEP); 905 906 // Generate a BitCast 907 auto *BCInst2 = new BitCastInst(GEP, Call->getType()); 908 BB->getInstList().insert(Call->getIterator(), BCInst2); 909 910 Call->replaceAllUsesWith(BCInst2); 911 Call->eraseFromParent(); 912 913 return true; 914 } 915 916 bool BPFAbstractMemberAccess::doTransformation(Module &M) { 917 bool Transformed = false; 918 919 for (Function &F : M) { 920 // Collect PreserveDIAccessIndex Intrinsic call chains. 921 // The call chains will be used to generate the access 922 // patterns similar to GEP. 923 collectAICallChains(M, F); 924 925 for (auto &C : BaseAICalls) 926 Transformed = transformGEPChain(M, C.first, C.second) || Transformed; 927 } 928 929 return removePreserveAccessIndexIntrinsic(M) || Transformed; 930 } 931