xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/BinaryFormat/Dwarf.h"
81 #include "llvm/DebugInfo/BTF/BTF.h"
82 #include "llvm/IR/DebugInfoMetadata.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicsBPF.h"
87 #include "llvm/IR/Module.h"
88 #include "llvm/IR/PassManager.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/IR/ValueHandle.h"
93 #include "llvm/Pass.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include <stack>
96 
97 #define DEBUG_TYPE "bpf-abstract-member-access"
98 
99 namespace llvm {
100 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
101 uint32_t BPFCoreSharedInfo::SeqNum;
102 
103 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
104                                                   Instruction *Input,
105                                                   Instruction *Before) {
106   Function *Fn = Intrinsic::getDeclaration(
107       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
108   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
109                                          BPFCoreSharedInfo::SeqNum++);
110 
111   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
112   NewInst->insertBefore(Before);
113   return NewInst;
114 }
115 } // namespace llvm
116 
117 using namespace llvm;
118 
119 namespace {
120 class BPFAbstractMemberAccess final {
121 public:
122   BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
123 
124   bool run(Function &F);
125 
126   struct CallInfo {
127     uint32_t Kind;
128     uint32_t AccessIndex;
129     MaybeAlign RecordAlignment;
130     MDNode *Metadata;
131     WeakTrackingVH Base;
132   };
133   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
134 
135 private:
136   enum : uint32_t {
137     BPFPreserveArrayAI = 1,
138     BPFPreserveUnionAI = 2,
139     BPFPreserveStructAI = 3,
140     BPFPreserveFieldInfoAI = 4,
141   };
142 
143   TargetMachine *TM;
144   const DataLayout *DL = nullptr;
145   Module *M = nullptr;
146 
147   static std::map<std::string, GlobalVariable *> GEPGlobals;
148   // A map to link preserve_*_access_index intrinsic calls.
149   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
150   // A map to hold all the base preserve_*_access_index intrinsic calls.
151   // The base call is not an input of any other preserve_*
152   // intrinsics.
153   std::map<CallInst *, CallInfo> BaseAICalls;
154   // A map to hold <AnonRecord, TypeDef> relationships
155   std::map<DICompositeType *, DIDerivedType *> AnonRecords;
156 
157   void CheckAnonRecordType(DIDerivedType *ParentTy, DIType *Ty);
158   void CheckCompositeType(DIDerivedType *ParentTy, DICompositeType *CTy);
159   void CheckDerivedType(DIDerivedType *ParentTy, DIDerivedType *DTy);
160   void ResetMetadata(struct CallInfo &CInfo);
161 
162   bool doTransformation(Function &F);
163 
164   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
165   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
166                     CallInfo &ParentInfo);
167   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
168                 CallInfo &ParentInfo);
169   void collectAICallChains(Function &F);
170 
171   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
172   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
173                       const MDNode *ChildMeta);
174   bool removePreserveAccessIndexIntrinsic(Function &F);
175   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
176   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
177                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
178   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
179                         uint32_t AccessIndex, uint32_t PatchImm,
180                         MaybeAlign RecordAlignment);
181 
182   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
183                                  std::string &AccessKey, MDNode *&BaseMeta);
184   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
185                            std::string &AccessKey, bool &IsInt32Ret);
186   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
187 };
188 
189 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
190 } // End anonymous namespace
191 
192 bool BPFAbstractMemberAccess::run(Function &F) {
193   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
194 
195   M = F.getParent();
196   if (!M)
197     return false;
198 
199   // Bail out if no debug info.
200   if (M->debug_compile_units().empty())
201     return false;
202 
203   // For each argument/return/local_variable type, trace the type
204   // pattern like '[derived_type]* [composite_type]' to check
205   // and remember (anon record -> typedef) relations where the
206   // anon record is defined as
207   //   typedef [const/volatile/restrict]* [anon record]
208   DISubprogram *SP = F.getSubprogram();
209   if (SP && SP->isDefinition()) {
210     for (DIType *Ty: SP->getType()->getTypeArray())
211       CheckAnonRecordType(nullptr, Ty);
212     for (const DINode *DN : SP->getRetainedNodes()) {
213       if (const auto *DV = dyn_cast<DILocalVariable>(DN))
214         CheckAnonRecordType(nullptr, DV->getType());
215     }
216   }
217 
218   DL = &M->getDataLayout();
219   return doTransformation(F);
220 }
221 
222 void BPFAbstractMemberAccess::ResetMetadata(struct CallInfo &CInfo) {
223   if (auto Ty = dyn_cast<DICompositeType>(CInfo.Metadata)) {
224     if (AnonRecords.find(Ty) != AnonRecords.end()) {
225       if (AnonRecords[Ty] != nullptr)
226         CInfo.Metadata = AnonRecords[Ty];
227     }
228   }
229 }
230 
231 void BPFAbstractMemberAccess::CheckCompositeType(DIDerivedType *ParentTy,
232                                                  DICompositeType *CTy) {
233   if (!CTy->getName().empty() || !ParentTy ||
234       ParentTy->getTag() != dwarf::DW_TAG_typedef)
235     return;
236 
237   if (AnonRecords.find(CTy) == AnonRecords.end()) {
238     AnonRecords[CTy] = ParentTy;
239     return;
240   }
241 
242   // Two or more typedef's may point to the same anon record.
243   // If this is the case, set the typedef DIType to be nullptr
244   // to indicate the duplication case.
245   DIDerivedType *CurrTy = AnonRecords[CTy];
246   if (CurrTy == ParentTy)
247     return;
248   AnonRecords[CTy] = nullptr;
249 }
250 
251 void BPFAbstractMemberAccess::CheckDerivedType(DIDerivedType *ParentTy,
252                                                DIDerivedType *DTy) {
253   DIType *BaseType = DTy->getBaseType();
254   if (!BaseType)
255     return;
256 
257   unsigned Tag = DTy->getTag();
258   if (Tag == dwarf::DW_TAG_pointer_type)
259     CheckAnonRecordType(nullptr, BaseType);
260   else if (Tag == dwarf::DW_TAG_typedef)
261     CheckAnonRecordType(DTy, BaseType);
262   else
263     CheckAnonRecordType(ParentTy, BaseType);
264 }
265 
266 void BPFAbstractMemberAccess::CheckAnonRecordType(DIDerivedType *ParentTy,
267                                                   DIType *Ty) {
268   if (!Ty)
269     return;
270 
271   if (auto *CTy = dyn_cast<DICompositeType>(Ty))
272     return CheckCompositeType(ParentTy, CTy);
273   else if (auto *DTy = dyn_cast<DIDerivedType>(Ty))
274     return CheckDerivedType(ParentTy, DTy);
275 }
276 
277 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
278   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
279       Tag != dwarf::DW_TAG_volatile_type &&
280       Tag != dwarf::DW_TAG_restrict_type &&
281       Tag != dwarf::DW_TAG_member)
282     return false;
283   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
284     return false;
285   return true;
286 }
287 
288 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
289   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
290     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
291       break;
292     Ty = DTy->getBaseType();
293   }
294   return Ty;
295 }
296 
297 static const DIType * stripQualifiers(const DIType *Ty) {
298   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
299     if (!SkipDIDerivedTag(DTy->getTag(), true))
300       break;
301     Ty = DTy->getBaseType();
302   }
303   return Ty;
304 }
305 
306 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
307   DINodeArray Elements = CTy->getElements();
308   uint32_t DimSize = 1;
309   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
310     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
311       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
312         const DISubrange *SR = cast<DISubrange>(Element);
313         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
314         DimSize *= CI->getSExtValue();
315       }
316   }
317 
318   return DimSize;
319 }
320 
321 static Type *getBaseElementType(const CallInst *Call) {
322   // Element type is stored in an elementtype() attribute on the first param.
323   return Call->getParamElementType(0);
324 }
325 
326 static uint64_t getConstant(const Value *IndexValue) {
327   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
328   assert(CV);
329   return CV->getValue().getZExtValue();
330 }
331 
332 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
333 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
334                                                           CallInfo &CInfo) {
335   if (!Call)
336     return false;
337 
338   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
339   if (!GV)
340     return false;
341   if (GV->getName().starts_with("llvm.preserve.array.access.index")) {
342     CInfo.Kind = BPFPreserveArrayAI;
343     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
344     if (!CInfo.Metadata)
345       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
346     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
347     CInfo.Base = Call->getArgOperand(0);
348     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
349     return true;
350   }
351   if (GV->getName().starts_with("llvm.preserve.union.access.index")) {
352     CInfo.Kind = BPFPreserveUnionAI;
353     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
354     if (!CInfo.Metadata)
355       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
356     ResetMetadata(CInfo);
357     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
358     CInfo.Base = Call->getArgOperand(0);
359     return true;
360   }
361   if (GV->getName().starts_with("llvm.preserve.struct.access.index")) {
362     CInfo.Kind = BPFPreserveStructAI;
363     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
364     if (!CInfo.Metadata)
365       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
366     ResetMetadata(CInfo);
367     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
368     CInfo.Base = Call->getArgOperand(0);
369     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
370     return true;
371   }
372   if (GV->getName().starts_with("llvm.bpf.preserve.field.info")) {
373     CInfo.Kind = BPFPreserveFieldInfoAI;
374     CInfo.Metadata = nullptr;
375     // Check validity of info_kind as clang did not check this.
376     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
377     if (InfoKind >= BTF::MAX_FIELD_RELOC_KIND)
378       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
379     CInfo.AccessIndex = InfoKind;
380     return true;
381   }
382   if (GV->getName().starts_with("llvm.bpf.preserve.type.info")) {
383     CInfo.Kind = BPFPreserveFieldInfoAI;
384     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
385     if (!CInfo.Metadata)
386       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
387     uint64_t Flag = getConstant(Call->getArgOperand(1));
388     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
389       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
390     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
391       CInfo.AccessIndex = BTF::TYPE_EXISTENCE;
392     else if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_MATCH)
393       CInfo.AccessIndex = BTF::TYPE_MATCH;
394     else
395       CInfo.AccessIndex = BTF::TYPE_SIZE;
396     return true;
397   }
398   if (GV->getName().starts_with("llvm.bpf.preserve.enum.value")) {
399     CInfo.Kind = BPFPreserveFieldInfoAI;
400     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
401     if (!CInfo.Metadata)
402       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
403     uint64_t Flag = getConstant(Call->getArgOperand(2));
404     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
405       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
406     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
407       CInfo.AccessIndex = BTF::ENUM_VALUE_EXISTENCE;
408     else
409       CInfo.AccessIndex = BTF::ENUM_VALUE;
410     return true;
411   }
412 
413   return false;
414 }
415 
416 static void replaceWithGEP(CallInst *Call, uint32_t DimensionIndex,
417                            uint32_t GEPIndex) {
418   uint32_t Dimension = 1;
419   if (DimensionIndex > 0)
420     Dimension = getConstant(Call->getArgOperand(DimensionIndex));
421 
422   Constant *Zero =
423       ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
424   SmallVector<Value *, 4> IdxList;
425   for (unsigned I = 0; I < Dimension; ++I)
426     IdxList.push_back(Zero);
427   IdxList.push_back(Call->getArgOperand(GEPIndex));
428 
429   auto *GEP = GetElementPtrInst::CreateInBounds(
430       getBaseElementType(Call), Call->getArgOperand(0), IdxList, "", Call);
431   Call->replaceAllUsesWith(GEP);
432   Call->eraseFromParent();
433 }
434 
435 void BPFCoreSharedInfo::removeArrayAccessCall(CallInst *Call) {
436   replaceWithGEP(Call, 1, 2);
437 }
438 
439 void BPFCoreSharedInfo::removeStructAccessCall(CallInst *Call) {
440   replaceWithGEP(Call, 0, 1);
441 }
442 
443 void BPFCoreSharedInfo::removeUnionAccessCall(CallInst *Call) {
444   Call->replaceAllUsesWith(Call->getArgOperand(0));
445   Call->eraseFromParent();
446 }
447 
448 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
449   std::vector<CallInst *> PreserveArrayIndexCalls;
450   std::vector<CallInst *> PreserveUnionIndexCalls;
451   std::vector<CallInst *> PreserveStructIndexCalls;
452   bool Found = false;
453 
454   for (auto &BB : F)
455     for (auto &I : BB) {
456       auto *Call = dyn_cast<CallInst>(&I);
457       CallInfo CInfo;
458       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
459         continue;
460 
461       Found = true;
462       if (CInfo.Kind == BPFPreserveArrayAI)
463         PreserveArrayIndexCalls.push_back(Call);
464       else if (CInfo.Kind == BPFPreserveUnionAI)
465         PreserveUnionIndexCalls.push_back(Call);
466       else
467         PreserveStructIndexCalls.push_back(Call);
468     }
469 
470   // do the following transformation:
471   // . addr = preserve_array_access_index(base, dimension, index)
472   //   is transformed to
473   //     addr = GEP(base, dimenion's zero's, index)
474   // . addr = preserve_union_access_index(base, di_index)
475   //   is transformed to
476   //     addr = base, i.e., all usages of "addr" are replaced by "base".
477   // . addr = preserve_struct_access_index(base, gep_index, di_index)
478   //   is transformed to
479   //     addr = GEP(base, 0, gep_index)
480   for (CallInst *Call : PreserveArrayIndexCalls)
481     BPFCoreSharedInfo::removeArrayAccessCall(Call);
482   for (CallInst *Call : PreserveStructIndexCalls)
483     BPFCoreSharedInfo::removeStructAccessCall(Call);
484   for (CallInst *Call : PreserveUnionIndexCalls)
485     BPFCoreSharedInfo::removeUnionAccessCall(Call);
486 
487   return Found;
488 }
489 
490 /// Check whether the access index chain is valid. We check
491 /// here because there may be type casts between two
492 /// access indexes. We want to ensure memory access still valid.
493 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
494                                              uint32_t ParentAI,
495                                              const MDNode *ChildType) {
496   if (!ChildType)
497     return true; // preserve_field_info, no type comparison needed.
498 
499   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
500   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
501 
502   // Child is a derived/pointer type, which is due to type casting.
503   // Pointer type cannot be in the middle of chain.
504   if (isa<DIDerivedType>(CType))
505     return false;
506 
507   // Parent is a pointer type.
508   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
509     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
510       return false;
511     return stripQualifiers(PtrTy->getBaseType()) == CType;
512   }
513 
514   // Otherwise, struct/union/array types
515   const auto *PTy = dyn_cast<DICompositeType>(PType);
516   const auto *CTy = dyn_cast<DICompositeType>(CType);
517   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
518 
519   uint32_t PTyTag = PTy->getTag();
520   assert(PTyTag == dwarf::DW_TAG_array_type ||
521          PTyTag == dwarf::DW_TAG_structure_type ||
522          PTyTag == dwarf::DW_TAG_union_type);
523 
524   uint32_t CTyTag = CTy->getTag();
525   assert(CTyTag == dwarf::DW_TAG_array_type ||
526          CTyTag == dwarf::DW_TAG_structure_type ||
527          CTyTag == dwarf::DW_TAG_union_type);
528 
529   // Multi dimensional arrays, base element should be the same
530   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
531     return PTy->getBaseType() == CTy->getBaseType();
532 
533   DIType *Ty;
534   if (PTyTag == dwarf::DW_TAG_array_type)
535     Ty = PTy->getBaseType();
536   else
537     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
538 
539   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
540 }
541 
542 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
543                                           CallInfo &ParentInfo) {
544   for (User *U : Call->users()) {
545     Instruction *Inst = dyn_cast<Instruction>(U);
546     if (!Inst)
547       continue;
548 
549     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
550       traceBitCast(BI, Call, ParentInfo);
551     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
552       CallInfo ChildInfo;
553 
554       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
555           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
556                          ChildInfo.Metadata)) {
557         AIChain[CI] = std::make_pair(Call, ParentInfo);
558         traceAICall(CI, ChildInfo);
559       } else {
560         BaseAICalls[Call] = ParentInfo;
561       }
562     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
563       if (GI->hasAllZeroIndices())
564         traceGEP(GI, Call, ParentInfo);
565       else
566         BaseAICalls[Call] = ParentInfo;
567     } else {
568       BaseAICalls[Call] = ParentInfo;
569     }
570   }
571 }
572 
573 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
574                                            CallInst *Parent,
575                                            CallInfo &ParentInfo) {
576   for (User *U : BitCast->users()) {
577     Instruction *Inst = dyn_cast<Instruction>(U);
578     if (!Inst)
579       continue;
580 
581     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
582       traceBitCast(BI, Parent, ParentInfo);
583     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
584       CallInfo ChildInfo;
585       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
586           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
587                          ChildInfo.Metadata)) {
588         AIChain[CI] = std::make_pair(Parent, ParentInfo);
589         traceAICall(CI, ChildInfo);
590       } else {
591         BaseAICalls[Parent] = ParentInfo;
592       }
593     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
594       if (GI->hasAllZeroIndices())
595         traceGEP(GI, Parent, ParentInfo);
596       else
597         BaseAICalls[Parent] = ParentInfo;
598     } else {
599       BaseAICalls[Parent] = ParentInfo;
600     }
601   }
602 }
603 
604 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
605                                        CallInfo &ParentInfo) {
606   for (User *U : GEP->users()) {
607     Instruction *Inst = dyn_cast<Instruction>(U);
608     if (!Inst)
609       continue;
610 
611     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
612       traceBitCast(BI, Parent, ParentInfo);
613     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
614       CallInfo ChildInfo;
615       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
616           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
617                          ChildInfo.Metadata)) {
618         AIChain[CI] = std::make_pair(Parent, ParentInfo);
619         traceAICall(CI, ChildInfo);
620       } else {
621         BaseAICalls[Parent] = ParentInfo;
622       }
623     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
624       if (GI->hasAllZeroIndices())
625         traceGEP(GI, Parent, ParentInfo);
626       else
627         BaseAICalls[Parent] = ParentInfo;
628     } else {
629       BaseAICalls[Parent] = ParentInfo;
630     }
631   }
632 }
633 
634 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
635   AIChain.clear();
636   BaseAICalls.clear();
637 
638   for (auto &BB : F)
639     for (auto &I : BB) {
640       CallInfo CInfo;
641       auto *Call = dyn_cast<CallInst>(&I);
642       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
643           AIChain.find(Call) != AIChain.end())
644         continue;
645 
646       traceAICall(Call, CInfo);
647     }
648 }
649 
650 /// Get the start and the end of storage offset for \p MemberTy.
651 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
652                                                  Align RecordAlignment,
653                                                  uint32_t &StartBitOffset,
654                                                  uint32_t &EndBitOffset) {
655   uint32_t MemberBitSize = MemberTy->getSizeInBits();
656   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
657 
658   if (RecordAlignment > 8) {
659     // If the Bits are within an aligned 8-byte, set the RecordAlignment
660     // to 8, other report the fatal error.
661     if (MemberBitOffset / 64 != (MemberBitOffset + MemberBitSize) / 64)
662       report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
663                          "requiring too big alignment");
664     RecordAlignment = Align(8);
665   }
666 
667   uint32_t AlignBits = RecordAlignment.value() * 8;
668   if (MemberBitSize > AlignBits)
669     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
670                        "bitfield size greater than record alignment");
671 
672   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
673   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
674     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
675                        "cross alignment boundary");
676   EndBitOffset = StartBitOffset + AlignBits;
677 }
678 
679 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
680                                                DICompositeType *CTy,
681                                                uint32_t AccessIndex,
682                                                uint32_t PatchImm,
683                                                MaybeAlign RecordAlignment) {
684   if (InfoKind == BTF::FIELD_EXISTENCE)
685     return 1;
686 
687   uint32_t Tag = CTy->getTag();
688   if (InfoKind == BTF::FIELD_BYTE_OFFSET) {
689     if (Tag == dwarf::DW_TAG_array_type) {
690       auto *EltTy = stripQualifiers(CTy->getBaseType());
691       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
692                   (EltTy->getSizeInBits() >> 3);
693     } else if (Tag == dwarf::DW_TAG_structure_type) {
694       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
695       if (!MemberTy->isBitField()) {
696         PatchImm += MemberTy->getOffsetInBits() >> 3;
697       } else {
698         unsigned SBitOffset, NextSBitOffset;
699         GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
700                            NextSBitOffset);
701         PatchImm += SBitOffset >> 3;
702       }
703     }
704     return PatchImm;
705   }
706 
707   if (InfoKind == BTF::FIELD_BYTE_SIZE) {
708     if (Tag == dwarf::DW_TAG_array_type) {
709       auto *EltTy = stripQualifiers(CTy->getBaseType());
710       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
711     } else {
712       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
713       uint32_t SizeInBits = MemberTy->getSizeInBits();
714       if (!MemberTy->isBitField())
715         return SizeInBits >> 3;
716 
717       unsigned SBitOffset, NextSBitOffset;
718       GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
719                          NextSBitOffset);
720       SizeInBits = NextSBitOffset - SBitOffset;
721       if (SizeInBits & (SizeInBits - 1))
722         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
723       return SizeInBits >> 3;
724     }
725   }
726 
727   if (InfoKind == BTF::FIELD_SIGNEDNESS) {
728     const DIType *BaseTy;
729     if (Tag == dwarf::DW_TAG_array_type) {
730       // Signedness only checked when final array elements are accessed.
731       if (CTy->getElements().size() != 1)
732         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
733       BaseTy = stripQualifiers(CTy->getBaseType());
734     } else {
735       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
736       BaseTy = stripQualifiers(MemberTy->getBaseType());
737     }
738 
739     // Only basic types and enum types have signedness.
740     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
741     while (!BTy) {
742       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
743       // Report an error if the field expression does not have signedness.
744       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
745         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
746       BaseTy = stripQualifiers(CompTy->getBaseType());
747       BTy = dyn_cast<DIBasicType>(BaseTy);
748     }
749     uint32_t Encoding = BTy->getEncoding();
750     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
751   }
752 
753   if (InfoKind == BTF::FIELD_LSHIFT_U64) {
754     // The value is loaded into a value with FIELD_BYTE_SIZE size,
755     // and then zero or sign extended to U64.
756     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
757     // to extract the original value.
758     const Triple &Triple = TM->getTargetTriple();
759     DIDerivedType *MemberTy = nullptr;
760     bool IsBitField = false;
761     uint32_t SizeInBits;
762 
763     if (Tag == dwarf::DW_TAG_array_type) {
764       auto *EltTy = stripQualifiers(CTy->getBaseType());
765       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
766     } else {
767       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
768       SizeInBits = MemberTy->getSizeInBits();
769       IsBitField = MemberTy->isBitField();
770     }
771 
772     if (!IsBitField) {
773       if (SizeInBits > 64)
774         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
775       return 64 - SizeInBits;
776     }
777 
778     unsigned SBitOffset, NextSBitOffset;
779     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
780     if (NextSBitOffset - SBitOffset > 64)
781       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
782 
783     unsigned OffsetInBits = MemberTy->getOffsetInBits();
784     if (Triple.getArch() == Triple::bpfel)
785       return SBitOffset + 64 - OffsetInBits - SizeInBits;
786     else
787       return OffsetInBits + 64 - NextSBitOffset;
788   }
789 
790   if (InfoKind == BTF::FIELD_RSHIFT_U64) {
791     DIDerivedType *MemberTy = nullptr;
792     bool IsBitField = false;
793     uint32_t SizeInBits;
794     if (Tag == dwarf::DW_TAG_array_type) {
795       auto *EltTy = stripQualifiers(CTy->getBaseType());
796       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
797     } else {
798       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
799       SizeInBits = MemberTy->getSizeInBits();
800       IsBitField = MemberTy->isBitField();
801     }
802 
803     if (!IsBitField) {
804       if (SizeInBits > 64)
805         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
806       return 64 - SizeInBits;
807     }
808 
809     unsigned SBitOffset, NextSBitOffset;
810     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
811     if (NextSBitOffset - SBitOffset > 64)
812       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
813 
814     return 64 - SizeInBits;
815   }
816 
817   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
818 }
819 
820 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
821   // This is called in error return path, no need to maintain CallStack.
822   while (CallStack.size()) {
823     auto StackElem = CallStack.top();
824     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
825       return true;
826     CallStack.pop();
827   }
828   return false;
829 }
830 
831 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
832 /// pointer of the first preserve_*_access_index call, and construct the access
833 /// string, which will be the name of a global variable.
834 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
835                                                         CallInfo &CInfo,
836                                                         std::string &AccessKey,
837                                                         MDNode *&TypeMeta) {
838   Value *Base = nullptr;
839   std::string TypeName;
840   CallInfoStack CallStack;
841 
842   // Put the access chain into a stack with the top as the head of the chain.
843   while (Call) {
844     CallStack.push(std::make_pair(Call, CInfo));
845     CInfo = AIChain[Call].second;
846     Call = AIChain[Call].first;
847   }
848 
849   // The access offset from the base of the head of chain is also
850   // calculated here as all debuginfo types are available.
851 
852   // Get type name and calculate the first index.
853   // We only want to get type name from typedef, structure or union.
854   // If user wants a relocation like
855   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
856   // or
857   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
858   // we will skip them.
859   uint32_t FirstIndex = 0;
860   uint32_t PatchImm = 0; // AccessOffset or the requested field info
861   uint32_t InfoKind = BTF::FIELD_BYTE_OFFSET;
862   while (CallStack.size()) {
863     auto StackElem = CallStack.top();
864     Call = StackElem.first;
865     CInfo = StackElem.second;
866 
867     if (!Base)
868       Base = CInfo.Base;
869 
870     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
871                                               false);
872     DIType *Ty = stripQualifiers(PossibleTypeDef);
873     if (CInfo.Kind == BPFPreserveUnionAI ||
874         CInfo.Kind == BPFPreserveStructAI) {
875       // struct or union type. If the typedef is in the metadata, always
876       // use the typedef.
877       TypeName = std::string(PossibleTypeDef->getName());
878       TypeMeta = PossibleTypeDef;
879       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
880       break;
881     }
882 
883     assert(CInfo.Kind == BPFPreserveArrayAI);
884 
885     // Array entries will always be consumed for accumulative initial index.
886     CallStack.pop();
887 
888     // BPFPreserveArrayAI
889     uint64_t AccessIndex = CInfo.AccessIndex;
890 
891     DIType *BaseTy = nullptr;
892     bool CheckElemType = false;
893     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
894       // array type
895       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
896 
897 
898       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
899       BaseTy = stripQualifiers(CTy->getBaseType());
900       CheckElemType = CTy->getElements().size() == 1;
901     } else {
902       // pointer type
903       auto *DTy = cast<DIDerivedType>(Ty);
904       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
905 
906       BaseTy = stripQualifiers(DTy->getBaseType());
907       CTy = dyn_cast<DICompositeType>(BaseTy);
908       if (!CTy) {
909         CheckElemType = true;
910       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
911         FirstIndex += AccessIndex;
912         CheckElemType = true;
913       } else {
914         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
915       }
916     }
917 
918     if (CheckElemType) {
919       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
920       if (!CTy) {
921         if (HasPreserveFieldInfoCall(CallStack))
922           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
923         return nullptr;
924       }
925 
926       unsigned CTag = CTy->getTag();
927       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
928         TypeName = std::string(CTy->getName());
929       } else {
930         if (HasPreserveFieldInfoCall(CallStack))
931           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
932         return nullptr;
933       }
934       TypeMeta = CTy;
935       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
936       break;
937     }
938   }
939   assert(TypeName.size());
940   AccessKey += std::to_string(FirstIndex);
941 
942   // Traverse the rest of access chain to complete offset calculation
943   // and access key construction.
944   while (CallStack.size()) {
945     auto StackElem = CallStack.top();
946     CInfo = StackElem.second;
947     CallStack.pop();
948 
949     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
950       InfoKind = CInfo.AccessIndex;
951       if (InfoKind == BTF::FIELD_EXISTENCE)
952         PatchImm = 1;
953       break;
954     }
955 
956     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
957     // the action will be extracting field info.
958     if (CallStack.size()) {
959       auto StackElem2 = CallStack.top();
960       CallInfo CInfo2 = StackElem2.second;
961       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
962         InfoKind = CInfo2.AccessIndex;
963         assert(CallStack.size() == 1);
964       }
965     }
966 
967     // Access Index
968     uint64_t AccessIndex = CInfo.AccessIndex;
969     AccessKey += ":" + std::to_string(AccessIndex);
970 
971     MDNode *MDN = CInfo.Metadata;
972     // At this stage, it cannot be pointer type.
973     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
974     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
975                             CInfo.RecordAlignment);
976   }
977 
978   // Access key is the
979   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
980   //   access string,
981   // uniquely identifying one relocation.
982   // The prefix "llvm." indicates this is a temporary global, which should
983   // not be emitted to ELF file.
984   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
985               std::to_string(PatchImm) + "$" + AccessKey;
986 
987   return Base;
988 }
989 
990 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
991                                                   CallInfo &CInfo,
992                                                   std::string &AccessKey,
993                                                   bool &IsInt32Ret) {
994   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
995   assert(!Ty->getName().empty());
996 
997   int64_t PatchImm;
998   std::string AccessStr("0");
999   if (CInfo.AccessIndex == BTF::TYPE_EXISTENCE ||
1000       CInfo.AccessIndex == BTF::TYPE_MATCH) {
1001     PatchImm = 1;
1002   } else if (CInfo.AccessIndex == BTF::TYPE_SIZE) {
1003     // typedef debuginfo type has size 0, get the eventual base type.
1004     DIType *BaseTy = stripQualifiers(Ty, true);
1005     PatchImm = BaseTy->getSizeInBits() / 8;
1006   } else {
1007     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
1008     IsInt32Ret = false;
1009 
1010     // The argument could be a global variable or a getelementptr with base to
1011     // a global variable depending on whether the clang option `opaque-options`
1012     // is set or not.
1013     const GlobalVariable *GV =
1014         cast<GlobalVariable>(Call->getArgOperand(1)->stripPointerCasts());
1015     assert(GV->hasInitializer());
1016     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
1017     assert(DA->isString());
1018     StringRef ValueStr = DA->getAsString();
1019 
1020     // ValueStr format: <EnumeratorStr>:<Value>
1021     size_t Separator = ValueStr.find_first_of(':');
1022     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
1023 
1024     // Find enumerator index in the debuginfo
1025     DIType *BaseTy = stripQualifiers(Ty, true);
1026     const auto *CTy = cast<DICompositeType>(BaseTy);
1027     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
1028     int EnumIndex = 0;
1029     for (const auto Element : CTy->getElements()) {
1030       const auto *Enum = cast<DIEnumerator>(Element);
1031       if (Enum->getName() == EnumeratorStr) {
1032         AccessStr = std::to_string(EnumIndex);
1033         break;
1034       }
1035       EnumIndex++;
1036     }
1037 
1038     if (CInfo.AccessIndex == BTF::ENUM_VALUE) {
1039       StringRef EValueStr = ValueStr.substr(Separator + 1);
1040       PatchImm = std::stoll(std::string(EValueStr));
1041     } else {
1042       PatchImm = 1;
1043     }
1044   }
1045 
1046   AccessKey = "llvm." + Ty->getName().str() + ":" +
1047               std::to_string(CInfo.AccessIndex) + std::string(":") +
1048               std::to_string(PatchImm) + std::string("$") + AccessStr;
1049 
1050   return Ty;
1051 }
1052 
1053 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
1054 /// transformation to a chain of relocable GEPs.
1055 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
1056                                                 CallInfo &CInfo) {
1057   std::string AccessKey;
1058   MDNode *TypeMeta;
1059   Value *Base = nullptr;
1060   bool IsInt32Ret;
1061 
1062   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
1063   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
1064     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
1065   } else {
1066     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
1067     if (!Base)
1068       return false;
1069   }
1070 
1071   BasicBlock *BB = Call->getParent();
1072   GlobalVariable *GV;
1073 
1074   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
1075     IntegerType *VarType;
1076     if (IsInt32Ret)
1077       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
1078     else
1079       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
1080 
1081     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1082                             nullptr, AccessKey);
1083     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1084     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1085     GEPGlobals[AccessKey] = GV;
1086   } else {
1087     GV = GEPGlobals[AccessKey];
1088   }
1089 
1090   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1091     // Load the global variable which represents the returned field info.
1092     LoadInst *LDInst;
1093     if (IsInt32Ret)
1094       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
1095     else
1096       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1097 
1098     Instruction *PassThroughInst =
1099         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1100     Call->replaceAllUsesWith(PassThroughInst);
1101     Call->eraseFromParent();
1102     return true;
1103   }
1104 
1105   // For any original GEP Call and Base %2 like
1106   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1107   // it is transformed to:
1108   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1109   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1110   //   %8 = getelementptr i8, i8* %7, %6
1111   //   %9 = bitcast i8* %8 to i64*
1112   //   using %9 instead of %4
1113   // The original Call inst is removed.
1114 
1115   // Load the global variable.
1116   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1117 
1118   // Generate a BitCast
1119   auto *BCInst =
1120       new BitCastInst(Base, PointerType::getUnqual(BB->getContext()));
1121   BCInst->insertBefore(Call);
1122 
1123   // Generate a GetElementPtr
1124   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1125                                         BCInst, LDInst);
1126   GEP->insertBefore(Call);
1127 
1128   // Generate a BitCast
1129   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1130   BCInst2->insertBefore(Call);
1131 
1132   // For the following code,
1133   //    Block0:
1134   //      ...
1135   //      if (...) goto Block1 else ...
1136   //    Block1:
1137   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1138   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1139   //      %8 = getelementptr i8, i8* %7, %6
1140   //      ...
1141   //      goto CommonExit
1142   //    Block2:
1143   //      ...
1144   //      if (...) goto Block3 else ...
1145   //    Block3:
1146   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1147   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1148   //      %8 = getelementptr i8, i8* %7, %6
1149   //      ...
1150   //      goto CommonExit
1151   //    CommonExit
1152   // SimplifyCFG may generate:
1153   //    Block0:
1154   //      ...
1155   //      if (...) goto Block_Common else ...
1156   //     Block2:
1157   //       ...
1158   //      if (...) goto Block_Common else ...
1159   //    Block_Common:
1160   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1161   //      %6 = load PHI
1162   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1163   //      %8 = getelementptr i8, i8* %7, %6
1164   //      ...
1165   //      goto CommonExit
1166   //  For the above code, we cannot perform proper relocation since
1167   //  "load PHI" has two possible relocations.
1168   //
1169   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1170   // where one of its parameters is a seq_num. Since two
1171   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1172   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1173   // removed in the beginning of Target IR passes.
1174   //
1175   // This approach is also used in other places when global var
1176   // representing a relocation is used.
1177   Instruction *PassThroughInst =
1178       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1179   Call->replaceAllUsesWith(PassThroughInst);
1180   Call->eraseFromParent();
1181 
1182   return true;
1183 }
1184 
1185 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1186   bool Transformed = false;
1187 
1188   // Collect PreserveDIAccessIndex Intrinsic call chains.
1189   // The call chains will be used to generate the access
1190   // patterns similar to GEP.
1191   collectAICallChains(F);
1192 
1193   for (auto &C : BaseAICalls)
1194     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1195 
1196   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1197 }
1198 
1199 PreservedAnalyses
1200 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1201   return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1202                                             : PreservedAnalyses::all();
1203 }
1204