1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass abstracted struct/union member accesses in order to support 10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program 11 // which can run on different kernels. In particular, if bpf program tries to 12 // access a particular kernel data structure member, the details of the 13 // intermediate member access will be remembered so bpf loader can do 14 // necessary adjustment right before program loading. 15 // 16 // For example, 17 // 18 // struct s { 19 // int a; 20 // int b; 21 // }; 22 // struct t { 23 // struct s c; 24 // int d; 25 // }; 26 // struct t e; 27 // 28 // For the member access e.c.b, the compiler will generate code 29 // &e + 4 30 // 31 // The compile-once run-everywhere instead generates the following code 32 // r = 4 33 // &e + r 34 // The "4" in "r = 4" can be changed based on a particular kernel version. 35 // For example, on a particular kernel version, if struct s is changed to 36 // 37 // struct s { 38 // int new_field; 39 // int a; 40 // int b; 41 // } 42 // 43 // By repeating the member access on the host, the bpf loader can 44 // adjust "r = 4" as "r = 8". 45 // 46 // This feature relies on the following three intrinsic calls: 47 // addr = preserve_array_access_index(base, dimension, index) 48 // addr = preserve_union_access_index(base, di_index) 49 // !llvm.preserve.access.index <union_ditype> 50 // addr = preserve_struct_access_index(base, gep_index, di_index) 51 // !llvm.preserve.access.index <struct_ditype> 52 // 53 // Bitfield member access needs special attention. User cannot take the 54 // address of a bitfield acceess. To facilitate kernel verifier 55 // for easy bitfield code optimization, a new clang intrinsic is introduced: 56 // uint32_t __builtin_preserve_field_info(member_access, info_kind) 57 // In IR, a chain with two (or more) intrinsic calls will be generated: 58 // ... 59 // addr = preserve_struct_access_index(base, 1, 1) !struct s 60 // uint32_t result = bpf_preserve_field_info(addr, info_kind) 61 // 62 // Suppose the info_kind is FIELD_SIGNEDNESS, 63 // The above two IR intrinsics will be replaced with 64 // a relocatable insn: 65 // signness = /* signness of member_access */ 66 // and signness can be changed by bpf loader based on the 67 // types on the host. 68 // 69 // User can also test whether a field exists or not with 70 // uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE) 71 // The field will be always available (result = 1) during initial 72 // compilation, but bpf loader can patch with the correct value 73 // on the target host where the member_access may or may not be available 74 // 75 //===----------------------------------------------------------------------===// 76 77 #include "BPF.h" 78 #include "BPFCORE.h" 79 #include "BPFTargetMachine.h" 80 #include "llvm/IR/DebugInfoMetadata.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicsBPF.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/PassManager.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include <stack> 93 94 #define DEBUG_TYPE "bpf-abstract-member-access" 95 96 namespace llvm { 97 constexpr StringRef BPFCoreSharedInfo::AmaAttr; 98 uint32_t BPFCoreSharedInfo::SeqNum; 99 100 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB, 101 Instruction *Input, 102 Instruction *Before) { 103 Function *Fn = Intrinsic::getDeclaration( 104 M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()}); 105 Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()), 106 BPFCoreSharedInfo::SeqNum++); 107 108 auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input}); 109 BB->getInstList().insert(Before->getIterator(), NewInst); 110 return NewInst; 111 } 112 } // namespace llvm 113 114 using namespace llvm; 115 116 namespace { 117 class BPFAbstractMemberAccess final { 118 public: 119 BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {} 120 121 bool run(Function &F); 122 123 struct CallInfo { 124 uint32_t Kind; 125 uint32_t AccessIndex; 126 Align RecordAlignment; 127 MDNode *Metadata; 128 Value *Base; 129 }; 130 typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack; 131 132 private: 133 enum : uint32_t { 134 BPFPreserveArrayAI = 1, 135 BPFPreserveUnionAI = 2, 136 BPFPreserveStructAI = 3, 137 BPFPreserveFieldInfoAI = 4, 138 }; 139 140 TargetMachine *TM; 141 const DataLayout *DL = nullptr; 142 Module *M = nullptr; 143 144 static std::map<std::string, GlobalVariable *> GEPGlobals; 145 // A map to link preserve_*_access_index instrinsic calls. 146 std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain; 147 // A map to hold all the base preserve_*_access_index instrinsic calls. 148 // The base call is not an input of any other preserve_* 149 // intrinsics. 150 std::map<CallInst *, CallInfo> BaseAICalls; 151 152 bool doTransformation(Function &F); 153 154 void traceAICall(CallInst *Call, CallInfo &ParentInfo); 155 void traceBitCast(BitCastInst *BitCast, CallInst *Parent, 156 CallInfo &ParentInfo); 157 void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, 158 CallInfo &ParentInfo); 159 void collectAICallChains(Function &F); 160 161 bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo); 162 bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI, 163 const MDNode *ChildMeta); 164 bool removePreserveAccessIndexIntrinsic(Function &F); 165 void replaceWithGEP(std::vector<CallInst *> &CallList, 166 uint32_t NumOfZerosIndex, uint32_t DIIndex); 167 bool HasPreserveFieldInfoCall(CallInfoStack &CallStack); 168 void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment, 169 uint32_t &StartBitOffset, uint32_t &EndBitOffset); 170 uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy, 171 uint32_t AccessIndex, uint32_t PatchImm, 172 Align RecordAlignment); 173 174 Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo, 175 std::string &AccessKey, MDNode *&BaseMeta); 176 MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo, 177 std::string &AccessKey, bool &IsInt32Ret); 178 uint64_t getConstant(const Value *IndexValue); 179 bool transformGEPChain(CallInst *Call, CallInfo &CInfo); 180 }; 181 182 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals; 183 184 class BPFAbstractMemberAccessLegacyPass final : public FunctionPass { 185 BPFTargetMachine *TM; 186 187 bool runOnFunction(Function &F) override { 188 return BPFAbstractMemberAccess(TM).run(F); 189 } 190 191 public: 192 static char ID; 193 194 // Add optional BPFTargetMachine parameter so that BPF backend can add the 195 // phase with target machine to find out the endianness. The default 196 // constructor (without parameters) is used by the pass manager for managing 197 // purposes. 198 BPFAbstractMemberAccessLegacyPass(BPFTargetMachine *TM = nullptr) 199 : FunctionPass(ID), TM(TM) {} 200 }; 201 202 } // End anonymous namespace 203 204 char BPFAbstractMemberAccessLegacyPass::ID = 0; 205 INITIALIZE_PASS(BPFAbstractMemberAccessLegacyPass, DEBUG_TYPE, 206 "BPF Abstract Member Access", false, false) 207 208 FunctionPass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) { 209 return new BPFAbstractMemberAccessLegacyPass(TM); 210 } 211 212 bool BPFAbstractMemberAccess::run(Function &F) { 213 LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n"); 214 215 M = F.getParent(); 216 if (!M) 217 return false; 218 219 // Bail out if no debug info. 220 if (M->debug_compile_units().empty()) 221 return false; 222 223 DL = &M->getDataLayout(); 224 return doTransformation(F); 225 } 226 227 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) { 228 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 229 Tag != dwarf::DW_TAG_volatile_type && 230 Tag != dwarf::DW_TAG_restrict_type && 231 Tag != dwarf::DW_TAG_member) 232 return false; 233 if (Tag == dwarf::DW_TAG_typedef && !skipTypedef) 234 return false; 235 return true; 236 } 237 238 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) { 239 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 240 if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef)) 241 break; 242 Ty = DTy->getBaseType(); 243 } 244 return Ty; 245 } 246 247 static const DIType * stripQualifiers(const DIType *Ty) { 248 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 249 if (!SkipDIDerivedTag(DTy->getTag(), true)) 250 break; 251 Ty = DTy->getBaseType(); 252 } 253 return Ty; 254 } 255 256 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) { 257 DINodeArray Elements = CTy->getElements(); 258 uint32_t DimSize = 1; 259 for (uint32_t I = StartDim; I < Elements.size(); ++I) { 260 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 261 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 262 const DISubrange *SR = cast<DISubrange>(Element); 263 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 264 DimSize *= CI->getSExtValue(); 265 } 266 } 267 268 return DimSize; 269 } 270 271 /// Check whether a call is a preserve_*_access_index intrinsic call or not. 272 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call, 273 CallInfo &CInfo) { 274 if (!Call) 275 return false; 276 277 const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand()); 278 if (!GV) 279 return false; 280 if (GV->getName().startswith("llvm.preserve.array.access.index")) { 281 CInfo.Kind = BPFPreserveArrayAI; 282 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 283 if (!CInfo.Metadata) 284 report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic"); 285 CInfo.AccessIndex = getConstant(Call->getArgOperand(2)); 286 CInfo.Base = Call->getArgOperand(0); 287 CInfo.RecordAlignment = 288 DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType()); 289 return true; 290 } 291 if (GV->getName().startswith("llvm.preserve.union.access.index")) { 292 CInfo.Kind = BPFPreserveUnionAI; 293 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 294 if (!CInfo.Metadata) 295 report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic"); 296 CInfo.AccessIndex = getConstant(Call->getArgOperand(1)); 297 CInfo.Base = Call->getArgOperand(0); 298 CInfo.RecordAlignment = 299 DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType()); 300 return true; 301 } 302 if (GV->getName().startswith("llvm.preserve.struct.access.index")) { 303 CInfo.Kind = BPFPreserveStructAI; 304 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 305 if (!CInfo.Metadata) 306 report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic"); 307 CInfo.AccessIndex = getConstant(Call->getArgOperand(2)); 308 CInfo.Base = Call->getArgOperand(0); 309 CInfo.RecordAlignment = 310 DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType()); 311 return true; 312 } 313 if (GV->getName().startswith("llvm.bpf.preserve.field.info")) { 314 CInfo.Kind = BPFPreserveFieldInfoAI; 315 CInfo.Metadata = nullptr; 316 // Check validity of info_kind as clang did not check this. 317 uint64_t InfoKind = getConstant(Call->getArgOperand(1)); 318 if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND) 319 report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic"); 320 CInfo.AccessIndex = InfoKind; 321 return true; 322 } 323 if (GV->getName().startswith("llvm.bpf.preserve.type.info")) { 324 CInfo.Kind = BPFPreserveFieldInfoAI; 325 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 326 if (!CInfo.Metadata) 327 report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic"); 328 uint64_t Flag = getConstant(Call->getArgOperand(1)); 329 if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG) 330 report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic"); 331 if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE) 332 CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE; 333 else 334 CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE; 335 return true; 336 } 337 if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) { 338 CInfo.Kind = BPFPreserveFieldInfoAI; 339 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index); 340 if (!CInfo.Metadata) 341 report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic"); 342 uint64_t Flag = getConstant(Call->getArgOperand(2)); 343 if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG) 344 report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic"); 345 if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE) 346 CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE; 347 else 348 CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE; 349 return true; 350 } 351 352 return false; 353 } 354 355 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList, 356 uint32_t DimensionIndex, 357 uint32_t GEPIndex) { 358 for (auto Call : CallList) { 359 uint32_t Dimension = 1; 360 if (DimensionIndex > 0) 361 Dimension = getConstant(Call->getArgOperand(DimensionIndex)); 362 363 Constant *Zero = 364 ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0); 365 SmallVector<Value *, 4> IdxList; 366 for (unsigned I = 0; I < Dimension; ++I) 367 IdxList.push_back(Zero); 368 IdxList.push_back(Call->getArgOperand(GEPIndex)); 369 370 auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0), 371 IdxList, "", Call); 372 Call->replaceAllUsesWith(GEP); 373 Call->eraseFromParent(); 374 } 375 } 376 377 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) { 378 std::vector<CallInst *> PreserveArrayIndexCalls; 379 std::vector<CallInst *> PreserveUnionIndexCalls; 380 std::vector<CallInst *> PreserveStructIndexCalls; 381 bool Found = false; 382 383 for (auto &BB : F) 384 for (auto &I : BB) { 385 auto *Call = dyn_cast<CallInst>(&I); 386 CallInfo CInfo; 387 if (!IsPreserveDIAccessIndexCall(Call, CInfo)) 388 continue; 389 390 Found = true; 391 if (CInfo.Kind == BPFPreserveArrayAI) 392 PreserveArrayIndexCalls.push_back(Call); 393 else if (CInfo.Kind == BPFPreserveUnionAI) 394 PreserveUnionIndexCalls.push_back(Call); 395 else 396 PreserveStructIndexCalls.push_back(Call); 397 } 398 399 // do the following transformation: 400 // . addr = preserve_array_access_index(base, dimension, index) 401 // is transformed to 402 // addr = GEP(base, dimenion's zero's, index) 403 // . addr = preserve_union_access_index(base, di_index) 404 // is transformed to 405 // addr = base, i.e., all usages of "addr" are replaced by "base". 406 // . addr = preserve_struct_access_index(base, gep_index, di_index) 407 // is transformed to 408 // addr = GEP(base, 0, gep_index) 409 replaceWithGEP(PreserveArrayIndexCalls, 1, 2); 410 replaceWithGEP(PreserveStructIndexCalls, 0, 1); 411 for (auto Call : PreserveUnionIndexCalls) { 412 Call->replaceAllUsesWith(Call->getArgOperand(0)); 413 Call->eraseFromParent(); 414 } 415 416 return Found; 417 } 418 419 /// Check whether the access index chain is valid. We check 420 /// here because there may be type casts between two 421 /// access indexes. We want to ensure memory access still valid. 422 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType, 423 uint32_t ParentAI, 424 const MDNode *ChildType) { 425 if (!ChildType) 426 return true; // preserve_field_info, no type comparison needed. 427 428 const DIType *PType = stripQualifiers(cast<DIType>(ParentType)); 429 const DIType *CType = stripQualifiers(cast<DIType>(ChildType)); 430 431 // Child is a derived/pointer type, which is due to type casting. 432 // Pointer type cannot be in the middle of chain. 433 if (isa<DIDerivedType>(CType)) 434 return false; 435 436 // Parent is a pointer type. 437 if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) { 438 if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type) 439 return false; 440 return stripQualifiers(PtrTy->getBaseType()) == CType; 441 } 442 443 // Otherwise, struct/union/array types 444 const auto *PTy = dyn_cast<DICompositeType>(PType); 445 const auto *CTy = dyn_cast<DICompositeType>(CType); 446 assert(PTy && CTy && "ParentType or ChildType is null or not composite"); 447 448 uint32_t PTyTag = PTy->getTag(); 449 assert(PTyTag == dwarf::DW_TAG_array_type || 450 PTyTag == dwarf::DW_TAG_structure_type || 451 PTyTag == dwarf::DW_TAG_union_type); 452 453 uint32_t CTyTag = CTy->getTag(); 454 assert(CTyTag == dwarf::DW_TAG_array_type || 455 CTyTag == dwarf::DW_TAG_structure_type || 456 CTyTag == dwarf::DW_TAG_union_type); 457 458 // Multi dimensional arrays, base element should be the same 459 if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag) 460 return PTy->getBaseType() == CTy->getBaseType(); 461 462 DIType *Ty; 463 if (PTyTag == dwarf::DW_TAG_array_type) 464 Ty = PTy->getBaseType(); 465 else 466 Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]); 467 468 return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy; 469 } 470 471 void BPFAbstractMemberAccess::traceAICall(CallInst *Call, 472 CallInfo &ParentInfo) { 473 for (User *U : Call->users()) { 474 Instruction *Inst = dyn_cast<Instruction>(U); 475 if (!Inst) 476 continue; 477 478 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 479 traceBitCast(BI, Call, ParentInfo); 480 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 481 CallInfo ChildInfo; 482 483 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 484 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 485 ChildInfo.Metadata)) { 486 AIChain[CI] = std::make_pair(Call, ParentInfo); 487 traceAICall(CI, ChildInfo); 488 } else { 489 BaseAICalls[Call] = ParentInfo; 490 } 491 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 492 if (GI->hasAllZeroIndices()) 493 traceGEP(GI, Call, ParentInfo); 494 else 495 BaseAICalls[Call] = ParentInfo; 496 } else { 497 BaseAICalls[Call] = ParentInfo; 498 } 499 } 500 } 501 502 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast, 503 CallInst *Parent, 504 CallInfo &ParentInfo) { 505 for (User *U : BitCast->users()) { 506 Instruction *Inst = dyn_cast<Instruction>(U); 507 if (!Inst) 508 continue; 509 510 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 511 traceBitCast(BI, Parent, ParentInfo); 512 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 513 CallInfo ChildInfo; 514 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 515 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 516 ChildInfo.Metadata)) { 517 AIChain[CI] = std::make_pair(Parent, ParentInfo); 518 traceAICall(CI, ChildInfo); 519 } else { 520 BaseAICalls[Parent] = ParentInfo; 521 } 522 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 523 if (GI->hasAllZeroIndices()) 524 traceGEP(GI, Parent, ParentInfo); 525 else 526 BaseAICalls[Parent] = ParentInfo; 527 } else { 528 BaseAICalls[Parent] = ParentInfo; 529 } 530 } 531 } 532 533 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent, 534 CallInfo &ParentInfo) { 535 for (User *U : GEP->users()) { 536 Instruction *Inst = dyn_cast<Instruction>(U); 537 if (!Inst) 538 continue; 539 540 if (auto *BI = dyn_cast<BitCastInst>(Inst)) { 541 traceBitCast(BI, Parent, ParentInfo); 542 } else if (auto *CI = dyn_cast<CallInst>(Inst)) { 543 CallInfo ChildInfo; 544 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) && 545 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex, 546 ChildInfo.Metadata)) { 547 AIChain[CI] = std::make_pair(Parent, ParentInfo); 548 traceAICall(CI, ChildInfo); 549 } else { 550 BaseAICalls[Parent] = ParentInfo; 551 } 552 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) { 553 if (GI->hasAllZeroIndices()) 554 traceGEP(GI, Parent, ParentInfo); 555 else 556 BaseAICalls[Parent] = ParentInfo; 557 } else { 558 BaseAICalls[Parent] = ParentInfo; 559 } 560 } 561 } 562 563 void BPFAbstractMemberAccess::collectAICallChains(Function &F) { 564 AIChain.clear(); 565 BaseAICalls.clear(); 566 567 for (auto &BB : F) 568 for (auto &I : BB) { 569 CallInfo CInfo; 570 auto *Call = dyn_cast<CallInst>(&I); 571 if (!IsPreserveDIAccessIndexCall(Call, CInfo) || 572 AIChain.find(Call) != AIChain.end()) 573 continue; 574 575 traceAICall(Call, CInfo); 576 } 577 } 578 579 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) { 580 const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue); 581 assert(CV); 582 return CV->getValue().getZExtValue(); 583 } 584 585 /// Get the start and the end of storage offset for \p MemberTy. 586 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy, 587 Align RecordAlignment, 588 uint32_t &StartBitOffset, 589 uint32_t &EndBitOffset) { 590 uint32_t MemberBitSize = MemberTy->getSizeInBits(); 591 uint32_t MemberBitOffset = MemberTy->getOffsetInBits(); 592 uint32_t AlignBits = RecordAlignment.value() * 8; 593 if (RecordAlignment > 8 || MemberBitSize > AlignBits) 594 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, " 595 "requiring too big alignment"); 596 597 StartBitOffset = MemberBitOffset & ~(AlignBits - 1); 598 if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize)) 599 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, " 600 "cross alignment boundary"); 601 EndBitOffset = StartBitOffset + AlignBits; 602 } 603 604 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind, 605 DICompositeType *CTy, 606 uint32_t AccessIndex, 607 uint32_t PatchImm, 608 Align RecordAlignment) { 609 if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE) 610 return 1; 611 612 uint32_t Tag = CTy->getTag(); 613 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) { 614 if (Tag == dwarf::DW_TAG_array_type) { 615 auto *EltTy = stripQualifiers(CTy->getBaseType()); 616 PatchImm += AccessIndex * calcArraySize(CTy, 1) * 617 (EltTy->getSizeInBits() >> 3); 618 } else if (Tag == dwarf::DW_TAG_structure_type) { 619 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 620 if (!MemberTy->isBitField()) { 621 PatchImm += MemberTy->getOffsetInBits() >> 3; 622 } else { 623 unsigned SBitOffset, NextSBitOffset; 624 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, 625 NextSBitOffset); 626 PatchImm += SBitOffset >> 3; 627 } 628 } 629 return PatchImm; 630 } 631 632 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) { 633 if (Tag == dwarf::DW_TAG_array_type) { 634 auto *EltTy = stripQualifiers(CTy->getBaseType()); 635 return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3); 636 } else { 637 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 638 uint32_t SizeInBits = MemberTy->getSizeInBits(); 639 if (!MemberTy->isBitField()) 640 return SizeInBits >> 3; 641 642 unsigned SBitOffset, NextSBitOffset; 643 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 644 SizeInBits = NextSBitOffset - SBitOffset; 645 if (SizeInBits & (SizeInBits - 1)) 646 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info"); 647 return SizeInBits >> 3; 648 } 649 } 650 651 if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) { 652 const DIType *BaseTy; 653 if (Tag == dwarf::DW_TAG_array_type) { 654 // Signedness only checked when final array elements are accessed. 655 if (CTy->getElements().size() != 1) 656 report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info"); 657 BaseTy = stripQualifiers(CTy->getBaseType()); 658 } else { 659 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 660 BaseTy = stripQualifiers(MemberTy->getBaseType()); 661 } 662 663 // Only basic types and enum types have signedness. 664 const auto *BTy = dyn_cast<DIBasicType>(BaseTy); 665 while (!BTy) { 666 const auto *CompTy = dyn_cast<DICompositeType>(BaseTy); 667 // Report an error if the field expression does not have signedness. 668 if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type) 669 report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info"); 670 BaseTy = stripQualifiers(CompTy->getBaseType()); 671 BTy = dyn_cast<DIBasicType>(BaseTy); 672 } 673 uint32_t Encoding = BTy->getEncoding(); 674 return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char); 675 } 676 677 if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) { 678 // The value is loaded into a value with FIELD_BYTE_SIZE size, 679 // and then zero or sign extended to U64. 680 // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations 681 // to extract the original value. 682 const Triple &Triple = TM->getTargetTriple(); 683 DIDerivedType *MemberTy = nullptr; 684 bool IsBitField = false; 685 uint32_t SizeInBits; 686 687 if (Tag == dwarf::DW_TAG_array_type) { 688 auto *EltTy = stripQualifiers(CTy->getBaseType()); 689 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits(); 690 } else { 691 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 692 SizeInBits = MemberTy->getSizeInBits(); 693 IsBitField = MemberTy->isBitField(); 694 } 695 696 if (!IsBitField) { 697 if (SizeInBits > 64) 698 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 699 return 64 - SizeInBits; 700 } 701 702 unsigned SBitOffset, NextSBitOffset; 703 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 704 if (NextSBitOffset - SBitOffset > 64) 705 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 706 707 unsigned OffsetInBits = MemberTy->getOffsetInBits(); 708 if (Triple.getArch() == Triple::bpfel) 709 return SBitOffset + 64 - OffsetInBits - SizeInBits; 710 else 711 return OffsetInBits + 64 - NextSBitOffset; 712 } 713 714 if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) { 715 DIDerivedType *MemberTy = nullptr; 716 bool IsBitField = false; 717 uint32_t SizeInBits; 718 if (Tag == dwarf::DW_TAG_array_type) { 719 auto *EltTy = stripQualifiers(CTy->getBaseType()); 720 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits(); 721 } else { 722 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]); 723 SizeInBits = MemberTy->getSizeInBits(); 724 IsBitField = MemberTy->isBitField(); 725 } 726 727 if (!IsBitField) { 728 if (SizeInBits > 64) 729 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 730 return 64 - SizeInBits; 731 } 732 733 unsigned SBitOffset, NextSBitOffset; 734 GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset); 735 if (NextSBitOffset - SBitOffset > 64) 736 report_fatal_error("too big field size for llvm.bpf.preserve.field.info"); 737 738 return 64 - SizeInBits; 739 } 740 741 llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind"); 742 } 743 744 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) { 745 // This is called in error return path, no need to maintain CallStack. 746 while (CallStack.size()) { 747 auto StackElem = CallStack.top(); 748 if (StackElem.second.Kind == BPFPreserveFieldInfoAI) 749 return true; 750 CallStack.pop(); 751 } 752 return false; 753 } 754 755 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base 756 /// pointer of the first preserve_*_access_index call, and construct the access 757 /// string, which will be the name of a global variable. 758 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call, 759 CallInfo &CInfo, 760 std::string &AccessKey, 761 MDNode *&TypeMeta) { 762 Value *Base = nullptr; 763 std::string TypeName; 764 CallInfoStack CallStack; 765 766 // Put the access chain into a stack with the top as the head of the chain. 767 while (Call) { 768 CallStack.push(std::make_pair(Call, CInfo)); 769 CInfo = AIChain[Call].second; 770 Call = AIChain[Call].first; 771 } 772 773 // The access offset from the base of the head of chain is also 774 // calculated here as all debuginfo types are available. 775 776 // Get type name and calculate the first index. 777 // We only want to get type name from typedef, structure or union. 778 // If user wants a relocation like 779 // int *p; ... __builtin_preserve_access_index(&p[4]) ... 780 // or 781 // int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ... 782 // we will skip them. 783 uint32_t FirstIndex = 0; 784 uint32_t PatchImm = 0; // AccessOffset or the requested field info 785 uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET; 786 while (CallStack.size()) { 787 auto StackElem = CallStack.top(); 788 Call = StackElem.first; 789 CInfo = StackElem.second; 790 791 if (!Base) 792 Base = CInfo.Base; 793 794 DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata), 795 false); 796 DIType *Ty = stripQualifiers(PossibleTypeDef); 797 if (CInfo.Kind == BPFPreserveUnionAI || 798 CInfo.Kind == BPFPreserveStructAI) { 799 // struct or union type. If the typedef is in the metadata, always 800 // use the typedef. 801 TypeName = std::string(PossibleTypeDef->getName()); 802 TypeMeta = PossibleTypeDef; 803 PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3); 804 break; 805 } 806 807 assert(CInfo.Kind == BPFPreserveArrayAI); 808 809 // Array entries will always be consumed for accumulative initial index. 810 CallStack.pop(); 811 812 // BPFPreserveArrayAI 813 uint64_t AccessIndex = CInfo.AccessIndex; 814 815 DIType *BaseTy = nullptr; 816 bool CheckElemType = false; 817 if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) { 818 // array type 819 assert(CTy->getTag() == dwarf::DW_TAG_array_type); 820 821 822 FirstIndex += AccessIndex * calcArraySize(CTy, 1); 823 BaseTy = stripQualifiers(CTy->getBaseType()); 824 CheckElemType = CTy->getElements().size() == 1; 825 } else { 826 // pointer type 827 auto *DTy = cast<DIDerivedType>(Ty); 828 assert(DTy->getTag() == dwarf::DW_TAG_pointer_type); 829 830 BaseTy = stripQualifiers(DTy->getBaseType()); 831 CTy = dyn_cast<DICompositeType>(BaseTy); 832 if (!CTy) { 833 CheckElemType = true; 834 } else if (CTy->getTag() != dwarf::DW_TAG_array_type) { 835 FirstIndex += AccessIndex; 836 CheckElemType = true; 837 } else { 838 FirstIndex += AccessIndex * calcArraySize(CTy, 0); 839 } 840 } 841 842 if (CheckElemType) { 843 auto *CTy = dyn_cast<DICompositeType>(BaseTy); 844 if (!CTy) { 845 if (HasPreserveFieldInfoCall(CallStack)) 846 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic"); 847 return nullptr; 848 } 849 850 unsigned CTag = CTy->getTag(); 851 if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) { 852 TypeName = std::string(CTy->getName()); 853 } else { 854 if (HasPreserveFieldInfoCall(CallStack)) 855 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic"); 856 return nullptr; 857 } 858 TypeMeta = CTy; 859 PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3); 860 break; 861 } 862 } 863 assert(TypeName.size()); 864 AccessKey += std::to_string(FirstIndex); 865 866 // Traverse the rest of access chain to complete offset calculation 867 // and access key construction. 868 while (CallStack.size()) { 869 auto StackElem = CallStack.top(); 870 CInfo = StackElem.second; 871 CallStack.pop(); 872 873 if (CInfo.Kind == BPFPreserveFieldInfoAI) { 874 InfoKind = CInfo.AccessIndex; 875 break; 876 } 877 878 // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI, 879 // the action will be extracting field info. 880 if (CallStack.size()) { 881 auto StackElem2 = CallStack.top(); 882 CallInfo CInfo2 = StackElem2.second; 883 if (CInfo2.Kind == BPFPreserveFieldInfoAI) { 884 InfoKind = CInfo2.AccessIndex; 885 assert(CallStack.size() == 1); 886 } 887 } 888 889 // Access Index 890 uint64_t AccessIndex = CInfo.AccessIndex; 891 AccessKey += ":" + std::to_string(AccessIndex); 892 893 MDNode *MDN = CInfo.Metadata; 894 // At this stage, it cannot be pointer type. 895 auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN))); 896 PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm, 897 CInfo.RecordAlignment); 898 } 899 900 // Access key is the 901 // "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" + 902 // access string, 903 // uniquely identifying one relocation. 904 // The prefix "llvm." indicates this is a temporary global, which should 905 // not be emitted to ELF file. 906 AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" + 907 std::to_string(PatchImm) + "$" + AccessKey; 908 909 return Base; 910 } 911 912 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call, 913 CallInfo &CInfo, 914 std::string &AccessKey, 915 bool &IsInt32Ret) { 916 DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false); 917 assert(!Ty->getName().empty()); 918 919 int64_t PatchImm; 920 std::string AccessStr("0"); 921 if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE) { 922 PatchImm = 1; 923 } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) { 924 // typedef debuginfo type has size 0, get the eventual base type. 925 DIType *BaseTy = stripQualifiers(Ty, true); 926 PatchImm = BaseTy->getSizeInBits() / 8; 927 } else { 928 // ENUM_VALUE_EXISTENCE and ENUM_VALUE 929 IsInt32Ret = false; 930 931 const auto *CE = cast<ConstantExpr>(Call->getArgOperand(1)); 932 const GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 933 assert(GV->hasInitializer()); 934 const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer()); 935 assert(DA->isString()); 936 StringRef ValueStr = DA->getAsString(); 937 938 // ValueStr format: <EnumeratorStr>:<Value> 939 size_t Separator = ValueStr.find_first_of(':'); 940 StringRef EnumeratorStr = ValueStr.substr(0, Separator); 941 942 // Find enumerator index in the debuginfo 943 DIType *BaseTy = stripQualifiers(Ty, true); 944 const auto *CTy = cast<DICompositeType>(BaseTy); 945 assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type); 946 int EnumIndex = 0; 947 for (const auto Element : CTy->getElements()) { 948 const auto *Enum = cast<DIEnumerator>(Element); 949 if (Enum->getName() == EnumeratorStr) { 950 AccessStr = std::to_string(EnumIndex); 951 break; 952 } 953 EnumIndex++; 954 } 955 956 if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) { 957 StringRef EValueStr = ValueStr.substr(Separator + 1); 958 PatchImm = std::stoll(std::string(EValueStr)); 959 } else { 960 PatchImm = 1; 961 } 962 } 963 964 AccessKey = "llvm." + Ty->getName().str() + ":" + 965 std::to_string(CInfo.AccessIndex) + std::string(":") + 966 std::to_string(PatchImm) + std::string("$") + AccessStr; 967 968 return Ty; 969 } 970 971 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do 972 /// transformation to a chain of relocable GEPs. 973 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call, 974 CallInfo &CInfo) { 975 std::string AccessKey; 976 MDNode *TypeMeta; 977 Value *Base = nullptr; 978 bool IsInt32Ret; 979 980 IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI; 981 if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) { 982 TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret); 983 } else { 984 Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta); 985 if (!Base) 986 return false; 987 } 988 989 BasicBlock *BB = Call->getParent(); 990 GlobalVariable *GV; 991 992 if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) { 993 IntegerType *VarType; 994 if (IsInt32Ret) 995 VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value 996 else 997 VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value 998 999 GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage, 1000 NULL, AccessKey); 1001 GV->addAttribute(BPFCoreSharedInfo::AmaAttr); 1002 GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta); 1003 GEPGlobals[AccessKey] = GV; 1004 } else { 1005 GV = GEPGlobals[AccessKey]; 1006 } 1007 1008 if (CInfo.Kind == BPFPreserveFieldInfoAI) { 1009 // Load the global variable which represents the returned field info. 1010 LoadInst *LDInst; 1011 if (IsInt32Ret) 1012 LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call); 1013 else 1014 LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call); 1015 1016 Instruction *PassThroughInst = 1017 BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call); 1018 Call->replaceAllUsesWith(PassThroughInst); 1019 Call->eraseFromParent(); 1020 return true; 1021 } 1022 1023 // For any original GEP Call and Base %2 like 1024 // %4 = bitcast %struct.net_device** %dev1 to i64* 1025 // it is transformed to: 1026 // %6 = load llvm.sk_buff:0:50$0:0:0:2:0 1027 // %7 = bitcast %struct.sk_buff* %2 to i8* 1028 // %8 = getelementptr i8, i8* %7, %6 1029 // %9 = bitcast i8* %8 to i64* 1030 // using %9 instead of %4 1031 // The original Call inst is removed. 1032 1033 // Load the global variable. 1034 auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call); 1035 1036 // Generate a BitCast 1037 auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext())); 1038 BB->getInstList().insert(Call->getIterator(), BCInst); 1039 1040 // Generate a GetElementPtr 1041 auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()), 1042 BCInst, LDInst); 1043 BB->getInstList().insert(Call->getIterator(), GEP); 1044 1045 // Generate a BitCast 1046 auto *BCInst2 = new BitCastInst(GEP, Call->getType()); 1047 BB->getInstList().insert(Call->getIterator(), BCInst2); 1048 1049 // For the following code, 1050 // Block0: 1051 // ... 1052 // if (...) goto Block1 else ... 1053 // Block1: 1054 // %6 = load llvm.sk_buff:0:50$0:0:0:2:0 1055 // %7 = bitcast %struct.sk_buff* %2 to i8* 1056 // %8 = getelementptr i8, i8* %7, %6 1057 // ... 1058 // goto CommonExit 1059 // Block2: 1060 // ... 1061 // if (...) goto Block3 else ... 1062 // Block3: 1063 // %6 = load llvm.bpf_map:0:40$0:0:0:2:0 1064 // %7 = bitcast %struct.sk_buff* %2 to i8* 1065 // %8 = getelementptr i8, i8* %7, %6 1066 // ... 1067 // goto CommonExit 1068 // CommonExit 1069 // SimplifyCFG may generate: 1070 // Block0: 1071 // ... 1072 // if (...) goto Block_Common else ... 1073 // Block2: 1074 // ... 1075 // if (...) goto Block_Common else ... 1076 // Block_Common: 1077 // PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0] 1078 // %6 = load PHI 1079 // %7 = bitcast %struct.sk_buff* %2 to i8* 1080 // %8 = getelementptr i8, i8* %7, %6 1081 // ... 1082 // goto CommonExit 1083 // For the above code, we cannot perform proper relocation since 1084 // "load PHI" has two possible relocations. 1085 // 1086 // To prevent above tail merging, we use __builtin_bpf_passthrough() 1087 // where one of its parameters is a seq_num. Since two 1088 // __builtin_bpf_passthrough() funcs will always have different seq_num, 1089 // tail merging cannot happen. The __builtin_bpf_passthrough() will be 1090 // removed in the beginning of Target IR passes. 1091 // 1092 // This approach is also used in other places when global var 1093 // representing a relocation is used. 1094 Instruction *PassThroughInst = 1095 BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call); 1096 Call->replaceAllUsesWith(PassThroughInst); 1097 Call->eraseFromParent(); 1098 1099 return true; 1100 } 1101 1102 bool BPFAbstractMemberAccess::doTransformation(Function &F) { 1103 bool Transformed = false; 1104 1105 // Collect PreserveDIAccessIndex Intrinsic call chains. 1106 // The call chains will be used to generate the access 1107 // patterns similar to GEP. 1108 collectAICallChains(F); 1109 1110 for (auto &C : BaseAICalls) 1111 Transformed = transformGEPChain(C.first, C.second) || Transformed; 1112 1113 return removePreserveAccessIndexIntrinsic(F) || Transformed; 1114 } 1115 1116 PreservedAnalyses 1117 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) { 1118 return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none() 1119 : PreservedAnalyses::all(); 1120 } 1121