1 //===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AVRAsmBackend class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/AVRAsmBackend.h" 14 #include "MCTargetDesc/AVRFixupKinds.h" 15 #include "MCTargetDesc/AVRMCTargetDesc.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAssembler.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCDirectives.h" 20 #include "llvm/MC/MCELFObjectWriter.h" 21 #include "llvm/MC/MCExpr.h" 22 #include "llvm/MC/MCFixupKindInfo.h" 23 #include "llvm/MC/MCObjectWriter.h" 24 #include "llvm/MC/MCSubtargetInfo.h" 25 #include "llvm/MC/MCValue.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 // FIXME: we should be doing checks to make sure asm operands 31 // are not out of bounds. 32 33 namespace adjust { 34 35 using namespace llvm; 36 37 static void signed_width(unsigned Width, uint64_t Value, 38 std::string Description, const MCFixup &Fixup, 39 MCContext *Ctx = nullptr) { 40 if (!isIntN(Width, Value)) { 41 std::string Diagnostic = "out of range " + Description; 42 43 int64_t Min = minIntN(Width); 44 int64_t Max = maxIntN(Width); 45 46 Diagnostic += " (expected an integer in the range " + std::to_string(Min) + 47 " to " + std::to_string(Max) + ")"; 48 49 if (Ctx) { 50 Ctx->reportError(Fixup.getLoc(), Diagnostic); 51 } else { 52 llvm_unreachable(Diagnostic.c_str()); 53 } 54 } 55 } 56 57 static void unsigned_width(unsigned Width, uint64_t Value, 58 std::string Description, const MCFixup &Fixup, 59 MCContext *Ctx = nullptr) { 60 if (!isUIntN(Width, Value)) { 61 std::string Diagnostic = "out of range " + Description; 62 63 int64_t Max = maxUIntN(Width); 64 65 Diagnostic += 66 " (expected an integer in the range 0 to " + std::to_string(Max) + ")"; 67 68 if (Ctx) { 69 Ctx->reportError(Fixup.getLoc(), Diagnostic); 70 } else { 71 llvm_unreachable(Diagnostic.c_str()); 72 } 73 } 74 } 75 76 /// Adjusts the value of a branch target before fixup application. 77 static void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 78 MCContext *Ctx = nullptr) { 79 // We have one extra bit of precision because the value is rightshifted by 80 // one. 81 unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx); 82 83 // Rightshifts the value by one. 84 AVR::fixups::adjustBranchTarget(Value); 85 } 86 87 /// Adjusts the value of a relative branch target before fixup application. 88 static void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup, 89 uint64_t &Value, MCContext *Ctx = nullptr) { 90 // We have one extra bit of precision because the value is rightshifted by 91 // one. 92 signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx); 93 94 // Rightshifts the value by one. 95 AVR::fixups::adjustBranchTarget(Value); 96 } 97 98 /// 22-bit absolute fixup. 99 /// 100 /// Resolves to: 101 /// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk 102 /// 103 /// Offset of 0 (so the result is left shifted by 3 bits before application). 104 static void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 105 MCContext *Ctx = nullptr) { 106 adjustBranch(Size, Fixup, Value, Ctx); 107 108 auto top = Value & (0xf00000 << 6); // the top four bits 109 auto middle = Value & (0x1ffff << 5); // the middle 13 bits 110 auto bottom = Value & 0x1f; // end bottom 5 bits 111 112 Value = (top << 6) | (middle << 3) | (bottom << 0); 113 } 114 115 /// 7-bit PC-relative fixup. 116 /// 117 /// Resolves to: 118 /// 0000 00kk kkkk k000 119 /// Offset of 0 (so the result is left shifted by 3 bits before application). 120 static void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 121 MCContext *Ctx = nullptr) { 122 adjustRelativeBranch(Size, Fixup, Value, Ctx); 123 124 // Because the value may be negative, we must mask out the sign bits 125 Value &= 0x7f; 126 } 127 128 /// 12-bit PC-relative fixup. 129 /// Yes, the fixup is 12 bits even though the name says otherwise. 130 /// 131 /// Resolves to: 132 /// 0000 kkkk kkkk kkkk 133 /// Offset of 0 (so the result isn't left-shifted before application). 134 static void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 135 MCContext *Ctx = nullptr) { 136 adjustRelativeBranch(Size, Fixup, Value, Ctx); 137 138 // Because the value may be negative, we must mask out the sign bits 139 Value &= 0xfff; 140 } 141 142 /// 6-bit fixup for the immediate operand of the STD/LDD family of 143 /// instructions. 144 /// 145 /// Resolves to: 146 /// 10q0 qq10 0000 1qqq 147 static void fixup_6(const MCFixup &Fixup, uint64_t &Value, 148 MCContext *Ctx = nullptr) { 149 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx); 150 151 Value = ((Value & 0x20) << 8) | ((Value & 0x18) << 7) | (Value & 0x07); 152 } 153 154 /// 6-bit fixup for the immediate operand of the ADIW family of 155 /// instructions. 156 /// 157 /// Resolves to: 158 /// 0000 0000 kk00 kkkk 159 static void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value, 160 MCContext *Ctx = nullptr) { 161 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx); 162 163 Value = ((Value & 0x30) << 2) | (Value & 0x0f); 164 } 165 166 /// 5-bit port number fixup on the SBIC family of instructions. 167 /// 168 /// Resolves to: 169 /// 0000 0000 AAAA A000 170 static void fixup_port5(const MCFixup &Fixup, uint64_t &Value, 171 MCContext *Ctx = nullptr) { 172 unsigned_width(5, Value, std::string("port number"), Fixup, Ctx); 173 174 Value &= 0x1f; 175 176 Value <<= 3; 177 } 178 179 /// 6-bit port number fixup on the `IN` family of instructions. 180 /// 181 /// Resolves to: 182 /// 1011 0AAd dddd AAAA 183 static void fixup_port6(const MCFixup &Fixup, uint64_t &Value, 184 MCContext *Ctx = nullptr) { 185 unsigned_width(6, Value, std::string("port number"), Fixup, Ctx); 186 187 Value = ((Value & 0x30) << 5) | (Value & 0x0f); 188 } 189 190 /// 7-bit data space address fixup for the LDS/STS instructions on AVRTiny. 191 /// 192 /// Resolves to: 193 /// 1010 ikkk dddd kkkk 194 static void fixup_lds_sts_16(const MCFixup &Fixup, uint64_t &Value, 195 MCContext *Ctx = nullptr) { 196 unsigned_width(7, Value, std::string("immediate"), Fixup, Ctx); 197 Value = ((Value & 0x70) << 8) | (Value & 0x0f); 198 } 199 200 /// Adjusts a program memory address. 201 /// This is a simple right-shift. 202 static void pm(uint64_t &Value) { Value >>= 1; } 203 204 /// Fixups relating to the LDI instruction. 205 namespace ldi { 206 207 /// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction. 208 /// 209 /// Resolves to: 210 /// 0000 KKKK 0000 KKKK 211 /// Offset of 0 (so the result isn't left-shifted before application). 212 static void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 213 MCContext *Ctx = nullptr) { 214 uint64_t upper = Value & 0xf0; 215 uint64_t lower = Value & 0x0f; 216 217 Value = (upper << 4) | lower; 218 } 219 220 static void neg(uint64_t &Value) { Value *= -1; } 221 222 static void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 223 MCContext *Ctx = nullptr) { 224 Value &= 0xff; 225 ldi::fixup(Size, Fixup, Value, Ctx); 226 } 227 228 static void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 229 MCContext *Ctx = nullptr) { 230 Value = (Value & 0xff00) >> 8; 231 ldi::fixup(Size, Fixup, Value, Ctx); 232 } 233 234 static void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 235 MCContext *Ctx = nullptr) { 236 Value = (Value & 0xff0000) >> 16; 237 ldi::fixup(Size, Fixup, Value, Ctx); 238 } 239 240 static void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, 241 MCContext *Ctx = nullptr) { 242 Value = (Value & 0xff000000) >> 24; 243 ldi::fixup(Size, Fixup, Value, Ctx); 244 } 245 246 } // namespace ldi 247 } // namespace adjust 248 249 namespace llvm { 250 251 // Prepare value for the target space for it 252 void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup, 253 const MCValue &Target, uint64_t &Value, 254 MCContext *Ctx) const { 255 // The size of the fixup in bits. 256 uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize; 257 258 unsigned Kind = Fixup.getKind(); 259 switch (Kind) { 260 default: 261 llvm_unreachable("unhandled fixup"); 262 case AVR::fixup_7_pcrel: 263 adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx); 264 break; 265 case AVR::fixup_13_pcrel: 266 adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx); 267 break; 268 case AVR::fixup_call: 269 adjust::fixup_call(Size, Fixup, Value, Ctx); 270 break; 271 case AVR::fixup_ldi: 272 adjust::ldi::fixup(Size, Fixup, Value, Ctx); 273 break; 274 case AVR::fixup_lo8_ldi: 275 adjust::ldi::lo8(Size, Fixup, Value, Ctx); 276 break; 277 case AVR::fixup_lo8_ldi_pm: 278 case AVR::fixup_lo8_ldi_gs: 279 adjust::pm(Value); 280 adjust::ldi::lo8(Size, Fixup, Value, Ctx); 281 break; 282 case AVR::fixup_hi8_ldi: 283 adjust::ldi::hi8(Size, Fixup, Value, Ctx); 284 break; 285 case AVR::fixup_hi8_ldi_pm: 286 case AVR::fixup_hi8_ldi_gs: 287 adjust::pm(Value); 288 adjust::ldi::hi8(Size, Fixup, Value, Ctx); 289 break; 290 case AVR::fixup_hh8_ldi: 291 case AVR::fixup_hh8_ldi_pm: 292 if (Kind == AVR::fixup_hh8_ldi_pm) 293 adjust::pm(Value); 294 295 adjust::ldi::hh8(Size, Fixup, Value, Ctx); 296 break; 297 case AVR::fixup_ms8_ldi: 298 adjust::ldi::ms8(Size, Fixup, Value, Ctx); 299 break; 300 301 case AVR::fixup_lo8_ldi_neg: 302 case AVR::fixup_lo8_ldi_pm_neg: 303 if (Kind == AVR::fixup_lo8_ldi_pm_neg) 304 adjust::pm(Value); 305 306 adjust::ldi::neg(Value); 307 adjust::ldi::lo8(Size, Fixup, Value, Ctx); 308 break; 309 case AVR::fixup_hi8_ldi_neg: 310 case AVR::fixup_hi8_ldi_pm_neg: 311 if (Kind == AVR::fixup_hi8_ldi_pm_neg) 312 adjust::pm(Value); 313 314 adjust::ldi::neg(Value); 315 adjust::ldi::hi8(Size, Fixup, Value, Ctx); 316 break; 317 case AVR::fixup_hh8_ldi_neg: 318 case AVR::fixup_hh8_ldi_pm_neg: 319 if (Kind == AVR::fixup_hh8_ldi_pm_neg) 320 adjust::pm(Value); 321 322 adjust::ldi::neg(Value); 323 adjust::ldi::hh8(Size, Fixup, Value, Ctx); 324 break; 325 case AVR::fixup_ms8_ldi_neg: 326 adjust::ldi::neg(Value); 327 adjust::ldi::ms8(Size, Fixup, Value, Ctx); 328 break; 329 case AVR::fixup_16: 330 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx); 331 332 Value &= 0xffff; 333 break; 334 case AVR::fixup_16_pm: 335 Value >>= 1; // Flash addresses are always shifted. 336 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx); 337 338 Value &= 0xffff; 339 break; 340 341 case AVR::fixup_6: 342 adjust::fixup_6(Fixup, Value, Ctx); 343 break; 344 case AVR::fixup_6_adiw: 345 adjust::fixup_6_adiw(Fixup, Value, Ctx); 346 break; 347 348 case AVR::fixup_port5: 349 adjust::fixup_port5(Fixup, Value, Ctx); 350 break; 351 352 case AVR::fixup_port6: 353 adjust::fixup_port6(Fixup, Value, Ctx); 354 break; 355 356 case AVR::fixup_lds_sts_16: 357 adjust::fixup_lds_sts_16(Fixup, Value, Ctx); 358 break; 359 360 // Fixups which do not require adjustments. 361 case FK_Data_1: 362 case FK_Data_2: 363 case FK_Data_4: 364 case FK_Data_8: 365 break; 366 367 case FK_GPRel_4: 368 llvm_unreachable("don't know how to adjust this fixup"); 369 break; 370 } 371 } 372 373 std::unique_ptr<MCObjectTargetWriter> 374 AVRAsmBackend::createObjectTargetWriter() const { 375 return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType)); 376 } 377 378 void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 379 const MCValue &Target, 380 MutableArrayRef<char> Data, uint64_t Value, 381 bool IsResolved, 382 const MCSubtargetInfo *STI) const { 383 if (Fixup.getKind() >= FirstLiteralRelocationKind) 384 return; 385 adjustFixupValue(Fixup, Target, Value, &Asm.getContext()); 386 if (Value == 0) 387 return; // Doesn't change encoding. 388 389 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind()); 390 391 // The number of bits in the fixup mask 392 auto NumBits = Info.TargetSize + Info.TargetOffset; 393 auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1); 394 395 // Shift the value into position. 396 Value <<= Info.TargetOffset; 397 398 unsigned Offset = Fixup.getOffset(); 399 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 400 401 // For each byte of the fragment that the fixup touches, mask in the 402 // bits from the fixup value. 403 for (unsigned i = 0; i < NumBytes; ++i) { 404 uint8_t mask = (((Value >> (i * 8)) & 0xff)); 405 Data[Offset + i] |= mask; 406 } 407 } 408 409 std::optional<MCFixupKind> AVRAsmBackend::getFixupKind(StringRef Name) const { 410 unsigned Type; 411 Type = llvm::StringSwitch<unsigned>(Name) 412 #define ELF_RELOC(X, Y) .Case(#X, Y) 413 #include "llvm/BinaryFormat/ELFRelocs/AVR.def" 414 #undef ELF_RELOC 415 .Case("BFD_RELOC_NONE", ELF::R_AVR_NONE) 416 .Case("BFD_RELOC_16", ELF::R_AVR_16) 417 .Case("BFD_RELOC_32", ELF::R_AVR_32) 418 .Default(-1u); 419 if (Type != -1u) 420 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 421 return std::nullopt; 422 } 423 424 MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 425 // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around 426 // this by saying that the fixup is the size of the entire instruction. 427 const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = { 428 // This table *must* be in same the order of fixup_* kinds in 429 // AVRFixupKinds.h. 430 // 431 // name offset bits flags 432 {"fixup_32", 0, 32, 0}, 433 434 {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel}, 435 {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel}, 436 437 {"fixup_16", 0, 16, 0}, 438 {"fixup_16_pm", 0, 16, 0}, 439 440 {"fixup_ldi", 0, 8, 0}, 441 442 {"fixup_lo8_ldi", 0, 8, 0}, 443 {"fixup_hi8_ldi", 0, 8, 0}, 444 {"fixup_hh8_ldi", 0, 8, 0}, 445 {"fixup_ms8_ldi", 0, 8, 0}, 446 447 {"fixup_lo8_ldi_neg", 0, 8, 0}, 448 {"fixup_hi8_ldi_neg", 0, 8, 0}, 449 {"fixup_hh8_ldi_neg", 0, 8, 0}, 450 {"fixup_ms8_ldi_neg", 0, 8, 0}, 451 452 {"fixup_lo8_ldi_pm", 0, 8, 0}, 453 {"fixup_hi8_ldi_pm", 0, 8, 0}, 454 {"fixup_hh8_ldi_pm", 0, 8, 0}, 455 456 {"fixup_lo8_ldi_pm_neg", 0, 8, 0}, 457 {"fixup_hi8_ldi_pm_neg", 0, 8, 0}, 458 {"fixup_hh8_ldi_pm_neg", 0, 8, 0}, 459 460 {"fixup_call", 0, 22, 0}, 461 462 {"fixup_6", 0, 16, 0}, // non-contiguous 463 {"fixup_6_adiw", 0, 6, 0}, 464 465 {"fixup_lo8_ldi_gs", 0, 8, 0}, 466 {"fixup_hi8_ldi_gs", 0, 8, 0}, 467 468 {"fixup_8", 0, 8, 0}, 469 {"fixup_8_lo8", 0, 8, 0}, 470 {"fixup_8_hi8", 0, 8, 0}, 471 {"fixup_8_hlo8", 0, 8, 0}, 472 473 {"fixup_diff8", 0, 8, 0}, 474 {"fixup_diff16", 0, 16, 0}, 475 {"fixup_diff32", 0, 32, 0}, 476 477 {"fixup_lds_sts_16", 0, 16, 0}, 478 479 {"fixup_port6", 0, 16, 0}, // non-contiguous 480 {"fixup_port5", 3, 5, 0}, 481 }; 482 483 // Fixup kinds from .reloc directive are like R_AVR_NONE. They do not require 484 // any extra processing. 485 if (Kind >= FirstLiteralRelocationKind) 486 return MCAsmBackend::getFixupKindInfo(FK_NONE); 487 488 if (Kind < FirstTargetFixupKind) 489 return MCAsmBackend::getFixupKindInfo(Kind); 490 491 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 492 "Invalid kind!"); 493 494 return Infos[Kind - FirstTargetFixupKind]; 495 } 496 497 bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, 498 const MCSubtargetInfo *STI) const { 499 // If the count is not 2-byte aligned, we must be writing data into the text 500 // section (otherwise we have unaligned instructions, and thus have far 501 // bigger problems), so just write zeros instead. 502 assert((Count % 2) == 0 && "NOP instructions must be 2 bytes"); 503 504 OS.write_zeros(Count); 505 return true; 506 } 507 508 bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm, 509 const MCFixup &Fixup, 510 const MCValue &Target) { 511 switch ((unsigned)Fixup.getKind()) { 512 default: 513 return Fixup.getKind() >= FirstLiteralRelocationKind; 514 // Fixups which should always be recorded as relocations. 515 case AVR::fixup_7_pcrel: 516 case AVR::fixup_13_pcrel: 517 case AVR::fixup_call: 518 return true; 519 } 520 } 521 522 MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI, 523 const MCRegisterInfo &MRI, 524 const llvm::MCTargetOptions &TO) { 525 return new AVRAsmBackend(STI.getTargetTriple().getOS()); 526 } 527 528 } // end of namespace llvm 529